
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

Optimizing Storage Performance
with Calibrated Interrupts

Amy Tai, VMware Research; Igor Smolyar, Technion — Israel Institute of Technology;
Michael Wei, VMware Research; Dan Tsafrir, Technion — Israel Institute

of Technology and VMware Research
https://www.usenix.org/conference/osdi21/presentation/tai

Optimizing Storage Performance with Calibrated Interrupts

Amy Tai‡∗ Igor Smolyar†∗ Michael Wei‡ Dan Tsafrir†‡

†Technion – Israel Institute of Technology ‡VMware Research

Abstract
After request completion, an I/O device must decide either

to minimize latency by immediately firing an interrupt or to
optimize for throughput by delaying the interrupt, anticipating
that more requests will complete soon and help amortize the
interrupt cost. Devices employ adaptive interrupt coalescing
heuristics that try to balance between these opposing goals.
Unfortunately, because devices lack the semantic information
about which I/O requests are latency-sensitive, these heuris-
tics can sometimes lead to disastrous results.

Instead, we propose addressing the root cause of the heuris-
tics problem by allowing software to explicitly specify to the
device if submitted requests are latency-sensitive. The de-
vice then “calibrates” its interrupts to completions of latency-
sensitive requests. We focus on NVMe storage devices and
show that it is natural to express these semantics in the kernel
and the application and only requires a modest two-bit change
to the device interface. Calibrated interrupts increase through-
put by up to 35%, reduce CPU consumption by as much as
30%, and achieve up to 37% lower latency when interrupts
are coalesced.

1 Introduction
Interrupts are a basic communication pattern between the
operating system and devices. While interrupts enable con-
currency and efficient completion delivery, the costs of inter-
rupts and the context switches they produce are well docu-
mented in the literature [7, 30, 66, 73]. In storage, these costs
have gained attention as new interconnects such as NVM
ExpressTM (NVMe) enable applications to not only submit
millions of requests per second, but up to 65,535 concurrent
requests [18, 21, 22, 25, 75]. With so many concurrent re-
quests, sending interrupts for every completion could result
in an interrupt storm, grinding the system to a halt [40, 55].
Since CPU is already the bottleneck to driving high IOPS
[37, 38, 41, 42, 43, 46, 69, 76, 81, 82], excessive interrupts
can be fatal to the ability of software to fully utilize existing
and future storage devices.

Typically, interrupt coalescing addresses interrupt storms
by batching requests into a single interrupt. Batching, how-

∗Denotes co-first authors with equal contribution.

ever, creates a trade-off between request latency and the inter-
rupt rate. For the workloads we inspected, CPU utilization in-
creases by as much as 55% without coalescing (Figure 12(d)),
while under even the minimum amount of coalescing, request
latency increases by as much as 10× for small requests, due
to large timeouts. Interrupt coalescing is disabled by default
in Linux, and real deployments use alternatives (§2).

This paper addresses the challenge of dealing with expo-
nentially increasing interrupt rates without sacrificing latency.
We initially implemented adaptive coalescing for NVMe, a dy-
namic, device-side-only approach that tries to adjust batching
based on the workload, but find that it still adds unneces-
sary latency to requests (§3.2). This led to our core insight
that device-side heuristics, such as our adaptive coalescing
scheme, cannot achieve optimal latency because the device
lacks the semantic context to infer the requester’s intent: is the
request latency-sensitive or part of a series of asynchronous
requests that the requester completes in parallel? Sending this
vital information to the device bridges the semantic gap and
enables the device to interrupt the requester when appropriate.

We call this technique calibrating1interrupts (or simply,
cinterrupts), achieved by adding two bits to requests sent to
the device. With calibrated interrupts, hardware and software
collaborate on interrupt generation and avoid interrupt storms
while still delivering completions in a timely manner (§3).

Because cinterrupts modifies how storage devices generate
interrupts, supporting it requires modifications to the device.
However, these are minimal changes that would only require
a firmware change in most devices. We build an emulator
for cinterrupts in Linux 5.0.8, where requests run on real
NVMe hardware, but hardware interrupts are emulated by
interprocessor interrupts (§4).

Cinterrupts is only as good as the semantics that are sent
to the device. We show that the Linux kernel can naturally
annotate all I/O requests with default calibrations, simply
by inspecting the system call that originated the I/O request
(§4.1). We also modify the kernel to expose a system call
interface that allows applications to override these defaults.

In microbenchmarks, cinterrupts matches the latency of
state-of-the-art interrupt-driven approaches while spending

1To calibrate: to adjust precisely for a particular function [53].

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 129

kernel

device
SQ CQ

blk req

application

SQ CQ. . .

IRQ blk req poll

Figure 1: NVMe requests are submitted through submission queues
(SQ) and placed in completion queues (CQ) when done. Applications
are notified of completions via either interrupts or polling.

30% fewer cycles per request and improves throughput by
as much as 35%. Without application-level modifications,
cinterrupts uses default kernel calibrations to improve the
throughput of RocksDB and KVell [48] on YCSB bench-
marks by as much as 14% over the state-of-the-art and to
reduce latency by up to 28% over our adaptive approach. A
mere 42-line patch to use the modified syscall interface im-
proves the throughput of RocksDB by up to 37% and reduces
tail latency by up to 86% over traditional interrupts (§5.5.1),
showing how application-level semantics can unlock even
greater performance benefits. Alternative techniques favor
specific workloads at the expense of others (§5).

Cinterrupts can, in principle, also be applied to network
controllers (NICs), provided the underlying network protocol
is modified to indicate which packets are latency sensitive.
We demonstrate that despite being more mature than NVMe
drives, NICs suffer from similar problems with respect to
interrupts (§2). We then explain in detail why it is more chal-
lenging to deploy cinterrupts for NICs (§6).

2 Background and Related Work
Disks historically had seek times in the milliseconds and pro-
duced at most hundreds of interrupts per second, which meant
interrupts worked well to enable software-level concurrency
while avoiding costly overheads. However, new storage de-
vices are built with solid state memory which can sustain not
only millions of requests per second [25, 75], but also multiple
concurrent requests. The NVMe specification [57] exposes
this parallelism to software by providing multiple queues, up
to 64K per device, where requests, up to 64K per queue, can be
submitted and completed; Linux developers rewrote its block
subsystem to match this multi-queue paradigm [9]. Figure 1
shows a high-level overview of NVMe request submission
and completion.

Numerous kernel, application, and firmware-level improve-
ments have been proposed in the literature to unlock the higher
request rate of these devices [13, 39, 46, 48, 60, 65, 82, 83],
but they focus on increasing I/O submit rate without directly
addressing the problem of higher completion rate.

Lessons from Networking. Networking devices have had
much higher completion rates for a long time. For example,
100Gbps networking cards can process over 100 million pack-

ets per second in each direction, over 200× that of a typical
NVMe device. The networking community has devised two
main strategies to deal with these completion rates: interrupt
coalescing and polling.

To avoid bombarding the processor with interrupts, network
devices apply interrupt coalescing [74], which waits until a
threshold of packets is available or a timeout is triggered. Net-
work stacks may also employ polling [16], where software
queries for packets to process rather than being notified. IX [7]
and DPDK [33] (as well as SPDK [67]) expose the device di-
rectly to the application, bypassing the kernel and the need for
interrupts by implementing polling in userspace. Technolo-
gies such as Intel’s DDIO [19] or ARM’s ACP [56] enable net-
working devices to write incoming data directly into processor
caches, making polling even faster by turning MMIO queries
into cache hits. The networking community has also proposed
various in-network switching and scheduling techniques to
balance low-latency and high-throughput [3, 7, 35, 49].

Storage is adopting networking techniques. The NVMe
specification standardizes the idea of interrupt coalescing
for storage devices [57], where an interrupt will fire only
if there is a sufficient threshold of items in the completion
queue or after a timeout. There are two key problems with
NVMe interrupt coalescing. First, NVMe only allows the
aggregation time to be set in 100µs increments [57], while
devices are approaching sub 10µs latencies. For example, in
our setup, small requests that normally take 10µs are delayed
by 100µs, resulting in a 10× latency increase. Intel Optane
Gen 2 devices have latencies around 5µs [24], which would
result in a 20× latency increase. The risk of such high latency
amplification renders the timeout unusable in general-purpose
deployments where the workload is unknown.

Second, even if the NVMe aggregation granularity were
more reasonable, both the threshold and timeout are statically
configured (the current NVMe standard and its implemen-
tations have no adaptive coalescing). This means interrupt
coalescing easily breaks after small changes in workload—for
example, if the workload temporarily cannot meet the thresh-
old value. The NVMe standard even specifies that interrupt
coalescing be turned off by default [58], and off-the-shelf
NVMe devices ship with coalescing disabled.

Indeed, despite the existence of hardware-level coalesc-
ing, there are still continuous software and driver patches to
deal with interrupt storms through mechanisms such as fine-
tuning of threaded interrupt completions and polling com-
pletions [11, 47, 50]. Mailing list requests and product docu-
mentation show that Azure observes large latency increases
when using aggressive interrupt coalescing to deal with in-
terrupt storms, which they try to address with driver mitiga-
tions [26, 47]. Because of the proprietary nature of Azure’s
solution, it is unclear whether their interrupt coalescing is
standard NVMe coalescing or some custom coalescing that
they develop with hardware vendors.

Polling is expensive. µdepot [43] and Arrakis [61] deal

130 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

KIOPS

1
.1

7

1
.1

3

 0

 4

 8

 12

(a) 1 proc:4K random reads

latency [µsec]

0
.8

4

0
.8

6

 0
 25
 50
 75

 100

% cpu util

3
.2

1

2
.1

0

 0
 50

 100
 150
 200

KIOPS

1
.0

4

1
.0

6

 0

 5

 10

 15

(b) 2 proc:4K random reads

latency [µsec]

0
.9

6

0
.9

5

 0
 25
 50
 75

 100

% cpu util

1
.4

7

1
.4

7

 0

 25

 50

 75

KIOPS

 0
 20
 40
 60
 80

(c) 1 proc:4K, 1 proc:64K random reads

latency [µsec]

 0
 25
 50
 75

 100

% cpu util

IRQ polling hybrid-polling 4K proc 64K proc

Figure 2: Hybrid polling is not enough to mitigate polling overheads. All experiments run on a single core. (a) With a single thread of same-sized
requests, hybrid polling effectively reduces the CPU utilization of polling while matching the performance of polling. (b) With more threads,
hybrid polling reduces to polling in terms of CPU utilization without providing significant performance improvement over interrupts. (c) With
variable I/O sizes, hybrid polling has the same throughput and latency as interrupts for both I/O sizes while using 2.7x more CPU. Labels show
performance relative to IRQ.

with higher completion rates by resorting to polling. Di-
rectly polling from userspace via SPDK requires considerable
changes to the application, and polling from either kernel-
space or userspace is known to waste CPU cycles [42, 77, 82].
FlashShare only polls for what it categorizes as low-latency
applications [82], but acknowledges that this is still expen-
sive. Cinterrupts exposes application semantics for interrupt
generation so that systems do not have to resort to polling.

