
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

Pet: Optimizing Tensor Programs with
Partially Equivalent Transformations and

Automated Corrections
Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, and Liyan Zheng,

Tsinghua University; Yuanzhi Li, Carnegie Mellon University; Kaiyuan Rong and
Yuanyong Chen, Tsinghua University; Zhihao Jia, Carnegie Mellon University

and Facebook
https://www.usenix.org/conference/osdi21/presentation/wang

PET: Optimizing Tensor Programs with Partially Equivalent Transformations
and Automated Corrections

Haojie Wang Jidong Zhai Mingyu Gao Zixuan Ma Shizhi Tang
Liyan Zheng Yuanzhi Li† Kaiyuan Rong Yuanyong Chen Zhihao Jia†‡

Tsinghua University Carnegie Mellon University† Facebook‡

Abstract
High-performance tensor programs are critical for effi-

ciently deploying deep neural network (DNN) models in real-
world tasks. Existing frameworks optimize tensor programs
by applying fully equivalent transformations, which maintain
equivalence on every element of output tensors. This approach
misses possible optimization opportunities as transformations
that only preserve equivalence on subsets of the output tensors
are excluded.

We propose PET, the first DNN framework that optimizes
tensor programs with partially equivalent transformations and
automated corrections. PET discovers and applies program
transformations that improve computation efficiency but only
maintain partial functional equivalence. PET then automati-
cally corrects results to restore full equivalence. We develop
rigorous theoretical foundations to simplify equivalence exam-
ination and correction for partially equivalent transformations,
and design an efficient search algorithm to quickly discover
highly optimized programs by combining fully and partially
equivalent optimizations at the tensor, operator, and graph
levels. Our evaluation shows that PET outperforms existing
systems by up to 2.5×, by unlocking previously missed op-
portunities from partially equivalent transformations.

1 Introduction

Existing deep neural network (DNN) frameworks represent
DNN computations as tensor programs, which are direct
acyclic computation graphs describing the operations applied
to a set of tensors (i.e., n-dimensional arrays). The operators
in tensor programs are mostly linear algebra computations
such as matrix multiplication and convolution. Although ten-
sor programs are specified based on the high-level insights
of today’s DNN algorithms, such constructions do not neces-
sarily offer the best runtime performance. Current practice to
optimize tensor programs in existing DNN frameworks is to
leverage program transformations, each of which identifies
a subprogram that matches a specific pattern and replaces it
with another subprogram that offers improved performance.

To preserve the statistical behavior of DNN models, exist-
ing frameworks only consider fully equivalent program trans-
formations, where the new subprogram is mathematically
equivalent to the original subprogram for arbitrary inputs.
For example, TensorFlow, PyTorch, TensorRT, TVM, and An-
sor all use rule-based optimization strategies that directly
apply manually designed program transformations whenever
applicable [3, 6, 26, 32, 34]. TASO automatically generates
and verifies transformations by taking operator specifications
as inputs, but is still limited to fully equivalent transforma-
tions [15].

Despite the wide use of equivalent program transformations
in conventional compilers and modern DNN frameworks, they
only exhibit limited opportunities for performance optimiza-
tion, especially for tensor programs. Unlike traditional pro-
grams whose primitives are scalars or simple arrays of scalars,
tensor programs operate on high-dimensional tensors with up
to millions of elements. Many transformations can improve
the runtime performance of a tensor program but do not pre-
serve full equivalence on all elements of the output tensors.
We call such transformations partially equivalent. Examples
of performance-optimizing partially equivalent transforma-
tions include (1) changing the shape or linearization ordering
of input tensors to improve computational efficiency, (2) re-
placing less efficient operators with more optimized operators
with similar mathematical behavior, and (3) transforming the
graph structure of a program to enable subsequent perfor-
mance optimizations.

Partially equivalent transformations, despite their high po-
tential, are not exploited in existing DNN frameworks due to
several challenges. First, directly applying partially equivalent
transformations would violate the functional equivalence to
an input program and potentially decrease the model accuracy.
It is necessary to correct any non-equivalent regions of output
tensors, to preserve transparency to higher-level algorithms.
However, quickly examining equivalence to identify these
regions and effectively generating the required correction
kernels are difficult tasks. Second, when partially equivalent
transformations are applied, the design space is substantially

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 37

enlarged compared to existing frameworks under equivalence
constraint. Theoretically, any program transformation, regard-
less of how different the result is from the original one, be-
comes a potential candidate. The generation algorithm for
partially equivalent transformations should carefully manage
its computational complexity. The optimizer must balance the
benefits and overhead and be able to combine fully and par-
tially equivalent transformations to obtain performant tensor
programs.

In this paper, we explore a radically different approach to
optimize tensor programs, by exploiting partially equivalent
transformations. We develop rigorous theorems that simplify
equivalence examination and correction kernel generation,
allowing us to easily restore functional equivalence and prov-
ably preserve the DNN models’ statistical behavior. With a
significantly larger search space of program optimizations that
includes both fully and partially equivalent transformations,
our approach can discover highly optimized tensor programs
that existing approaches miss. Based on these techniques, we
propose PET, the first DNN framework that optimizes tensor
programs with partially equivalent transformations and auto-
mated corrections. PET consists of three main components:

Mutation generator. To discover partially equivalent trans-
formations automatically for an input subprogram, PET uses
a mutation generator to construct potential program mutants.
Each mutant takes the same input tensors as in the original
subprogram and produces output tensors with the same shapes.
This ensures that a mutant can replace the input subprogram
and therefore constitutes a potential transformation.

Mutation corrector. The generated mutants of an input sub-
program may produce different results on some regions of the
output tensors, thus affecting the model accuracy. To preserve
its statistical behavior, PET’s mutation corrector examines
the equivalence between an input subprogram and its mu-
tant and automatically generates correction kernels. These
are subsequently applied to the output tensors to maintain an
end-to-end equivalence to the input subprogram. To reduce
the overhead and heterogeneity introduced by the correction
kernels, PET opportunistically fuses the correction kernels
with other tensor computation kernels.

Examining and correcting a partially equivalent transforma-
tion is difficult, since the output tensors of a program include
up to millions of elements, and each one must be verified
against a large number of input elements. A key contribu-
tion of PET is a set of rigorous theoretical foundations that
significantly simplify this verification process. Rather than
examining program equivalence for all positions in the output
tensors, PET needs to test only a few representative positions.

Program optimizer. PET uses a program optimizer to iden-
tify mutant candidates with high performance, by effectively
balancing the benefits from using better mutants and the over-
heads of extra correction kernels. We first split an arbitrarily
large input program into multiple small subprograms at the

positions of non-linear operators. Each subprogram then con-
tains only linear operators and can be independently mutated.
We support mutations on various subsets of operators in the
subprogram, and can iteratively apply mutations to obtain
mutants that are more complex. Finally, we apply a series of
post-optimizations across subprogram boundaries, including
redundancy elimination and operator fusion.

We evaluate PET on five real-world DNN models. Even
for common and heavily optimized models in existing frame-
works such as Resnet-18 [14], PET can still improve the per-
formance by 1.2×. For new models such as CSRNet [20] and
BERT [12], PET is up to 2.5× faster than the state-of-the-
art frameworks. The significant performance improvement is
enabled by combining fully and partially equivalent transfor-
mations at the tensor, operator, and graph levels.

This paper makes the following contributions.
• We present the first attempt in tensor program optimiza-

tion to exploit partially equivalent transformations with
automated corrections. We explore a significantly larger
search space than existing DNN frameworks.
• We develop rigorous theoretical foundations that sim-

plify the equivalence examination and correction kernel
generation, making it practical to preserve statistical be-
havior even with partially equivalent transformations.
• We propose efficient generation and optimization ap-

proaches to explore the large design space automatically
with both fully and partially equivalent transformations.
• We implement the above techniques into an end-to-end

framework, PET, and achieve up to 2.5× speedup com-
pared to state-of-the-art frameworks.

2 Background and Motivation

To generate high-performance tensor programs, a common
form of optimization in existing DNN frameworks (e.g., Ten-
sorFlow [3], TensorRT [32], and TVM [6]) is fully equivalent
transformations that improve the performance of a tensor pro-
gram while preserving its mathematical equivalence. Exam-
ples of current fully equivalent transformations include opera-
tor fusion [2, 6], layout transformations [18], and automated
generation of graph substitutions [15]. Though effective at
improving performance, fully equivalent transformations ex-
plore only a limited space of program optimizations.

In contrast, Figure 1 shows an example of a partially equiva-
lent transformation for a convolution operator. It concatenates
two individual images into a larger one along the width di-
mension to improve performance. This is because a larger
width, which is typically the innermost dimension for con-
volution on modern accelerators like GPUs, provides more
parallelism and improves computation locality. However, the
new program after this transformation (shown in Figure 1(b))
produces different results on a sub-region of the output tensor
along the boundary of the concatenation (shown as the shaded
boxes in Figure 1(b)), resulting in partial non-equivalence.

38 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

conv

T1

T2

(a) Input program.

co
nv

reshape &
transpose

T1

T3 T4

T5

reshape &
transpose

(b) A partially equivalent transformation.

T5

T2

correction

(c) Correcting results.

Figure 1: A partially equivalent transformation that improves the performance of convolution by manipulating tensor shape
and linearization. The shaded boxes in (b) highlight non-equivalent elements between two programs in the transformation. The
correction kernel in (c) is applied to these elements to recover the functional equivalence of the input program.

