
This paper is included in the Proceedings of the  
15th USENIX Symposium on Operating Systems  

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9 

Open access to the Proceedings of the 
15th USENIX Symposium on Operating 
Systems Design and Implementation 

is sponsored by USENIX.

Polyjuice: High-Performance Transactions  
via Learned Concurrency Control

Jiachen Wang, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University; Shanghai 
AI Laboratory; Engineering Research Center for Domain-specific Operating Systems, Ministry of 

Education, China; Ding Ding, Department of Computer Science, New York University; Huan Wang, 
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University; Shanghai AI Laboratory; 

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China; 
Conrad Christensen, Department of Computer Science, New York University; Zhaoguo Wang and 
Haibo Chen, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University; Shanghai 

AI Laboratory; Engineering Research Center for Domain-specific Operating Systems, Ministry of 
Education, China; Jinyang Li, Department of Computer Science, New York University

https://www.usenix.org/conference/osdi21/presentation/wang-jiachen



Polyjuice: High-Performance Transactions via Learned Concurrency Control

Jiachen Wang
†∗

, Ding Ding‡∗, Huan Wang
†
, Conrad Christensen‡, Zhaoguo Wang

†
, Haibo Chen

†
, and

Jinyang Li‡

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
†Shanghai AI Laboratory

†Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
‡Department of Computer Science, New York University

Abstract
Concurrency control algorithms are key determinants of the
performance of in-memory databases. Existing algorithms are
designed to work well for certain workloads. For example, op-
timistic concurrency control (OCC) is better than two-phase-
locking (2PL) under low contention, while the converse is
true under high contention.

To adapt to different workloads, prior works mix or switch
between a few known algorithms using manual insights or
simple heuristics. We propose a learning-based framework
that instead explicitly optimizes concurrency control via of-
fline training to maximize performance. Instead of choosing
among a small number of known algorithms, our approach
searches in a “policy space” of fine-grained actions, resulting
in novel algorithms that can outperform existing algorithms
by specializing to a given workload.

We build Polyjuice based on our learning framework and
evaluate it against several existing algorithms. Under different
configurations of TPC-C and TPC-E, Polyjuice can achieve
throughput numbers higher than the best of existing algo-
rithms by 15% to 56%.

1 Introduction

Concurrency control (CC) algorithms lie at the foundation of
modern database systems [18]. A CC algorithm synchronizes
a transaction’s access to storage objects to maximize con-
current execution while guaranteeing correctness. As today’s
database systems are no longer disk-bound, the CC algorithm
in use becomes crucial to a database’s performance.

Traditional CC algorithms, such as two-phase-locking
(2PL) [17] and optimistic concurrency control (OCC) [28],
take fixed algorithmic steps regardless of the workload. Thus,
it comes as no surprise that the relative performance of differ-
ent algorithms varies depending on the transaction workload.
Figure 1 shows the throughput of 2PL, OCC and IC3 [61] on
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Figure 1: IC3, OCC, 2PL performance on TPC-C, 48 threads.

a multi-core database under the TPC-C workload with a vary-
ing number of warehouses. OCC has the highest throughput
under low contention (more warehouses) while the other two
outperform OCC under high contention (fewer warehouses).
Similar results have also been reported by others [68].

To adapt to different workloads, prior works propose a fed-
erated approach by simultaneously supporting a small number
of existing CC algorithms, including 2PL and OCC. These sys-
tems require users to partition the workload either by data [55]
or by transaction type [49, 53, 66]. The decision of which al-
gorithm to use for each partition is either based on manual
insights [49, 53, 66] or simple runtime metrics [55]. While
this federated approach can improve performance, it has lim-
itations. First, by limiting itself to using a small number of
known algorithms, it lacks the flexibility to customize concur-
rency control to fully exploit the workload. Second, by relying
on manual insights or simple heuristics, it lacks a systematic
solution to optimize concurrency control for performance.

This paper presents a learning-based framework to optimize
concurrency control for a given workload. We assume that
the workload is known a priori such as past workloads, e.g. in
the form of stored procedures. To enable learning, we design
a “policy space” of fine-grained actions (a.k.a. algorithmic
steps): each policy can be viewed as a CC algorithm that uses
specific actions to synchronize different data accesses made
by different transactions. All policies perform an explicit
validation before transactions commit to ensure serializability.
We use offline training to learn the highest performing policy
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for a given workload. This framework is expressive: it can
learn new CC algorithms as well as existing ones. It also
allows explicit optimization for performance via systematic
searches of the policy space.

We have realized the design for learned concurrency con-
trol in a system called Polyjuice for multi-core in-memory
databases. The core technical challenge of Polyjuice is to
design the policy space. Inspired by reinforcement learning,
we view each policy as a function that maps each state (i.e.,
the execution context of a data access) to actions that control
the interleavings of accesses made by concurrent transactions.
In Polyjuice, the state specifies what type of transaction is
being used and which of its accesses are under execution. The
actions support multiple ways of interleaving control, includ-
ing deciding which data version to read, whether to expose
an uncommitted write, how long to wait before access, and
whether to perform early validation before commit.

Polyjuice represents each policy using a table: the rows
correspond to different states and the columns correspond to
different kinds of actions. Polyjuice uses evolutionary algo-
rithm based training to search the policy space for the policy
that has the highest commit throughput for a given workload.

We train and evaluate Polyjuice’s performance on micro-
benchmarks, TPC-C and TPC-E, and compare with exist-
ing algorithms, including Silo [57](OCC), 2PL, Tebaldi [53],
CormCC [55] and IC3 [61]. Our experiments show that,
for TPC-C and TPC-E with moderate to high contention,
Polyjuice can find a CC policy whose throughput is better
than the best of existing algorithms by 15% to 56%. Detailed
analysis shows that Polyjuice can learn an interesting policy
that is different than any of the existing algorithms to exploit
the workload in subtle ways(§7.3). For workloads with almost
no contention, Polyjuice learns the same policy as OCC and
incurs 8% slowdown due to its implementation overhead.

As Polyjuice requires offline training, it is not suitable for
dynamic workloads that can change rapidly and unpredictably.
However, our analysis of an e-commerce website trace shows
that real-world workloads are fairly predictable in terms of its
peak hour workload characteristics including the likelihood
of conflict. This suggests that it is practical to use Polyjuice to
optimize a database’s peak performance by training on traces
of recently observed peak workloads.

In summary, our paper makes the follow contributions:
• We present the first framework to learn concurrency control

using a policy space of fine-grained actions.
• We design Polyjuice’s policy space according to the frame-

work so that it can encode a variety of existing CC algo-
rithms while allowing the exploration of new ones.

• We show that Polyjuice’s policy, represented as a table, can
be optimized simply using an evolutionary algorithm.

• Even for the heavily-studied TPC-C benchmarks, Polyjuice
can find interesting and novel policies not seen in existing
algorithms to improve transaction throughput under mod-
erate to high contention.

2 Background and Motivation

Existing works have realized the inadequacy of using one
fixed concurrency control algorithm for different workloads.
For the solution, they propose a federated approach of mixing
a few (typically 2 or 3) known CC algorithms [53, 55, 60, 66].
In this section, we discuss the limitations of this federated ap-
proach and motivate the need for a more expressive learning-
based approach.

The federated approach of adapting CC to a workload is
characterized by its coarse-grained way of mixing different
algorithms. Specifically, this approach coarsely partitions the
workload. The same CC algorithm is used within a workload
partition, while a different algorithm may be used for a dif-
ferent partition. Two ways of partitioning can be found in
existing work. CormCC [55] partitions by data: all accesses
to data in the same partition use the same CC algorithm.
Tebaldi [53] and Callas [66] group (a.k.a. partition) transac-
tions by types: all transactions belonging to the same group
(a.k.a. partition) use the same CC for all their data accesses.