Even hybrid polling [79], which is a heuristic-based tech-
nique for reducing the CPU overhead of polling by sleeping
for a period of time before starting to poll, is insufficient,
breaking down when requests having varying size [5, 41, 45].

Figure 2 compares the performance and CPU utilization of
hybrid polling, polling, and interrupts for three benchmarks
on an Intel Optane DC P4800X [23].2 We note that in all
cases, polling provides the lowest latency because the polling
thread discovers completions immediately, at the expense of
100% CPU utilization. When there is a single thread submit-
ting requests through the read syscall (Figure 2(a)), hybrid
polling does well because request completions are uniform.
However, when more threads or I/O sizes are added, as in Fig-
ures 2(b)-(c), hybrid polling still has 1.5x-2.7x higher CPU
utilization than interrupts without providing noticeable per-
formance improvement. These results match other findings in
the literature [5, 6, 41, 45].

Even though polling wastes cycles, it can provide lower
latency than interrupts, which is desirable in some cases. As
such, cinterrupts coexists with kernel-side polling, such as in
Linux NAPI for networking [15, 16], which switches between
polling and interrupts based on demand.

Heuristics-based Completion. vIC [2] tries to moderate
virtual interrupts by estimating I/O completion time with
heuristics. It primarily relies on inspecting the number of
“commands-in-flight” to determine whether to coalesce in-
terrupts, also employing smoothing mechanisms to ensure
that the coalescing rate does not change too dramatically. To
prevent latency increase in low-loaded scenarios, vIC also
eliminates interrupt coalescing when the submission rate is
below a certain threshold. vIC is a heuristic-based coalesc-

2See Section 5.1 for a detailed description of our experimental setup.

 0

 50

 100

 150

 200

 250

64B
256B

1KB
4KB

16KB
64KB

 0

 20

 40

 60

 80

la
te

n
c
y
 [

µ
s
e

c
]

Intel XL710

diff

2
3

2
3

2
3 2

9 3
0

2
4

2
2

1
8

2
8

6
6 7
0

default
no coalesc

 0
 20
 40
 60
 80

 100
 120

64B
256B

1KB
4KB

16KB
64KB

 0

 5

 10

 15

 20

d
if
f

[µ
s
e

c
]

Mellanox ConnectX-5

0

.6

1
.5

0

.2

1
.3

1

.5

9
.8 1
1

8

.7
1

5
1

4
1

8

Figure 3: NICs employ adaptive heuristics that try to minimize inter-
rupt overheads without unnecessarily hurting latency. The inherent
imperfection of these heuristics is demonstrated using Intel and Mel-
lanox NICs servicing the netperf request-response benchmark, which
ping-pongs a message of a specified size. The labels show the latency
difference between the default NIC scheme and a no-coalescing pol-
icy, which minimizes latency for this particular workload, but which
harms performance for more throughput-oriented workloads.

ing algorithm, similar to our adaptive algorithm (Section 3.2).
Consequently, vIC also lacks semantic information necessary
to align interrupt delivery.

NICs and their software stack are higher-performing and
more mature than NVMe drives and their corresponding stack.
As with NVMe devices, NICs must balance two contradic-
tory goals: (1) reducing interrupt overhead via coalescing to
help throughput-oriented workloads, while (2) providing low
latency for latency-sensitive workloads by triggering inter-
rupts upon incoming packets as soon as possible. Notably,
NICs employ more sophisticated, adaptive interrupt coalesc-
ing schemes (implemented inside the device and helped by its
driver). Yet, in general-purpose settings that must accommo-
date arbitrary workloads, NICs are unable to optimally fire
and coalesce interrupts, despite their maturity.

Figure 3 demonstrates that heuristics in even mature de-
vices cannot optimally resolve the interrupt delivery problem
for all workloads. Two NICs, Intel XL710 40 GbE [20] and
Mellanox ConnectX-5 100 GbE [71], run the standard latency-
sensitive netperf TCP request-response (RR) benchmark [34],
which repeatedly sends a message of a specified size to its
peer and waits for an identical response. In this workload,
the challenge for the NIC is identifying the end of the in-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 131

s1 s2 s3

s1 s2 s3

s1 s2 s3

CPU time to
submit request k

sk

CPU time to
complete request k

ck

CPU time to
process interrupti

device completed s1
time

NVMe coalescing
thr=8, timeout=100us

NVMe coalescing
thr=8, timeout=20us

Adaptive coalescing

s4 s5 s6 s7 s8 idle i c1 c2 c3 c4 s9 idle

s4 s5 s6 s7 s8 i c1 c2 c3 i c4 c5 c6 i c7 c8 s9 idle

s4 s5 s6 s7 s8 i c1 c2 c3 c4 c5 c6 c7 c8 s9 idleidle i

i

i

threshold met timeout

timeout

c5 c6 c7 c8

c9

c9

c9

device completed s9

timeout timeout timeout

Figure 4: NVMe coalescing with its current 100µs granularity (top row) causes unusable timeouts when the threshold is not met (c9). Even if
the timeout granularity were smaller (middle row), NVMe coalescing cannot adapt to the workload. For bursts of requests, the smaller timeout
will limit the throughput with interrupts (c1− c8), while bursts that do not meet the threshold must still wait for the timeout (c9). Note that idle
periods occur when the CPU is done submitting requests, but is waiting for the device to complete I/O.

coming message and issuing the corresponding interrupt. The
Intel NIC heuristic results in increased latency regardless of
message size, and the Mellanox NIC heuristic adds latency
if the message size is greater than 1500 bytes, the maximum
transmission unit (MTU) for Ethernet, because the message
becomes split across multiple packets.

Knowledgeable users with admin privileges may manu-
ally configure the NIC to avoid coalescing, which helps iden-
tify message boundaries and thus yields better results for
this specific workload. But such a configuration is ill-suited
for general-purpose setups that must reasonably support co-
located throughput-oriented workloads as well.

Exposing Application-Level Semantics. Similar to [39,
78, 82], cinterrupts augments the syscall interface with a few
bits so applications can transmit information to the kernel.
Cinterrupts further shares this information with the device,
which is only also done in [82], which shares with the device
SLO information used to improve internal device caching.

3 Cinterrupts
3.1 Design Overview
The initial design of cinterrupts focused on making NVMe
coalescing adapt to workload changes. Our first contribution
captures this intuition with an adaptive coalescing strategy to
replace the static NVMe algorithm (§3.2).

While our adaptive coalescing strategy improves over static
coalescing, there are still cases that an adaptive strategy can-
not handle, such as workloads with a mix of latency-sensitive
and throughput-sensitive requests. The adaptive strategy also
imposes an inevitable overhead from detecting when a work-
load has changed.

This observation led to the core insight of cinterrupts:
device-level heuristics for coalescing will always fall short
due to a semantic gap between the requester and the device,
which sees a stream of requests and cannot determine which
requests require interrupts in order to unblock the application.
To bridge the semantic gap, the application issuing the I/O
request should always inform the device when it wishes to be
interrupted. Cinterrupts takes advantage of the fact that this
semantic information is easily accessible in the storage stack

and available at submission time.
Note on Methodology. The results throughout this section

are obtained on a setup fully described in Section 5.1. We use
an Intel Optane DC P4800X, 375 GB [23], installed in a Dell
PowerEdge R730 machine equipped with two 14-core 2.0
GHz Intel Xeon E5-2660 v4 CPUs and 128 GB of memory
running Ubuntu 16.04. The server runs cinterrupts’ modified
version of Linux 5.0.8 and has C-states, Turbo Boost (dynamic
clock rate control), and SMT disabled. We use the maximum
performance governor.

All results are obtained with our cinterrupts emulation, as
described in Section 4.2.1. Our emulation pairs one dedicated
core to one target core. Each target core is assigned its own
NVMe submission and completion queue. All results in this
section are run on a single target core.

3.2 Adaptive Coalescing
Ideally, an interrupt coalescing scheme adapts dynamically to
the workload. Figure 4 shows that even if the timeout granu-
larity in the NVMe specification were smaller, it is still fixed,
which means that interrupts will be generated when the work-
load does not need interrupts (c1− c8), while completions
must wait for the timeout to expire (c9) when the workload
does need interrupts.

Instead, as shown in the bottom row of Figure 4, the adap-
tive coalescing strategy in cinterrupts observes that a device
should generate a single interrupt for a burst, or a sequence
of requests whose interarrival time is within some bound.

Algorithm 1 shows the adaptive strategy. The burst detec-
tion happens on Line 6, where the timeout is pushed out by ∆

every time a new completion arrives. In contrast, NVMe coa-
lescing cannot detect bursts because it does not dynamically
update the timeout, which means it can only detect bursts of
a fixed size. To bound request latency, the adaptive strategy
uses a thr that is the maximum number of requests it will
coalesce into a single interrupt (Lines 14-15). This is neces-
sary for long-lived bursts to prevent infinite delay of request
completion. With Algorithm 1, a device will emit interrupts
when either it has observed a completion quiescent interval of
∆ or thr requests have completed. In §5, we explain how de-
vice manufacturers and system administrators can determine

132 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1: Adaptive coalescing strategy in cinterrupts
1 Parameters: ∆, thr
2 coalesced = 0, timeout = now + ∆;
3 while true do
4 while now < timeout do
5 while new completion arrival do

/* burst detection,update timeout */
6 timeout = now + ∆;
7 if ++coalesced ≥ thr then
8 fire IRQ and reset;

/* end of quiescent period */
9 if coalesced > 0 then

10 fire IRQ and reset;

11 timeout = now + ∆;

 0

 50

 100

 150

(a)

sync latency
[µsec]

1
.6

0

1
0
.6

6

3
.1

0

1
.6

0

 0

 150

 300

 450

(b)

async IOPS
[1000s]

1
.3

5

1
.3

4

1
.3

2

1
.2

4

 0

 100

 200

 300

(c)

async inter.
[1000s/sec]

0
.0

8

0
.0

4

0
.1

3

0
.3

1

default adaptive nvme100 nvme20 nvme6

Figure 5: Adaptive strategy has better performance for both types
of workloads regardless of how NVMe coalescing is configured.
(a) latency of a synchronous read request. (b) throughput of an
asynchronous read workload with high iodepth. (c) interrupt rate for
async workload. Labels show performance relative to default.

reasonable ∆ and thr configurations.
Comparison to NVMe Coalescing. The adaptive strat-

egy outperforms various NVMe coalescing configurations,
even those with smaller timeouts, across different workloads.
We compare the adaptive strategy, configured with thr = 32,
∆ = 6, to no coalescing (default), nvme100, which uses a
timeout of 100µs, the smallest possible in standard NVMe,
nvme20, which uses a theoretical timeout of 20µs, and nvme6,
which uses a theoretical timeout of 6µs. All NVMe coalescing
configurations have threshold set to 32.