In addition to the above example that optimizes a tensor pro-
gram by changing the shape and linearization of its tensors,
partially equivalent transformations also include replacing
less efficient operators with more optimized ones with simi-
lar semantics, and modifying the graph structure of a tensor
program to enable additional optimizations. We provide more
such examples in §4.2 and evaluate them in §8.3.

Although partially equivalent transformations exhibit high
potential for performance improvement, they are not consid-
ered in current DNN frameworks due to their possible impact
on model accuracy. Manually implementing such partially
equivalent transformations is prohibitive. First, it requires
evaluating a large amount of potential partially equivalent
transformations to discover promising ones. Second, to apply
partially equivalent transformations while preserving model
accuracy, we need correction kernels to fix the results for non-
equivalent parts (see Figure 1(c)). Overall, more automated
approaches are needed to discover performance-optimizing
partially equivalent transformations and correct the results,
which are the main focus of this work.

3 Design Overview

PET is the first framework to optimize tensor programs by
exploiting partially equivalent transformations and correcting
their results automatically. To realize this, PET leverages the
multi-linearity of tensor programs.

Multi-linear tensor programs (MLTPs). We first define
multi-linear tensor operators. An operator op with n input
tensors I1, . . . , In is multi-linear if op is linear to all inputs Ik:

op(I1, . . . , Ik−1,X , . . . , In)+op(I1, . . . , Ik−1,Y, . . . , In)

= op(I1, . . . , Ik−1,X +Y, . . . , In)

α ·op(I1, . . . , Ik−1,X , . . . , In) = op(I1, . . . , Ik−1,α ·X , . . . , In)

where X and Y are arbitrary tensors with the same shape as
Ik, and α is an arbitrary scalar. DNN computation generally

Tensor Program

Mutation Generator

Mutation Corrector

Subprogram

Subprogram

Su
bp

ro
gr

am

Optimized Tensor Program

One Subprogram

Mutant Candidates

Corrected Mutants

Subprogram

M
u

ta
n

tMutant

Mutant

Mutant
Co

rr
ec

tio
n

Ke
rn

el

1

Se
ct

io
n

 4
Se

ct
io

n
 5

Se
ct

io
n

 6

2

Program Partitioning

correction

Program Optimizer

Fully Equivalent Transformations

Partially Equivalent Transformations

4

3

Figure 2: PET overview.

consists of multi-linear tensor operators (e.g., matrix multipli-
cation, convolution) and element-wise non-linear operators
(e.g., ReLU [23] and sigmoid). The linear operators consume
the majority of the computation time, due to their high com-
putational complexity. A program P is a multi-linear tensor
program (MLTP) if all operators op ∈ P are multi-linear.

PET overview. Figure 2 shows an overview of PET. The input
to PET is a tensor program to be optimized. Similar to prior
work [6,34], PET first splits an input program into smaller sub-
programs to reduce the exploration space of each subprogram
without sacrificing performance improvement opportunities.
For each subprogram, PET’s mutation generator discovers
partially equivalent transformations by generating possible
mutants for MLTPs in the subprogram. Each mutant has the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 39

Table 1: Multi-linear tensor operators used in PET.
Operator Description

add Element-wise addition
mul Element-wise multiplication
conv Convolution
groupconv Grouped convolution
dilatedconv Dilated convolution
batchnorm Batch normalization
avgpool Average pooling
matmul Matrix multiplication
batchmatmul Batch matrix multiplication
concat Concatenate multiple tensors
split Split a tensor into multiple tensors
transpose Transpose a tensor’s dimensions
reshape Decouple/combine a tensor’s dimensions

same input and output shapes as the original MLTPs, thus
constitutes a partially equivalent transformation (§4).

To maintain the end-to-end equivalence to an input pro-
gram, PET’s mutation corrector examines the equivalence
between a mutant and its original MLTP, and automatically
generates correction kernels to fix the outputs of the mutant.
PET leverages rigorous theoretical foundations to simplify
such challenging tasks (§5).

The corrected mutants are sent to PET’s program optimizer,
which combines existing fully equivalent transformations with
partially equivalent ones to construct a comprehensive search
space of program optimizations. The optimizer evaluates a
rich set of mutants for each subprogram and applies post-
optimizations across their boundaries, in order to discover
highly optimized candidates in the search space (§6).

4 Mutation Generator

This section describes the mutation generator in PET, which
takes an MLTP as input and automatically generates possible
mutants to replace the input MLTP. The generation algorithm
discovers valid mutants up to a certain size. Each generated
mutant does not necessarily preserve mathematical equiva-
lence to the input program on the entire output tensors. To
restore functional equivalence, the mutation corrector (§5)
automatically generates correction kernels.

4.1 Mutation Generation Algorithm

We call an MLTP P1 a mutant of another MLTP P0 if P1 and
P0 have the same number of inputs (and outputs) and each
input (and output) has the same shape. The computations of
P0 and P1 are not necessarily equivalent. Intuitively, if P0 is
a subprogram in a tensor program, then replacing P0 with P1
yields a valid but potentially non-equivalent tensor program.

For a given MLTP P0, PET generates potential mutants of
P0 using a given set of multi-linear operators O as the ba-

Algorithm 1 MLTP mutation generation algorithm.
1: Input: A set of operators O; an input MLTP P0
2: Output: A set of valid program mutants M for P0
3: I0 = the set of input tensors in P0
4: M =∅
5: BUILD(1, ∅, I0)
6: // Depth-first search to construct mutants
7: function BUILD(n, P , I)
8: if P and P0 have the same input/output shapes then
9: M = M +{P}

10: if n < depth then
11: for op ∈ O do
12: for i ∈ I and i is a valid input to op do
13: Add operator op into program P
14: Add the output tensors of op into I
15: BUILD(n+1, P , I)
16: Remove operator op from P
17: Remove the output tensors of op from I
18: return M

sic building blocks. Table 1 lists the operators used in our
evaluation. The list covers a variety of commonly used ten-
sor operators, including compute-intensive operators (conv,
matmul, etc.), element-wise operators (add, mul, etc.), and
tensor manipulation (split, transpose, etc.). This set can
also be extended to include new DNN operators.

Algorithm 1 shows a depth-first search algorithm for con-
structing potential mutants of an MLTP P0. PET starts from
an empty program with no operator and only the set of origi-
nal input tensors to P0. PET iteratively adds a new operator
to the current program P by enumerating the type of operator
from O and the input tensors to the operator. The input tensors
can be the initial input tensors to P0 (i.e., I0 in Algorithm 1)
or the output tensors of previous operators. The depth-first
search algorithm enumerates all potential MLTPs up to a cer-
tain size (called the mutation depth). For each mutant P , PET
checks whether P and P0 have the same number and shapes
of inputs/outputs. P is a valid mutant if it passes this test.

4.2 Example Mutant Categories
While the above mutation generation algorithm is general
enough to explore a sufficiently large design space, we em-
phasize that several mutant categories are of particular impor-
tance to PET and lead to mutants with improved performance.
Note that PET does not rely on manually specified categories.
Rather, these categories are discovered by PET automatically.

Reshape and transpose. It is widely known that the in-
memory layouts of tensors play an important role in opti-
mizing tensor programs [6]. PET leverages the reshape and
transpose operators to transform the shapes of input tensors
and the linearization ordering of tensor dimensions to gen-
erate mutants with better performance. A reshape operator
changes the shape of a tensor by decoupling a single dimen-

40 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

sion into multiple ones or combining multiple dimensions
into one. E.g., a reshape can transform a vector with four
elements into a 2×2 matrix. A transpose operator modifies
the linearization ordering of a tensor’s dimensions, such as
converting a row-major matrix to a column-major one.

Reshape and transpose are generally applied jointly to
transform the tensor layouts. For example, Figure 1 shows
a potential mutant of a convolution operator that concate-
nates two separate images (i.e., T1→ T3 in Figure 1(b)) along
the width dimension to improve the performance of convo-
lution: typically a larger width exhibits more parallelism to
be exploited on modern accelerators such as GPUs. This
concatenation involves a combination of three reshape and
transpose operators. First, a reshape operator splits the
batch dimension of T0 into an inner dimension that groups
every two consecutive images, and an outer dimension that
is half the size of the original. Then, a transpose operator
moves the newly created inner dimension next to the width
dimension and updates the tensor’s linearization ordering ac-
cordingly, so each row of the two images in the same group
is stored consecutively in memory. Finally, another reshape
operator combines the two images.

The mutation generator usually fuses multiple consecu-
tive reshape and transpose operators into a single com-
pound operator, namely reshape & transpose. This fusion
reduces the size of the generated mutants and allows for ex-
ploring much larger and more sophisticated mutants.

Single-operator mutants. PET can also generate mutants
that replace an inefficient operator in a tensor program with a
different and more performant operator. Several standard ten-
sor operators, such as convolution and matrix multiplication,
have been extensively optimized either manually or automati-
cally on modern hardware backends. In contrast, their variants,
such as strided or dilated convolutions [20], are not as effi-
ciently supported. There are performance-related benefits to
mutating them into their standard counterparts with highly
optimized kernels. As an example, Figure 3 shows a mutant
that transforms a dilated convolution into a regular convolu-
tion by reorganizing the linearization ordering of the input
tensor based on the given dilation. However, the mutant is not
fully equivalent to the input program and requires corrections
afterward to restore functional equivalence.

