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Abstract
We present Nap, a black-box approach that converts con-

current persistent memory (PM) indexes into NUMA-aware
counterparts. Based on the observation that real-world work-
loads always feature skewed access patterns, Nap introduces a
NUMA-aware layer (NAL) on the top of existing concurrent
PM indexes, and steers accesses to hot items to this layer. The
NAL maintains 1) per-node partial views in PM for serving
insert/update/delete operations with failure atomicity and 2)
a global view in DRAM for serving lookup operations. The
NAL eliminates remote PM accesses to hot items without
inducing extra local PM accesses. Moreover, to handle dy-
namic workloads, Nap adopts a fast NAL switch mechanism.
We convert five state-of-the-art PM indexes using Nap. Eval-
uation on a four-node machine with Optane DC Persistent
Memory shows that Nap can improve the throughput by up
to 2.3× and 1.56× under write-intensive and read-intensive
workloads, respectively.

1 Introduction

We consider the problem of making persistent memory
(PM) indexes NUMA-aware. Although there has been a
wealth of prior research designing high-performance PM in-
dexes [1–16], the impacts of non-uniform memory access
(NUMA) architecture to PM indexes have not been deeply ex-
plored. Due to limited DIMM slots and cores in a single CPU,
NUMA architecture is a necessity for providing massive band-
width and capacity of PM along with enormous computational
power. In a NUMA machine, the CPU cores and DRAM/PM
DIMMs are grouped into nodes, which connect each other via
inter-node links, e.g., Intel Ultra Path Interconnect (UPI).

The NUMA problem on PM indexes is unique. First, PM
suffers from more severe impacts of NUMA than DRAM.
Specifically, for Intel Optane DC Persistent Memory (i.e.,
Optane DIMM), the first PM product, compared with local
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PM write, the peak bandwidth of remote ones is decreased
to 59%; worse, highly concurrent remote PM writes (i.e., more
than 8 threads) experience a bandwidth cliff (§2.1). Second,
to guarantee failure atomicity (i.e., the system can recover
to a correct state upon system crashes), a PM index should
issue flush instructions for explicitly evicting data from CPU
caches to PM. For data that resides on remote nodes, these
flush instructions expose remote PM writes on the critical
path, degrading the performance. Third, PM has limited band-
width (1/6 and 1/3 of DRAM in terms of writes and reads,
respectively [17]), making replication-based approaches im-
practical. Existing NUMA-aware DRAM indexes always (par-
tially) replicate indexes across NUMA nodes and synchronize
these replicas via compact operation logs [18,19]. Replication
effectively reduces remote accesses; yet, since every update
operation is executed at every node, the number of local ac-
cesses is amplified significantly. Although this amplification
is not a problem for DRAM due to its extremely high local
bandwidth, it is fatal for PM with low local bandwidth.

In this paper, we propose Nap (NUMA-Aware Persistent
Memory Indexes), a black-box approach that converts con-
current PM indexes into NUMA-aware counterparts. Nap is
based on a common observation: real-world workloads al-
ways feature skewed access patterns [20–24], where a small
portion of hot items receive extremely frequent accesses. The
key idea of Nap is making hot accesses NUMA-aware. Nap
introduces a general NUMA-aware layer (NAL), which can
be placed on the top of any existing concurrent PM index.
The NAL absorbs accesses to hot items, while the underly-
ing PM index handles accesses to other items. Specifically,
NAL maintains per-node partial and crash-consistent views
(PC-views) in PM, which serve insert/update/delete opera-
tions from local threads with failure atomicity. NAL does not
synchronize states between PC-views, to avoid remote PM
accesses without inducing extra local PM accesses. Such a
synchronization-less approach brings two challenges: 1) serv-
ing lookup operations to hot items; 2) identifying the latest
values from multiple PC-views upon recovery. For 1), NAL
maintains an additional global view of hot items in DRAM.
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For 2), NAL adopts a version-based mechanism to order in-
sert/update/delete operations to the same items, along with
low-overhead methods of failure atomicity.

Upon workloads change, Nap can identify the new set of
hot items and then switch to a new NAL quickly. The hot set
identification is achieved by a combination of accurate and
efficient streaming algorithms (e.g., count-min sketch [25]).
To mitigate blocking of foreground index operations during
NAL switch, Nap introduces a three-phase switch. This mech-
anism detects the states of access threads via a lightweight
grace-period-based method. By leveraging these states, Nap
divides the switch into three phases, and carefully splits tasks
(e.g., initializing new NAL, flushing and recycling old NAL)
into different phases. As a result, only a small portion of index
operations during a small interval are blocked.

Nap approach offers several advantages. First, it is general
and efficient; we convert five state-of-the-art concurrent PM
indexes using Nap, and the Nap-converted counterparts boost
the throughput significantly on a four-node machine. Second,
since the set of hot items is always small, the extra memory
consumption and recovery time induced by Nap are bounded.
Our evaluation on a four-node machine running 72 threads
shows that, when maintaining 100K hot items in the NAL,
Nap uses less than 70MB extra DRAM/PM space, and the
recovery time is less than 1 second.

Nap has some limitations. First, it targets skewed workloads
but not uniform workloads, which appear relatively rarely in
the real world. Second, Nap-converted PM indexes may be
outperformed by a crafted NUMA-aware PM index. However,
when designing and evaluating Nap, we conclude some guide-
lines that may benefit future specialized NUMA-aware PM
indexes, among which the most remarkable is that a NUMA-
aware PM index should reduce remote PM accesses without
consuming extra local PM bandwidth.

In summary, this paper makes the following contributions:
• Nap, a black-box and practical approach that converts con-

current PM indexes into NUMA-aware counterparts.
• A set of techniques that enable Nap’s fast reaction to work-

loads change.
• Experimental evidence showing the efficiency of Nap.

2 Background and Motivation

In this section, we firstly show that access to remote PM
suffers from low performance (§2.1), and how it cripples PM
indexes (§2.2). Then, we analyze why existing approaches for
DRAM indexes are inefficient when applied to PM (§2.3).

2.1 NUMA Impacts on PM
PM is a new memory technology that enjoys benefits of both
storage and memory: it provides byte-addressable storage
with DRAM-comparable performance and high density. With
the release of Optane DIMMs, the first PM product, the system
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Figure 1: Bandwidth of three 128GB Optane DIMMs with
varying threads. local access: threads access Optane DIMMs
that are local to them; remote access: threads access Optane
DIMMs installed on another NUMA node. We use ntstore
instructions for PM write.

community is actively redesigning storage systems to gain full
exploitation of its potential [8,16,26–36]. A NUMA machine
with numerous CPU cores and Optane DIMMs should be an
ideal architecture for fast and large-volume storage; however,
this is not true, due to slow remote PM accesses (i.e., accessing
PM on remote NUMA nodes).

Figure 1 reports the local/remote bandwidth of Optane
DIMMs (3 Optane DIMMs and 18 CPU cores per NUMA
node). Each thread performs sequential access to a 2GB PM
space. We use 32-byte non-temporal stores (ntstore) for
PM write. The peak write bandwidth of remote accesses
(3.5GB/s) is only 59% of that of local accesses (5.9GB/s).
Worse, the bandwidth of remote write collapses (< 250MB/s)
in case of more than 8 concurrent threads. For read opera-
tions, though Optane DIMMs have a relatively smaller gap
(16.9%) between local bandwidth and remote bandwidth, the
extra access latency induced by inter-node links, i.e., UPI,
is considerable (∼100ns), exacerbating the already high PM
read latency (∼300ns, [17]). Based on these observations, we
conclude that a high-performance PM system should avoid
accessing remote PM, especially for writes.

Our experimental result is consistent with recent studies
[17, 36–38]. We attribute the low performance of remote PM
write to two reasons. First, nstore instructions may behave
like cache line read-modify-write instructions, reducing the
available PM bandwidth [38]. Second, due to the read-modify-
write behavior, remote writes may trigger multi-socket cache
coherence traffic, which induces extra PM writes [39].