We run two single-threaded synthetic workloads with
fio [4]. In the first workload, the thread submits 4 KB read re-
quests via read, which blocks until the system call is done. In
the second workload, the thread submits 4 KB read requests
via libaio in batches of 16, with iodepth=512.3

Figure 5(a) reports the latency of the read requests for the
synchronous workload. As expected, the default strategy has
the lowest latency of 10µs, because it generates an interrupt
for every request. All coalescing strategies add exactly their
timeout to the latency of each read request (c9 in Figure 4).
Because they have the same timeout, nvme6 and adaptive
have the same latency, but nvme6 pays the price for this low

3iodepth represents the number of in-flight requests.

interrupt calibrated
to the time when
the last request
(k=4) finishess1 s2 s3 s4 idle i c1 c2 c3 c4

s1 s2 s3 s4 idle i c1 c2 c3 c4

cint

adaptive
1) device processed s1

CPU time to
submit request ksk

kernel CPU time to
complete request kck

CPU time to
process interrupti

2) device processed s4

latency

b

delay

Figure 6: Completion timeline for multiple submissions. The adap-
tive strategy can detect them as part of a burst, but only after the
delay expires. Cinterrupts explicitly marks the last request in the
batch. Idle periods occur when the CPU waits for I/O to complete.

timeout in the next workload.
Figure 5(b) reports the read IOPS for the second work-

load and shows that if there are enough requests to hit the
threshold, the timeout adds unnecessary interrupts (c1− c8 in
Figure 4). The default strategy’s throughput is limited because
it generates too many interrupts, as shown in Figure 5(c).

The workload has enough requests in flight that waiting for
the threshold of 32 completions does not harm throughput.
However, nvme20 and nvme6 must fire an interrupt every
20µs or 6µs, respectively: Figure 5(c) shows that nvme20
generates 1.7x more interrupts than adaptive, and nvme6 gen-
erates 4.2x more interrupts than adaptive, explaining their
lower throughput.

The adaptive strategy can accurately detect bursts, although
it adds ∆ delay to confirm the end of a burst; without addi-
tional information, this delay is unavoidable. Figure 6 shows
how cinterrupts addresses this problem by enhancing adap-
tive with two annotations, Urgent and Barrier, which software
passes to the device. We now describe both annotations.

3.3 Urgent
Urgent is used to request an interrupt for a single request: the
device will generate an immediate interrupt for any request
annotated with Urgent. The primary use for Urgent is to en-
able the device to calibrate interrupts for latency-sensitive
requests. Urgent eliminates the delay in the adaptive strategy.

To demonstrate the effectiveness of Urgent, we run a syn-
thetic mixed workload with fio with two threads: one submit-
ting 4 KB read requests via libaio with iodepth=16 and one
submitting 4 KB read requests via read, which blocks until
the system call is done. In cinterrupts, the latency-sensitive
read requests are annotated with Urgent, which is embedded
in the NVMe request that is sent to the device (see §4.1.1).
Results are shown in Figure 7.

Without cinterrupts, the requests from either thread are
indistinguishable to the device. The default (no coalescing)
strategy addresses this problem by generating an interrupt for
every request, resulting in 2.7x more interrupts than cinter-
rupts (Figure 7(d)).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 133

 0

 150

 300

 450

(a)

total IOPS
[1000s]

0
.8

3

1
.1

5

 0

 150

 300

 450

(b)

sync IOPS
[1000s]

0
.9

3

0
.2

4

 0

 25

 50

 75

(c)

sync latency
[µsec]

1
.0

6

4
.3

9

 0

 150

 300

 450

(d)

interrupts
[1000s]

2
.7

4

0
.2

5

cint default adaptive

Figure 7: Effect of Urgent. Synthetic workload with two threads
running a mixed workload: one thread submitting synchronous re-
quests via read, one thread submitting asynchronous requests via
libaio. Cinterrupts achieves optimal synchronous latency and better
throughput over the default (no coalescing). The adaptive strategy
achieves better overall throughput, at the expense of synchronous
latency. Labels show performance relative to cinterrupts.

 300

 350

 400

 450

 4 8
 1

6
 3

2
 6

4

adaptive coalescing threshold

(a)

total IOPS
[1000s]

cint adaptive

1
.0

4
1

.1
1

1
.1

6
1

.1
9

1
.2

0

 0

 15

 30

 45

 4 8
 1

6
 3

2
 6

4

(b)

sync IOPS
[1000s]

0
.5

9
0

.4
4

0
.3

2
0

.2
5

0
.1

5

 0

 60

 120

 180

 4 8
 1

6
 3

2
 6

4

(c)

sync latency
[µsec]

1
.7 2
.3 3

.2 4
.0

6
.8

 0

 30

 60

 90

 4 8
 1

6
 3

2
 6

4

(d)

interrupts
[1000s]

2
.1

1
.1

2
0

.5
9

0
.3

0
0

.1
5

Figure 8: In a mixed workload, increasing the coalescing threshold
increases the latency of synchronous requests proportionally to the
coalescing rate. Labels show performance relative to cinterrupts.

On the other hand, with Urgent, cinterrupts calibrates in-
terrupts to the latency-sensitive read requests, enabling low-
latency without generating needless interrupts that hamper
the throughput of the asynchronous thread. This results in
both higher asynchronous throughput and lower latency for
the synchronous requests. The adaptive strategy is unable
to identify the latency-sensitive requests and in fact tries to
minimize interrupts for all requests, resulting in higher asyn-
chronous throughput but a corresponding increase in read
request latency (Figure 7(c)).

In fact, the more aggressive the coalescing, the more un-
usable synchronous latencies become. Figure 8 shows the
same experiment with higher iodepth. As the target coalesc-
ing rate increases, there is a corresponding linear increase
in the synchronous latency. On the other hand, the purple
line in Figure 8(c) shows that Urgent in cinterrupts makes
synchronous latency acceptable. This latency comes at the
expense of less asynchronous throughput, as shown in Fig-
ure 8(a), but we believe this is an acceptable trade-off.

3.4 Barrier
To calibrate interrupts for batches of requests, cinterrupts uses
Barrier, which marks the end of a batch and instructs the de-

 0

 100

 200

 300

1
 p

ro
c

IOPS
[1000s]

1
.1

0

0
.8

0

 0

 15

 30

 45

latency
[µsec]

0
.9

0 1
.3

1

 0
 25
 50
 75

 100

CPU util
[%]

1
.3

2

0
.8

1

 0

 100

 200

 300

interrupts
[1000s]

4
.4

0

0
.8

0

 0

 100

 200

 300

2
 p

ro
c
s 0

.8
5

0
.7

1

 0

 15

 30

 45

1
.1

8

1
.4

5

 0
 25
 50
 75

 100

1
.0

1

0
.6

5

 0

 100

 200

 300 3
.4

2

0
.4

4

 0

 100

 200

 300

4
 p

ro
c
s

(a)

0
.8

8

1
.0

1

 0

 30

 60

 90

(b)

1
.1

4

0
.9

9

 0
 25
 50
 75

 100

(c)

1
.0

1

1
.0

0

 0

 100

 200

 300

(d)

3
.5

1

0
.9

9

cint default adaptive

Figure 9: Effect of Barrier. Each process submits a batch of 4 re-
quests at a time, submitting a new batch after the previous batch has
finished. Cinterrupts always detects the end of a batch with Barrier.
Note that when there is CPU idleness, adaptive always adds ∆ delay
to the latency. Labels show performance relative to cinterrupts.

vice to generate an interrupt as soon as all preceding requests
have finished. The semantic difference between Urgent and
Barrier is that an Urgent interrupt is generated as soon as the
Urgent request finishes, whereas the Barrier interrupt may
have to wait if requests are completed out of order.

Barrier minimizes the interrupt rate, which is always benefi-
cial for CPU utilization, while enabling the device to generate
enough interrupts so that the application is not blocked. For
example, in the submission stream s1− s4 in Figure 6, the last
request in the batch, s4, is marked with Barrier.

To demonstrate the effectiveness of Barrier, we run an ex-
periment with a variable number of threads on the same core,
where each thread is doing 4 KB random reads through libaio,
submitting in fixed batch sizes of 4. The trick is determin-
ing the end of the batch without additional overhead, which
is only possible in cinterrupts: we modify fio to mark the
last request in each batch with a Barrier. Figure 9 shows the
throughput, latency, CPU utilization, and interrupt rate.

Single Thread. When there is a single thread, the default
(no coalescing) strategy can deliver lower latency than cin-
terrupts. This is because there is CPU idleness and no other
thread running. However, the default strategy generates 4.4x
the number of interrupts as cinterrupts, which results in 1.32x
CPU utilization. The default strategy can also process some
completions in parallel with device processing, whereas cin-
terrupts waits for all completions in the batch to arrive before
processing. On the other hand, the ∆ delay in the adaptive
algorithm is clear: the latency of requests is 29 µs, compared
to 22 µs with cinterrupts.

Two Threads. When there are two threads in the experi-
ment, the advantage of the default strategy goes away: the 3.4x

134 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

s1 s2 s3 s4 i c1 i c2 i c3 i c4

default (no coalescing)

cint

adaptive

s1 s2 s3 s4 i c1 i c2 i c3 i c4

p1

…

idle till last
is processed

p2 p1 p2

s1 s2 s3 s4 i c1 c2 c3 c4s1 s2 s3 s4 i c1 c2 c3 c4

p1

…

p2 p1 p2

s1 s2 s3 s4 i c1 c2 c3 c4s1 s2 s3 s4 c1 c2 c3 c4

p1

…

p2 p1 p2

delay

bb

associated with
process #1 (=p1)

associated with
process #2 (=p2)

Figure 10: Completion timeline for two threads submitting request
batches. The adaptive strategy experiences CPU idleness both be-
cause of the delay and because it waits to process any completions
until they all arrive. On the other hand, due to Barrier, cinterrupts
can process each batch as soon as it completes.

interrupts taxes a saturated CPU. On the other hand, cinter-
rupts has the best throughput and latency because calibrating
interrupts enable better CPU usage.