Multi-operator mutants. PET also supports substituting a
subgraph of multiple operators with another more efficient set
of operators. For example, a few independent convolutions
with similar tensor shapes may be combined into a single
larger convolution to improve GPU utilization and reduce ker-
nel launch overhead. This requires manipulating tensor shapes
and adding proper padding (see the examples in §8.3.3).

5 Mutation Corrector

While the mutants generated by PET have potentially higher
performance than the original programs, they may produce
different mathematical results on some regions of the out-
put tensors, potentially leading to accuracy loss. To maintain
transparency at the application level, PET chooses to preserve
the statistical behavior of the input program and guarantees
the same model accuracy, with the help of a mutation cor-
rector. Specifically, the mutation corrector takes as inputs an
MLTP P0 and one of its mutants P , and automatically gener-
ates correction kernels that are applied to the output tensors
of P to maintain functional equivalence to P0.

The goal of the mutation corrector is twofold. First, for any
given MLTP and its mutant, the corrector analyzes the two
programs and identifies all the regions of the output tensors
on which the two programs provide identical results and there-
fore do not need any correction. Second, for the remaining
regions where the two outputs are different, the corrector au-
tomatically generates kernels to fix the output of the mutant
and preserve functional equivalence.

Designing the mutation corrector requires addressing two
challenges. First, the output tensors may be very large, involv-
ing up to many millions of elements that all require equiva-
lence verification. It is infeasible to verify every single ele-
ment of the output tensors individually. Second, the verifica-
tion of each output element may depend on a large number of
input variables in many tensor operators. For example, each
output element of a matrix multiplication is the inner product
of one row and one column of the two input matrices, both
with sizes up to several thousand. Numerically enumerating
all possible values for this many input variables is impractical.

Two theorems that significantly simplify the verification
tasks are central to the PET mutation corrector. Rather than
verifying all output positions with respect to all input value
combinations, PET only needs to verify a few representative
output positions with a small number of randomly generated
input values. This dramatically reduces the verification work-
load. We describe these theoretical foundations in §5.1 and
introduce our mutation correction algorithm in §5.2.

5.1 Theoretical Foundations

To simplify our analysis, we assume an input MLTP P0 and its
mutant P each has one output. Our results can be generalized
to programs with multiple outputs by sequentially analyzing
each one. Let P (I) denote the output tensor of running P on
n input tensors I = (I1, ..., In). Let P (I)[~v] denote the output
value at position ~v, and let I j[~u] denote the input value at
position~u of I j. With these definitions, the computation for a
single output position of an MLTP P is represented as

P (I1, ..., In)[~v] = ∑
~r∈R (~v)

n

∏
j=1

I j[L j(~v,~r)]

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 41

dilated conv

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

W1

T2

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

reshape &
transpose

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

T3

co
n

v

T4

T5

reshape &
transpose

correction

T5

T2

(a) Input program.

dilated conv

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

W1

T2

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

reshape &
transpose

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

T3

co
n

v

T4

T5

reshape &
transpose

correction

T5

T2

(b) A partially equivalent transformation.

correctiondilated conv

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

W1

T2

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

reshape &
transpose

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

T3

co
n

v

T4

T5

reshape &
transpose

T5

T2

(c) Correcting results.

Figure 3: An example mutant that transforms a dilated convolution to a standard convolution. The red-shaded boxes in (b)
highlight non-equivalent elements between the two programs, which are fixed by the correction kernel in (c).

where R (~v) is the summation interval of~v, which is iterated
over when computing P (I)[~v], and ~u = L j(~v,~r) is a linear
mapping from (~v,~r) to a position ~u of the j-th input tensor
I j. For example, a convolution with a kernel size of 3×3 and
zero padding is defined as

conv(I1, I2)[c,h,w] =
D−1

∑
d=0

min(H−1−h,1)

∑
x=max(−1,−h)

min(W−1−w,1)

∑
y=max(−1,−w)

I1[d,h+ x,w+ y]× I2[d,c,x,y]

(1)

where D, H, and W refer to the number of channels, height,
and width of the input image I1, respectively. The numbers
below and above the summation symbols respectively denote
the lower and upper bounds of the summation interval. The
two linear mappings can be represented as L1(~v,~r) = (d,h+
x,w+ y) and L2(~v,~r) = (d,c,x,y), where ~v = (c,h,w) and
~r = (d,x,y).

Different positions of an output tensor may have different
summation intervals. For the convolution operator defined
above, computing the top-left output position (i.e., h = 0,
w = 0) only involves a 2×2 kernel (i.e., 0≤ x≤ 1, 0≤ y≤ 1)
since that position does not have a left or top neighbor, as
shown in Figure 4. We group the output positions with an
identical summation internal into a box. Formally, a box is a
region of an output tensor whose elements all have the same
summation internal. This convolution has nine boxes overall,
which are depicted in Figure 4.

All output positions in the same box have an identical sum-
mation internal and share similar mathematical properties,
which are leveraged by PET when examining program equiv-
alence. Instead of testing the equivalence of two MLTPs on
all individual positions, PET only needs to verify their equiva-
lence on m+1 specific positions in each box, where m is the
number of dimensions of the output tensor.

Theorem 1 For two MLTPs P1 and P2 with an m-dimension
output tensor, let~e1, . . . ,~em be a set of m-dimension base vec-

conv

0 ≤ x ≤ 1
-1 ≤ y ≤ 0

-1 ≤ x ≤ 1
-1 ≤ y ≤ 0

-1 ≤ x ≤ 0
-1 ≤ y ≤ 0

0 ≤ x ≤ 1
0 ≤ y ≤ 1

-1 ≤ x ≤ 1
0 ≤ y ≤ 1

-1 ≤ x ≤ 0
0 ≤ y ≤ 1

0 ≤ x ≤ 1
-1 ≤ y ≤ 1

-1 ≤ x ≤ 1
-1 ≤ y ≤ 1

-1 ≤ x ≤ 0
-1 ≤ y ≤ 1

Input
Weight

x = -1

x = 0

x = -1

y
=

-1

y
=

0

y
=

1

Figure 4: The nine boxes of a convolution with a 3×3 kernel
and zero padding, as well as their summation intervals. A
convolution has three summation dimensions (i.e., d, x, and y
in Equation (1)). The channel dimension (i.e., d) has the same
internal in all boxes and is thus omitted.

tors. That is,~ei = (0, . . . ,0,1,0, . . . ,0) is an m-tuple with all
coordinates equal to 0 except the i-th.

Let B be a box for P1 and P2, and let~v0 be an arbitrary
position in B . Define~v j =~v0 +~e j,1 ≤ j ≤ m. If ∀I,0 ≤ i ≤
m, P1(I)[~vi] = P2(I)[~vi], then ∀I,~v ∈ B, P1(I)[~v] = P2(I)[~v].

Proof sketch. The proof uses a lemma whereby if P1 and P2
are equivalent for positions~v0 and~v0+~ei, then the equivalence
holds for ~v0 + k ·~ei, where k is an integer. We prove this
lemma by comparing the coefficient matrices of P1 and P2
with respect to the input variables. Using this lemma, we show
that P1 and P2 are equivalent for the entire box B , since any
~v ∈ B can be decomposed to a linear combination of~v0 and
~e0, . . . ,~em. �

Theorem 1 shows that, if P1 and P2 are equivalent for m+1
specific positions in a box, identified by ~v0, ...,~vm, then the
equivalence holds for all other positions in the same box.
This theorem significantly reduces the verification workload:

42 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: Reducing verification workload in PET.

Methods Output positions Input combinations

Original all all
+ Theorem 1 a few positions all
+ Theorem 2 a few positions a few random inputs

instead of examining all positions of an output tensor, PET
only needs to verify m+1 specific positions in each box.

The verification of a single position remains challenging,
nevertheless, as each MLTP generally involves a large number
of input variables. Proving the equivalence of two MLTPs
requires examining all possible combinations of value as-
signments to these input variables. We further address this
challenge using the following theorem.

Theorem 2 For two MLTPs P1 and P2 with n input tensors,
let~v be a position where P1 and P2 are not equivalent, i.e.,
∃I, P1(I)[~v] 6= P2(I)[~v]. Let I′ be a randomly generated input
uniformly sampled from a finite field F. The probability that
P1(I′)[~v] = P2(I′)[~v] is at most n

p , where p is the number of
possible values in F.

Proof sketch. This is a corollary of the Schwartz–Zippel
Lemma [28, 35]. �

Theorem 2 shows that if two MLTPs with n inputs are
not equivalent on a specific position ~v, then the probability
that they produce an identical result on this position with a
random input sampled from a finite field F is low (i.e., at
most n

p , where p is the number of possible values in F). This
theorem shows the sufficiency and effectiveness of random
testing for examining the equivalence of two MLTPs.

Theorem 2 relies on the fact that F is a finite field, from
which the random inputs are sampled, but MLTPs operate on
the infinite field of real numbers. To apply Theorem 2, we
choose F to be a field of integers modulo p, where p is a large
prime number (p = 231−1 in our evaluation). The arithmetic
operations in random testing are performed on integers and
calculated modulo the prime number p. Working with a fi-
nite field provides another desirable property that applying
arithmetic operators does not involve integer overflow.

By combining Theorems 1 and 2, PET reduces the original
verification task of examining all output positions with respect
to all input value combinations to a much more lightweight
task that only requires testing a few representative positions
using several randomly generated inputs, as shown in Table 2.