2.2 NUMA Impacts on PM Indexes

By leveraging the persistence and byte-addressability of PM,
PM indexes can recover instantly in the presence of power
outages. Although there has been an influx of PM indexes
designed for Optane DIMMs, most of them are evaluated in a
single NUMA node environment [8, 11, 13, 14, 29, 42]. Here,
we investigate the NUMA impacts on PM indexes by analyz-
ing CCEH [9], a variant of extendible hashing optimized for
PM. CCEH manages a set of segments, which are pointed by
a global directory. As shown in Figure 2(a), when performing
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Figure 2: NUMA impacts on PM indexes, using CCEH as
an example. We use source code from [40], which relies on
PMDK [41] for PM allocation and supports variable-length
keys. (a) An insert operation. Access threads reside on node
2, while the directory and the targeted segment are on node 1.
This insertion needs 2 remote reads (¶¸) and 3 remote writes
(·º»). (b) Throughput of CCEH. Each thread allocates PM
space from its local node. Vertical lines show the boundaries
between NUMA nodes.

an insertion, a thread may trigger multiple times (up to 2 re-
mote reads and 3 remote writes) of remote PM accesses. Such
remote accesses can significantly degrade the performance of
PM indexes. We measure the performance of CCEH under
multi-node environment with a synthetic workload, where
the ratio of lookup to insert/update is 1:1 and keys follow
the Zipfian distribution with parameter 0.99. We use 15-byte
keys and 8-byte values. Our platform is comprised of four
Intel Xeon Gold 6240M CPUs (18 cores per CPU), each with
three 128GB Optane DIMMs (1.5TB in total). More details of
hardware configurations are shown in §6. Figure 2(b) shows
the result. CCEH scales well within a single NUMA node.
However, the growth rate of throughput slows down signifi-
cantly when the thread number increases from 18 to 36; the
main cause is remote PM accesses. When more NUMA nodes
are added, i.e., thread number increases from 36 to 72, the
throughput fluctuates: it increases first and then decreases.
This is because that a newly added NUMA node brings extra
PM bandwidth resource, boosting the throughput, but soon,
slow PM remote accesses become the key performance deter-
minant, degrading the throughput.

2.3 Limitations of DRAM-orient approaches

A natural question now arises: are existing NUMA-aware
approaches for DRAM indexes still efficient when applied to
PM? We give a negative answer to this question by examin-
ing Node Replication (NR) [18], a state-of-the-art approach
that obtains NUMA-aware DRAM indexes. NR maintains a
global shared log and per-node replicas of DRAM indexes.
Using flat combining [43] within nodes, threads record their
operations into the shared log, and execute the log entries
to make their local replicas consistent between nodes. Three
main limitations leave NR ill-suited for PM indexes.

First, obviously, NR does not consider failure atomicity,
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Figure 3: Access ratio of hot items (Zipfian 0.99).

which is indispensable for PM indexes. Second, NR experi-
ences severe space overhead: for a machine with n NUMA
nodes, NR consumes n times more PM due to replication. As
important storage system components, PM indexes always oc-
cupy a large portion of PM space; hence, such consumption is
unacceptable. Third, performance of insert/update operations
is limited by PM write bandwidth of a single NUMA node. To
maintain consistent replicas between nodes, each node must
execute the same series of operations, which wastes precious
local PM write bandwidth (only 1/6 of DRAM) and further
bottlenecks the overall throughput.

3 Key Ideas

1) Making hot accesses NUMA-aware. Real-world work-
loads often feature Zipfian popularity distribution [20–24],
where a small portion of hot items receive extremely frequent
accesses. A recent study from Twitter [20] shows that their
in-memory cache workloads are usually even more skewed
than YCSB [44]. We design Nap to target these skewed work-
loads by making accesses to hot items NUMA-aware. To
show potential benefits of such a design, we run a simulation
to present the access ratio of hot items. The key popularity fol-
lows Zipfian distribution with parameter 0.99. From Figure 3,
we observe that under a wide range of key space (from 10M
to 2000M), the top 10K/100K/1000K hottest items receive
more than 39%/50%/61% accesses. Hence, if we can absorb
accesses to hot items (e.g., top 100K) in a NUMA-aware way,
a significant percentage of remote PM accesses are avoided.

Nap introduces a NUMA-aware layer (NAL) to absorb ac-
cesses to these hot items. In addition to reducing remote PM
accesses, the NAL features two advantages. First, since the
set of hot items is always small (e.g., 100K), different from
replication-based approaches (e.g., NR [18]), the DRAM/PM
space used by the NAL is limited. Second, upon system
crashes, the small-sized NAL can be recovered fast, bounding
the recovery time.
2) Black-box approach. Nap exploits hotness of items to han-
dle the NUMA problem, which enables a black-box approach
for converting existing PM indexes into NUMA-aware ones.
Specifically, in Nap, the NAL absorbs accesses to hot items,
and an underlying PM index accommodates a large number of
cold items. Nap requires no inner knowledge of the underly-
ing PM index. Any existing PM index that is crash-consistent
and thread-safe can be used; thus, Nap takes advantage of the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation    95



DR
AM

PM

Node 1

Raw PM Index 
(e.g., CCEH, FAST_FAIR)

Global & Volatile View 

Partial & Crash-consistent View 

NUMA-Aware Layer

Insert/Update/Delete

Lookup

Lookup/Insert/Update/Delete

Partial & Crash-consistent View 

CPU cores

Node 2

Hot Access
Cold Access CPU cores







Figure 4: Nap’s architecture and interactions.

mature, well-tested codes of PM indexes, which are usually
implemented via myriad engineering efforts.
3) Minimizing state synchronization between PM nodes.
The NAL records updates to hot items into the local PM and
does not synchronize PM-resident states between different
NUMA nodes; thus, in addition to reducing consumption
of remote PM bandwidth, no extra local PM bandwidth is
consumed in Nap. To enable efficient lookup operations in
such a synchronization-less approach, the NAL maintains the
latest values of hot items in the DRAM.
4) Fast reaction to handle hotspot shift. Hotspots change
over time, so Nap adopts several techniques to enable fast
reaction. Specifically, Nap maintains the current hot items in
real time. Upon detecting a new set of hot items, Nap generates
a new NAL and installs it into the system in an atomic manner.

4 Design

4.1 Overview
This paper proposes Nap, an approach that converts concurrent
PM indexes into NUMA-aware ones. Figure 4 presents the
architecture and interactions of Nap. Nap consists of two main
components: a raw PM index and a NUMA-aware layer.
• Raw PM index. The raw PM index can be an arbitrary exist-

ing concurrent PM index (e.g., CCEH [9], FAST_FAIR [7]),
regardless of its concurrency control mechanism (lock-
based or lock-free) and structure (tree-based, hashtable-
based or hybrid). The raw PM index spans multiple NUMA
nodes; it manages cold items (u in Figure 4), which ac-
count for an extremely huge proportion of the total dataset.

• NUMA-aware layer (NAL). Nap steers accesses to hot items
to the NAL, which contains two parts: a global & volatile
view (i.e., GV-view, §4.2) and per-node partial & crash-
consistent views (i.e., PC-views, §4.3). GV-view resides
in DRAM, and maintains the latest values of hot items to
serve lookup requests (H in Figure 4). Per-node PC-views
reside in PM. When a thread issues an insert/update/delete
operation to a hot item, the PC-view in the same NUMA
node absorbs the operation, and persists the operation’s
effect in a crash-consistent manner (¶). Then, the corre-

Node 1
K1

Node 2

K1 lock for concurrency control
val the latest value
pc_pos the position in PC-views
version the next version

val_location
For NAL switch:

0 - in this NAL, val is valid
1 - in raw PM index
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UNLOCK
“V-b”
5
65

0

(a) GV-View in DRAM (b) GV entry’s Format
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(c) PC-Views in PM

value array

key array K1 K3K2 K4 K5

.. {“V-a”, 63}.. .. ..