Figure 10 shows that the adaptive strategy exhibits highest
synchronous latency due to CPU idleness, which comes from
waiting for completions and the delay used to detect the end of
the batch. This idleness is eliminated in the next experiment,
where there are enough threads keep the CPU busy.

Four Threads. With four threads, the comparison between
cinterrupts and the default NVMe strategy remains the same.
However, at four threads, the adaptive strategy matches the
performance of cinterrupts because without CPU idleness, the
delay is less of a factor. Although the adaptive strategy does
well in this last case, we showed in §3.3 that this aggregation
comes at the expense of synchronous requests.

Note that Figure 10 is a simplification of a real execution,
because it conflates time spent in userspace and the kernel,
and does not show completion reordering. The full cinterrupts
algorithm addresses reordering by employing the adaptive
strategy to ensure no requests get stuck.

3.5 Out-of-Order Urgent
The full cinterrupts interrupt generation strategy is shown
in Algorithm 2. Requests are either unmarked or marked by
Urgent or Barrier. Unmarked requests are handled by the
underlying adaptive algorithm and can of course piggyback
on interrupts generated by Urgent or Barrier.

We noticed that Urgent requests sometimes get completed
with other requests, which increases their latency because the
interrupt handler does not return until it reaps all requests in
the interrupt context. To address this, cinterrupts implements
out-of-order (OOO) processing, a driver-level optimization
for Urgent requests. With OOO processing, the IRQ handler
will only reap Urgent requests in the interrupt context, which
enables faster return-to-userspace of the Urgent requests.

Unmarked requests will not be reaped until a completion
batch consists only of those requests, as shown in Figure 11.

Algorithm 2: cinterrupts coalescing strategy
1 Parameters: ∆, thr
2 coalesced = 0, timeout = now + ∆;
3 while true do
4 while now < timeout do
5 while new completion arrival do
6 timeout = now + ∆;
7 if completion type == Urgent then
8 if ooo processing is enabled then

/* only urgent requests */
9 fire urgent IRQ;

10 else
/* process all requests */

11 fire IRQ and reset coalesced;

12 if completion type == Barrier then
13 fire IRQ and reset coalesced;
14 else
15 if ++coalesced ≥ thr then
16 fire IRQ and reset coalesced;

/* end of quiescent period */
17 if coalesced > 0 then
18 fire IRQ and reset coalesced;

19 timeout = now + ∆;

CQ

end

CQ

start
end

time

CQ

start end

CQ

start end start

Figure 11: OOO Urgent processing. Grayed entries are reaped entries.
Urgent requests in an interrupt context (first interrupt) are processed
immediately, and the interrupt handler returns. The other requests are
not reaped until the next interrupt, which consists only of non-Urgent
requests. After the second IRQ, the driver rings the completion queue
doorbell to signal that the device can reclaim the contiguous range.

The driver also does not ring the CQ doorbell until it com-
pletes a contiguous range of entries. thr ensures non-Urgent
requests are eventually reaped. For example, suppose in Fig-
ure 11 that thr = 9. Then an interrupt will fire as soon as
9 entries (already reaped or otherwise) accumulate in the
completion queue.

The trade-off with OOO processing is an increase in the
number of interrupts generated. Figure 12 reports perfor-
mance metrics from running the same mixed workload as
in Figure 8. OOO processing generates 2.4x the number of
interrupts in order to reduce the latency of synchronous re-
quests by almost half. The impact of the additional interrupts
is noticeable in the reduced number of asynchronous IOPS.

Incidentally, these additional interrupts, as well as the in-
terrupts in the default strategy, act as an inadvertent tax on
the asynchronous thread. If we instead limit the number of
asynchronous requests, the need for these additional inter-
rupts goes away. In the second row of Figure 12, we throttle
the asynchronous thread with the blkio cgroup [10] to its

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 135

 0

 150

 300

 450

u
n

lim
it
e

d

async IOPS
[1000s]

0
.4

7 0
.9

6
0
.8

4

 0

 20

 40

 60

sync latency
[µsec]

0
.3

7 0
.8

8
0
.5

9

 0

 150

 300

 450

interrupts
[1000s]

8
.9

7
1
.1

5
2
.3

6

 0

 40

 80

 120

CPU util
[%]

1
.0

0
1
.0

0
1
.0

0

 0

 100

 200

 300

ra
te

 l
im

it
e

d

(a)

1
.0

0
1
.0

0
1
.0

0

 0

 20

 40

 60

(b)

0
.8

7
1
.3

1
0
.8

7

 0

 100

 200

 300

(c)

3
.7

0
0
.7

4
1
.2

3

 0

 40

 80

 120

(d)

1
.5

5
0
.9

3
1
.0

8

cint default adaptive ooocint

Figure 12: Mixed workload. Out-of-order (OOO) driver processing
of Urgent requests enables lower latency at the expense of more
interrupts. Limiting the number of async requests (bottom row)
reduces this overhead. Labels above bars indicate performance ratio
compared to cinterrupts.

throughput in the default scenario (green bar in the first row).
In this case, OOO cinterrupts only generates 23% more inter-
rupts, and its synchronous latency matches that of the default
strategy while using 30% less CPU.

OOO processing is turned on by default in the cinterrupts
NVMe driver but can be disabled with a module parameter.

4 Implementation
4.1 Software Modifications
4.1.1 Kernel Modifications

It is software’s responsibility to pass request annotations to
the device. To minimize programmer burden, our implemen-
tation includes a modified kernel that sets default annotations.
Table 1 summarizes how the kernel sets these defaults, which
naturally derive from the programming paradigm of each sys-
tem call: any system call that blocks the application, such as
read and write, is marked Urgent, and any system call that sup-
ports asynchronous submission, such as io_submit, is marked
Barrier. System calls in the sync family are blocking, so they
are marked Urgent. By following the programming paradigm
of each system call, cinterrupts can be supported in the kernel
with limited intrusion; the changes to the Linux software stack
described in this section total around 100 LOC.

The cinterrupts kernel propagates annotations from the
system call layer through the filesystem and block layers to the
device. In the system call handling layer, cinterrupts embeds
any bits in the iocb struct. The block layer can split or merge
requests. In the case of request split – for example, a 1M write
will get split into several smaller write blocks – each child
request will retain the bit of the parent. In the case of merged
requests, the merged request will retain a superset of the bits in
its children. If this superset contains both Urgent and Barrier,
we mark the merged request as Urgent for simplicity. This
is not a correctness issue because the underlying adaptive

System call Kernel default annotations
(p)read(v), (p)write(v) Urgent if fd is blocking or if write is O_DIRECT
preadv2, pwritev2 If RWF_NOWAIT is not set, use Urgent
io_submit Barrier on the last request
(f)(data)sync, syncfs Urgent
msync With MS_SYNC, Barrier on the last request

Table 1: Summary of storage I/O system calls and the corresponding
default bits used by the kernel.

algorithm will ensure that no request gets stuck.
For cases in which these defaults do not match application-

level semantics, we expose a system call interface for
applications to override these defaults. We leverage the
preadv2/preadw2 system call interface [63], which already
exposes a parameter that accepts flags:

ssize_t preadv2(int fd, const struct iovec *iov,
int iovcnt, off_t offset, int flags)

We create two new flag types, RWF_URGENT and
RWF_BARRIER, which the application can use to pass bits as
it sees fit. The application can explicitly ask for a request to be
unmarked by passing both flags. We explain how applications
can use this interface in the next section.

4.1.2 Application Case Studies

Ultimately the application has the best knowledge of when it
requires interrupts, so cinterrupts enables the application to
override kernel defaults for even better performance, using the
syscall interface described previously. We modified RocksDB
to use these flags.

RocksDB Background Tasks. Flushing and compaction
are the two main sources of background I/O in RocksDB. We
modify RocksDB to explicitly mark these I/O requests as non-
Urgent. Since RocksDB already isolates the environment for
interacting with files, our changes were minimal and involved
replacing the calls to pread/pwrite with preadv2/pwritev2, cre-
ating a new file option to express urgency of I/O for that file,
and modifying the Flush and Compaction jobs to explicitly
mark I/O as non-Urgent, which totaled around 40 lines of
code. We show in Section 5.4.1 that these manual annotations
especially help RocksDB during write-intensive workloads.

RocksDB Dump. RocksDB includes a dump tool that
dumps all the keys in a RocksDB instance to a file [1]. Typi-
cally this tool is used to debug or migrate a RocksDB instance.
As it is a maintenance-level tool, dump requests do not need
to be Urgent, so we manually modify the dump code to mark
dump read and write I/O as non-Urgent. In this way, dump
I/O requests are completed when interrupts are generated by
the underlying adaptive coalescing strategy. On top of the
RocksDB changes described in the previous section, marking
dump requests as non-Urgent only required two lines of code.
We show in Section 5.5.1 that modifying the dump tool can
increase the throughput of foreground requests by 37%.

136 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

target core dedicated core

Polling

IPInvme_irq()

CQ
…

SQ

cinterrupts
algorithm

NVMe controller + device

Figure 13: Cinterrupts emulation: the dedicated core polls on the
NVMe completion queue of the target core and sends IPIs for any
completion. IPIs emulate hardware interrupts of a real device that
supports cinterrupts. The target core submits requests normally to
hardware by writing to the NVMe submission queue.

4.2 Hardware Modifications
Cinterrupts modifies the hardware-software boundary to sup-
port Urgent and Barrier. The key hardware component in
cinterrupts is an NVMe device that recognizes these bits and
implements Algorithm 2 as its interrupt generation strategy.
Device firmware, which is responsible for interrupt genera-
tion, is the only device component that must be modified in
order to support cinterrupts. Device firmware is typically a
blackbox, so we chose to emulate the interrupt generation
portion of cinterrupts while leveraging real NVMe hardware
for I/O execution.

4.2.1 Firmware Emulation

To emulate interrupt generation in cinterrupts, we explored
using several existing aspects of the NVMe specification, all
of which were insufficient. We considered using the urgent
priority queues to implement Urgent. While this would have
worked for Urgent, there is still no way to implement Bar-
rier or Algorithm 2. Furthermore, in NVMe devices, while
it is possible to have a dedicated urgent priority queue, hard-
ware queues are still limited in NVMe devices; Azure NVMe
devices have 8 queues that must be shared across many
cores [26], while Intel devices have 32-128 queues [17, 70].
By labelling individual requests, cinterrupts is explicitly de-
signed to work in a general context where queues cannot be
differentiated due to resource limitations.