The coarse-grained way of mixing CC algorithms is lim-
ited in its ability to fully exploit workload characteristics for
performance. For example, with CormCC, if transactions T
and T ′ both only access data within the same partition, they
would synchronize all of their accesses using the same CC
algorithm. Similarly for Tebaldi and Callas, if transactions
T and T ′ are of the same type, they would always use the
same CC algorithm. This is not optimal: if different data ac-
cesses of T and T ′ have different contention characteristics,
they may be better served by different methods for controlling
concurrency.

A second limitation of existing federated CC work is their
reliance on manual insights to partition the workload or
to determine which CC algorithm to use for each partition.
Callas and Tebaldi manually assign transactions to groups
and choose a specific CC algorithm for each group. CormCC
partitions the TPC-C workload by warehouse based on man-
ual insights and uses simple runtime statistics (e.g. read/write
ratio) to decide which CC algorithm to use for each partition.

Our approach. We aim to optimize CC for a given workload
in a fine-grained way using a learning-based approach. Instead
of partitioning the workload and using a single CC algorithm
for all data accesses within the partition, we propose to allow
each data access to use one of many different fine-grained
“actions” to mediate potentially conflicting accesses. When
deciding what action(s) to take to maximize performance,
we are not concerned with correctness; instead, we rely on
a separate validation mechanism to abort non-serializable
transactions. As fine-grained actions lead to exponentially
many choices for a given workload, it is impossible to rely on
manual insights to choose the best action(s). A more practi-
cal solution is to use a learning-based approach to explicitly
optimize the choice of actions for the given workload.
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The main challenge of our approach is to design the learn-
ing framework with fine-grained actions for concurrency con-
trol. Ideally, the framework should be expressive enough to
encode most existing CC algorithms and to allow the synthe-
sis of new ones. In the next section, we discuss how to design
such a learning framework.

3 Learning Concurrency Control

In this section, we examine how to frame concurrency control
as a fine-grained learning task.

System settings. Our target setting is an in-memory database
running on a single multi-core machine. We assume the kinds
of transaction to be run on the database are known a priori,
e.g. in the form of stored procedures. A number of exist-
ing work also exploit a known-workload in designing CC
algorithms [41, 61, 66]. Our work focuses on learning concur-
rency control for read-write transactions, and reuses existing
mechanisms to support logging and snapshot-based read-only
transactions [57]. Although our learning framework is gen-
eral enough to represent multi-version concurrency control
(MVCC), our later system design does not support it because
existing snapshot-based read-only transactions can already
capture much of MVCC’s performance benefits.

3.1 The learning framework
Our framework for learning concurrency control is inspired
by reinforcement learning (RL). As one of the major branches
of machine learning, RL involves learning how to interact
with an environment to maximize a numerical reward. The
key ingredients in RL are: a policy that maps perceived states
of the environment to actions to be taken when those states
are reached, a reward signal that defines the optimization
goal, and the environment under which the learning system
operates. In our context, the policy corresponds to the CC al-
gorithm; the reward corresponds to some performance metric
to be maximized; the environment captures the transaction
workload and system setup under which the CC operates.

It is straightforward to decide on the optimization objective
(a.k.a. reward). In this work, we use transaction throughput.
Compared to latency or abort rate, transaction throughput is
widely used as the key end-to-end performance metric for
in-memory databases.

It is non-trivial to design a “policy space” to represent var-
ious CC algorithms. At a high level, a CC algorithm executes
a transaction by controlling how its data access can interleave
with potentially conflicting accesses from other concurrent
transactions. As mentioned previously, we do not attempt to
learn how to guarantee correctness. Instead, a learned CC
algorithm always invokes a manually-designed validation pro-
cedure as part of transaction commit to ensure serializability.
What we do learn is a policy that determines what actions to

take in order to maximize performance for a given workload.
A good CC policy balances how long transactions execute
vs. how likely transactions are aborted, resulting in a high
reward, as measured by how many transactions successfully
commit per second. Aside from the CC policy, how long a
database backs off before retrying an aborted transaction can
also affect the performance. We separate the backoff policy
from the CC policy, and this section focuses on the latter.

The policy space of concurrency control. Taking a page
from reinforcement learning, we represent the policy as a
mapping from some state of execution to a specific action to
take upon encountering that state. Taking different actions
in different states allows us to specialize a CC algorithm to
optimize for a given workload. Thus, the state space should
include information that is necessary to distinguish circum-
stances that require different actions, e.g. the type of trans-
action that is making the access, the type of access etc. In a
later section (§4.2), we provide a concrete design of the state
space. In the rest of this section, we focus on designing the
action space.

Ideally, the action space should encompass a set of fine-
grained actions that can be mixed and matched to represent
many different CC algorithms. These actions can be clas-
sified into two categories: 1) actions that control how the
data access of concurrent transactions can interleave during
transaction execution, and 2) actions that control when and
how to perform validation in order to detect whether an exe-
cuted transaction has violated serializability. Next, we discuss
the spectrum of actions available to use in each of the two
categories.

Available actions for interleaving control. These actions
mediate potentially conflicting data accesses, thereby affect-
ing the set of dependencies that arise among concurrent trans-
actions. There are 3 types of dependencies: write-write ww−−→
(a.k.a. write dependency), write-read wr−→ (a.k.a. read depen-
dency), or read-write rw−→ (a.k.a. anti-dependency) [1]. What
are the knobs of control that can affect these dependencies?

To discover these knobs in their full generality, let us as-
sume a hypothetical yet still practical database design that
keeps track of each read and write access of transactions in a
per-object access list, similar to the approach taken in [42,61].
As a transaction T performs data accesses, it may insert its
reads/writes to the corresponding per-object access lists while
also updating Tdep, the set of transactions that T becomes
dependent on. Using this flexible way of tracking dependen-
cies enables a wide range of design choices for interleaving
control, as we will see next.

When executing transaction T , a CC algorithm has the
following action choices:
• Read control. There are two dimensions to these actions:

1. Wait. This can let some dependent transaction T ′ ∈
Tdep perform its conflicting write earlier than T ’s read,
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Interleaving control Validation
Read Read Write Write Early Validation
wait version wait visibility validation method

2PL∗
Until Tdep latest Until Tdep Yes Yes n/a
commits committed commits

OCC [28]
No

latest
No No

No physical cts
TicToc [69] committed No logical cts

Sundial [70] No
latest Until Twdep No No logical cts

committed commits
Callas RP [66] Until Tdep finish latest Until Tdep finish

piece-end piece-end
n/a or

IC3 [61], DRP [41] certain access un-committed certain access physical cts
MVTSO [2] Until T ′ ∈ Twdep commits largest committed

No Yes Yes physical ts
(MVCC) if ts(T ′)< ts(T ) < ts(T )

Table 1: The choices made in existing CC algorithms according to the action space described in §3. T refers to the current
transaction. Tdep refers to the set of transactions that T is dependent on (due to its conflicting access so far). Twdep is the subset of
Tdep whose writes have conflicted with T . ts(T ) refers to the timestamp assigned to T by MVTSO [2].

resulting in T ′ wr−→ T . Otherwise, a dependency cycle
may arise with T rw−→ T ′, resulting in aborts.

2. Which version of data to read, including either com-
mitted or uncommitted version. This amounts to
choosing which location in the access list to insert
the read, thereby affecting dependencies. Specifically,
since a read returns the latest write w before itself
in the access list, there is a write-read dependency,
T ′ wr−→ T , for every T ′ whose write appears before this
read in the list. Additionally, a read also results in a
set of read-write dependencies T rw−→ T ′, for every T ′

whose write appears after this read in the list.