Figure 5: Structures of the GV-view and PC-views.

sponding value in GV-view is updated (·), to ensure the
GV-view always owns the latest values of hot items. To
eliminate remote PM accesses and avoid extra local PM
accesses, we do not synchronize states between different
PC-views, and thus each PC-view only has partial latest
values of hot items. In case of hotspot shift, Nap can timely
identify the new set of hot items (§4.4) and switch to a new
version of NAL (§4.5); meanwhile, hot items in the old
NAL are flushed to the underlying raw PM index.

4.2 Global & Volatile View (GV-View)
Design goals. In addition to serving lookup for hot items, the
DRAM-resident GV-view is also responsible for 1) control-
ling concurrent accesses to the NAL, and 2) checking an item
whether belongs to the hot set 1. Thus, the design of GV-view
must be lightweight and efficient.
Design details. Nap organizes the GV-view as a DRAM-
resident index, which maintains the mapping from key to
GV entry for every hot item. Figure 5(a) shows the GV-view’s
structure. The GV-view uses a hashtable by default; but if
the raw PM index supports range query, it uses a tree-based
data structure. Since the hot set is fixed unless the NAL is
switched (e.g., the hot set is {K1, K2, K3, K4, K5} in Figure 5),
the GV-view’s index is constructed entirely during the NAL’s
initialization and thereafter does not make any changes to
its structure. As a result, any thread-unsafe index with high
performance is applicable (e.g., C++ unordered_map).

For each hot item, the associated GV entry maintains its
runtime information. Figure 5(b) shows the GV entry’s format,
which consists of five fields: 1) a readers-writer lock to control
concurrent accesses to the hot item; 2) the latest value of
the item; 3) a pointer indicating where to persist the item
in PC-views. 4) the version of this item, which is used for
recoverability of PC-views (§4.3); 5) an enumerated value
that assists in NAL switch (§4.5).

1To simplify exposition, we term the set of hot items as hot set. Here, we
assume the content of hot set is known in advance (Obtaining the hot set is
detailed in §4.4).
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Lookup operation. In case of no NAL switch, a lookup opera-
tion is performed as the following: the access thread checks
the GV-view for the targeted item; if the targeted item does
not exist, the lookup is redirected to the raw PM index; oth-
erwise, the thread acquires read lock in corresponding GV
entry, copies the value, and finally releases the lock.
Range query operation. Nap complicates the range query, be-
cause items for a targeted range may exist in the GV-view and
raw PM index simultaneously. An access thread performs a
range query as the following: it searches the GV-view, get-
ting the items in the targeted range (S 1); then, it obtains the
S 2 by invoking the range query interface of the raw PM in-
dex; finally, it merges S 1 and S 2 (if an item exists in both
S 1 and S 2, we leave the one in S 1), returning the result.
Like FAST_FAIR [7] and P-Masstree [8], the range query
operations in Nap are not atomic with concurrent insert/up-
date/delete operations; if a system (e.g., database) atop Nap re-
quires a higher isolation level (e.g., repeatable read), it needs
to implement next-key locking or version mechanisms [45].

4.3 Partial&Crash-consistent View (PC-View)

Design goals. The per-node PM-resident PC-views absorb
update/insert/delete operations and ensure the effects of these
operations can survive power outages. PC-views have two
design goals: 1) Recoverability. The states between PC-views
are inconsistent, and thus Nap must be able to identify the
latest values upon recovery. 2) Low-overhead failure atom-
icity. To guarantee failure atomicity, we must explicitly per-
sist data with flush instructions (e.g., clflush, clwb, and
clflushopt) and avoid store reordering with fence instruc-
tions (e.g., sfence). Minimizing the usage of these expensive
instructions is key for high performance.
Design details. Nap organizes each per-node PC-view into
two PM-resident arrays: a read-only key array and a writable
value array (Figure 5(c)). The key array stores all the keys of
the hot set. The value array reserves a PC entry for each hot
item to record values. A hot item’s PC entries are specified via
the pc_pos field of the corresponding GV entry; for example,
in Figure 5, the 5th PC entry in each PC-view belongs to K5.
Note that each PC entry contains a pointer to the associated
key in the key array, to make the NAL recoverable.

Because two threads may update the same hot item but
manipulate different PC-views, values of hot items are incon-
sistent between PC-views. To identify the latest values upon
recovery, we adopt a simple version-based mechanism. Each
hot item has a monotonically increasing 64-bit version, which
is recorded in the GV-view (version field in Figure 5). The
most significant bit of a version is deletion marker.
Insert / Update operation. In case of no NAL switch, an in-
sert/update operation is performed as following steps:
1) The access thread searches the GV-view for the targeted

item; if the targeted item does not belong to the hot set,
the operation is redirected to the raw PM index.

key_ptr key_size val_ptr

version val
Write, Flush, Fence

Write, Flush, Fence

(a) Variable-length Values

key_ptr key_size indicator version[0] version[1]val[0] val[1]

Write 

Write

Flush, Fence 

(b) Fixed 8-byte Values

Figure 6: The structure of two types of PC entry. key_ptr
points to corresponding key in the key array and key_size
stands for the size of the key. (a) For variable-length val-
ues, we use copy-on-write for failure atomicity. Each PC
entry is 24-byte. The grey space of [version,val] is allo-
cated from PM. (b) For fixed 8-byte values, we adopt a
lightweight two-incarnation toggle mechanism. Each PC en-
try is 49-byte (indicator is 1-byte, every other field is 8-
byte) and cache-line-aligned, and contains two incarnations
of 〈value,version〉 pair.

2) The thread acquires the targeted item’s write lock in the
GV-view, then obtains a new version.

3) The thread persists the version with the new value (i.e.,
〈value, version〉 pair) atomically into the targeted PC entry
in the local NUMA node.

4) The thread updates the volatile value in the GV-view (for
future lookup operations), and finally releases the lock.

Delete operation. A delete operation has the same process as
an insert/update operation, except for the above Step 3): the
access thread sets the deletion marker of the obtained version
and persists it into its local PC-view.

Using the version-based mechanism, we can accurately
identify the latest value for a hot item from multiple PC-views:
the value with maximal version (without deletion marker) is
the latest; if the deletion marker of the maximal version is set,
the corresponding hot item has been deleted. For example, in
Figure 5(c), with the maximal version, “V-b” in the PC view
of node 1 is the latest value of K5.

Now we describe how to guarantee failure atomicity of
update to 〈value,version〉 pair with low overhead. Nap adopts
two different mechanisms to efficiently support variable-
length values and fixed 8-byte values, respectively.

For variable-length values, we leverage copy-on-write
(CoW) to update 〈value,version〉 pair; Figure 6(a) shows the
corresponding PC entry. The access thread firstly allocates
free PM space and copies 〈value,version〉 pair to it; then, the
thread flushes the pair via clflushopt instructions followed
by a sfence (¬); finally, the thread updates 8-byte pointer
atomically to the address of 〈value,version〉 pair, flushes the
pointer via a clwb, and issues sfence to ensure the persis-
tence is completed (­). We use clflushopt (which invali-
dates flushed cache lines) rather than clwb (which does not
perform cache invalidation) for 〈value,version〉 pair, so as to
save CPU cache space for other operations; this is because
that values in PC-views are only read during recovery.
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Nap designs a two-incarnation toggle mechanism for fixed
8-byte values, which is very common in PM indexes [8] (8-
byte value is usually a pointer indicating the location of real
data). Figure 6(b) shows the structure of the corresponding
PC entry, which is 49-byte and cache-line-aligned. There are
two incarnations of 8-byte values and 8-byte versions, and
an indicator pointing to the valid incarnation. When writing
a new 〈value,version〉 pair, the access thread first copies the
pair into the invalid incarnation (¶), which can be calculated
according to the indicator (e.g., if the indicator points to the
first incarnation, the second one is invalid). Then, the thread
toggles the indicator (·), letting it point to the updated in-
carnation. Finally, the thread issues a clwb to the PC entry
followed by a sfence (¸). Compared to the CoW, the two-
incarnation toggle mechanism saves a flush instruction and
a fence instruction, enabling its efficiency. We do not need
a fence before toggling the indicator, because writes to the
same cache line reach PM in program order under TSO (total
store order) architecture of Intel CPUs [7, 10, 28]. Of note, al-
though each PC entry takes up a 64-byte PM space to enforce
cache line alignment, the PM consumption is limited; this is
because the hot set is small.