5.2 Mutation Correction Algorithm
The PET mutation correction algorithm exploits the theorems
in §5.1 to calculate which regions of the output tensors in a
mutant are not equivalent to the input MLTP and, therefore,
need additional correction. In particular, it suffices to examine
the equivalence for each pair of overlapped boxes from the two

conv

T0

T1

(a) Input program P0.

co
nv

R/T

R/T

T0

T2

T3

T1

(b) A potential mutant P1.

Figure 5: Box propagation for the example in Figure 1. The
red arrows indicate the split points of each tensor dimension.

MLTPs, using a small number of random tests. The overall
algorithm works in the following three steps.

Step 1: Box propagation. First, we calculate the boxes of
a given MLTP through box propagation. The idea of box
propagation is similar to forward and backward propagation in
deep learning: we compute the boxes of an operator’s output
tensors based on the boxes of its inputs, and the computation is
conducted following the operator dependencies in a program.
We maintain a set of split points for each dimension of a tensor
to identify the boundaries of its boxes. For a multi-linear
operator, we infer the split points of its output tensors based
on the split points of its input tensors and the operator type
and hyper-parameters. Figure 5 shows the box propagation
procedure for the mutation example in Figure 1.

Step 2: Random testing for each box pair. After obtaining
all boxes of an input MLTP P1 and its mutant P2, PET lever-
ages the theorems in §5.1 to examine the intersected regions
of each pair of boxes from P1 and P2. If two boxes do not have
any overlapped region, they can be skipped. For each box in-
tersection, PET examines the equivalence of the two programs
on m+1 positions identified by Theorem 1, where m is the
number of output tensor dimensions (e.g., m = 4 in Figure 5,
since the output of a convolution has four dimensions).

For each of these m+1 positions, PET runs a set of random
tests by assigning input tensors with values uniformly sam-
pled from a finite field F containing all integers between 0 and
p−1, where p = 231−1 is a prime number. As a result, the
probability that two non-equivalent MLTPs produce identical
outputs on a random input is at most n

p , where n is the number
of inputs to the MLTPs. Finally, two non-equivalent MLTPs
pass all tests with a probability lower than (n

p)
t , where t is the

number of test cases and a hyper-parameter in PET that serves
as a tradeoff between the speed of the corrector and the error
probability that non-equivalent MLTPs pass all random tests.

Our approach introduces an extremely small and control-
lable probability of error that we have to tolerate. That is,
non-equivalent programs may pass random testing with prob-
ability (n

p)
t . We argue that this is an example of how random

testing can enable a tradeoff between the cost of program ver-
ification and a small probability of unsoundness for verifying

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 43

Correction

T0 R/T-0 Conv-1 R/T-1T1 T2

W1

T3

Conv-2

T0’

T4

T3’

T0 Conv-0 T4

Mutation with correction

Fusing correction

T0 R/T-3 Conv-1-2 R/T-4T1’ T2’ T4

(a)

(b)

(c)

Figure 6: Fusing correction kernels with DNN kernels.

tensor program transformations.
To further reduce the verification workload, PET includes a

caching optimization: the tests for all boxes share the same set
of random inputs, and PET caches and reuses all intermediate
results to avoid redundant computations.

Step 3: Correction kernel generation. For each box failing
the random tests, PET generates correction kernels to fix its
outputs and restore the mathematical equivalence between the
original MLTP and its mutant. To fix the outputs, the correc-
tion kernel performs the same set of operations as the original
MLTP but only on those boxes where the two input programs
are not equivalent (shown as the red shaded boxes in Figure 1).
These boxes are regular cubes in the multi-dimensional space
and can be viewed as sub-tensors of the original ones but with
much smaller sizes. Therefore, PET directly leverages existing
DNN libraries [8, 10] or kernel generation techniques [6, 34]
to generate correction kernels. To reduce the correction over-
head, PET opportunistically fuses the correction kernels with
existing tensor operators (§5.3).

5.3 Fusing Correction Kernels

Correction kernels may introduce non-trivial overheads due
to the cost of launching the correction kernels and their lim-
ited degrees of parallelism. For example, some correction
kernels may have similar execution time compared to the cor-
responding full-size tensor operators. This may eliminate the
performance gains from applying partially equivalent transfor-
mations. To reduce the correction overhead, PET opportunis-
tically fuses correction kernels with other tensor operators.

For example, Figure 6(b) shows the tensor program af-
ter applying the partially equivalent transformation in Fig-
ure 1. Conv-2 is the correction kernel for fixing the output
of Conv-1. Since the two convolution operators share the
same weights (i.e., W1), PET fuses them into a single convolu-
tion, shown as Conv-1-2 in Figure 6(c). This fusion requires
concatenating T1 and T ′0 into a single tensor and splitting the
output of Conv-1-2 into T2 and T ′3 . The concatenation and
split only involve direct memory copies and can be fused with
the reshape and transpose operators.

6 Program Optimizer

In this section, we describe the program optimizer in PET,
which explores a large search space of program optimizations,
combining fully and partially equivalent transformations, and
quickly discovers highly optimized programs. The program
optimizer first splits an input program into multiple subpro-
grams with smaller sizes to allow efficient mutation genera-
tion (§6.1). Second, to optimize each individual subprogram,
PET searches for the best mutants in a rich candidate space
by varying both the subsets of operators to mutate together
and the number of iterative rounds of mutation (§6.2). Finally,
when stitching the optimized subprograms back together, PET
applies additional post-optimizations across the boundaries
of the subprograms, including redundancy elimination and
operator fusion (§6.3). The overall program optimization al-
gorithm is summarized in Algorithm 2.

Algorithm 2 Program optimization algorithm.
1: Input: An input tensor program P0
2: Output: An optimized tensor program Popt
3:
4: Split P0 into a list of subprograms
5: Initialize a heap H to record the top-K programs
6: H .insert(P0)
7: // Greedily mutate each subprogram
8: for each subprogram S ∈ P0 do
9: mutants = GETMUTANTS(S)

10: Initialize a new heap Hnew
11: for P ∈H do
12: for M ∈ mutants do
13: Pnew = replace S with M in P
14: Apply post-optimizations on Pnew
15: Hnew.insert(Pnew)

16: H = Hnew

17: Popt = the program with the best performance in H
18: return Popt
19:
20: function GETMUTANTS(S0)
21: O = the set of mutant operators for S0
22: Q = {S0}, mutants = {S0}
23: for r rounds do
24: Qnew = {}
25: for S ∈ Q do
26: for each subset of operators S ′ ∈ S do
27: for M ′ ∈ MUTATIONGENERATOR(O, S ′) do
28: M = replace S ′ with M ′ in S
29: Add M to Qnew and mutants
30: Q = Qnew

31: return mutants

6.1 Program Splitting
The complexity of the mutation generation grows rapidly with
the input program size, as explained in §4. It is nearly im-

44 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

possible to directly mutate a large tensor program with many
hundreds of operators. Instead, PET splits an input program
into multiple disjoint subprograms with smaller sizes.

It is crucial to properly select the split points for an in-
put program, to effectively reduce the mutation complexity
while still preserving most program optimization opportuni-
ties. More split points lead to smaller subprograms with fewer
mutant candidates to be explored. As an extreme case, by
constraining each subprogram to have only a small constant
number of operators, the overall complexity scales linearly
with the program size, rather than the naive exponential trend.
However, an overly aggressive split may result in locally opti-
mized mutants that are limited within subprograms, missing
optimization opportunities across subprogram boundaries.

We use non-linear operators in tensor programs as the split
points. First, non-linear operators such as the activation layers
in DNNs are widely used in tensor programs. Typically, each
one or a few linear operators are followed by a non-linear
activation (e.g., ReLU or sigmoid). This effectively limits the
split subprograms to the small sizes we expect. Second, as
§5 explains, PET’s mutation only applies to MLTPs; any non-
linear operators must be excluded from the mutation. This
makes splitting at the points of non-linear operators a natural
choice for the partially equivalent mutation in PET. Third, our
design is also motivated by an observation that most existing
tensor program transformations [2, 6, 15] also do not include
non-linear operators in their substitution patterns (except for
fusion, which we handle in §6.3).

PET further adjusts the subprogram sizes after splitting
an input program at the non-linear operators. For multiple
individual subprograms without any data dependency, PET
considers the possibility of combining them into a single
subprogram using grouped or batched operators. Examples
include fusing the standard convolutions on different branches
of an Inception network [31] into a grouped convolution, as
shown in Figure 10. On the other hand, if a subprogram is still
too large, PET will only query the mutation generator with a
subset of operators each time (see §6.2).

6.2 Subprogram Optimization

After splitting an input program into multiple individual sub-
programs, PET mutates each subprogram by querying the
mutation generator in §4.1 and keeps the top-K candidates
with the best estimated performance in a heap structure H , as
shown from Lines 7 to 16 in Algorithm 2. A larger K allows
PET to tolerate intermediate performance decreases during
the search but requires more memory to save all K candidates
and involves higher computation cost. At each step, each of
the obtained mutants replaces its corresponding subprogram
in each of the current candidates (i.e., P in Algorithm 2) to
generate a new candidate (i.e., Pnew), which is then applied a
series of post-optimizations (see §6.3).