• Write control. There are two dimensions to these actions:

1. Wait. The rationale for this action is similar to that
for reads.

2. Whether or not to make this write visible to the future
reads of other transactions. The write is buffered if
it is not exposed. Otherwise, this write as well as all
of T ’s previously buffered writes are made visible
by appending them to the corresponding per-object
access lists. The cumulative way of exposing writes
makes sense because otherwise, any transaction that
has read this but not a previous write of T would
violate serializability and get aborted. Unlike a read,
there’s no flexibility to insert a write in any location
but the end of the list; this is because we cannot allow
a write to affect past reads. Exposing a write does
not imply that uncommitted data will be read because
transactions can choose to read committed versions
only. In terms of the resulting dependencies, exposing
a write causes T ′ ww−−→ T or T ′ rw−→ T for any T ′ whose
write or read appears before this write in the list.

Available actions for validation. Actions in this category
can control two aspects of validation:

• When to validate. A transaction may validate its accesses at
any time during execution, instead of only at commit time.
Early validation can abort a transaction quicker to reduce
wasted work.
• How to validate. The most precise form of validation is to

explicitly check whether committing transaction T would
form dependency cycles with other committed transac-
tions [42]. However, such graph-based validation is ex-
pensive to implement for in-memory databases. A practical
alternative is OCC-style validation [28,57] which uses each
transaction’s physical commit-timestamp (cts) as its seri-
alization order. Although such validation is conservative
and has false aborts, it is fast. Prior work has also proposed
validation based on logical commit-timestamps [69].

3.2 Decomposing existing CC algorithms

We take a deep dive to study existing algorithms through the
the lens of our framework. At a high level, existing algorithms
differ from each other by the distinct combinations of action
choices they have, even though their choices remain the same
regardless of state.

As summarized in Table 1, traditional 2PL [17] and
OCC [28] algorithms both read the latest committed data.
OCC does not wait to perform any accesses nor does it ex-
pose the writes. By contrast, 2PL exposes writes in order to
block future conflicting accesses. We can approximate 2PL’s
blocking behavior by the action choice that makes transaction
T wait for all its dependent transactions Tdep to commit before
its data access. This approximation is slightly less aggressive
than that of 2PL, which makes T wait for T ′ to commit if
the current access will make T dependent on T ′. We use the
term 2PL∗ to refer to 2PL with this approximated blocking.
Sundial [70] handles write-write conflicts with 2PL and read-
write conflicts with OCC; thus, it blocks write access until
all its write dependencies Twdep commit and has no blocking
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for reads. As for validation, traditional algorithms do it only
at commit time, except for 2PL whose deadlock detection
or prevention mechanism can be viewed as a form of early
validation done at every access.

Apart from traditional CC, our framework also applies
to a class of recently proposed algorithms including Callas
RP [66], IC3 [61] and DRP [41]. These algorithms structure
each transaction as a series of pieces [50], and try to pipeline
the execution of these pieces to enhance performance under
contention. As shown in Table 1, unlike traditional CC, they
make a transaction’s writes visible and allow reads of uncom-
mitted data. Furthermore, they make transaction T wait before
an access until T ’s dependent transactions finish execution up
to a certain point, determined by applying a static analysis of
the transaction workload.

Although our design for learnable CC (§4) does not sup-
port MVCC, we can nevertheless examine MVCC algorithms
using our framework. Table 1 shows the actions made by
MVTSO [2]. Other MVCC algorithms [30, 46, 67] have
similar actions but use different validation methods. Under
MVTSO, a transaction reads the largest committed version
smaller than its timestamp. Writes are exposed so that future
reads by transactions with larger timestamps will wait for
this transaction to commit. MVTSO also performs a form of
early-validation and aborts T if there exists T ′ ∈ Tdep such
that T ′ rw−→ T and T ′ has been assigned a larger timestamp.

Not all CC algorithms can be expressed by our framework.
In particular, our framework tracks dependencies and controls
the interleaving of data access at runtime, and therefore cannot
encode those CC algorithms that pre-define dependencies
according to some globally-agreed ordering prior to execution,
e.g. Calvin [56], Granola [7], Eris [31] and RoCoCo [42].
Moreover, our framework assumes that each access of the
transaction is executed one after another by a single thread,
and hence cannot encode algorithms like Bohm [13] that uses
multiple threads to execute a single transaction.

4 Polyjuice Design

We design Polyjuice according to the framework of §3. The
design consists of two parts: 1) a suitable policy space. 2) a
training procedure to optimize the policy for a given workload.
This section describes the policy space. The next section (§5)
discusses training.

4.1 Overview
System architecture. Polyjuice is a multi-core in-memory
database. There is no multi-version support. For each data
object, Polyjuice stores the latest committed data as well as a
per-object access list. The access list contains all uncommitted
writes that have been made visible, as well as read accesses.
A transaction uses the access list to track the dependencies
for each data access. Polyjuice uses a pool of workers that run

Architecture of Polyjuice

Learned Policy
TableTransaction Logic:

    v1=Get(key1);
    v1++;
    Put(key1,v1);

Offline-learning

Transaction 
Engine

Storage Layer

1.State

2.Action

3.Access

4.Result

Client

Issue

Figure 2: System architecture. Before executing a specific
data access in the transaction, Polyjuice consults the learned
actions in the policy table (step 1, 2). Then, Polyjuice per-
forms the access in the storage layer according to the actions.

concurrently: each worker executes a transaction and commits
it according to the learned CC policy, which has been trained
offline. Fig. 2 shows Polyjuice’s system architecture.

Policy Representation. As discussed in § 3, we consider each
learnable CC algorithm as a policy function p that maps from
the state space (S) to the action space (A), p : S→ A. Both the
state and action space consists of a number of dimensions; the
size of the state/action space is exponential w.r.t. the number
of dimensions.

We represent each policy function as a table: there are as
many rows in the policy table as there are different states;
there are as many columns as there are action dimensions.
Such tabular representation is practical only if the state space
is not too huge, which is the case in the workloads that we
have studied. § 9 discusses the limitation of large state space
and potential solutions.

For a given CC policy table, a cell ci, j at row i and column
j indicates that for the access with execution context (state) i,
the system should take the action given by cell ci, j for action
type (a.k.a. dimension) j. In Polyjuice, each cell contains
either a binary number for a binary action (e.g. whether to
make writes visible or not), or an integer for a multi-valued
action (e.g. how to wait for dependent transactions). Fig. 3
shows the CC policy table; details on its rows and columns
are explained in §4.2 and 4.3. Polyjuice learns the backoff
time for retrying aborted transactions separately (§4.5).

Policy-based Execution. In Polyjuice, the database is given
the learned policy table with which to perform concurrency
control. To execute a transaction according to the policy,
Polyjuice looks up in the policy table at each data access to
determine the corresponding set of actions. Some of these ac-
tions are to be performed prior to the data access, e.g. whether
and how long to wait, while others are to be done after the ac-
cess, e.g. making a write potentially visible by appending it to
the access list. After finishing execution, Polyjuice commits
a transaction after performing the final validation to ensure
serializability (§ 4.4).
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Figure 3: Policy table (* indicates a binary field).

4.2 CC policy: state space

The term state is from the RL literature. In our case, state can
be viewed as the execution context of the current data access.
Ideally, the state space should be able to distinguish execution
contexts that are best served by different actions. It should
also be limited in size so that the resulting policy table is not
too huge and can be searched efficiently during training.

Polyjuice’s state space contains the following information:

1. The type of the transaction being executed. For a given
workload whose transactions are specified in stored proce-
dures, the type can be identified by the stored procedure
name.

2. Which access of the transaction is being executed. We use
an integer access-id to identify each access. Access-id is
determined by the static code location that invokes the
access. Using static information for access-id provides a
good trade-off: it can discriminate most accesses while
avoiding blowing up the state space.