4.4 Hot Set Identification

Design goals. In real-world workloads, the hot set keeps
changing over time [21]; thus, Nap requires to identify the hot
set in real time. The design goals of identifying hot set are 1)
minimizing interferences with foreground index operations,
and 2) small memory footprint in the face of infinite streams
of index operations.
Design details. Nap uses a dedicated switch thread for hot
set identification, to detach this process from the critical path
of index operations. Figure 7 shows how the switch thread
interacts with access threads and identifies the hot set.

Each access thread maintains a circular record buffer to
publish its access patterns. To reduce interferences caused by
hot set identification, access threads use sampling and make
writes to record buffers coordination-free. Specifically, ev-
ery several operations (e.g., 32), an access thread writes a
〈timestamp,key〉 pair into the record buffer, where timestamp
is a 64-bit number generated via rdtsc instructions and key is
the key of current index operation. The access thread blindly
appends 〈timestamp,key〉 pairs to the circular buffer, regard-
less of whether the overwritten data has been consumed by the
switch thread (i.e., no coordination with the switch thread).

With the help of a count-min sketch [25] and a min heap,
the switch thread digests record buffers in following repeated
three steps.
1) The switch thread chooses a record buffer in a round-

robin manner, and fetches a batch (e.g., 8) of new
〈timestamp,key〉 pairs from it; this batched fetch reduces
cache line movements. Two types of 〈timestamp,key〉
pairs are considered invalid: i) the timestamp is less than
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Figure 7: Hot set identification. Access threads publish their
access patterns into record buffers with sampling. The switch
thread uses a count-min sketch to estimate frequency of keys
and a min heap to maintain the current hot set.

maximal timestamp that has been read from corresponding
record buffer, indicating we approach the tail of the record
buffer; thus, the fetch stops. ii) (current time− timestamp)
is greater than a threshold value (e.g., 100ms), indicat-
ing this pair is too stale; thus, the pair is skipped. Note
that although the timestamps generated via rdstc are not
strictly synchronized between CPU cores [46, 47], it has
not caused any visible impacts for Nap.

2) For each key fetched from record buffers, the switch thread
leverages a count-min sketch to update and estimate its ac-
cess frequency. The count-min sketch is memory efficient,
since it only uses a few small arrays. Sampling used by
access threads filters out most infrequent keys, avoiding
overflow of the sketch [48].

3) The min heap maintains the current hot set in the form of
〈key, f requency〉 pairs that are ordered by the f requency
field. The size of the heap has an upper bound (e.g.,
10,000), which can be configured. For a key fetched from
record buffers (we call it K, and call its estimated frequency
F), if it is already in the heap, the switch thread updates the
corresponding frequency field to F; otherwise, the switch
thread inserts the 〈K, F〉 pair into the heap. If the heap
is full and F is greater than the frequency of heap root,
the thread replaces the pair in the heap root with the 〈K,
F〉. Every time the heap is modified, we need to adjust its
structure to enforce its ordering property.

Periodically (e.g., per 1 second), the switch thread com-
pares the heap with the hot set being used by current NAL. If
there is a big difference between them, i.e., the proportion of
different keys exceeds 25%, the switch thread triggers a NAL
switch (§4.5) with the new hot set (i.e., keys in the heap). All
statistics data, including the count-min sketch and the min
heap, are cleared periodically.

Handling uniform workloads. Nap minimizes overhead
induced by the NAL under uniform workloads. Specifically,
the switch thread detects uniform workloads, under which
it initializes an empty NAL (with 0-sized GV-view). For index
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1 void Switch_NAL(new_hotset) {
2

3 // Phase 1, initialize the new NAL and install it.
4 NALnew = Lazy_initialize_NAL(new_hotset, cur_NAL);
5 cur_NAL, pre_NAL = NALnew, cur_NAL; // logging
6

7 // Phase 2, flush previous NAL into the PM index
8 Wait_for_grace_period();
9 Flush(pre_NAL);

10

11 // Phase 3, release the space used by previous NAL
12 gc_NAL, pre_NAL = pre_NAL, NULL; // logging
13 Wait_for_grace_period();
14 Collect_garbage(gc_NAL);
15 gc_NAL = NULL; // 8-byte atomic write
16 }

Listing 1: Switching to a new NAL. Global pointers
cur_NAL, pre_NAL and gc_NAL are stored in PM. Line 5
is protected via a global seqlock to ensure access threads can
get a snapshot of 〈cur_NAL, pre_NAL〉.

operations, access threads check the size of GV-view before
searching it, which only incurs less than five CPU cycles.
The switch thread can use two signals to identify uniform
workloads: ¬ items in the heap receive less than 10% of all
accesses; ­ the hottest item in the heap receives comparable
accesses (i.e., within 3×) to the coldest.

4.5 NAL Switch
Design goals. Nap switches to a new NAL for handling dy-
namic workloads. The design goals of the NAL switch lie in
two aspects. First, Nap must minimize the blocking of fore-
ground index operations during NAL switch, to avoid latency
spikes. Second, the data races between the switch thread and
access threads should be addressed carefully, to guarantee the
consistency of the whole system.
Design details. Nap introduces a three-phase switch, which is
fast and does not block most of foreground index operations.
Its key idea is: the switch thread detects the states of access
threads via a grace-period-based method (inspired by epoch-
based reclamation [49]), to ensure its modifications are visible
for all ongoing and future index operations.

Listing 1 shows the procedure of the NAL switch, which
consists of three phases:

1) Initialize a new NAL. The switch thread initializes the
new NAL according to the new hot set (line 4, NALnew; we
term the current NAL as NALold). Specifically, the switch
thread constructs the GV-view and per-node PC-views; the
PC-views are persisted for failure atomicity. For now, the GV-
view of NALnew only records locations of values of hot items
(i.e., in raw PM index or in NALold), rather than the values
themselves, by setting the val_location field in GV entries
(Figure 5(b)). Such a lazy initialization is necessary for cor-
rectness: if we directly copy the latest values to the GV-view
of NALnew, the concurrent insert/update/delete operations to
raw PM indexes or NALold will make the value in NALnew

NALnew AC

NALold B C

cur_NAL = NALold
pre_NAL = NULL



cur_NAL = NALnew
pre_NAL = NALold

snapshot snapshot

Figure 8: Different access threads see different system states.
A, B and C each stand for an exclusive set of items.

stale, violating the correctness of future lookups to NALnew.
Then, the switch thread makes NALnew visible to access

threads, by setting global pointers cur_NAL and pre_NAL to
NALnew and cur_NAL, respectively (line 5). To ensure that
access threads always see the atomic effect of this opera-
tion, the line 5 is protected via a global seqlock [50]. Before
performing an index operation, the access thread saves a snap-
shot of 〈cur_NAL, pre_NAL〉 pair under the protection of the
seqlock, and accesses NAL according to the snapshot. The
seqlock minimizes cache coherence traffic at the reader-side
(i.e., access threads).