We also considered using special bogus commands to force
the NVMe device to generate an interrupt. The specifica-
tion recommends that “commands that complete in error
are not coalesced” [57]. Unfortunately, neither device we
inspected [22, 75] respected this aspect of the specification.

Instead, we prototype cinterrupts by emulating interrupt
generation with a dedicated sidecore that uses interprocessor
interrupts (IPIs) to emulate hardware interrupts. We imple-
ment this emulation on Linux 5.0.8.

Dedicated Core. Our emulation assigns a dedicated core
to a target core. The target core functions normally by running

applications that submit requests to the core’s NVMe submis-
sion queue, which are passed normally to the NVMe device.
The dedicated core runs a pinned kernel thread, created in
the NVMe device driver, that polls the completion queue of
the target core and generates IPIs based on Algorithm 2. Cin-
terrupts annotations are embedded in a request’s command
ID, which the polling dedicated core inspects to determine
which bits are set. In a hardware-level implementation of cin-
terrupts, Urgent and Barrier can be communicated in any of
the reserved bits in the submission queue entry of the NVMe
specification [57].

To faithfully emulate the proposed hardware, we disable
hardware interrupts for the NVMe queue assigned to that core;
in this way, the target core only receives interrupts iff ideal
cinterrupts hardware would fire an interrupt. Figure 13 shows
how our dedicated core emulates the proposed interrupt gen-
eration scheme. Importantly, we still leverage real hardware
to execute the I/O requests, and the driver still communicates
with the NVMe device through the normal SQ/CQ pairs, but
we replace the device’s native interrupt generation mechanism
with the dedicated core. Section 5.1 shows that this emulation
has a modest 3-6% overhead.

4.3 Discussion
Other I/O Requests. We initially did not annotate requests
generated by the kernel itself, for example from page cache
writeback and filesystem journalling. But because filesystem
journalling is on the critical path of write requests, non-Urgent
journal transactions caused a slight increase in latency of
application-level requests. Hence by default we mark journal
commits as Urgent. Because journalling does not generate
a large interrupt rate for our applications, marking these re-
quests tightened application latency without adding overhead.

On the other hand, our applications did not see significant
benefit in marking writeback requests. As such, we rely on
the application to inform us when these requests are latency-
sensitive, for example page cache flushes will be Urgent when
they are explicitly requested through fsync.

Other Implementations. The Barrier implementation can
be strict or relaxed, where a strict version only releases the
interrupt if all requests in front of it in the submission queue
have been completed. A relaxed Barrier is equivalent to Ur-
gent and works well assuming that requests do not complete
too far out of order; it does not require the interrupt genera-
tion algorithm to record any additional state. The cinterrupts
prototype evaluated in this paper uses a relaxed Barrier, which
already enjoys significant performance benefits. We have re-
tained a separate flag because Barrier is semantically different
to the application and to enable future implementations to
choose to implement strict Barrier.

The strict Barrier requires more accounting overhead to
keep track of which requests have completed: we explored a
preliminary implementation of the strict Barrier in our emula-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 137

tor but its overheads were larger than its benefit. We sus-
pect firmware implementations of a strict Barrier will be
more efficient. Alternatively, this strict ordering could be en-
forced in the kernel: the driver can withhold completions from
userspace until all other requests have completed. Such an
implementation might be efficient by piggybacking on the
accounting mechanisms in the block layer of the Linux kernel.

Urgent Storm. If all requests in the system are marked as
Urgent, this can inadvertently cause an interrupt storm. To
address this, cinterrupts has a module parameter that can be
configured to target a fixed interrupt rate, similar to NICs,
enforced with a lightweight heuristic based on Exponential
Weighted Moving Average (EWMA) of the interrupt rate.

Lines of Code. Linux modifications to support cinterrupts
total around 100 LOC. The cinterrupts emulator in the NVMe
driver is around 500 LOC, with an additional 200 LOC for
implementations of strict Barrier and Urgent storm.

5 Evaluation
These questions drive our evaluation: What is the overhead of
our cinterrupts emulation (§5.1)? How do device vendors and
admins select ∆ and thr (§5.2)? How does cinterrupts compare
to the default and the adaptive strategies in terms of latency
and throughput (§5.3)? How much does cinterrupts improve
latency and throughput in a variety of applications (§5.4)?

5.1 Methodology
Experimental Setup. We use two NVMe SSD devices: Intel
DC P3700, 400 GB [21] and Intel Optane DC P4800X, 375
GB [23]. We refer to them as P3700 and Optane.

Both SSDs are installed in a Dell PowerEdge R730 machine
equipped with two 14-core 2.0 GHz Intel Xeon E5-2660 v4
CPUs and 128 GB of memory running Ubuntu 16.04. The
server runs cinterrupts’ modified version of Linux 5.0.8 and
has C-states, Turbo Boost (dynamic clock rate control), and
SMT disabled. We use the maximum performance governor.

Our emulation pairs one dedicated core to one target core.
Each core is assigned its own NVMe submission and com-
pletion queue. The microbenchmarks are run on a single
core, but we run macrobenchmarks on multiple cores. For
our microbenchmarks, we use fio [4] version 3.12 to generate
workloads. All of our workloads are non-buffered random
access. We run the benchmarks for 60 seconds and report
averages of 10 runs.

For a consistent evaluation of cinterrupts, we implemented
an emulated version of the default strategy. Similar to the em-
ulation of cinterrupts we described in §4.2.1, device interrupts
are also emulated with IPIs.

Emulation Overhead. The cinterrupts emulation is
lightweight and its overheads come from sending the IPI
and cache contention from the dedicated core continuously
polling on the CQ memory of the target core. Table 2 summa-
rizes the overhead of emulation. We also show the overhead

Sync latency of 4 KB, µs
mitigations off default off off

baremetal baremetal emulation baremetal
system interrupts interrupts interrupts polling
P3700 80±29.0 81±29.1 82±28.2 78±28.1
Optane 10±1.3 11±1.3 10±1.2 8±1.2

Table 2: Emulation overhead is comparable with overhead of miti-
gations. Cinterrupts runs with mitigations disabled to compensate
for the emulation overhead.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 4 8 12 16 20

interarrival time [usec]

CDF of P3700

libaio
libaio batch

 0 4 8 12 16 20

CDF of Optane

libaio
libaio batch

Figure 14: Using interarrival CDF to determine ∆.

 200

 300

 400

 500

 0 5 10 15 20 25 30 35

threshold [thr]

Optane throughput [KIOPS]

libaio
libaio batch

 0
 100
 200
 300
 400

 0 5 10 15 20 25 30 35

threshold [thr]

Optane interrupts [K/s]

libaio
libaio batch

Figure 15: Determining thr under a fixed ∆ (∆=6 µs for Optane and
∆ = 15 µs for P3700). thr is the smallest value where throughput
plateaus, which is between 16-32, so we set thr= 32 for both devices.
We omitted P3700 thr results as it shows virtually the same behavior.

of mitigations for CPU vulnerabilities [31] to show that the
overhead of our emulation is comparable to the overhead of
the default mitigations for CPU. Therefore, our performance
numbers with mitigations disabled and emulation on mirrors
results from a server with mitigations enabled and emulation
off (cinterrupts implemented in real hardware).

Emulation imposes a modest 3-6% latency overhead for
both devices. There is a difference in emulation overhead
between the devices, which we suspect is due to each device’s
time lag between updating the CQ and actually sending an
interrupt. As the difference between the last column and the
first column shows, this lag varies between devices, and the
longer the lag, the smaller the overhead of emulation.

Baselines. We compare cinterrupts to our adaptive strategy
and to the default interrupt strategy, which does not coalesce.
The adaptive strategy is a proxy for comparison to NVMe
coalescing, which it outperforms (Section 3.2).

5.2 Selection of ∆ and thr
∆ should approximate the interarrival time of requests, which
depends on workload. Figure 14 shows the interarrival time
for two types of workloads. The first workload is a single-
threaded workload that submits read requests of size 4 KB

138 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

P
3

7
0

0

sync latency
[µsec]

1
.0

0
1
.1

9
1
.0

0

 0

 200

 400

 600

async IOPS
[1000s]

0
.7

6
1
.0

0
1
.0

0

 0

 200

 400

 600

async inter.
[1000s/sec]

1
5
.3

9
1
.0

0
1
.0

0

 0

 3

 6

 9

async cycles
[1000s/IO]

1
.3

2
1
.0

0
1
.0

0

 0

 20

 40

 60

O
p

ta
n

e

(a)

1
.0

0
1
.5

9
1
.0

0

 0

 200

 400

 600

(b)

0
.7

4
1
.0

0
1
.0

0

 0

 200

 400

 600

(c)

1
2
.3

9
0
.9

9
0
.9

9

 0

 3

 6

 9

(d)

1
.3

5
1
.0

0
1
.0

0

cint default adaptive ooocint

Figure 16: Workloads with only one type of request. Column (a)
shows latency of synchronous requests (lower is better); (b), (c) and
(d) show metrics for the asynchronous workload.

with libaio and iodepth=256. The second workload is the
same workload, except with batched requests. We run the
same workloads on P3700 and Optane, to show that vendors
or sysadmin will pick different ∆ for different devices.

When libaio submits batches, the CPU can send many more
requests to the device, resulting in lower interarrival times –
a 90th percentile of 1 µs in the batched case versus 6 µs in
the non-batched case for Optane. For P3700, both workloads
have a 99th percentile of 15 µs. We pick ∆ to minimize the
interrupt rate without adding unnecessary delay, so for P3700
we set ∆=15 µs and for Optane we set ∆=6 µs.

After fixing ∆, we sweep thr in the [0,256) range and select
the lowest thr after which throughput plateaus; the results are
shown in Figure 15. thr= 32 achieves high throughput and
low interrupt rate for both devices.

In practice, hardware vendors should use this methodology
to set default values to ∆ and thr for their devices, and system
administrators could tune these values for their workloads.

5.3 Microbenchmarks
We use fio to generate two workloads to show how cinterrupts
behaves at the extremes. The synchronous-only workload
submits blocking 4 KB reads via read. The asynchronous-
only workload submits 4 KB reads via libaio with iodepth
256 and batches of size 16. For each device, cinterrupts and
the adaptive strategy are configured with the same ∆ and thr.
The results are shown in Figure 16.