PET estimates the performance of each new candidate Pnew

SG
-2

SG
-1

i1 w1

R/T-A R/T-B

Conv-C

R/T-D

R/T-E

ReLU-F

R/T-G

R/T-H

w2

R/T-I

o1

Conv-J

i1 w1

R/T-A R/T-B

Conv-C

ReLU-F

R/T-D

R/T-E

R/T-G

R/T-H

w2

R/T-I

o1

Conv-J

i1

w3R/T-A

Conv-ReLU-CF

R/T-DH w4

o1

Conv-J

Operator
reordering Post-optimization

Inverses
elimination Preprocessing

Kernel
fusion

1
2

3

(a) (b) (c)

Figure 7: Post-optimizations applied when stitching two sub-
programs SG-1 and SG-2. R/T refers to a reshape followed
by a transpose. Conv and ReLU denote a convolution and a
ReLU operator, respectively.

using a cost model adapted from TASO [15]. The cost model
measures the execution time of each tensor operator once
for each configuration (e.g., different strides and padding of a
convolution), and estimates the performance of a new program
candidate Pnew by summing up the measured execution time
of its operators. The top-K program candidates with the best
performance thus far are kept in H .

To explore a sufficiently large space of possible mutants
for each subprogram within reasonable time and space cost,
we manage the mutation process with several key features.
First, when the number of operators in a subprogram exceeds
a threshold d (our evaluation uses d = 4), PET breaks the
subprogram into smaller subsets of operators by enumerating
all possible combinations with up to d operators, and only
queries the mutation generator on the subset, while keeping
the remaining operators unchanged (Algorithm 2 Line 26).
Second, we allow iterative mutation on a subprogram for up to
r rounds (Algorithm 2 Line 23), which significantly enlarges
the search space of possible mutants and allows PET to dis-
cover more optimized mutants. All generated mutants in all
rounds are returned to the optimizer as potential candidates.

It is worth noting that PET’s optimizer is compatible with
and can incorporate existing fully equivalent transforma-
tions [2, 15] besides PET’s mutations. Doing so merely re-
quires enhancing the mutation generator to explore and return
fully equivalent transformations as well, which are directly
applicable to the input subprograms in the same way as the
mutations. By combining fully and partially equivalent trans-
formations, PET explores a significantly larger search space
of program optimizations and discovers highly optimized
programs that existing optimizers miss.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 45

6.3 Post-Optimizations

Finally, the optimized mutants for all subprograms need to be
stitched together. In addition to connecting their input and out-
put tensors, we also perform several post-optimizations across
the subprogram boundaries to further improve the overall per-
formance. We observe that the mutation generator in PET
introduces a large number of reshape and transpose (R/T)
operators, especially at the beginning and the end of each sub-
program. There are opportunities to fuse these R/T operators
across subprograms and further fuse the non-linear operators
that are excluded from the above subprogram optimizations.

Figure 7 shows an example with two optimized subpro-
grams. To optimize the boundaries between subprograms, PET
first groups together all R/T operators between subprograms
by reordering the R/T operators with element-wise non-linear
activations (e.g., ReLU and sigmoid), as shown in Figure 7(b).
This reordering is functionally correct, since both reshape
and transpose are commutative with element-wise operators.
The reordering also allows PET to fuse the non-linear activa-
tions with other linear operators, such as fusing a Conv and a
subsequent ReLU into a Conv-ReLU, as shown in Figure 7(c).
We then apply the following three post-optimizations.

Inverses elimination. We eliminate any pairs of R/T oper-
ators that can cancel out each other and therefore are equiva-
lent to a no-op. We call each such pair an inverse group and
directly remove them as part of the post-optimization. An ex-
ample of an inverse group is R/T-E and R/T-G in Figure 7(b).

Operator fusion. As shown in Figure 7(c), PET fuses the
remaining consecutive R/T operators into a single operator
(e.g., R/T-DH) to reduce the kernel launch cost. The non-linear
activations in a tensor program are also fused with an R/T or
with other linear operators. Note that operator fusion is the
most commonly used, if not the only, program optimization
for non-linear operators. PET is able to recover most of the
efficiency that was lost when splitting the tensor program.

Preprocessing. We preprocess any operator if all its input
tensors are statically known. For example, in Figure 7(b), both
R/T-B and R/T-I can be preprocessed on the convolution
weight tensors w1 and w2.

7 Implementation

PET is implemented as an end-to-end tensor program opti-
mization framework, with about 13,000 lines of C++ code
and 1,000 lines of Python code. This section describes our
implementation of the PET mutation generator and corrector.

Mutation operators. Table 1 lists the tensor operators
included in the current implementation of PET. We use
cuDNN [8] and cuBLAS [10] as our backend operator li-
braries. PET can also be extended to include other libraries,
such as TVM [6] and Ansor [34]. In our evaluation, we demon-
strate this extensibility on TVM and Ansor, and show that
they can directly benefit from PET’s partially equivalent opti-

mizations and automated corrections.
Reshape and transpose are two frequently used operators

in partially equivalent transformations. Our implementation
includes a series of optimizations on them, including eliminat-
ing inverse groups of R/T operators and fusing consecutive
R/T operators, as described in §6.3. Since both reshape and
transpose are multi-linear operators, PET directly uses the
random testing method introduced in §5 to examine whether
a sequence of R/T operators forms an inverse group and there-
fore can be eliminated.

Correction kernels. §5.2 describes a generic approach to
generate correction kernels by directly running the original
program on the positions with incorrect results. To reduce the
correction overhead, PET fuses the correction kernels with
other tensor operators, as described in §5.3. The correction
kernel fusion introduces additional memory copies, which are
also fused with the R/T operators during post-optimizations.

8 Evaluation

8.1 Experimental Setup

Platforms. We use a server equipped with two-socket, 28-
core Intel Xeon E5-2680 v4 processors (hyper-thread en-
abled), 256 GB of DRAM, and one NVIDIA Tesla V100
GPU. All experiments use CUDA 10.2 and cuDNN 7.6.5
except for those with TVM and Ansor, which directly use the
best kernels generated by these backends.

PET preserves an end-to-end equivalence between the orig-
inal and optimized programs, same as all the baselines. PET
takes ONNX models as input. TensorRT and TASO directly
support the ONNX format. For TensorFlow and TensorFlow-
XLA, we use the onnx-tensorflow tool [25] for format conver-
sion.

Workloads. We use five DNN architectures. Resnet-18 [14]
is a widely used convolutional network for image classifica-
tion. CSRNet [20] is a dilated convolutional network used for
semantic segmentation. Its sampling rate can be arbitrarily
adjusted to enlarge the receptive field for higher accuracy.
Inception-v3 [31] is an improved version of GoogLeNet [30]
with carefully designed Inception modules to improve accu-
racy and computational efficiency. BERT [12] is a language
representation architecture that obtains state-of-the-art accu-
racy on a wide range of natural language tasks. Resnet3D-
18 [13] is a 3D convolutional network for video processing.

Unless otherwise stated, in all experiments, we use CUDA
events to measure the elapsed time from launching the first
CUDA kernel in a tensor program to receiving the completion
notification of the last kernel. We set the default mutation
generation depth to 4 (i.e., depth = 4 in Algorithm 1) and the
search rounds to 4 (i.e., r = 4 in Algorithm 2). We further
evaluate the scalability of the mutation generator and the
program optimizer in §8.5.

46 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A B C D E
0
1
2
3
4
5

1.04x

Resnet-18

A B C D E
0

1

2

3

2.21x

CSRNet

A B C D E
0

5

10

15

20

1.24x

Inception-v3

A B C D E
0

2.5
5

7.5
10

12.5

1.40x

BERT

A B C D E
0

5

10

15

20

1.00x

Resnet3D-18

A B C D E
0

5

10

15

1.21x

A B C D E
0

2

4

6

8

2.51x

A B C D E
0

20

40

60

1.44x

A B C D E
0

50

100

150

1.19x

A B C D E
0

50

100

150

200

1.28x

(A)TensorFlow (B)TensorFlow-XLA (C)TensorRT (D)TASO (E)PET

Ex
ec

. t
im

e
(m

s)

batch_size=1

Ex
ec

. t
im

e
(m

s)

batch_size=16

Figure 8: End-to-end performance comparison between PET and existing frameworks. For each DNN, the numbers above the
PET bars show the speedups over the best baseline. TASO does not support the 3D convolution operators in Resnet3D-18.

8.2 End-to-End Evaluation
We first compare the end-to-end inference performance be-
tween PET and existing tensor program optimizers, including
TensorFlow [3], TensorFlow XLA [1], TensorRT [32], and
TASO [15]. Figure 8 shows the results under batch sizes of
1 and 16. To eliminate the impact of using different oper-
ator libraries, all optimizers use the same cuDNN [8] and
cuBLAS [10] libraries as the backend. Therefore, the per-
formance differences only come from different optimized
tensor programs produced by PET and the baselines. §8.4 fur-
ther evaluates PET with existing kernel generation techniques,
such as TVM [6] and Ansor [34].

Among the five DNN architectures, Resnet-18 and
Resnet3D-18 are commonly used and heavily optimized in ex-
isting DNN frameworks. However, PET is still able to improve
their performance by up to 1.21× and 1.28×, respectively, by
discovering new partially equivalent transformations not con-
sidered by existing optimizers. For Resnet-18, CSRNet, and
Inception-v3, PET achieves higher speedups with a batch size
of 16. This is because a larger batch size offers more mutation
opportunities across different tensor dimensions for PET to
exploit. Overall, PET outperforms existing DNN frameworks
by up to 2.5×.