At this time, the different ongoing index operations may
have saved different snapshot of 〈cur_NAL, pre_NAL〉 pair,
as shown in Figure 8: type ¶ access threads only see the
NALold and do not realize the concurrent NAL switch; type
· access threads see the both NALnew and NALold. For type
¶ threads, they manipulate NALold and workflow of index
operations is the same as cases of no NAL switch (§4.2 and
§4.3). The index operations becomes a bit complicated for
type · threads:

i) For an insert/update/delete operation, if the targeted item
belongs to NALnew, NALnew absorbs this operation like the
case of no NAL switch (§4.3); besides, the thread copies
the value into the corresponding GV entry, and updates the
val_location field to 0 in order to indicate the value can
be served for future lookups. If the targeted item falls in
NALold (range B in Figure 8), the operation is blocked until
the global pointer pre_NAL becomes NULL (i.e., phase 3 of the
three-phase switch, see below); then, the operation is retried.
Otherwise, the operation is redirected to the raw PM index.

ii) For a lookup operation, the thread checks GV-view of
NALnew, GV-view of NALold, and the raw PM index one by
one. In the case that the targeted item falls in NALnew, the
thread checks the val_location field: if the value can not
be served from the NALnew (i.e., val_location is not 0),
the thread fetches the value from NALold (for range C in
Figure 8) or the raw PM index (for range A) according to the
val_location field. Range query operations experience the
same workflow: access threads search NALnew, NALold and
the raw PM index in order, then merge results.

2) Flush NALold. In this phase, the switch thread first waits
for a grace period to ensure all access threads become type
· (line 8). Our grace period mechanism is simple: each ac-
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cess thread publishes its states into a slot in a global array; a
slot consists of two fields: a boolean running and a 64-bit
cnt. The access thread sets its running and increases cnt
when starting an index operation (before saving the snapshot
of 〈cur_NAL, pre_NAL〉 pair), and resets the running when
completing the operation. The switch thread probes the global
array until every access thread is out of index operations
(running is false) or has finished an index operation (cnt is
changed). After this grace period, all the access threads real-
ize the concurrent NAL switch for ongoing and future index
operations, i.e., they are type · threads; hence, the NALold
will never be modified (recall that insert/update/delete oper-
ations to NALold are blocked for type · threads). Now, the
switch can flush the latest values in the GV-view of NALold
to the raw PM index rapidly (via invoking interfaces of the
raw PM index) without considering any data race (line 9).

3) Recycle NALold. Now, the NALnew and the raw PM
index reflect complete and consistent states of the system.
The switch thread needs to recycle the DRAM/PM space
occupied by NALold. It first saves the NALold into a global
pointer gc_NAL and sets the pre_NAL to NULL (line 12). Then,
the switch thread waits for a grace period to ensure no ongoing
and future lookup operations are performed on NALold (line
13). Finally, the DRAM and PM space used by NALold is
released safely (line 14), and gc_NAL is set to NULL (line
15). The access threads that realize the null pre_NAL are
in a normal condition without any blocking; for a lookup
operation to NALnew, if the targeted value is not in the GV-
view due to lazy initialization, the access thread fetches the
value from the raw PM index, saves it to the GV-view, and
updates corresponding val_location field to 0.

In the above three-phase switch, the insert/update/delete
operations to a part of NALold (i.e., range B in Figure 8) are
blocked during the phase 2. Such a blocking has only a small
impact on the system for two reasons. First, since the new
hot set is maintained by NALnew, items in the range B is cold,
receiving a negligible percentage of accesses. Second, since
the hot set is small and flushing items from NALold to the raw
PM index is data-race-free, the phase 2 is fast.

Failure atomicity. The switch thread guarantees failure
atomicity of three global pointers: cur_NAL, pre_NAL, and
gc_NAL. These three pointers are allocated in PM and per-
sisted when modified. The switch thread also maintains a
small PM undo log. For line 5 and line 12 of Listing 1, the
switch thread records undo log entries for atomicity. For line
15, an 8-byte atomic write is enough.

4.6 Recovery

Recovery in Nap is simple. First, we invoke the recovery pro-
cedure of the underlying raw PM index. Second, by scanning
the undo log and global pointers (i.e., cur_NAL, pre_NAL
and gc_NAL), we construct the valid version of these pointers.
Third, we flush the PC-views of NALs pointed by pre_NAL

(if not null) and cur_NAL in order; the latest values in PC-
views of each NAL are identified by versions (§4.3). Finally,
we free the PM space of PC-views in NALs pointed by these
three pointers, avoiding the memory leak.

4.7 Correctness
4.7.1 Definitions

• IL_RAW: isolation level of the underlying raw PM index.
• IL_NAP: isolation level of the Nap-converted index.

4.7.2 Isolation Guarantee

Theorem 1. For range queries, IL_NAP is equal to the lower
level of one between IL_RAW and read committed.
Proof. In Nap, a range query merges committed results from
the NAL and raw PM index without coordination, so it is not
atomic with concurrent updates. Hence, range queries reach
up to read committed.
Theorem 2. For point queries, IL_NAP is equal to IL_RAW.
Proof. For hot items managed by NALs (i.e., NALnew and
NALold), Nap enforces linearizability for point queries to
them. There are four cases for two conflicting operations.
• If two conflicting operations target the same NAL,

readers-writer locks in the NAL serialize them.
• If a thread updates an item in NALold, future lookups 2 to

NALnew can see the value due to the lazy initialization.
• If a thread updates an item in NALnew, it means the

NALnew has been installed. Hence, all future lookups
will see the NALnew and get the correct value.
• If two conflicting operations OP1 and OP2 perform up-

dates on NALold and NALnew, respectively, all future
lookups will see OP2, which means OP1 happens before
OP2 in the linearizable history. This is legal since it is
impossible that OP1 is invoked after OP2’s response.

4.7.3 Failure Atomicity

Theorem 3. Nap-converted indexes do not change failure
atomicity semantic of raw PM indexes.
Proof. Nap ensures that lookups after recovery can find the
latest committed updates to NALs. First, in a single PC-view,
Nap adopts the two-incarnation toggle mechanism and CoW
for atomic persistence. Second, among multiple PC-views in a
NAL, Nap stores values along with increasing versions, which
are used for accurately identifying the latest values upon re-
covery. Third, changes to the global PM pointers cur_NAL
and pre_NAL are protected by undo logging; upon recovery,
we first flush the NAL pointed by cur_NAL and then the one
pointed by pre_NAL, so as to ensure only the latest values
appear in the raw PM index.

2For an operation, its future operations are operations that are invoked
after its response.
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5 Implementation

We have implemented Nap in C++ (∼2000 lines of code).
Nap provides a template class in the form of “template<T>
class Nap”, where T is a wrapper class for a concurrent
PM index with specific index operation interfaces invoked
by Nap. Our programming experience shows that converting
a PM index using Nap needs roughly 30 lines of wrapper
class codes. We use C++ unordered_map to organize the
GV-view by default; if the underlying raw PM index supports
range query, we use C++ map.

We leverage PMDK [41] to manage PM space. Specifi-
cally, for each NUMA node, we initialize a PMDK pool, from
which Nap allocates PM space for PC-views. To reduce expen-
sive PMDK allocation upon CoW (§4.3), we adopt a simple
customized allocator. Each thread requests 1MB chunks from
its local PMDK pool, and allocates PM for CoW using clas-
sic slab mechanism. The addresses of chunks are recorded
in the PM, and the allocator metadata is maintained in the
DRAM. Upon recovery, after flushing the PC-views into the
underlying raw PM index, Nap frees these used chunks.

6 Evaluation

In this section, we use a number of microbenchmarks and
applications to evaluate Nap, seeking to answer the following
questions:
• How does Nap-converted PM indexes compare with origi-

nal PM indexes? (§6.2)
• How does Nap perform when value size is variable? (§6.3)
• How does Nap react to dynamic workloads? (§6.4)
• How do the characteristics of workloads and NUMA con-

figurations affect the performance of Nap? (§6.5)
• How does Nap compare with Node Replication? (§6.6)
• What are the overheads incurred when using Nap? (§6.7)
• What is the benefit of Nap to real applications? (§6.8)

6.1 Experimental Setup
The experiments are conducted on a 4-socket (NUMA node)
machine. Each NUMA node is populated with an 18-core
Intel Xeon Gold 6240M CPUs, three 128GB Optane DIMMs
and three 32GB DDR4 DIMMs, resulting in a machine with
72 CPU cores, 1.5TB PM and 384GB DRAM. Our machine
runs Ubuntu 18.04 with Linux kernel version 5.4.0.