It is tempting to include other useful information, such as
which type of access (read/write/commit) and which data table
is being executed. Interestingly, for most workloads, both of
these can be uniquely determined by the access-id and thus
we omit them from the state space. We have also experimented
with adding the contention level of the accessed data to the
state space. However, we found that doing so only benefited
a few contrived micro-benchmarks. In practical workloads
including TPC-C and TPC-E, distinguishing transaction type
and access-id is sufficient to capture the main contention
characteristics. Even for artificial workloads, it is difficult to
find a scenario where including contention level results in
noticeable performance improvements. Including contention
level makes it possible to differentiate accesses with the same
access id. However, Polyjuice’s wait action (§ 4.3) cannot
take advantage of such differentiation.

Size of state space (a.k.a. number of different states). The
state space size determines the number of rows in the CC
policy table. Let n be the number of different transaction
types in a workload, and d1, d2, ..., dn be the number of static
data accesses for transaction of type 1,2, ...,n. Then the state
space size (i.e. number of different states) is: d1+d2+ ...+dn.

4.3 CC policy: action space

Polyjuice’s action space contains knobs in two categories:
interleaving control and validation.

Supported actions for interleaving control. There are three
classes:
• Wait. This action is invoked before a read or write. How to

specify how long the wait should be? A naive design is to
use absolute time intervals, but this makes the wait action
sensitive to execution time variations, resulting in fragile
policies.
Since the goal of waiting is to let another potentially con-
flicting transaction to go ahead with its data access, we
quantify how long transaction T should wait by how much
progress the transactions that T depends on have made
so far. This design is inspired by existing protocols like
Callas RP [66] and others [41, 61]. More concretely, we
group transactions by type, and measure the execution
progress of a transaction type by access-id. The special
value NO_WAIT indicates no waiting. Suppose the wait ac-
tion for transaction type X has access-id a, then transaction
T must wait for all T ’s dependent transactions of type X to
finish execution up to and including a. For a workload with
n different types of transactions, the wait action consists of
n access-ids, one for each transaction type.

• Read-version. This action has a binary choice:
CLEAN_READ for reading the latest committed
version, DIRTY_READ for reading the latest uncommitted
(but visible) version. Although there may be more than
one uncommitted copy of data, there is no point in reading
an earlier version because doing so would result in more
dependencies and higher abort likelihood.

• Write-visibility. This action is invoked after a write access
and is also binary: PRIVATE keeps the write in the private
buffer, PUBLIC makes all private writes buffered so far
visible by appending them to the access list.

Supported actions for validation. Validation always hap-
pens before commit (§ 4.4). Polyjuice also supports the action
of early-validation, which can occur after any read/write. If
it’s set, this binary-valued action checks if the reads and writes
done since the last validation have violated serializability. Ear-
lier accesses, which have passed previous early-validation, are
likely to have already been serialized and thus not checked.
Early-validation does not guarantee correctness but avoids
wasting work by detecting non-serializable access early.

Polyjuice supports the wait action before early-validation.
The encoding of the wait action is the same as that for
reads/writes. To reduce the action space, we consolidate the
two kinds of wait actions into one. In particular, Polyjuice
uses the wait action corresponding to the next access-id if
early-validation is enabled for the current access-id.

Upon failing early-validation, Polyjuice retries the transac-
tion from the point of its last successful validation. In order
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to reduce the cost of the failed validation, we defer append-
ing reads and visible-writes to their corresponding access
lists until a successful early-validation. Otherwise, failing
early-validation means having to remove previously appended
reads/writes from access lists, and to abort transactions that
have read those discarded writes. Conceptually, we can sepa-
rate the decision of early validation from that of appending
reads/writes to access lists. However, in our experience, doing
so complicates the implementation without improving the
final learned CC performance.

Size of action space (a.k.a. number of different action
choice combinations per state). Let n be the number of dif-
ferent transaction types in a workload, and d1, d2, ..., dn be the
number of static data accesses for transaction of type 1,2, ...,n.
Then the number of different action choice combinations
can be calculated as: d1 ∗d2 ∗ ...∗dn(wait choices)∗2(read-
version)∗2(write-visibility)∗2(early-validation).

4.4 Validation for correctness

Polyjuice uses an OCC-style physical timestamp-based val-
idation in the final commit phase to ensure correctness. To
commit a transaction T with validation, a worker takes 4
steps: 1) it waits for all T ’s dependent transactions to commit
(or abort). 2) it locks each record in T ’s writeset 3) it vali-
dates each record in the readset by checking two conditions;
whether the version-id of the current committed version in the
database is different from that kept in the readset, and whether
the record is being locked by another transaction. If either
condition is true, T is aborted. 4) if validation succeeds, it
applies T ’s writes to the database along with their version-ids,
and releases the locks.

Our validation algorithm is identical to that of Silo [57]
except for two additional mechanisms which are crucial for
correctness. First, we use a unique version-id for committed as
well as uncommitted versions, because the latter may be read
from the access list. Second, we add the additional first step of
waiting for T ’s dependent transactions to finish committing.

We provide a brief correctness argument here. A more de-
tailed proof is in the Appendix of the extended version [59].
We argue the correctness of Polyjuice by reduction to Silo: if
Polyjuice commits a transaction, then Silo would also commit
it. According to step-1, Polyjuice ensures that if a transac-
tion T is committed successfully, then before T starts the
validation, all of its dependent transactions (e.g. Tdep) have
been committed. This allows us to prove that executing T is
equivalent to executing another hypothetical transaction T ′

which starts execution after all transactions in Tdep commit,
reads/writes the same data as T , and starts validation at the
same time as when T starts its validation. Therefore, if T
passes the validation in Polyjuice, T ′ can pass the validation
of Silo and successfully commit itself.

4.5 Learning backoff time

Separate from the CC algorithm, it is also important for per-
formance to use an appropriate backoff time for retrying an
aborted transaction. Existing systems, e.g. Silo, use simple
binary exponential backoff which doubles the backoff time
with each failed attempt. This simple strategy is inadequate
as it often results in backoff times that are too short in the first
couple of retries but too large after several successive retries.
Furthermore, this strategy does not distinguish between dif-
ferent transaction types when adjusting backoff times. This
is suboptimal: intuitively, one can increase the backoff time
more aggressively for a transaction type more prone to con-
tention.

For learning the backoff time, Polyjuice uses a separate
backoff policy table. The rows (a.k.a. state space) of this table
enumerate 3 dimensions: 1) the transaction type 2) the status
of the current execution (commit or abort). 3) the number of
aborted attempts prior to the current execution with a fixed
cutoff: our current implementation uses 0, 1 or 2 to indicate
whether there has been 0, 1 or 2+ aborts so far. The action
space of the backoff policy table is inspired by recent work on
learnable congestion control in networking [22]. Specifically,
a worker adjusts the backoff time for each transaction type
multiplicatively whenever it commits/aborts a transaction:

backoff =

{
backoff × (1+αt,i,aborted), abort
backoff/(1+αt,i,committed), commit

In the above equations, αt,i,committed or αt,i,aborted is the
learned parameter (a.k.a. action) in the policy table for trans-
action type t, number of prior aborted attempts i and execution
status committed or aborted. To enable easier training, we
use bounded discrete values for α. In particular, α can be zero,
resulting in unchanged backoff time.

5 Training Policies

Overview The policy space discussed in §4 is exponentially
large: there are as different policies, where s is the number of
different states and a is the number of different actions per
state. The goal of training is to efficiently search for a good
policy for a given workload.

Polyjuice performs training offline. During regular execu-
tion, Polyjuice logs executed transactions together with their
inputs. Using a separate training machine, Polyjuice emulates
the target workload by reissuing transactions with their logged
inputs. We measure a policy’s commit throughput under the
emulated workload.