As in §3.3, the synchronous workload shows the draw-
back of the adaptive strategy, which adds exactly ∆=15 µs
to request latency for P3700 and ∆=6 µs for Optane (first
column of Figure 16). Cinterrupts remedies this with Urgent.
The default strategy performs as well as cinterrupts in the
synchronous workload, because it generates an interrupt for
every request. This strategy is penalized in the asynchronous
workload, where the default strategy generates 12-15x the
number of interrupts as cinterrupts.

interrupt thruput norm avg lat norm p99 lat norm
scheme [KIOPS] [ms] [ms]
cint 388±5.6 1.00 1.3±0.3 1.00 15.0±0.8 1.00
default 391±1.8 1.01 1.3±0.1 1.00 14.4±0.4 0.96
adaptive 391±4.6 1.01 1.3±0.4 1.00 14.2±0.9 0.95
app-cint 405±5.6 1.04 1.3±0.1 1.00 12.7±0.3 0.85

Table 3: Modifying RocksDB with annotations that make the flush
non-urgent (app-cint). Results are for database load (fillbatch ex-
periment in db_bench). Note that cint and default have the same
performance, within error bounds, which is expected for RocksDB.

Cinterrupts matches the synchronous latency of default,
while achieving up to 35% more asynchronous throughput,
and matches the asynchronous throughput of adaptive while
achieving up to 37% lower latency. Finally, OOO does not add
overhead to cinterrupts performance when it is not triggered.

5.4 Macrobenchmarks
To evaluate the effect of cinterrupts on real applications,
we run three application setups on Optane: RocksDB [64],
KVell [48], and RocksDB and KVell colocated on the same
cores. RocksDB is a widely used key-value store that uses
pread/pwrite system calls in its storage engine, and KVell is a
new key-value store employing Linux AIO in its storage en-
gine. Both applications use direct I/O. KVell uses default ker-
nel annotations (Barrier) while we will note when RocksDB
uses default annotations or the modified annotations described
in Section 4.1.2.

We run each application on two cores. In KVell, an addi-
tional four cores are allocated for clients. Cinterrupts is the
only strategy that performs the best across all three setups.

5.4.1 RocksDB

Load. Using db_bench [8], we load a database with 10 M
key-value pairs, with 16 byte keys and 1 KiB values. Dur-
ing the load phase, we compare the results under cinterrupts
where RocksDB is unmodified and modified. In unmodified
RocksDB, every I/O is labelled Urgent by default. In modified
RocksDB, background activity is non-Urgent as described in
Section 4.1.2. Table 3 shows the performance results.

We see that marking background activity as non-Urgent has
a modest but significant 4% increase in throughput without
affecting latency (app-cint vs cint). This is because delaying
the interrupts of background I/O does not affect foreground
latency. In fact, doing so actually decreases the tail latency of
foreground writes by 15%. Hence reducing the CPU pressure
caused by interrupts enables better p99 latency.

Steady State. After loading the database to 20GB, we run
two experiments from db_bench: readrandom, where each
thread reads randomly from the key space, and readwhilewrit-
ing, where one thread inserts keys and the rest of the threads
read randomly. The readwhilewriting experiment runs for 30
seconds. For each experiment, we also vary the number of

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 139

 0
 10
 20
 30
 40
 50

la
te

n
c
y

 d
e

g
ra

d
a

ti
o

n
 [

%
]

4 threads

35 33
39

8 threads

64 64

72

4 threads

158
178

230

8 threads

124128

149

readrandom readwhilewriting

-20
-10

 0
 10
 20
 30

th
ro

u
g

h
p

u
t

 d
e

g
ra

d
a

ti
o

n
 [

%
]

4 threads

 94100
 85

8 threads

112119
109

4 threads

 9
 8

 6 8 threads

 19
 20 20

cint default adaptive

Figure 17: Latency of get operation and throughput in RocksDB
for varying workloads. We show performance degradation with
respect to cinterrupts. Labels show absolute values in µs and KIOPS,
respectively. As expected, cinterrupts and the default strategy have
nearly the same performance within error bounds, but the adaptive
strategy has up to 45% worse latency and 5-32% worse throughput
due to the ∆ delay.

Workload Description
A update heavy: 50% reads, 50% writes
B read mostly: 95% reads, 5% writes
C read only: 100% reads
F read latest: 95% reads, 5% updates
D read-modify-write: 50% reads, 50% r-m-w
E scan mostly: 95% scans, 5% updates

Table 4: Summary of YCSB workloads.

threads. The latency of the get operation and throughput for
both experiments is shown in Figure 17.

As expected, for both metrics, cinterrupts and the default
strategy perform nearly the same because both generate in-
terrupts for every request; in the next two applications, the
default strategy will suffer due to this behavior. On the other
hand, adaptive does consistently worse because of its ∆ delay;
this is particularly noticeable in the latency measurements.
With 8 threads, this delay penalty is amortized across more
threads, which reduces the performance degradation.

Interestingly, modified RocksDB had similar performance
to unmodified RocksDB during these benchmarks. This is
because there is very little if any background I/O in the read-
random benchmark, and the write rate is not high enough
for the background I/O interrupts to affect foreground perfor-
mance in the readwhilewriting benchmark.

5.4.2 KVell

We use workloads derived from the YCSB benchmark [14],
summarized in Table 4. We load 80 M key-value pairs, with
24 byte keys and 1 KB item sizes for a dataset of size 80 GB.
Each workload does 20M operations. Figure 18 shows KVell
throughput, average latency, and 99th percentile latency for
each YCSB workload.

0.85

0.90

0.95

1.00

A B C F D

YCSB workload

n
o

rm
a

liz
e

d
 I

O
P

S

default
236

305
325

304

231

cint

251 311 339 308 247

a. cint vs. default

A B C F D

adaptive

250 308 334
309

244

cint

251 311 339 308 247

b. cint vs. adaptive

0.96
0.98
1.00
1.02
1.04
1.06
1.08

A B C F D

n
o

rm
a

liz
e

d
 a

v
g

 l
a

te
n

c
y 2.35

1.90

1.84

1.92

2.42

2.26 1.98 1.82 1.99 2.32

A B C F D

2.27 1.98
1.85

1.98
2.35

2.26 1.98 1.82 1.99 2.32

1.00

1.03

1.06

1.09

1.12

A B C F D

n
o

rm
a

liz
e

d
 p

9
9

 l
a

te
n

c
y

3.34

2.57
2.49

2.61

3.47

3.13 2.52 2.42 2.57 3.26

A B C F D

3.11
2.56 2.46

2.53

3.31

3.13 2.52 2.42 2.57 3.26

Figure 18: Throughput and latency results for YCSB on KVell. La-
bels show absolute throughput in KIOPS and latency in ms.

Throughput. Cinterrupts does better than default for
throughput, because default generates an interrupt for ev-
ery request. In contrast, cinterrupts uses Barrier to generate
an interrupt for a single batch, which consists of 10s of re-
quests. The difference between cinterrupts and default is more
pronounced for write-heavy workloads (A, D), but less pro-
nounced for read-heavy workloads (B, C, F) . This is because
reads are efficient in KVell, so there is some CPU idleness in
these workloads (3% idleness under default and 14% idleness
under cinterrupts).

The adaptive strategy performs similarly to cinterrupts be-
cause it is designed to detect bursts. Its delay is more pro-
nounced in latency measurements.

Latency. The adaptive strategy has 5-8% higher average
and 99th percentile latency than cinterrupts in all workloads.
Again, this is the effect of the ∆ delay, which cinterrupts reme-
dies with Barrier. Cinterrupts latency also does better than
the default, where interrupt handling and context switching
both add to the latency of requests and slow down the request
submission rate. The high number of interrupts in the default
strategy also adds to latency variability, which is noticeable
in the larger 99th percentile latencies.

YCSB-E. Scans are interesting because their latency is de-
termined by the completion of requests that can span multiple
submission boundaries. Table 5 shows throughput results for
YCSB-E with different scan lengths, and Figure 19 shows
latency CDFs for scans of length 16 and 256.

Similar to the other YCSB workloads, the adaptive strategy
again can almost match the throughput of cinterrupts, because
it is designed for batching. At higher scan lengths, factors such
as application-level queueing begin affecting scan throughput,
reducing the benefit of cinterrupts.

140 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

length=16 length=256
interrupt scans normalized scans normalized
scheme [KIOPS] [KIOPS]
cint 26.2±0.5 1.00 1.6±0.04 1.00
default 23.1±0.3 0.88 1.5±0.06 0.95
adaptive 24.9±0.6 0.95 1.6±0.02 0.97

Table 5: YCSB-E throughput results for KVell. Excessive interrupt
generation limits default throughput to 86%-89% of cinterrupts’.

0.0
0.2
0.4
0.6
0.8
1.0

 0.1 0.2 0.3 0.4 0.5
latency [ms]

C
D

F

YCSB-E, scan length=16

cint
default

adaptive

 2 2.5 3 3.5 4 4.5 5 5.5

YCSB-E, scan length=256

Figure 19: Latency CDF of scans of length 16 and 256 in KVell.

Figure 19 shows that there is a notable difference in scan
latency between cinterrupts and the default for both scan
lengths; the difference in 50th percentile latencies between
default and cinterrupts is around 600 µs for both scan lengths.
This difference is maintained at the 99th percentile latencies.

Notably, there is a 400µs difference between cinterrupts and
adaptive 50th percentile latencies when the scan length is 16,
which goes away when the scan length is 256. The adaptive
strategy does well in KVell’s asynchronous programming
model and longer scans are able to amortize the additional
delay over many requests.

5.5 Colocated Applications
We run two types of colocated applications to see the effects
of cinterrupts in consolidated datacenter environments.

5.5.1 RocksDB + Dump Tool

First we run two colocated instances that both use pread/p-
write, which means by default the kernel marks all I/O as
Urgent. The first is a regular RocksDB instance, and the sec-
ond is a RocksDB instance running the RocksDB dump tool.
As described in Section 4.1.2, we modify the RocksDB dump
tool to explicitly disable the Urgent bit on its I/O requests.

We load two databases with 10 M key-value pairs, as in
the previous section. Then, one database runs readrandom, as
in the previous section, while we run the dump tool on the
second database. We compare the performance of get requests
under modified and unmodified RocksDB in Table 6. app-cint
shows the results when the dump tool is modified.

By disabling Urgent in the dump tool, we increase the
throughput of get requests by 37%, decrease the average la-
tency by 32%, and decrease the 99th percentile latency by
86% compared to the kernel annotations cinterrupts. This
is not only from the reduced interrupt rate generated by the
dump tool, but also from the reduced I/O bandwidth generated

interrupt thruput norm get lat norm p99 lat norm
scheme [KIOPS] [ms] [ms]
cint 24.8±3.9 1.00 30.4±0.4 1.00 421±41 1.00
default 24.9±1.6 1.00 30.9±0.3 1.02 420±25 1.00
adaptive 20.2±0.7 1.02 43.9±0.5 1.44 85.1±7.0 0.15
app-cint 33.1±1.2 1.37 20.7±0.4 0.68 75.7±0.1 0.14

Table 6: Performance of RocksDB readrandom while the RocksDB
dump tool is running in the background. app-cint modifies the dump
tool to mark its I/O requests as non-urgent, boosting throughput and
latency of the foreground get operations. Interestingly, the adaptive
strategy can tame the tail latency (p99 lat) of get requests, but does
so at the expense of limited IOPS.

by the dump tool. On the other hand, the throughput of the
dump tool decreases by 11% under app-cint, but this is an
acceptable trade-off for the foreground improvements.