Unless otherwise stated, for Nap, the size of the hot set is
configured to 100K, and the switch thread tries to perform the
NAL switch per 0.2 seconds. Each per-core record buffer is
300KB. The count-min sketch contains 3 counter arrays, each
with 32-bit 850,000 counters. The sampling interval is 32.

Workloads. We leverage a YCSB-like benchmark to eval-
uate the performance of PM indexes. The benchmark contains
five types of workloads: 1) write-intensive: 50% lookup and
50% update/insert, 2) read-intensive: 95% lookup and 5%

update/insert, 3) write-only: 100% update/insert, 4) read-only:
100% lookup, and 5) scan-intensive: 95% range query and
5% update/insert. By default, the key space (i.e., the range
of keys) is 200 million and the key popularity follows a Zip-
fian distribution with parameter 0.99 (the default setting in
YCSB [44]). For each experiment, we first load 16 million
items then perform the workloads, which contains 64 million
index operations. The ratio of insert operations to update op-
erations is about 1:3. We use 15-byte keys and 8-byte values.

6.2 Real Indexes

Using Nap, we convert five state-of-the-art PM indexes:
• CCEH [9]. An extendible hashtable that is structured as

a set of segments pointed by a global directory. It uses
readers-writer locks for concurrency control.

• Clevel [11]. A lock-free version of level hashing [12],
which is organized as two bucket arrays.
• P-CLHT [8]. PM version of CLHT [51], which is a linked-

list-based hashtable. It supports lock-free lookups and uses
bucket-grained locks for other operations.

• P-Masstree [8]. PM version of Masstree [52], a trie-like
concatenation of B+ tree nodes. It adopts lock-free lookups
and lock-based writes.

• FAST_FAIR [7]. A PM B+ tree with lock-free lookups and
lock-based writes.
For CCEH, Clevel, and P-CLHT, we use the source code

from [40], which relies on PMDK for PM allocation and sup-
ports variable-length keys. We modify the code to make each
thread allocate PM from its local PMDK pool. For CCEH,
we replace the global directory lock with an in-DRAM dis-
tributed readers-writer lock [53], avoiding its scalability is-
sues. For P-Masstree and FAST_FAIR, we use the source code
from [54] and modify the code for allocation with PMDK;
besides, we improve range query implementations by making
them return both keys and values. Of note, we do not use our
customized allocator (§5) for these indexes; this is because the
customized allocator cannot provide failure atomicity for each
(de)allocation operation due to its DRAM-resident metadata.
Throughput under write/read-intensive workloads. Figure 9
shows the throughput of these PM indexes under write-
intensive and read-intensive workloads, and we make the
following observations:

First, compared with the original indexes, Nap-converted in-
dexes yield much better scalability under both write-intensive
and read-intensive workloads. Specifically, in four-node en-
vironment (i.e., 72 threads), Nap improves the throughput
by 1.26× (FAST_FAIR) to 2.3× (CCEH) for write-intensive
workloads and 1.18× (P-Masstree) to 1.56× (P-CLHT) for
read-intensive workloads. This is because the NAL of Nap
absorbs 45∼54% operations, where the per-node PC-views
eliminate the remote PM writes and the GV-view eliminates
the remote PM reads. Note that the global GV-view induces
remote DRAM accesses; yet, remote DRAM accesses ex-
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Figure 9: Throughput under write/read-intensive workloads.
WI: write-intensive workloads; RI: read-intensive workloads.
Vertical lines show the boundaries between NUMA nodes.

hibit much higher performance than remote PM accesses:
5.7× higher throughput for writes (20GB/s : 3.5GB/s) and 2×
lower latency for reads (200ns : 400ns).

Second, even within a single NUMA node, Nap-converted
indexes outperform the original ones (except P-CLHT in read-
intensive workloads). This is mainly because 1) For lookup
operations, the GV-view avoids the latency of PM reads. 2)
For insert/update operations, the two-incarnation toggle mech-
anism of PC-views minimizes the overhead of PM writes.
For P-CLHT, a highly optimized hashtable for cache local-
ity, most of lookup operations are met in CPU caches under
read-intensive workloads within a NUMA node, enabling its
high performance. Hence, it outperforms the Nap-converted
version slightly, which induces overheads of searching the
GV-view for every lookup operations.

Third, compared with tree-based PM indexes, hashtable-
based PM indexes are more vulnerable to NUMA architec-
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Figure 10: Throughput under write/read-only workloads. We
run 72 threads spanning 4 NUMA nodes.
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Figure 11: Throughput under scan-intensive workloads.

tures (particularly for Clevel, Figure 9(c) and (d)). These
hashtables always use several continuous and large arrays
for fast indexing (e.g., the global directory of CCEH, bucket
arrays of Clevel and P-CLHT). For threads that do not reside
on the same NUMA nodes with these arrays, almost all PM
accesses to these arrays are remote, limiting the available PM
bandwidth and further deteriorating the performance. The
worst one is Clevel, because it only uses two bucket arrays
for indexing; by contrast, in addition to global arrays, CCEH
uses segments and P-CLHT uses linked list, which can be
allocated on different NUMA nodes, increasing the available
PM bandwidth of PM indexes.
Throughput under write/read-only workloads. Figure 10
shows the throughput under write-only and read-only work-
loads. Due to space limitations, we only reports results of 72
threads. Nap boosts the throughput by 1.32× (FAST_FAIR)
to 6.15× (CCEH) for write-only workloads and 1.15× (P-
Masstree) to 1.55× (FAST_FAIR) for read-only workloads.
Such improvement results from the NAL, which handles hot
items in an efficient and NUMA-aware manner.
Throughput under scan-intensive workloads. Figure 11
shows the range query performance of P-Masstree and
FAST_FAIR. We set the query range to 10. With 72 threads
spanning 4 NUMA nodes, Nap reduces the throughput of P-
Masstree and FAST_FAIR by 3% and 14%, respectively. This
is because Nap needs to search both the GV-view and the raw
PM index; yet, with the good locality of the GV-view and low
latency of DRAM, the extra overhead is bounded.
Latency. Figure 12 depicts the latency distribution of P-

102    15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Latency (us)

C
D

F

w/o Nap
Nap

0

0.5

1.0

0 5 10 15 20 25 30

Figure 12: Latency distribution (P-CLHT, 72 threads, write-
intensive workloads). The 50th and 99th latencies of the orig-
inal index are 3.77µs and 49.95µs (not shown in the figure),
respectively. The 50th and 99th latencies of Nap-converted
index are 2.04µs and 27.64µs, respectively.

# of NUMA NodesR
em

ot
e 

PM
 A

cc
es

s 
(G

B)

w/o Nap
Nap

49%

51%
45%

0

5

10

1 2 3 4
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CLHT, write-intensive workloads). We run 18, 36, 54, and 72
threads to measure results under different NUMA nodes.

CLHT under write-intensive workloads. The number of access
threads is 72. Due to space limitations, we omit other PM
indexes that have similar results. Nap decreases the median la-
tency by 46% (from 3.77µs to 2.04µs) and the 99th percentile
latency by 45% (from 49.85µs to 27.64µs). The improve-
ment is mainly from the per-node PC-views, which eliminate
remote PM writes for hot items, reducing the possibility of
multiple threads within a node access remote PM simultane-
ously (recall that when multiple threads write remote PM, the
bandwidth collapses, affecting the access latency, Figure 1).
Quantitative measurement of remote PM accesses. We use
Intel’s PCM tools [55] to measure the remote PM accesses.
The pcm.x sub-tool provides the amount of data through
UPI links and the pcm-numa.x sub-tool monitors remote
DRAM accesses. Leveraging the two sub-tools, we calculate
the remote PM accesses of P-CLHT under write-intensive
workloads. Figure 13 reports the result. Nap reduces remote
PM accesses by 45% to 51%, enabling its high performance.