Polyjuice uses Evolutionary Algorithm (EA) for training.
We have also explored the policy-gradient method from the
RL literature (§5.2). Despite EA’s simplicity, we have found
it to be more efficient than the alternative (§7.5).
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5.1 Training using Evolutionary Algorithm

EA is an optimization approach to search for a solution with
good fitness by evolving a population of individuals via nature-
inspired mechanisms such as crossover, mutation, and selec-
tion [10, 16, 20]. In Polyjuice, the fitness of an individual
(aka a candidate policy) corresponds to the policy’s commit
throughput under the given workload.

EA starts by initializing the first generation of the popula-
tion. The size of the population for each iteration is a config-
urable hyperparameter. To create a new children generation,
EA performs mutation on the policies (including CC and
backoff policies) of the current generation (parents). It then
evaluates the “fitness” of each mutated child by measuring
its throughput. Finally, EA selects N individuals according to
their fitness to survive to the next generation.

Mutation. EA mutates each cell of a parent’s CC and back-
off policy table independently with probability p. If the cell
corresponds to a binary choice such as read-version or write-
visibility, the mutation flips the choice. If the cell corresponds
to an integer choice (e.g. any of the wait actions), the mutation
varies the integer value by some distance uniformly sampled
from the interval [−λ,λ]. The mutated integer is clipped to
always lie within the valid range. The initial values of muta-
tion probability (p) and mutation interval (λ) are configurable
hyperparameters. We decrease p and λ gradually as the train-
ing progresses to facilitate convergence. This is akin to the
decrease in learning rate in gradient descent methods or the
gradual reduction of temperature in simulated annealing.

Crossover, another popular EA mechanism, is not effective
in our context. Crossover endows a child’s policy with some
rows from one parent and some rows from the other parent.
Unfortunately, such a child is likely to perform worse than
either of its parents. This is because, in most good policies,
the wait actions of different rows are not independent but
highly correlated. Thus, mixing the rows of different policies
often results in worse performance.

At the end of each iteration, EA chooses N individuals with
the best performance from the current population to survive
to the next iteration. In our experiments, this simple selection
mechanism trains faster than tournament selection [10,16,20].

Warm start. Instead of using all random policies, we seed the
initial population with several known good policies, including
OCC, 2PL∗, and Callas RP/IC3. These policies are likely not
optimal for the given workload, but they provide some good
initial policies to give EA a “warm start” in training.

5.2 Alternative training method

Some recent works have used RL training methods to solve
systems problems such as task scheduling [36], adaptive video
streaming [35], multi-GPU dataflow systems [39, 40], con-
gestion control [22], etc. We have experimented with the

policy-gradient method for training a parameterized stochas-
tic policy [62]. More concretely, we parameterize the policy
table by representing each table cell using one or a set of
parameters to denote the probability distribution of the ac-
tion values. Suppose the cell at coordinate i, j corresponds to
some action with M possible choices, we use M parameters,
p0

i, j, p1
i, j, ...p

M−1
i, j , which are fed into a softmax function to

denote the probability distribution of M choices.
For training, each iteration samples a batch of policies ac-

cording to the probability distribution specified by the current
table parameters. We measure the throughput of each sam-
pled policy and use it as the “reward” in RL. Policy gradient
maximizes the expected reward by performing gradient de-
scent [62]. Our way of applying policy gradient is inspired
by [3]. We compare RL- and EA-based training in §7.5.

5.3 Training for real-world deployments

Since Polyjuice relies on offline training to optimize its pol-
icy for a specific workload, this raises the question of how
to use it in the real-world with changing workloads. We ac-
knowledge that Polyjuice is not suitable for very dynamic
and unpredictable workloads. However, we observe that many
real-world workloads are fairly predictable on a day-to-day
basis after analyzing the trace of an e-commerce website. This
has motivated us to suggest the following deployment strategy
for Polyjuice.

Optimize for the peak workload. Real-world systems are
provisioned for the anticipated peak workload. Hence, our
goal is to use Polyjuice to improve commit throughput during
the peak time, in which the server receives the most requests
in a day. There is no need to optimize for non-peak workloads
because an under-utilized database is not a bottleneck for
application performance. Therefore, we only need to train the
policy tailored to the peak workload, and run the same policy
during non-peak times as well.

Predict and retrain. Our analysis of the real-world trace
shows that one can predict tomorrow’s peak workload char-
acteristics using the statistics gathered from today’s peak
workload (§7.6). Given this observation, one can collect the
trace of the peak hour today, retrain the policy based on the
trace, and run this policy for tomorrow. Doing so naively re-
quires Polyjuice to retrain the policy every day. We can defer
retraining if the predicted peak workload does not differ sig-
nificantly from the one targeted by the current policy. Our
analysis of the real-world trace shows that the peak workload
can remain stable for many days after a significant change.
Hence, deferral can greatly decrease the number of retraining
times. One is right to be concerned that deferred training and
prediction errors can result in running a policy optimized for
a different workload than the actual one happening. We also
evaluate the effect of this discrepancy in §7.6.
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6 Implementation

We implemented Polyjuice in C++ using the codebase of
Silo [57] by replacing Silo’s concurrency control mechanism
with Polyjuice’s policy-based algorithm. We implemented
Polyjuice’s offline training separately in Python (and RL-
based training in TensorFlow). The result of training is the
policy table, which is written to disk as a file and later loaded
into memory by the C++ database. Each worker thread in
the C++ database maintains a pointer to the in-memory pol-
icy table. When switching the policy, we reset the policy
pointer in each worker thread. Polyjuice doesn’t need to atom-
ically switch the policy pointers of all threads. This is because
Polyjuice’s validation procedure can ensure correctness re-
gardless of the policies used during execution.

Like Silo, transaction logic is written in C++ using a few
API calls (e.g. Get/Put/CommitTx). Each Get/Put/CommitTx
API call’s access-id is its corresponding sort order based on
the API invocation’s line number. For range queries, our cur-
rent prototype reuses Silo’s existing mechanism which always
reads the committed value.

The pseudocode of how Polyjuice executes a transaction
according to the policy is included in the Appendix of the
extended version [59].

7 Evaluation

7.1 Experimental setup
Hardware. Our experiments are conducted on a 56-core Intel
machine with 2 NUMA nodes. Each NUMA node has 28
cores (Xeon Gold 6238R 2.20GHz) and 188GB memory.
Workloads. We use three benchmarks, TPC-C [5], TPC-E [6],
and a micro-benchmark with ten types of transactions. In our
experiments, each worker retries an aborted transaction indef-
initely until success, to ensure that committed transactions
adhere to the workload’s specified mix ratio of different trans-
action types. If we had not done this and let a worker give
up an aborted transaction and start a new one with a different
type, we would incorrectly learn a policy that intentionally
aborts some transaction types to maximize aggregate through-
put.
Baselines for comparison . We compare Polyjuice with five
existing algorithms: OCC (Silo) [57], 2PL [17], IC3 [61],
Tebaldi [53] and CormCC [55]. For Silo and IC3, we use the
authors’ source code. For Tebaldi and CormCC, we simulate
them in our codebase to provide an apples to apples compar-
ison. For 2PL, we implement it in Silo’s codebase with an
optimized WAIT-DIE mechanism. The optimization avoids
aborts if locks are acquired following a global order, as is the
case with our TPC-C and microbenchmark.
Methodology. For the training, we use 300 iterations by de-
fault. After each iteration, we pick 8 policies from the current
population. For each of them, we generate another 4 children

policies and add them to the selection pool. Therefore, there
are a total of 8∗5 = 40 policies at each iteration. To evaluate
the performance of the learned policy as well as other base-
line algorithms, we run the workload five times, with each run
taking 30 seconds. By default, the graphs show the median.

7.2 TPC-C

For the TPC-C benchmark, we evaluate the three read-write
transactions only, as the remaining two read-only transactions
can be processed with the snapshot mechanism derived from
Silo. We vary the number of warehouses in the benchmark to
change the level of contention.