5.5.2 RocksDB + KVell

Finally, we run RocksDB and KVell on the same cores.
RocksDB runs the readrandom benchmark from before, and
KVell runs YCSB-C. We run two experiments, varying the
number of threads of the RocksDB instance. The latency of
RocksDB requests and the throughput of KVell is shown in
Tables 7 and 8.

When there are four RocksDB threads, the default strategy
matches the RocksDB latency of cinterrupts, but has 12% less
KVell throughput due to the excessive interrupt rate. Con-
versely, the adaptive strategy can match the KVell throughput
of cinterrupts, but has 11% worse RocksDB latency.

As before, when there are more RocksDB threads, the effect
of cinterrupts is less pronounced, because the CPU spends less
of its time handling interrupts and more of its time context-
switching and in userspace. Even so, cinterrupts still achieves
a modest 5-6% higher throughput and up to 6% better latency
than the other two strategies.

6 Cinterrupts for Networking
Figure 3 (in §2) shows that NICs suffer from similar prob-
lems as NVMe drives with respect to interrupts. A natural
future direction is applying cinterrupts to the networking
stack. Accomplishing this goal, however, is more challenging,
as explained next in the context of Ethernet.

Cooperation. For network cinterrupts to work, modifying
a single host (as in storage) is insufficient. Multiple commu-
nicating parties should be changed to agree on how cinter-
rupts semantics are communicated. In particular, transmitters
should be modified to send network packets that indicate
whether to fire an interrupt immediately upon reaching their
destination, and receivers should be modified to react accord-
ingly. Any interrupt-driven software routers along the way
should also preferably support cinterrupts.

Propagation. NVMe controllers deal with plaintext read
or write requests associated with pointers to buffers; the con-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 141

interrupt RocksDB normalized KVell normalized
scheme get lat [µs] [KIOPS]
cint 116±0.8 1.00 171±2.8 1.00
default 115±0.8 0.99 153±2.0 0.89
adaptive 129±0.0 1.11 171±2.0 1.00

Table 7: Results from colocated experiment: 4 RocksDB threads
and KVell. As expected, cinterrupts both has lower latency than the
adaptive strategy and higher throughput than the baseline.

interrupt RocksDB normalized KVell normalized
scheme get lat [µs] [KIOPS]
cint 164±0 1.00 131±1 1.00
default 163±0 0.99 123±0 0.94
adaptive 174±1 1.06 124±0 0.95

Table 8: Results from colocated experiment: 8 RocksDB threads and
KVell. The performance gains of cinterrupts is reduced with respect
to Table 7, because the CPU is both context-switching more and
spending more time in userspace.

troller either copies bytes from the buffers to the drive or vice
versa. This is true even when NVMe is encapsulated in other,
higher-level protocols, as is the case with, e.g., NVMe over
TCP over TLS encryption (denoted NVMeTLS [62]).

In contrast, network stacks are layered. NICs may oper-
ate at the Ethernet level, but the content of Ethernet frames
frequently encapsulates higher-level protocols, like IP, TCP,
UDP, and VXLAN. Crucially, the transmitted payload, which
includes headers of higher-level protocols, is oftentimes en-
crypted. For example, the payload in tunnel-mode IPsec pack-
ets [36] encapsulates encrypted IP and TCP headers. Bits in
these headers are thus unsuitable for communicating cinter-
rupts information, as the receiving NIC might not be able
to observe them. Consequently, to support cinterrupts, each
layer at the sender should be modified to explicitly propa-
gate cinterrupts information to its encapsulating layer, until a
low-enough protocol level is reached.

Within a data center, it seems reasonable to choose Ethernet
as the aforementioned low-enough protocol. In practice, how-
ever, there are no free Ethernet reserved bits or flags that can
be used for this purpose [68]. Cinterrupts bits can instead re-
side one level higher, at the least-encapsulated IP layer, as its
headers are not encrypted, and its “options” field [44] can be
used to add the extra bits. The downside is that other, non-IP
networks—such as RDMA over Converged Ethernet (RoCE)
[72] and Fiber Channel over Ethernet (FCoE) [32]—should
be handled separately, in some other way.

Segmentation. TCP performance is accelerated by NIC
offloading functionality, which significantly reduces CPU pro-
cessing overhead. Notably, upon transmit, software may use
TSO (TCP segmentation offload) to hand a sizable (≤64KB)
TCP segment to the NIC, relying on the NIC to split the outgo-
ing segment into a sequence of (≤MTU) Ethernet frames [51].
Likewise, with LRO (large receive offload), the NIC may

reassemble multiple incoming frames into a single sizable
segment before handing it to software [51, 52].

Storage cinterrupts affect only the timing and number of
device interrupts. Network cinterrupts can also increase the
number of I/O requests and thus the CPU usage, assuming
TSO and LRO are not applied beyond cinterrupts. To illustrate,
assume {Mi}15

i=0 is a consecutive series of 1KB messages,
each individually associated with a cinterrupt. To optimize
latency, differently than what frequently happens on existing
systems, {Mi}15

i=0 should seemingly not be aggregated into a
single 16KB TCP segment at the sender before it is handed
to the NIC (leveraging TSO), nor should it be aggregated to a
single segment by the receiver NIC (leveraging LRO); other-
wise only the cinterrupt of M15 will survive. But such a policy
might inadvertently degrade both latency and throughput if
the CPUs of the sender or receiver are saturated, necessitating
a more sophisticated policy that considers CPU usage.

URG and PSH. The TCP flags URG and PSH seem re-
lated to cinterrupts. But even if ignoring the aforementioned
propagation problem, in practice, the semantics of these flags
are sufficiently different that they cannot be repurposed for
cinterrupts. Specifically, URG is used to implement socket
out-of-band communication [27, 29, 54], and its usage model
involves the POSIX SIGURG signal. (URG also has security
implications [28, 29, 80], and middleboxes and firewalls tend
to clear it by default [12, 59].) When examining how PSH is
used in the Linux network stack (see calls to the tcp_push and
tcp_mark_push functions in the source code), we find that it
is used in many more circumstances than is appropriate for
cinterrupts. For example, sending a 16KB message using a
single write system call frequently results in four Ethernet
frames encapsulating PSH segments, instead of one.

7 Conclusion
In this paper we show that the existing NVMe interrupt co-
alescing API poses a serious limitation on practical coalesc-
ing. In addition to devising an adaptive coalescing strategy
for NVMe, our main insight is that software directives are
the best way for a device to generate interrupts. Cinterrupts,
with a combination of Urgent, Barrier, and the adaptive burst-
detection strategy, generates interrupts exactly when a work-
load needs them, enabling workloads to experience better
performance even in a dynamic environment. In doing so,
cinterrupts enables the software stack to take full advantage
of existing and future low-latency storage devices.

8 Acknowledgements
We are deeply indebted to our shepherd, Orran Krieger, for
helping shape the final version of this paper. We are also grate-
ful to the anonymous reviewers for their comments that have
greatly improved this paper. We also thank Marcos Aguilera,
Nadav Amit, and Jon Howell for discussions and comments
on earlier iterations of this work.

142 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Administration and data access tool. https://github.com/face

book/rocksdb/wiki/Administration-and-Data-Access-Tool.
Accessed: May, 2021.

[2] Irfan Ahmad, Ajay Gulati, and Ali Mashtizadeh. vIC: Interrupt co-
alescing for virtual machine storage device IO. In USENIX Annual
Technical Conference (USENIX ATC), 2011.

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda. Less is more: trading a little band-
width for ultra-low latency in the data center. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2012.

[4] Jens Axboe. Flexible I/O tester. https://github.com/axboe/fio.
Accessed: May, 2021.

[5] Jens Axboe. Linux kernel mailing list, blk-mq: make the polling
code adaptive. https://lkml.org/lkml/2016/11/3/548, 2016. Ac-
cessed: May, 2021.

[6] Pavel Begunkov. Linux kernel mailing list, blk-mq: Adjust hybrid
poll sleep time. https://lkml.org/lkml/2019/4/30/120, 2019.
Accessed: May, 2021.

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operat-
ing system for high throughput and low latency. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

[8] Benchmarking tools. https://github.com/facebook/rocksdb/wi
ki/Benchmarking-tools. Accessed: May, 2021.

[9] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet.
Linux block IO: introducing multi-queue ssd access on multi-core
systems. In International Systems and Storage Conference (SYSTOR),
2013.

[10] Block IO controller. https://www.kernel.org/doc/Documentat
ion/cgroup-v1/blkio-controller.txt. Accessed: May, 2021.

[11] Keith Bush. Linux nvme mailing list: nvme pci interrupt han-
dling improvements. https://lore.kernel.org/linux-nvme/
20191209175622.1964-1-kbusch@kernel.org/, 2019. Accessed:
May, 2021.

[12] Cisco Systems, Inc. Cisco ASA series command reference:
urgent-flag. https://www.cisco.com/c/en/us/td/docs/
security/asa/asa-cli-reference/T-Z/asa-command-ref-T-
Z/u-commands.html#wp2606000884, 2021. Accessed: May, 2021.

[13] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin
Farach-Colton, Richard Spillane, Amy Tai, and Rob Johnson. Splin-
terDB: Closing the bandwidth gap for NVMe key-value stores. In
USENIX Annual Technical Conference (USENIX ATC), 2020.

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB.
In 1st ACM symposium on Cloud computing (SoCC), 2010.

[15] Jonathan Corbet. Batch processing of network packets. https://
lwn.net/Articles/763056/. Accessed: May, 2021.

[16] Jonathan Corbet. Driver porting: Network drivers. https://lwn.net/
Articles/30107/. Accessed: May, 2021.

[17] Intel Corporation. Intel Optane SSD DC D4800X Product Brief.
https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/optane-ssd-dc-d4800x-product-
brief.pdf. Accessed: May, 2021.

[18] Intel Corporation. Intel Optane technology for data centers.
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-technology/optane-for-data-
centers.html. Accessed: May, 2021.

[19] Intel Corporation. Intel data direct I/O technology (Intel DDIO):
A primer. https://www.intel.com/content/dam/www/public/
us/en/documents/technology-briefs/data-direct-i-o-
technology-brief.pdf, 2012. Accessed: May, 2021.