6.3 Variable-length Values

This experiment tests variable-length values, which trigger
CoW in Nap. We run P-CLHT and randomly select the value
size from 8 bytes to 256 bytes. Figure 14 presents the re-
sult, from which we make two observations. First, due to
more flush and fence instructions in CoW, Nap’s throughput
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Figure 14: Throughput of P-CLHT. The value size is ran-
domly selected from 8 bytes to 256 bytes .
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Figure 15: Throughput over time with workloads change
(P-Masstree, 71 threads, write-intensive workloads).

degrades (compared with Figure 9(e) and (f)). Second, Nap-
converted P-CLHT still outperforms P-CLHT by 1.36× and
1.39× under write-intensive and read-intensive workloads, re-
spectively. This is because Nap mitigates remote PM accesses
and adopts low-overhead customized allocator for CoW.

6.4 Dynamic Workloads
In this experiment, we evaluate Nap’s ability to react to dy-
namic workloads by changing the popularity of keys. We
compare our three-phase switch mechanism with a conser-
vative mechanism that uses a global readers-writer lock: the
switch is protected by the write lock, and every index opera-
tion is protected by the read lock. To avoid the cache thrash-
ing among access threads caused by the centralized global
lock, we apply per-core reader indicator [53]. We run Nap-
converted P-Masstree under write-intensive workloads with
71 threads (one core is reserved to record total throughput
per 5ms). Figure 15 shows the throughput over time. The
workload changes at time 4s. Since the NAL can not absorb
the accesses to current hot set, the throughput drops. After
about 200∼300ms, Nap identifies the new hot set (recall that
the switch period is 0.2s, §6.1), and triggers the NAL switch.
In our three-phase switch, the throughput can be maintained
more than 10K ops/ms for about 130ms, then drops to 4K∼8K
ops/ms for about 35ms. This is because the three-phase switch
only blocks some insert/update operations to a part of old NAL
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Figure 16: Sensitivity Analysis (P-CLTH, write-intensive). (a) Varying the size of hot set (72 threads). (b) Varying the size of key
space (72 threads). (c) Varying the Zipfian parameter (72 threads). (d) two Optane DIMMs per NUMA node. (e) four Optane
DIMMs per NUMA node.

during phase 2. However, when using the global lock, the sys-
tem is unavailable (i.e., throughput is 0) for about 195ms. To
sum up, Nap is robust enough to react to dynamic workloads
quickly without sacrificing availability.

6.5 Sensitivity Analysis

Size of hot set. Figure 16(a) shows how the configured hot set
size affects the Nap’s performance. As the size of hot set in-
creases from 10K to 1M, the throughput grows by 1.33×, and
the percentage of operations absorbed by the NAL increases
from 43% to 63%. Yet, using a large hot set consumes more
PM/DRAM space and prolongs the time of NAL switch and
system recovery.
Size of key space. Figure 16(b) presents the throughput of P-
CLHT and its Nap-converted version with varying key space.
As the key space increases, the number of hot items increases,
degrading the throughput of Nap which maintains a fixed-size
hot set. Even for a very large key space, i.e., 1000 million,
Nap can boost the throughput by 1.55×, which demonstrates
that Nap can handle large-scale workloads.
Skewness of workloads. Figure 16(c) shows how the skew-
ness of workloads affects Nap’s performance. We make three
observations. First, with increasing skewness, Nap’s improve-
ment over original indexes grows. This is because the NAL
can absorb more index operations. For the medium skewness
case (i.e., 0.9 Zipfian parameter), Nap boosts the throughput
by 1.27×. Second, under uniform workloads (i.e., 0 Zipfian
parameter), throughput of both indexes drops, since there are
more insert operations in uniform workloads, leading the P-
CLHT to resize frequently. Third, the throughput of both
indexes is almost the same under uniform workloads. This
is because Nap handles uniform workloads by initializing an
empty NAL, which induces negligible overhead.
Different NUMA configurations. Here, we change NUMA
configurations by adding/removing Optane DIMMs, and show
how the available PM bandwidth affects Nap. We get two new
NUMA configurations: i) 2 Optane DIMMs per node; ii) 4
Optane DIMMs per node (only 3 nodes due to the total of 12

0
10
20
30
40

Nap NR
(a) write-intensive (b) read-intensive

Th
ro

ug
hp

ut
 (M

op
s/

s)

# of Threads # of Threads

0

5

10

15

20

0 18 36 54 72 0 18 36 54 72

Figure 17: Performance of Nap and NR (P-CLHT).

DIMMs). Figure 16(d) and (e) show the results of i) and ii),
respectively. With 2 Optane DIMMs per node, the available
PM bandwidth drops and remote PM access suffers lower
write bandwidth, degrading the throughput of PM indexes; yet,
under this configuration, by mitigating remote PM accesses,
Nap boosts the throughput of the original index by 1.76×,
which is higher than improvement under default 3-DIMMs-
per-node configuration (1.66×, Figure 9(e)). Under 4-DIMMs-
per-node configuration, Nap outperforms the original index
by 1.62×. Overall, Nap is efficient under different NUMA
configurations.

6.6 Comparison with NR

We compare Nap with Node Replication (NR) [18], to present
some key insights of designing NUMA-aware PM indexes.
We put the shared log of NR in the DRAM and disable log
recycle. Figure 17 shows the throughput of NUMA-aware
P-CLHT converted by Nap and NR. Note that NR-converted
P-CLHT is not crash-consistent: upon crash, the shared log is
lost and P-CLHT on different NUMA nodes may be inconsis-
tent. In case of 72 threads, Nap outperforms NR by 2.34× and
1.69× under write-intensive and read-intensive workloads,
respectively. The inefficiency of NR on PM indexes stems
from two reasons. First, by maintaining consistent replicas be-
tween NUMA nodes, each insert/update operation consumes n
times more PM bandwidth (n is the number of NUMA nodes),
limiting the throughput. Second, NR leverages flat combin-
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DRAM PM
record
buffers

count-min
sketch min heap GV-view PC-views

21.1MB 9.7MB 4.2MB 3.6MB 30.1MB
Altogether, 38.6MB DRAM and 30.1MB PM

Table 1: Consumption of DRAM and PM in Nap. We ignore
some very small usage, such as the 64-byte persistent undo
log used by the switch thread.

Index Type CCEH Clevel P-CLHT P-Masstree FAST_FAIR
Time (ms) 477 522 432 306 963

Table 2: Recovery time.

ing [43] (a technique that uses a combiner to execute a batch
of collected updates) to handle updates within a node. Flat
combining can mitigate cache thrashing but restrict concur-
rency to a single thread; yet, the single-thread performance of
PM indexes is much lower than that of DRAM indexes, due to
expensive flush/fence instructions and high PM read latency.
Combining previous experimental results (§6.2), we can con-
clude that the most important performance determinant of
NUMA-aware PM indexes is precious PM bandwidth of both
local and remote accesses (rather than cache thrashing); thus,
like Nap, a NUMA-aware PM index should reduce remote
PM accesses without consuming extra local PM bandwidth.

6.7 Overheads of Nap
The overheads of Nap lie in two aspects: memory consump-
tion and recovery time.
Memory consumption. Table 1 shows the memory consump-
tion by Nap in our evaluation (4 NUMA nodes and 72 threads),
and the total memory consumption is less than 70MB. Specifi-
cally, since our NAL only maintains the hot set, the size of the
min heap, GV-view and PC-views are limited. Besides, by us-
ing sampling, the small-sized count-min sketch and per-core
record buffers are enough.
Recovery time. Table 2 reports the recovery time of Nap-
converted PM indexes. Due to the limited size of NAL, the
recovery time is bounded, which is less than one second.