To further evaluate the partially equivalent transformations
discovered by PET, we manually add them and correspond-
ing correction kernels as additional graph substitutions into
TASO, and measure by how much these new transformations
improve TASO’s performance. As shown in Figure 9, the
enhanced version of TASO further improves the inference
performance of Inception-v3 and BERT by 1.12× and 1.31×,
respectively. This demonstrates that partially equivalent trans-
formations indeed enlarge the design space of graph trans-
formations, and PET unleashes these benefits automatically.
Some non-trivial partially equivalent transformations are not
leveraged by TASO, due to substantial correction overhead,
while PET is able to avoid this overhead through correction
kernel fusion (§5.3) and post-optimization (§6.3).

A B C
0x

0.5x

1x

1.5x
Resnet-18

A B C
0x

1x

2x

3x
CSRNet

A B C
0x

0.5x

1x

1.5x

2x
Inception-v3

A B C
0x

0.5x

1x

1.5x

2x
BERT

(A)TASO (B)TASO + PET's transformations and corrections (C)PET

Re
la

tiv
e

sp
ee

du
p

Figure 9: Performance benefits after adding PET’s partially
equivalent transformations into TASO.

Table 3: Operator benchmark list.
Operator Input Weight #Op

conv [1, 48, 38, 38] [64, 48, 5, 5] 1

dilatedconv [1, 512, 14, 14] [256, 512, 3, 3] 1

groupconv
[1, 768, 18, 18] [192,768, 1, 1] 2
[1, 768, 18, 18] [160,768, 1, 1] 2

batchmatmul [512, 768] [768, 768] 3

8.3 Case Studies
To understand how partially equivalent transformations dis-
covered by PET optimize DNN computation, we study four
optimization categories in detail.

8.3.1 Tensor-Level Optimization

PET discovers many partially equivalent transformations that
improve DNN computation by optimizing the shapes or lin-
earization of tensors. We evaluate a convolution operator in
Inception-v3, whose configuration is depicted in Table 3 conv.
PET transforms the input tensor shape from [1, 48, 38, 38]
to [16, 48, 10, 10] by splitting both the height and width di-
mensions each into four partitions. IGEMM and FFT are the
most efficient convolution algorithms before and after the
optimization, respectively. Using the transformed input tensor

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 47

Table 4: Case studies on the performance of the conv and
dilatedconv operators in Table 3. IGEMM, FFT, and WINO re-
fer to implicit GEMM, Fast Fourier Transform, and Winograd
convolution algorithms, respectively. For conv, the optimized
program transforms the input tensor shape from [1, 48, 38, 38]
to [16, 48, 10, 10]. For dilatedconv, the optimized program
replaces the dilatedconv with a regular convolution with
the same input and kernel sizes.

Algo Time
(us)

GPU
DRAM

GPU
L2

FLOP

co
nv

Original IGEMM 90 1.51×104 2.80×106 2.26×108

FFT 352 1.06×108 1.15×108 8.75×107

Optimized IGEMM 90 1.52×104 1.46×106 2.46×108

FFT 51 1.09×106 7.44×106 1.26×108

di
la

te
d

co
nv

Original IGEMM 153 1.06×105 2.46×106 1.32×108

WINO N/A N/A N/A N/A

Optimized IGEMM 153 8.54×104 1.80×106 1.32×108

WINO 79 2.23×106 6.36×106 7.20×107

reduces the GPU DRAM and L2 accesses by 100× and 15×,
respectively, and thus reduces the run time by 7× (Table 4).

As another example of tensor-level optimization, for conv
with a stride size larger than 1 (i.e., the output tensor is a
down-sample of the input tensor), PET can reorganize the
linearization of the tensors and reduce the stride size to 1,
which improves the computation locality.

8.3.2 Operator-Level Optimization

For operators with less efficient implementations on specific
hardware backends, PET can opportunistically replace them
with semantically similar ones with more optimized imple-
mentations. We study the performance of a dilated convolu-
tion in CSRNet [20], whose configuration is shown in Table 3
dilatedconv. PET replaces it with a regular convolution
operator (as shown in Figure 3) to enable more efficient al-
gorithms on GPUs such as Winograd [17]. This reduces the
execution time by 1.94× (Table 4).

Other examples of operator-level optimizations include
replacing a batch matrix multiplication with a standard matrix
multiplication, a group convolution with a convolution, and
an average pooling with a group convolution or a convolution
if the replacement leads to improved performance, even when
including the correction cost.

8.3.3 Graph-Level Optimization

PET also discovers graph-level optimizations. Figure 10
shows two graph transformations discovered by PET to opti-
mize Inception-v3 [31]. For two parallel conv operators with
different numbers of output channels, Figure 10(a) shows a
non-equivalent transformation that fuses the two conv opera-
tors into a groupconv by padding W2 with zeros, so that the
output of pad has the same shape as W1. The correction splits
and discards the zeros tensor at the end (shown in red).

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

conv conv

O1[n,f,h,w] O2[n,2f,h,w]

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

O1[n,f,h,w] O2[n,2f,h,w]

concat(axis=1) concat(axis=0)

group conv (#g=3)

split(axis=1)

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w] W2[f2,c,r,s]

conv conv

O1[n,f1,h,w] O2[n,f2,h,w]

W2[f2,c,r,s]

O1[n,f1,h,w] O2[n,f2,h,w]

pad

W2[f1,c,h,w]
concat(axis=1)

concat(axis=0)group conv (#g=2)

split (axis=1)

zeros

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w]

(a)

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

conv conv

O1[n,f,h,w] O2[n,2f,h,w]

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

O1[n,f,h,w] O2[n,2f,h,w]

concat(axis=1) concat(axis=0)

group conv (#g=3)

split(axis=1)

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w] W2[f2,c,r,s]

conv conv

O1[n,f1,h,w] O2[n,f2,h,w]

W2[f2,c,r,s]

O1[n,f1,h,w] O2[n,f2,h,w]

pad

W2[f1,c,h,w]
concat(axis=1)

concat(axis=0)group conv (#g=2)

split (axis=1)

zeros

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w]

(b)

Figure 10: Mutants discovered by PET for Inception-v3. axis
denotes the dimension on which to perform concat and
split.

PET also discovers fully equivalent transformations that are
missed by existing frameworks. The mutation corrector can
successfully verify the equivalence for all output elements, in
which case no correction is needed. Figure 10(b) shows a new
equivalent transformation discovered by PET that optimizes
two conv operators by duplicating the input tensors (i.e., I1
and I2) and fusing the two conv operators into a groupconv.
Note that Figure 10 shows two different mutants of the same
input program. PET’s program optimizer can automatically
select a more efficient one based on the performance of these
mutants on specific devices.

8.3.4 Kernel Fusion

We use CSRNet [20] as an example to study the effective-
ness of PET’s kernel fusion optimization. Figure 11(a) and
Figure 11(b) show the original and optimized model archi-
tectures of CSRNet. The numbers in each operator denote
the input tensor shape. To demonstrate the correction ker-
nel fusion and post-optimization in PET, Figure 11(c) shows
the subprogram of a single dilated convolution before post-
optimization, which contains three correction kernels and six
R/T (i.e., reshape and transpose) operators. These correc-
tion kernels are fused with Conv-4, as described in §5.3. In
addition, the multiple R/T operators between convolutions are
fused into a single one during post-optimization (§6.3).

Fusing correction kernels and R/T operators is critical to
PET’s performance. In an ablation study, disabling kernel
fusion in PET decreases the performance of the final program
by 2.9×, making it even slower than the original one.

8.4 TVM and Ansor
PET improves tensor computations by generating and cor-
recting partially equivalent transformations and is therefore
orthogonal to and can potentially be combined with recent ker-
nel generation techniques, such as TVM [6] and Ansor [34].

We evaluate PET on TVM and Ansor with a set of com-
monly used DNN operators, including conv, dilatedconv,

48 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

T0
DilatedConv-1
[1,512,14,14]

ReLU-1
DilatedConv-2
[1,512,14,14]

ReLU-2
DilatedConv-3
[1,512,14,14]

ReLU-3
DilatedConv-4
[1,512,14,14]

ReLU-4
DilatedConv-5
[1,256,14,14]

ReLU-5
DilatedConv-6
[1,128,14,14]

ReLU-6 T6

(a) CSRNet before optimization.

T0
Fused
R/T-0

Conv-ReLU-1
[2,512,7,15]

Fused
R/T-1

Conv-ReLU-2
[2,512,7,15]

Fused
R/T-2

Conv-ReLU-3
[2,512,7,15]

Fused
R/T-3

Conv-ReLU-4
[2,512,7,15]

Fused
R/T-4

Conv-ReLU-5
[4,256,7,7]

Fused
R/T-5

Conv-ReLU-6
[4,128,7,7]

Fused
R/T-6

T6

(c)

(d)

(b) CSRNet after optimization.

Correction kernels

R/T-A
Conv-4

[2,512,7,14]
R/T-F

DilatedConv-C
[1,512,14,5]

T3 T4R/T-B R/T-E

DilatedConv-B
[1,512,5,14]

R/T-D

Conv-A
[1,512,3,14]

R/T-C TE TF ReLU-3TD

(c) DilatedConv-4’s subprogram after subprogram optimization but before post-optimization.

R/T-D R/T-E R/T-F
TE

[1,256,14,14]
TF

[1,256,14,14]
T4

[1,256,14,14]
R/T-G

TG
[1,256,14,14]

R/T-H
TH

[2,256,7,14]
R/T-I

TI
[4,256,7,7]

TD
[1,256,7,15]

(d) Unfused R/T operators and corresponding tensors’ shape of F R/T-4.