By default, we use the 3-layer configuration for Tebaldi,
which divides the read-write transactions into two groups
(NewOrder, Payment vs. Delivery) isolated by 2PL [53].
Tebaldi’s 2-layer configuration puts all read-write transac-
tions into the same group, which is the same as IC3. We
simulate CormCC according to its paper [55]. In particular,
we partition the workload by warehouse so that all accesses to
the same warehouse are protected by the same CC. Moreover,
as all warehouses are inter-changeable in our benchmark, all
partitions should also use the same CC protocol. Based on
this observation, we measure the performance of 2PL and
OCC, and pick the one with the better performance as the CC
protocol for each partition.
Throughput. Fig. 4a and 4b show the throughput of vari-
ous algorithms with 48 threads under different contention
levels. Fig. 4a gives the throughput under high contention.
Polyjuice achieves significant performance improvements.
Specifically, with two warehouses, its throughput reaches
907K TPS, which is more than 1.5× of other algorithms.
IC3 and Tebaldi have higher throughput than other existing
algorithms because they can exploit a form of “pipelined” ex-
ecution. Both have the same throughput, which differs from
the original paper, as we disable their manual optimization
for commutativity and uniqueness. Compared with IC3 and
Tebaldi, Polyjuice achieves 56% improvement because of two
factors: First, it can avoid unnecessary waiting because it uses
the runtime information to infer the CC action, while IC3 only
leverages the static information. Second, Polyjuice can either
read dirty or clean versions of data. This flexibility enables it
to achieve more efficient interleavings. We provide a detailed
analysis with an example in § 7.3.

Fig. 4b shows the throughput under moderate and low con-
tention. Polyjuice outperforms the others for 8 and 16 ware-
houses. For 48 warehouses, in which each worker corresponds
to its local warehouse, Polyjuice is slightly slower (8%) than
Silo, even though Polyjuice learns the same policy as Silo.
This is because Polyjuice needs to maintain additional meta-
data in each tuple, which affects the cache locality.
Scalability. Fig. 4c shows the scalability of Polyjuice under
high contention (1 warehouse). Polyjuice has the same scal-
ability as IC3 and Tebaldi, which can scale to 16 threads.
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Polyjuice IC3 Tebaldi Silo 2PL CormCC

Latency(µs)
Neworder 163/151/179/245 251/246/296/345 246/240/291/354 1084/20/62/263 450/31/49/178 450/31/49/178
Payment 163/151/181/252 247/242/291/340 242/236/285/348 6/4/9/24 658/19/97/1554 658/19/97/1554

AVG / P50 / P90 / P99 Delivery 172/167/194/269 156/152/177/223 155/151/175/208 108/101/120/248 183/145/279/621 183/145/279/621

Table 2: Latency for each transaction type in TPC-C with 1 warehouse and 48 threads

Compared with them, Silo and 2PL do not scale beyond four
threads because they cannot exploit parallelism under high
contention. CormCC also has the scalability issue because it
is limited by the protocols (2PL and OCC) it uses.
Performance of each transaction type. We also study the
throughput and latency for each type of read-write transaction
with 1-warehouse and 48 threads (Table 2). For Polyjuice, the
throughput of each type is 132K (NewOrder), 126K (Payment)
and 11K (Delivery) TPS, which follows TPC-C specified ratio
(45:43:4) very closely. This is because each worker retries an
aborted transaction infinitely until it succeeds before starting
a new transaction. Therefore, the ratio of the per-type commit
throughput is exactly the same as how each worker generates
these types. For the latency of NewOrder, Polyjuice has higher
P99 latency than 2PL, but lower latency than Silo, IC3 and
Tebaldi. For Delivery, the outcome is flipped: Polyjuice has
lower P99 latency than 2PL, but higher latency than Silo, IC3
and Tebaldi. For Payment, Polyjuice has lower P99 latency
than IC3, Tebaldi and 2PL.
Factor analysis. To better understand the advantages of
Polyjuice, we perform a factor analysis to examine the bene-
fits of different actions. We start with a policy including only
the actions of OCC (Table 1). Then, we gradually add other
actions into the action space and measure the performance
improvements. We classify the waiting actions into coarse-
grained waiting and fine-grained waiting. The former means
the actions of waiting for the dependent transaction to com-
mit and learning the backoff. The latter refers to waiting for a
certain access of the dependent transaction to finish.

Fig. 6a and 6b show the factor analysis result with 1 and 8
warehouses. For the 1-warehouse workload, adding “early val-
idation” into the action space can improve the performance by
70%, because it can detect the conflicts earlier and reduce the
retry cost. Polyjuice gets a performance boost after applying
fine-grained waiting actions (116K to 309K TPS) due to full
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Figure 6: Factor Analysis On TPC-C Benchmark

exploitation of the potential parallelism. However, each action
has a different effect factor with different workloads. For the
8-warehouse workload, adding “early validation” achieves
larger improvement (467K to 1177K TPS) than others.

7.3 A case study of learned policy
We analyze an example learned policy to understand how it
outperforms existing CC algorithms.

Fig. 7 shows an example of how IC3 and our learned policy
mediate the data access of 3 concurrently executing transac-
tions: Tno (NewOrder), Tpay (Payment) and T ′no (NewOrder).
All three access the same warehouse. Fig. 7 shows a few
crucial data accesses for each transaction: For NewOrder
transactions (Tno, T ′no), these accesses are: read from WARE-
HOUSE table (r(WARE)), followed by an update to STOCK
table (rw(STOCK)), and finally read from CUSTOMER table
(r(CUST)). The crucial accesses of Payment (Tpay) are: update
to WAREHOUSE (rw(WARE)) and update to CUSTOMER
(rw(CUST)).

The three transactions conflict because they access the
same record in WAREHOUSE. Fig. 7 shows a specific de-
pendency pattern that can arise from their WAREHOUSE ac-
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(a) IC3 interleaving. (b) Polyjuice interleaving.

Figure 7: Polyjuice’s learned policy results in a more efficient
interleaving for TPC-C than IC3.
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Figure 8: TPC-E Performance and Scalability

cess, Tno,r(WARE)→ Tpay,rw(WARE)→ T ′no,r(WARE) as all WARE-
HOUSE accesses use dirty reads. As shown in Fig. 7a, to
avoid the dependency cycle, IC3 makes Tpay’s read of CUS-
TOMER wait for Tno’s CUSTOMER update to finish. This
is because IC3 always uses dirty reads, so Tpay,rw(CUST ) must
be ordered after Tno,r(CUST ) in accordance with their WARE-
HOUSE access’ ordering. IC3 also makes T ′no STOCK update
wait for Tpay’s CUSTOMER update, even though these two
access different tables. This is because IC3 only tracks the
immediate dependency: by waiting for Tpay’s CUSTOMER
update, it ensures that Tno and T ′no will not form a dependency
cycle even though T ′no is not aware of the transitively depen-
dent Tno.

Fig. 7b shows the interleaving obtained by Polyjuice, which
is more efficient. Unlike IC3, the learned policy makes Tpay’s
CUSTOMER update wait for Tno’s STOCK access which
is earlier than Tno,r(CUST ). This shorter wait works because
the learned policy also makes Tno’s CUSTOMER read a
committed version, which helps avoid the conflict between
Tno,r(CUST ) and Tpay,rw(CUST ). This is in contrast to IC3, which
makes Tno,r(CUST ) perform a dirty read. The learned policy
still makes Tno’s STOCK update wait for Tpay’s CUSTOMER
update like IC3 does, but the overall interleaving is more
efficient.

Apart from IC3, neither CormCC nor Tebaldi can exploit
this interleaving. CormCC does not allow dirty reads. Tebaldi
uses the same action (either dirty or clean read) for all accesses
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Figure 9: Micro-benchmark
with 10 tx types.
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ing policy switch.

within a transaction. Fig. 7b’s interleaving requires using dirty
reads for NewOrder’s WAREHOUSE access and clean reads
for CUSTOMER access.