6.8 Real Application
To show the benefits that a Nap-converted PM index can bring
to real applications, we build a networked PM-based key-
value store. The key-value store uses eRPC [56] for network
communication, P-CLHT for indexing and PMDK for allo-
cation of key-value pairs. Such a key-value store can be used
for in-memory caching to reduce the total cost of ownership
(comparing with DRAM-based memcached) and alleviate the
impact of failures [28].

In this experiment, we use our four-node machine as the

# of Client Threads

Th
ro

ug
hp

ut
 (M

op
s/

s) w/o Nap
Nap

0

5

10

30 60 90 120 150 180

Figure 18: Throughput of a networked PM-based key-value
store (write-intensive, Zipfian 0.99, 72 threads on the server).
Key-value size follows Facebook ETC workloads.

server and the other 5 machines as clients. Each machine
is equipped with a Mellanox ConnectX-6 NIC (200Gbps);
due to the limited bandwidth of PCIe 3.0×16, the available
bandwidth of the NIC is about 13GB/s. The key-value size
follows the Facebook ETC pool [23, 57]. The key popularity
follows a Zipfian distribution with parameter 0.99. We con-
sider a write-intensive workload (50% PUT). Figure 18 shows
the throughput with varying clients threads. By using Nap,
the throughput is improved by 1.1× under low loads (i.e., 30
client threads) and 1.49× under high loads (i.e., 180 client
threads), demonstrating practical benefits of Nap.

7 Discussion

Generality of the Nap approach. Even if microarchitectures
of hardware (e.g., CPU) evolve and remote PM write can
deliver high bandwidth, Nap is still capable of boosting PM
indexes under multi-node servers for two reasons. First, since
Nap reduces remote accesses significantly, highly concurrent
accesses to the same NUMA nodes can be avoided, mitigat-
ing contention in the same memory controllers and Optane
DIMM XPBuffers; it is well known that such contention de-
grades the PM performance severely [17, 39]. Second, Nap
lowers latency of index operations: for lookup operations, the
GV-view eliminates remote PM reads (400ns) by using less
expensive remote DRAM reads (200ns); for other operations,
per-node PC-views replace remote PM writes with local ones.
Alternative designs. We discuss alternative designs to
NUMA-aware PM indexes, and why we do not adopt them.
1) Use per-core logs. In this solution, each thread logs its
updates into its local PM node and builds a global DRAM-
resident index for lookups. This solution has three issues.
First, considering the high bandwidth of PM, using a dedicated
core for log recycle is insufficient to digest fast-growing logs;
thus, we must use foreground threads or multiple dedicated
cores to do this task, which has negative impact on CPU
usages and performance. Second, to recycle logs, we must
flush items (include hot items) into the underlying PM index,
inducing remote accesses. Third, the global DRAM-resident
index consumes large DRAM space.
2) Abandon NAL switch and maintain per-node PM caches
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as PC-views. This solution adopts the architecture of Nap
but abandons NAL switch. Instead, it keeps the hot set in
per-node PM caches and evicts cold items at the runtime.
This solution comes with three drawbacks. First, designing
an ideal replacement method is difficult: if we maintain a
global hotness-list for cache replacement, the multicore scal-
ability issue happens; if we maintain a hotness-list for each
set (set-associative cache), a hot item may be evicted, induc-
ing unnecessary remote accesses. Second, when evicting a
cold item from a PM cache (very common events), we must
enforce failure atomicity of the cache, yielding extra perfor-
mance overhead. Third, to guarantee correct lookups and
recovery, all items in every PM cache should be presented
in the GV-view, which complicates the execution logic. For
example, when removing an item from the GV-view, we need
to clear corresponding items in all PM caches.
Takeaways. We present our main takeaways from this work.
1) A fast NUMA-aware PM index must reduce remote PM
accesses without consuming extra local PM bandwidth. The
limited PM bandwidth adds a new dimension to the NUMA
problem, which frustrates traditional replication-based ap-
proaches designed for DRAM indexes.
2) We conjecture that we cannot design a NUMA-aware PM
index that is optimal in ¶ minimizing remote PM accesses,
· not inducing extra local PM accesses and ¸ constant
DRAM/PM consumption. Nap achieves a sweet spot by lever-
aging the characteristics of common skewed workloads: it
meets · and ¸, and partially meets ¶ (the remote PM ac-
cesses to cold items cannot be reduced).

8 Related Work

PM indexes. A large body of work exists for PM indexes
with the ultimate goal of minimizing overheads of failure
atomicity and improving concurrency [1–16, 29, 58]. Among
them, RECIPE [8], Pronto [29] and TIPS [58] propose gen-
eral conversion methods. Specifically, RECIPE can convert
concurrent DRAM indexes that meet a set of conditions into
PM indexes; Pronto persists DRAM data structures via asyn-
chronous semantic logging; TIPS can convert any concurrent
DRAM index into PM index with durable linearizability guar-
antee. To the best of our knowledge, Nap is the first work that
addresses NUMA problems of PM indexes.
NUMA problems on PM. Several recent studies observe
pronounced NUMA impacts on Optane DIMMs [17, 37, 38].
Xu et al. [59] provide NUMA-aware interfaces to NOVA file
system [60], which can set the preferred NUMA node for a
file. Wang et al. [61] alleviate the NUMA issues of PM file
systems by thread migration. Assise [27], a distributed PM
file system, uses on-die DMA engines for remote PM writes,
to bypass hardware cache coherence. These approaches for
file systems cannot be easily applied to PM indexes, because
PM indexes 1) use a set of fixed interfaces, 2) are shared by
numerous threads, and 3) generate lots of small-sized writes.

NUMA-aware systems. There has been also work migrating
NUMA impacts for DRAM indexes, locks, operating systems,
and IO devices. NR [18] replicates data structures and syn-
chronizes replicas between NUMA nodes by a shared log.
NrOS [62] improves NR’s scalability by allowing multiple
shared logs and multiple per-node combiners. HydraList [19]
and NUMASK [63] are crafted DRAM indexes that replicate
index search layer (exclude index data) across NUMA nodes;
compared with NR, these two indexes reduce memory con-
sumption, but increase remote memory accesses due to shared
index data. Lots of NUMA-aware locks are proposed [64–68],
and most of them feature a hierarchical structure and try to
keep the lock ownership within the same node. Linux automat-
ically migrates data pages across NUMA nodes to reduce re-
mote data access [69]. Besides, Carrefour [70] supports page
replication, which can alleviate traffic hotspots and eliminate
remote accesses. Further, Mitosis [71] transparently replicates
and migrates page-tables across NUMA nodes to accelerate
page-table walks. IOctopus [72] addresses the NUMA effects
on IO devices by unifying PCIe functions to a logic one. Dif-
ferent from the above systems, the NUMA-aware PM indexes
are unique for the limited PM bandwidth and requirements of
failure atomicity.
Hotness-aware systems. Hotspots can be seen everywhere in
the real world. There are two lines of work: 1) mitigating the
effects of hotspots, and 2) leveraging hotspots to boost system
performance. In the aspect of the former, lots of systems
mitigate the load imbalance across back-end servers by using
high-performance caches to handle lookup operations to hot
items [48, 73–75]. In the aspect of the latter, HotRing [21]
designs an in-memory hashtable that can move pointers to
make hot items be served with fewer memory accesses. Like
HotRing, Nap regards hotspots as an opportunity to boost
system performance, but targets NUMA-aware PM indexes.

9 Conclusion

In this work, we have designed, implemented, and evaluated
Nap, a black-box approach that converts concurrent PM in-
dexes into NUMA-aware counterparts. Nap uses a NUMA-
aware layer to absorb accesses to hot items, which eliminates
remote PM accesses without inducing extra local PM accesses.
Nap significantly boosts the performance of PM indexes on
multi-node machines.
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