Figure 11: Optimization details in PET for CSRNet.

conv dilatedconv groupconv batchmatmul
0x

1x

2x

3x

4x

5x

6x

Sp
ee

du
p

ov
er

 c
uD

NN
/c

uB
LA

S

cuDNN/cuBLAS
cuDNN/cuBLAS w/ PET

TVM
TVM w/ PET

Ansor
Ansor w/ PET

Figure 12: Performance comparison of PET on the
cuDNN/cuBLAS, TVM, and Ansor backends. The perfor-
mance is normalized to cuDNN/cuBLAS without PET.

groupconv, and batchmatmul, which are obtained from
Resnet-18, CSRNet, Inception-v3, and BERT, respectively.
Their shape configurations are listed in Table 3. To gener-
ate kernels for potential mutants during the search, we allow
TVM and Ansor to run 1024 trials and use the best discovered
kernels to measure the cost of the mutants.

As Figure 12 shows, when combining PET with TVM and
Ansor, PET can improve the performance of the evaluated
operators by up to 1.23× and 1.21×, respectively, compared
to directly generating kernels for these operators. Beyond such
simple combinations, joint optimization of PET and existing
kernel generation techniques would uncover more benefits,
which we leave as future work.

8.5 Ablation and Sensitivity Studies

The key insight of PET is to explore partially equivalent pro-
gram mutants, while state-of-the-art frameworks only capture
fully equivalent transformations [15, 34]. We run several vari-
ants of PET to evaluate the benefits of considering either fully
or partially equivalent program transformations, or both of
them, as PET does. Figure 13 shows the results. When re-
stricting PET to consider only equivalent transformations, it
achieves similar performance gains as previous work such as

Resnet-18 CSRNet Inception-v3 BERT Resnet3D-18
0.0x

0.5x

1.0x

1.5x

2.0x

2.5x
Re

la
tiv

e
sp

ee
du

p

W/o Opt. Equivalent Opt. Non-equivalent Opt. Joint Opt.

Figure 13: Performance comparison of tensor program opti-
mizations using only (fully) equivalent transformations, only
partially equivalent transformations, and both (as in PET).

1 2 3 4 5
depth

0.95x

1.00x

1.05x

1.10x

1.15x

1.20x

1.25x
Resnet-18

1 2 3 4 5
depth

0.8x
1.0x
1.2x
1.4x
1.6x
1.8x
2.0x
2.2x
2.4x

CSRNet
rounds=2 rounds=3 rounds=4

Re
la

tiv
e

sp
ee

du
p

Figure 14: Performance comparison by using PET with differ-
ent mutation depths (§4.1) and rounds (§6.2).

TASO. Partially equivalent transformations, by themselves,
enable noticeable benefits but also miss significant potential.
Finally, PET achieves the highest performance by jointly con-
sidering both fully and partially equivalent transformations.

Finally, PET relies on several heuristic parameters to bal-
ance the search time and the resultant program performance.
The mutation depth in Algorithm 1 limits the maximum num-
ber of operators in a program mutant; the mutation round
in Algorithm 2 specifies the maximum number of iterations
to apply mutations. Larger values of these thresholds allow
larger design spaces of potential mutants but also require

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 49

more time to search. Figure 14 compares the performance of
the optimized programs under different searching depths and
rounds for Resnet-18 and CSRNet. The performance gains
keep increasing with larger rounds values for Resnet-18, due
to the generation of more optimized mutants, while for CSR-
Net, the performance improvement mainly comes from larger
mutation depth. On the other hand, increasing the mutation
depth from two to three improves the performance for both
models significantly, since many mutations PET finds are sub-
programs with three operators. In summary, the key takeaway
is that PET has only moderately high search complexity yet
achieves significant performance gains.

8.6 Searching Time
PET uses a program optimizer to explore the search space of
possible mutants and discover highly optimized candidates.
Typically, it takes under 3 minutes (89 seconds, 88 seconds, 91
seconds, and 165 seconds on Resnet-18, CSRNet, BERT, and
Resnet3D-18, respectively) for PET to find highly optimized
program mutants with a batch size of 1. However, PET spends
about 25 minutes optimizing Inception-v3, due to the multiple
branches in the Inception modules [31]. Although their search
spaces are not directly comparable, PET’s search time is on
par with state-of-the-art DNN optimization frameworks such
as TASO [15] and Ansor [34], and is acceptable because it
is a one-time cost before stable deployment. We leave any
further search optimizations, such as aggressive pruning and
parallelization, to future work.

9 Related work

Graph-level optimizations. TensorFlow [3], TensorRT [32],
TVM [6], and MetaFlow [16] optimize tensor programs by ap-
plying substitutions that are manually designed by domain ex-
perts. TASO [15] generates graph substitutions automatically
from basic operator properties, which significantly enlarges
search space and reduces human effects. The key difference
between PET and these frameworks is that PET can generate
and correct partially equivalent transformations, enabling a
significantly larger space of program optimizations.
Program mutation is a program testing technique designed
to evaluate the quality of existing test cases [11]. By randomly
mutating the input program and running the generated mu-
tants on existing test cases, the technique can quickly estimate
the coverage of these test cases. PET generates mutants for
a different purpose. Instead of testing an input tensor pro-
gram, the mutants generated by PET are used for performance
optimizations on the program.
Code generation. Halide [27] is a programming language
designed for high-performance tensor computing, and several
works are proposed based on its scheduling model [4, 19, 22].
TVM [6,7] uses a similar scheduling language and a learning-
based approach to generate highly optimized code for dif-

ferent hardware backends. Ansor [34] explores larger search
spaces than TVM and finds better optimized kernels. Ten-
sorComprehensions [33] and Tiramisu [5] use polyhedral
compilation models to solve code generation problems in
deep learning. As shown in §8.4, PET’s program-level op-
timizations are orthogonal and can be combined with these
code generation techniques.
Data layout optimization. NeoCPU [21] optimizes CNN
models by changing the data layout and eliminating unnec-
essary layout transformations on CPUs, while Li et al. [18]
explore the memory efficiency for CNNs on GPUs. Chou et
al. [9] introduce a language to describe the different sparse
tensor formats and automatically generate code for convert-
ing data layouts. Many transformations discovered by PET
also involve layout conversions. However, the key differences
between PET and prior work are that PET considers more
complicated layouts and combines tensor layout optimiza-
tions with operator- and graph-level optimizations.
AutoML. Recent work has proposed approaches to search for
accurate neural architectures by iteratively proposing modifi-
cations to the models’ architectures and accepting proposals
with the highest accuracy gain. Examples include automatic
statistician [29] and TPOT [24]. These approaches apply non-
equivalent transformations to a model architecture and rely on
expensive retraining steps to evaluate how each transforma-
tion affects model accuracy. On the contrary, PET leverages
performance optimizations in non-equivalent transformations
and applies automated corrections to preserve an end-to-end
equivalence. As such, PET does not require retraining.

10 Conclusion

We present PET, the first DNN framework that optimizes
tensor programs with partially equivalent transformations
and automated corrections. PET discovers program trans-
formations that improve DNN computations with only par-
tial functional equivalence. Automated corrections are sub-
sequently applied to restore full equivalence with the help
of rigorous theoretical guarantees. The results of our eval-
uation show that PET outperforms existing frameworks by
up to 2.5× by unlocking partially equivalent transformations
that existing frameworks miss. PET is publicly available at
https://github.com/thu-pacman/PET.

Acknowledgments

We would like to thank the anonymous reviewers and
our shepherd, Behnaz Arzani, for their valuable com-
ments and suggestions. This work is partially sup-
ported by National Natural Science Foundation of China
(U20A20226, 62072262) and Beijing Natural Science Foun-
dation (4202031). Jidong Zhai is the corresponding author of
this paper (zhaijidong@tsinghua.edu.cn).

50 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/thu-pacman/PET
mailto:zhaijidong@tsinghua.edu.cn

References

[1] Xla: Optimizing compiler for tensorflow. https://www.
tensorflow.org/xla, 2017.

[2] TensorFlow Graph Transform Tool. https:
//github.com/tensorflow/tensorflow/tree/
master/tensorflow/tools/graph_transforms,
2018.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI, 2016.

[4] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner,
Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
Learning to optimize halide with tree search and ran-
dom programs. ACM Transactions on Graphics (TOG),
38(4):1–12, 2019.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 193–205. IEEE, 2019.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen
Shen, Eddie Q. Yan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018.

[7] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In Advances in Neural Information Processing Systems
31, NeurIPS’18. 2018.

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning.
CoRR, abs/1410.0759, 2014.

[9] Stephen Chou, Fredrik Kjolstad, and Saman Ama-
rasinghe. Automatic generation of efficient sparse
tensor format conversion routines. arXiv preprint
arXiv:2001.02609, 2020.

[10] Dense Linear Algebra on GPUs. https://developer.
nvidia.com/cublas, 2016.

[11] Richard A DeMillo, Edward W Krauser, and Aditya P
Mathur. Compiler-integrated program mutation. In
1991 The Fifteenth Annual International Computer Soft-
ware & Applications Conference, pages 351–352. IEEE
Computer Society, 1991.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[13] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh.
Learning spatio-temporal features with 3d residual net-
works for action recognition. In Proceedings of the
IEEE International Conference on Computer Vision
Workshops, pages 3154–3160, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, 2016.

[15] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–
62, 2019.

[16] Zhihao Jia, James Thomas, Todd Warzawski, Mingyu
Gao, Matei Zaharia, and Alex Aiken. Optimizing dnn
computation with relaxed graph substitutions. In Pro-
ceedings of the 2nd Conference on Systems and Machine
Learning, SysML’19, 2019.