7.4 Bigger benchmarks

We use two bigger benchmarks to check if Polyjuice can learn
a CC policy in a much larger search space. The first bench-
mark includes three read-write transactions from TPC-E,
TRADE_ORDER, TRADE_UPDATE and MARKET_FEED.
Compared with the state space of TPC-C (total 26 states),
this benchmark is much more complex (total 65 states). The
second benchmark is a micro-benchmark with ten types of
transactions each with 8 accesses performing random updates
(total 80 states). For each type of transaction, the last opera-
tion updates records in a unique table to distinguish it from
other types. We build this benchmark because the action space
grows exponentially with increasing transaction types.
TPC-E. We vary the contention in TPC-E by controlling the
updates on SECURITY table. Specifically, all updates follow
the Zipf distribution and we vary the θ of Zipf from 0.0 to
4.0 to increase the contention. We didn’t evaluate Tebaldi
as it doesn’t provide a manual grouping strategy for TPC-E.
Similarly, we didn’t evaluate CormCC as it is unclear how to
partition the data for TPC-E.

As shown in Fig. 8a, the throughput of Polyjuice is 42%,
49% and 55% higher than other algorithms when contention
is high (θ = 2,3,4). Unlike TPC-C, in this experiment, the im-
provement of Polyjuice is mainly attributed to the learned
backoff. Specifically, Polyjuice learns a different backoff
mechanism from Silo’s design. We find out that in Silo, the
frequent aborts of TRADE_ORDER result in a large back-
off under high contention and the system spends a lot of
time waiting before retry. In Polyjuice, for TRADE_ORDER
transaction, it wouldn’t increase the backoff even though
the transaction is aborted. Although the abort rate remains
high compared with Silo, the overall throughput is higher.
Fig. 8b shows the scalability of Polyjuice under TPC-E with
θ = 3. Polyjuice’s performance can scale to 18.5× with 48
threads over that with a single thread, which is higher than
IC3 (12.3×) and 2PL (16.6×). Silo (9.4×) does not scale due
to the frequent transaction aborts.
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Microbenchmark with 10 Types of Transactions. For this
benchmark, we change the access distribution of the first op-
eration to vary the contention level. Specifically, we change
the θ of Zipf from 0.2 to 1.0 in the range of 4K. Other opera-
tions randomly update the records in the range of 10M, which
results in little contention. Fig. 9 shows the result, Polyjuice’s
throughput is at least 66% higher than other concurrency con-
trol mechanisms under high contention scenarios. This is
because the learned policy pipelines the operations on some
of the high-contention records while optimizing the waits for
low-contention records.

7.5 Training
We have also implemented policy-gradient based RL training
for the same workload. We initialize RL with an IC3-like
policy to improve its training under this high contention work-
load. The initialization sets the parameters corresponding to
IC3 actions with a high probability (in our case, 80%). The
comparison result is shown in Fig. 5 for TPC-C with 1 ware-
house and 48 threads. The RL agent converges after around
100 iterations, but the throughput of the learned policy is only
178K TPS. In contrast, Polyjuice can learn a 309K TPS policy
in 100 iterations. Our training runs on a single machine for
now; each iteration takes 80 seconds, most of which are spent
on evaluating policy performance.

7.6 Coping with real-world workloads
7.6.1 Trace analysis

The trace. Our analysis is based on the trace of a real-world e-
commerce website, downloaded from Kaggle [24]. The trace
includes a log of requests sent to the web server, including
the request time and several parameters. There are three types
of requests: VIEW, for when a user views a product; CART,
for when a user adds a product to the shopping cart; and
PURCHASE, for when a user purchases a product. As VIEW cor-
responds to a read-only request, we only include the two types
of read-write requests CART and PURCHASE in our analysis.

Workload predictability. For this analysis, we extract all the

logged requests from Oct. 7th 2019 to Apr. 26th 2020 (29
weeks). After removing 6 invalid days, there are 197 days in
total. We only consider the peak-hour workload for each day,
since there is no need to optimize settings when the database
is under-utilized and its commit throughput is limited by the
incoming request rate instead of the CC performance.

As proposed in § 5.3, we predict tomorrow’s peak workload
characteristic to be the same as today’s peak. How accurate is
such a prediction? For our analysis, we characterize a work-
load by its contention level, which has the most effect on the
learned policy. However, since the trace does not contain in-
formation on how long each request executes, we approximate
the likelihood of contention by considering two requests to be
in conflict with each other if they are sent by different users
but operate on the same product id during some time window.
We define conflict_rate = conflict_requests/total_requests
within n minutes. In our analysis, we set n = 5 and split an
hour into 12 intervals. We use the mean of the 12 conflict
rates to represent the contention in this hour and pick the hour
with the most requests as the peak workload in a day. We note
that conflict_rate is heavily influenced by the request rate; the
bigger the request rate, the higher the measured conflict rate.

Fig. 11 shows the error when predicting tomorrow’s peak
hour contention level using today’s peak hour statistics. The
error rate is calculated as error_rate = abs((tomorrow−
today)/today). The smaller the error_rate is, the closer the
next day’s peak workload contention matches that of today.
Fig. 11a shows the error rate of the conflict rates for all 196
days (except for the first day), and Fig. 11b shows the CDF
of the error rates distribution. We can see that, there are only
3 days when the error rate of prediction is larger than 20%.
After manually checking these 3 days, we find out that they
are due to a significantly higher or lower request rate, which
affects the conflict rate.

We also analyze how frequently one needs to retrain. As
suggested in § 5.3, we assume retraining is deferred until the
predicted conflict rate differs from the one used for training
the current policy by 15%. For the trace analyzed, we only
need to retrain 15 times to cover a period of 196 days.
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Figure 12: Throughput under different workloads

7.6.2 Cost of policy switching

We evaluate the cost of switching the policy in terms of: 1)
how long it takes to fully switch the policy 2) whether com-
mit throughput is affected by policy switching. The result is
shown in Fig. 10. We run the TPC-C 1 warehouse workload
with 48 threads, and plot the throughput for each second. At
the beginning, we run the workload with the OCC policy.
Starting in the 15th second, we switch the policy to the one
optimized for 1 warehouse. The result shows that it takes
about 3 seconds to fully switch to a new policy, and switch-
ing does not negatively impact performance. In fact, because
we are switching to a better policy, the performance quickly
improves during switching.

7.6.3 Running a policy trained on a different workload

We also study what happens if the workload optimized by
the policy differs from the one actually being executed. For
these TPC-C experiments, we use fixed learned policies and
measure their performance under various workloads that are
different from those used in training.

In the first set of experiments, we use two fixed policies,
which are trained using 48 threads on 1 warehouse or 4 ware-
houses. Fig. 12a shows the performance of fixed policies
as we vary the number of warehouses, compared to exist-
ing algorithms and Polyjuice when it is always trained on
the correct workload. If the evaluation workload is different
from the workload used for training, the fixed policies can

be sub-optimal. For example, the performance of Polyjuice
(1-warehouse) is 71% of Silo under 48 warehouses. However,
the performance differences between fixed and optimal poli-
cies are small when the evaluation workload is not too far off
from the training workload.

In the second set of experiments, we use fixed policies
trained on 1 warehouse using 48 or 16 threads. Fig. 12b shows
the performance of fixed policies as we vary the number of
threads. The results are similar, in that a trained policy is fairly
robust to training and evaluation workload mismatch.