[17] Andrew Lavin and Scott Gray. Fast algorithms for con-
volutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 4013–4021, 2016.

[18] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and
Huiyang Zhou. Optimizing memory efficiency for deep
convolutional neural networks on gpus. In SC’16: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis.
IEEE, 2016.

[19] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo
Durand, and Jonathan Ragan-Kelley. Differentiable pro-
gramming for image processing and deep learning in
halide. ACM Transactions on Graphics (TOG), 37(4):1–
13, 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 51

https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

[20] Yuhong Li, Xiaofan Zhang, and Deming Chen. Csrnet:
Dilated convolutional neural networks for understanding
the highly congested scenes. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1091–1100, 2018.

[21] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma,
and Yida Wang. Optimizing {CNN}model inference on
cpus. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 1025–1040, 2019.

[22] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet,
Jonathan Ragan-Kelley, and Kayvon Fatahalian. Auto-
matically scheduling halide image processing pipelines.
ACM Transactions on Graphics (TOG), 35(4):1–11,
2016.

[23] Vinod Nair and Geoffrey E. Hinton. Rectified linear
units improve restricted boltzmann machines. In Pro-
ceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, ICML’10,
pages 807–814, USA, 2010. Omnipress.

[24] Randal S Olson and Jason H Moore. Tpot: A tree-
based pipeline optimization tool for automating machine
learning. In Workshop on automatic machine learning,
pages 66–74. PMLR, 2016.

[25] TensorFlow Backend for ONNX. https://github.
com/onnx/onnx-tensorflow.

[26] Tensors and Dynamic neural networks in Python with
strong GPU acceleration. https://pytorch.org,
2017.

[27] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, 2013.

[28] Jacob T Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. Journal of the
ACM (JACM), 27(4):701–717, 1980.

[29] Christian Steinruecken, Emma Smith, David Janz, James
Lloyd, and Zoubin Ghahramani. The automatic statisti-
cian. In Automated Machine Learning, pages 161–173.
Springer, Cham, 2019.

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. CoRR, abs/1409.4842,
2014.

[31] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[32] NVIDIA TensorRT: Programmable inference acceler-
ator. https://developer.nvidia.com/tensorrt,
2017.

[33] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

[34] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: generating
high-performance tensor programs for deep learning.
In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20), pages 863–
879, 2020.

[35] Richard Zippel. Probabilistic algorithms for sparse poly-
nomials. In International symposium on symbolic and
algebraic manipulation, pages 216–226. Springer, 1979.

52 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/onnx/onnx-tensorflow
https://github.com/onnx/onnx-tensorflow
https://pytorch.org
https://developer.nvidia.com/tensorrt

A Artifact Appendix

A.1 Abstract

This artifact appendix helps the readers reproduce
the main evaluation results of the OSDI’ 21 paper:
Pet: Optimizing Tensor Programs with Partially
Equivalent Transformations and Automated Correc-
tions.

A.2 Pet Usage

Pet provides C++ API to build the input tensor pro-
gram, and also supports importing input tensor pro-
gram from ONNX1 model. For each input tensor pro-
gram, Pet generates a mathematically equivalent ex-
ecutable that includes the performance optimizations
described in this paper. Pet uses cuDNN/cuBLAS
as backend by default, but users can also export the
mutation subprograms with their corresponding in-
put/output tensor shapes to use different backends
like TVM and Ansor.

A.3 Scope

The artifact can be used for evaluating and repro-
ducing the main results of the paper, including the
end-to-end evaluation, the operator-level evaluation,
the performance comparison across different opti-
mization policies and heuristics parameters, and the
searching time.

A.4 Contents

The artifact evaluation includes the following exper-
iments:
E1: An end-to-end performance comparison between
Pet and other frameworks. (Figure 8)
E2: An operator-level performance comparison
on different backends, including cuDNN/cuBLAS,
TVM, and Ansor. (Figure 12)
E3: A performance comparison across different op-
timization policies, including fully-equivalent trans-
formations, partially-equivalent transformations, and
joint optimization using both. (Figure 13)

1https://onnx.ai/

E4: A performance comparison using different
heuristics. (Figure 14)
E5: Searching time. (Section 8.6)

A.5 Hosting

The source code of this artifact can be found
on GitHub: https://github.com/whjthu/

pet-osdi21-ae, master branch, with commit
ID: 9e07cb1.

A.6 Requirements

Hardware dependencies

This artifact depends on an NVIDIA V100 GPU.

Software dependencies

This artifact depends on the following software li-
braries:

• Pet uses cuDNN and cuBLAS libraries as back-
end. Our evaluation uses CUDA 10.2 and
cuDNN 7.6.5.

• TensorFlow, TensorRT, TASO, TVM and An-
sor are used as baseline DNN frameworks in E1
and E2. Our evaluation on these baseline uses
TensorFlow 1.15, TensorRT 7.0.0.11, TASO with
commit ID f11782c (we add some minor fixes for
TASO to support the tested models), and TVM
with commit ID 3950639.

A.7 Installation

A.7.1 Install Pet from source

• Clone code from git

• Install PET

– mkdir build; cd build; cmake ..
– make -j

• Set the environment for evaluations

– export PET HOME=path to pet home

A.7.2 Install other frameworks

Please refer to the artifact evaluation instruction
(README.pdf in the git repo https://github.

com/whjthu/pet-osdi21-ae) or the installation in-
structions provided by the frameworks.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 53

https://onnx.ai/
https://github.com/whjthu/pet-osdi21-ae
https://github.com/whjthu/pet-osdi21-ae
https://github.com/whjthu/pet-osdi21-ae
https://github.com/whjthu/pet-osdi21-ae

A.8 Experiments workflow

The following experiments are included in this arti-
fact. All DNN benchmarks use synthetic input data
in GPU device memory to remove the side effects
of data transfers between CPU and GPU. The de-
tailed running instruction can be found in the artifact
evaluation instruction (README.pdf in the git repo
https://github.com/whjthu/pet-osdi21-ae).

A.8.1 End-to-end performance (E1)

This experiment reproduces Figure 8 in the paper.
Prerequisite: generate ONNX models

• cd $PET HOME/models-ae

• ./generate onnx.sh

TensorFlow & TensorFlow XLA. The Tensor-

Flow & TensorFlow XLA results of the 4 models are
available in the tensorflow ae folder. The follow-
ing command lines measure the inference latency of
TensorFlow and TensorFlow XLA, respectively:

• cd $PET HOME/tf-ae

• ./run.sh

TensorRT. The TensoRT results of the 4 models are

available in the tensorrt ae folder. The following
command lines measure the inference latency of Ten-
sorRT:

• Load TensorRT environment (add library path
to LD LIBRARY PATH)

• cd $PET HOME/trt-ae

• ./run.sh

TASO. The TASO results of the 4 models are avail-

able in the taso ae folder. The following command
lines measure the inference latency of TASO:

• Load TASO environment

• cd $PET HOME/taso-ae

• ./run e2e.sh

PET. The Pet results of the 4 models are available

in the pet ae folder. The following command lines
measure the inference latency of Pet:

• cd $PET HOME/pet-ae

• ./run e2e.sh

A.8.2 Operator-level performance (E2)

This experiment reproduces Figure 12 in the paper.
The scripts are available in the operator ae folder.
The experiments of TVM and Ansor will take a very
long time to search different mutation kernels.
cuDNN/cuBLAS. The following command lines
measure cuDNN/cuBLAS results for the 4 operator-
level benchmarks:

• cd operator ae/cudnn

• ./run.sh

TVM & Ansor. The scripts in
operator ae/autotvm and operator ae/ansor

search the kernels for the 4 operator-level bench-
marks using TVM and Ansor, respectively.

A.8.3 Different optimization policy (E3)

This experiment reproduces Figure 13 in the paper.
The scripts are available in the pet-ae folder. The
following command lines measure the results:

• cd $PET HOME/pet-ae

• ./run policy.sh

A.8.4 Different heuristic parameters (E4)

This experiment reproduces Figure 14 in the paper.
The scripts are available in the pet-ae folder. The
following command lines measure the results:

• cd $PET HOME/pet-ae

• ./run param.sh

A.8.5 Searching time (E5)

This experiment reproduces Section 8.6 in the pa-
per. The scripts are available in the pet-ae folder.
The same commands for Pet in E1 print the search-
ing time at the same time.

• cd $PET HOME/pet-ae

• ./run e2e.sh

Note that our evaluation platform for AE has differ-
ent CPUs from the platform we used for the paper so
that the searching time could be different. Neverthe-
less, they should be within the same scale.

54 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/whjthu/pet-osdi21-ae

	Approximate_Graph_Transfer_OSDI_2021 (11)
	Introduction
	Background and Motivation
	Design Overview
	Mutation Generator
	Mutation Generation Algorithm
	Example Mutant Categories

	Mutation Corrector
	Theoretical Foundations
	Mutation Correction Algorithm
	Fusing Correction Kernels

	Program Optimizer
	Program Splitting
	Subprogram Optimization
	Post-Optimizations

	Implementation
	Evaluation
	Experimental Setup
	End-to-End Evaluation
	[C1]Case Studies
	Tensor-Level Optimization
	Operator-Level Optimization
	Graph-Level Optimization
	Kernel Fusion

	TVM and Ansor
	Ablation and Sensitivity Studies
	Searching Time

	Related work
	Conclusion

	Approximate_Graph_Transfer_OSDI_2021 (4)
	Artifact Appendix