8 Related Work

Concurrency control. We can categorize recent CC works
according to their design choices. 1) Scheduling based CC:
IC3 [61], Callas [66], DPR [41] and RoCoCo [42] allow ongo-
ing transactions to expose their writes and track dependencies
at runtime, then schedule the read/write operations according
to the tracked dependencies. Ding et al. [11] schedules read
operation after conflicting transaction’s commits to avoid
aborts for OCC protocol. 2) Deterministic databases: Gra-
nola [7], Deterministic CC [15,47,48,56] and Eris [32] sched-
ule a transaction’s execution according to a predetermined
order. PWV [14] adds early write visibility to the determinis-
tic CC to further improve the performance. 3) Changing the
validation algorithm to avoid unnecessary aborts: TicToc [69]
avoids unnecessary aborts by using logical timestamps for
validation. BCC [71] changes the validation phase by detect-
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ing a special pattern. 4) Partially rolling back to reduce the
abort cost [64].

In addition, there are a number of works applying MVCC
into their systems. Bohm [13] combines the MVCC with deter-
ministic CC to achieve non-blocking operations. Cicada [33]
uses logical timestamps with MVCC to increase the possibil-
ity of constructing safe interleavings. Obladi [8] integrates
MVCC on top of ORAM to provide security along with high
performance.

All above CC protocols leverage a fixed set of design
choices. Compared to them, Polyjuice is able to adapt the de-
sign choices according to the characteristics of a given work-
load. Some work [43, 54, 73] focus on distributed databases,
which must do replication in addition to concurrency control.
They propose new algorithms to handle inconsistent orderings
in both concurrency control and replication.
Hybrid concurrency control. There are existing works that
combine multiple concurrency control mechanisms for better
performance. MOCC [60] develops a specific algorithm to
combine OCC and 2PL for high-contention workloads. Sun-
dial [70] proposes a new hybrid CC algorithm based on 2PL
and OCC with logical timestamps. CormCC [55] proposes
a more general hybrid method by formalizing all CC into
four phases. Each operation can use any CC’s policy as long
as all CCs perform each phase according to the same order.
Tebaldi [53] groups transactions and assigns different CC pro-
tocols to each group. However, existing algorithms are either
specific for combining OCC or 2PL, or need programmers to
provide heuristics to choose the execution policy for each op-
eration. Compared to them, Polyjuice is able to automatically
adapt the policy for each operation according to the workload.
Learned systems. Many system optimizations can be done
by machine learning models trained from historical data. In
the area of databases, examples include cardinality estima-
tion [25, 29, 45, 63], join order planning [27, 37, 44] and con-
figuration tuning [58]. Besides databases, works have been
done to improve buffer management systems [4], sorting al-
gorithms [74], memory page prefetching [19,72] and memory
control [21], task scheduling [26], CPU scheduling [51], lock-
ing priority [12] and cache replacement [52]. Although these
works try to leverage machine learning to make systems self-
aware, but none of them targets on the concurrency control.
Thus, they have different model design from Polyjuice.

9 Discussion

As a first attempt on learnable CC, Polyjuice has limitations,
some of which we hope to address in the future.
Not suitable for rapidly changing workloads. In our expe-
rience, training takes on the order of several hundred seconds.
Thus, Polyjuice is not suitable for scenarios in which work-
load changes quicker than every few minutes.
Inaccurate workload emulation. Training reissues executed
transactions with their logged inputs. However, since transac-

tion interleavings during training differ from that of the orig-
inal execution, a transaction’s outputs also differ. Polyjuice
works only if such emulation inaccuracies do not significantly
affect the workload access pattern.
Large state space. Polyjuice represents as potential policies
in a table format, where s is the number of different states and
a is the number of different actions per state. As the number
of transactions and the number of accesses in each transaction
increase in the workload, both s and a increase. The resulting
much enlarged search space will make training via EA less
effective. One potential solution is to follow the breakthrough
of deep reinforcement learning, and use a function approxima-
tor like a deep neural network to approximate the policy table
with parameters far fewer than the number of table cells. It is
a well-known challenge to make deep RL work effectively.
More expressive policy space. There are several interesting
directions to expand the policy space, such as supporting
multi-version databases, explicit CPU scheduling of execu-
tion, fine-grained instead of binary contention levels.
Weaker and mixed isolation levels. Polyjuice currently only
guarantees serializability. Some applications can work with
weaker or mixed isolation levels [9, 23, 34, 38, 65]. It is an
interesting extension to generalize to these scenarios.
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A Artifact Appendix

Abstract
This artifact provides the source code of Polyjuice and scripts
to run the main experiments in this paper. Polyjuice is a fast
in-memory database, which is based on a new concurrency
control framework and uses the evolutionary algorithm to
search for the optimal concurrency control policy under a
specific workload.

Scope
This artifact (including the document, source code, and the
scripts) is used to run the main experiments in Polyjuice. We
note that the reported performance is based on the policies
learned on dedicated machines. Therefore, if you run on
different hardware, the performance numbers might be
different from those in the paper. The artifact aims to verify
the following claims:

TPC-C/TPC-E/Microbenchmark performance. The
results should show that Polyjuice outperforms other
baselines under high/moderate contention. Polyjuice’s
performance is slightly lower than Silo under low-contention
workloads (e.g. TPC-C 48 threads - 48 warehouse, TPC-E
zipf 0.0 and 1.0, Microbenchmark zipf 0.2).

TPC-C/TPC-E scalability. The results should show
that Polyjuice scales better than Silo and 2PL.

TPC-C factor analysis. The results should show that
for the 1-warehouse workload, there is a performance
boost after adding fine-grained waiting actions. For the
8-warehouse workload, adding early validation achieves large
improvement.

Training. The results should show that the training
using EA has better performance than RL.

Switching policy. The results should show that it takes
several seconds to fully switch to a new policy, and the pro-
cess of switching does not negatively impact the database’s
performance.

Contents
• README: A detailed document showing how to down-

load, compile and run the source code of Polyjuice.

• Source code: We provide the source code of Polyjuice, as
well as TPC-C, TPC-E and microbenchmark.
• Scripts: We provide the scripts to run all the main experi-

ments in our paper.

Hosting

An open-source version of Polyjuice is available at
https://github.com/derFischer/Polyjuice. We recommend us-
ing the latest commit on the master branch of the repository,
which would be maintained by the authors.

Code license: Apache License 2.0.

Requirements

Hardware Dependencies. Most of our experiments will use
48 physical cores. Using fewer cores or hyper-threads might
produce different performance results.

Software Dependencies. Our project depends on li-
braries as listed and we give their installation commands on
Ubuntu 18.04 with apt-get. On our machine, GCC 7.5.0/8.3.0.
We recommend using the same version of Python and GCC
as ours because otherwise it may fail to compile.

Library Install Command
libnuma apt-get install libnuma-dev

libdb apt-get install libdb-dev libdb++-dev
libaio apt-get install libaio-dev
libz apt-get install libz-dev

libssl apt-get install libssl-dev
autoconf apt-get install autoconf

libjemalloc apt-get install libjemalloc-dev

Training Dependencies. Our training code is based on Ten-
sorFlow 1.14.0 and we use Python 3.6.9 on our machine.
Using TensorFlow 2.0 may fail to run the training code since
some APIs in version 2.0 are different from those in 1.0.

AE Methodology

Sumission, review and badging methodology:
https://www.usenix.org/conference/osdi21/call-for-artifacts.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation    217

https://github.com/derFischer/Polyjuice
https://www.usenix.org/conference/osdi21/call-for-artifacts

	Introduction
	Background and Motivation
	Learning Concurrency Control
	The learning framework
	Decomposing existing CC algorithms

	Polyjuice Design
	Overview
	CC policy: state space
	CC policy: action space
	Validation for correctness
	Learning backoff time

	Training Policies
	Training using Evolutionary Algorithm
	Alternative training method
	Training for real-world deployments

	Implementation
	Evaluation
	Experimental setup
	TPC-C
	A case study of learned policy
	Bigger benchmarks
	Training
	Coping with real-world workloads
	Trace analysis
	Cost of policy switching
	Running a policy trained on a different workload


	Related Work
	Discussion
	Artifact Appendix