[20] Intel Corporation. Intel Ethernet Converged Network Adapter XL710.
https://ark.intel.com/content/www/us/en/ark/products/
83967/intel-ethernet-converged-network-adapter-xl710-
qda2.html, 2014. Accessed: May, 2021.

[21] Intel Corporation. Intel SSD DC P3700 Series. https://ark.intel.
com/content/www/us/en/ark/products/79624/intel-ssd-dc-
p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html,
2014. Accessed: May, 2021.

[22] Intel Corporation. Intel Optane SSD 900P Series. https://
ark.intel.com/content/www/us/en/ark/products/123623/
intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-
20nm-3d-xpoint.html, 2017. Accessed: May, 2021.

[23] Intel Corporation. Intel Optane SSD DC P4800X Series.
https://ark.intel.com/content/www/us/en/ark/products/
97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-
pcie-x4-3d-xpoint.html, 2017. Accessed: May, 2021.

[24] Intel Corporation. Intel Optane SSD DC P5800X Series.
https://ark.intel.com/content/www/us/en/ark/products/
201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-
pcie-x4-3d-xpoint.html, 2018. Accessed: May, 2021.

[25] Intel Corporation. Intel SSD DC P4618 Series. https://
ark.intel.com/content/www/us/en/ark/products/192574/
intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-
x8-3d2-tlc.html, 2019. Accessed: May, 2021.

[26] Microsoft Corporation. Microsoft Documentation: Op-
timize performance on the Lsv2-series virtual machines.
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/storage-performance, 2019. Accessed:
May, 2021.

[27] Kevin R. Fall and W. Richard Stevens. TCP/IP Illustrated, Volume 1:
The Protocols. Addison-Wesley, 2011.

[28] Fernando Gont. Survey of Security Hardening Methods for Trans-
mission Control Protocol (TCP) Implementations. Technical report,
Internet Engineering Task Force, March 2012. Work in Progress.

[29] Fernando Gont and Andrew Yourtchenko. On the Implementation
of the TCP Urgent Mechanism. RFC 768, Internet Engineering Task
Force, 2011.

[30] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is dead: Long live
KASLR. In International Symposium on Engineering Secure Software
and Systems (ESSoS), 2017.

[31] Hardware vulnerabilities, The Linux kernel user’s and administrator’s
guide. https://www.kernel.org/doc/html/latest/admin-guid
e/hw-vuln/index.html. Accessed: May, 2021.

[32] John Hufferd. Fibre Channel over Ethernet (FCoE). https://
www.snia.org/educational-library/fibre-channel-over-
ethernet-fcoe-2013-2013, 2013. Accessed: May, 2021.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 143

https://github.com/facebook/rocksdb/wiki/Administration-and-Data-Access-Tool
https://github.com/facebook/rocksdb/wiki/Administration-and-Data-Access-Tool
https://github.com/axboe/fio
https://lkml.org/lkml/2016/11/3/548
https://lkml.org/lkml/2019/4/30/120
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://lore.kernel.org/linux-nvme/20191209175622.1964-1-kbusch@kernel.org/
https://lore.kernel.org/linux-nvme/20191209175622.1964-1-kbusch@kernel.org/
https://www.cisco.com/c/en/us/td/docs/security/asa/asa-cli-reference/T-Z/asa-command-ref-T-Z/u-commands.html#wp2606000884
https://www.cisco.com/c/en/us/td/docs/security/asa/asa-cli-reference/T-Z/asa-command-ref-T-Z/u-commands.html#wp2606000884
https://www.cisco.com/c/en/us/td/docs/security/asa/asa-cli-reference/T-Z/asa-command-ref-T-Z/u-commands.html#wp2606000884
https://lwn.net/Articles/763056/
https://lwn.net/Articles/763056/
https://lwn.net/Articles/30107/
https://lwn.net/Articles/30107/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-d4800x-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-d4800x-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-d4800x-product-brief.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/79624/intel-ssd-dc-p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79624/intel-ssd-dc-p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79624/intel-ssd-dc-p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/storage-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/storage-performance
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/index.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/index.html
https://www.snia.org/educational-library/fibre-channel-over-ethernet-fcoe-2013-2013
https://www.snia.org/educational-library/fibre-channel-over-ethernet-fcoe-2013-2013
https://www.snia.org/educational-library/fibre-channel-over-ethernet-fcoe-2013-2013

[33] Intel. DPDK: Data plane development kit. https://www.dpdk.org,
2014. Accessed: May, 2021.

[34] Rick A. Jones. Netperf: A network performance benchmark. http
s://github.com/HewlettPackard/netperf, 1995. Accessed: May,
2021.

[35] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker,
and Amin Vahdat. Chronos: Predictable low latency for data center
applications. In Third ACM Symposium on Cloud Computing (SoCC),
2012.

[36] S. A. Kent and R. Atkinson. Security architecture for the internet
protocol. RFC 2401, Internet Engineering Task Force, November 1998.

[37] Byungseok Kim, Jaeho Kim, and Sam H. Noh. Managing array of
SSDs when the storage device is no longer the performance bottle-
neck. In USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2017.

[38] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDirect:
A user-space I/O framework for application-specific optimization on
NVMe SSDs. In USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2016.

[39] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu Jeong. En-
lightening the I/O path: a holistic approach for application performance.
In USENIX Conference on File and Storage Technologies (FAST), 2017.

[40] Avi Kivity. Wasted processing time due to nvme interrupts. ht
tps://github.com/scylladb/seastar/issues/507, 2018. Ac-
cessed: May, 2021.

[41] Sungjoon Koh, Junhyeok Jang, Changrim Lee, Miryeong Kwon, Jie
Zhang, and Myoungsoo Jung. Faster than flash: An in-depth study of
system challenges for emerging ultra-low latency SSDs. In IEEE Inter-
national Symposium on Workload Characterization (IISWC), 2019.

[42] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and Myoungsoo Jung.
Exploring system challenges of ultra-low latency solid state drives. In
USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage), 2018.

[43] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping the
performance of fast NVM storage with uDepot. In USENIX Conference
on File and Storage Technologies (FAST), 2019.

[44] Charles M. Kozierok. The TCP/IP guide. http://www.tcpipgui
de.com/free/t_IPDatagramOptionsandOptionFormat.htm. Ac-
cessed: May, 2021.

[45] Damien Le Moal. I/O latency optimization with polling. Linux Storage
and Filesystems Conference (VAULT), 2017.

[46] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and
Jinkyu Jeong. Asynchronous I/O stack: a low-latency kernel I/O stack
for ultra-low latency SSDs. In USENIX Annual Technical Conference
(USENIX ATC), 2019.

[47] Ming Lei. Linux-nvme mailing list: nvme-pci: check CQ after batch
submission for Microsoft device. https://lore.kernel.org/li
nux-nvme/20191114025917.24634-3-ming.lei@redhat.com/,
2019. Accessed: May, 2021.

[48] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
KVell: the design and implementation of a fast persistent key-value
store. In ACM Symposium on Operating Systems Principles (SOSP),
2019.

[49] Jacob Leverich and Christos Kozyrakis. Reconciling high server utiliza-
tion and sub-millisecond quality-of-service. In European Conference
on Computer Systems (EuroSys), 2014.

[50] Long Li. Linux kernel mailing list: fix interrupt swamp in NVMe. ht
tps://lkml.org/lkml/2019/8/20/45, 2019. Accessed: May, 2021.

[51] Linux kernel documentation. Segmentation offloads.
https://www.kernel.org/doc/html/latest/networking/
segmentation-offloads.html, 2021. Accessed: May, 2021.

[52] Mellanox Technologies. How to enable large receive offload
(LRO). https://community.mellanox.com/s/article/how-to-
enable-large-receive-offload--lro-x, 2020. Accessed: May,
2021.

[53] Merriam-Webster. "Calibrate". https://www.merriam-webster.co
m/dictionary/calibrate, 2020. Accessed: May, 2021.

[54] Microsoft Corporation. OOB Data in TCP. https://docs
.microsoft.com/en-us/windows/win32/winsock/protocol-
independent-out-of-band-data-2#oob-data-in-tcp, 2018.
Accessed: May, 2021.

[55] Jeffrey C. Mogul and Kadangode K. Ramakrishnan. Eliminating re-
ceive livelock in an interrupt-driven kernel. In USENIX Annual Techni-
cal Conference (ATEC), 1996.

[56] Rikin J. Nayak and Jaiminkumar B. Chavda. Comparison of accelerator
coherency port (ACP) and high performance port (HP) for data transfer
in DDR memory using Xilinx ZYNQ SoC. In International Conference
on Information and Communication Technology for Intelligent Systems
(ICTIS), 2017.

[57] NVM Express, Revision 1.3. https://nvmexpress.org/wp-cont
ent/uploads/NVM_Express_Revision_1.3.pdf. Accessed: May,
2021.

[58] NVM Express, Revision 1.4, Figure 284. https://nvmexpress.org/
wp-content/uploads/NVM-Express-1_4-2019.06.10-
Ratified.pdf. Accessed: May, 2021.

[59] Palo Alto Networks. How to preserve the TCP URG flag and
pointer. https://knowledgebase.paloaltonetworks.com/KCSA
rticleDetail?id=kA10g000000ClWACA0, 2018. Accessed: May,
2021.

[60] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and
Angelos Bilas. Tucana: Design and implementation of a fast and
efficient scale-up key-value store. In USENIX Annual Technical Con-
ference (USENIX ATC), 2016.

[61] Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Ar-
rakis: The operating system is the control plane. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

[62] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran Liss, Adam Morri-
son, and Dan Tsafrir. Autonomous NIC offloads. In ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2021.

[63] preadv2(2) — Linux manual page. https://man7.org/linux/man-
pages/man2/preadv2.2.html. Accessed: May, 2021.

[64] RocksDB. https://github.com/facebook/rocksdb. Accessed:
May, 2021.

[65] Woong Shin, Qichen Chen, Myoungwon Oh, Hyeonsang Eom, and
Heon Y. Yeom. OS I/O path optimizations for flash solid-state drives.
In USENIX Annual Technical Conference (USENIX ATC), 2014.

[66] Livio Soares and Michael Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2010.

144 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.dpdk.org
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/scylladb/seastar/issues/507
https://github.com/scylladb/seastar/issues/507
http://www.tcpipguide.com/free/t_IPDatagramOptionsandOptionFormat.htm
http://www.tcpipguide.com/free/t_IPDatagramOptionsandOptionFormat.htm
https://lore.kernel.org/linux-nvme/20191114025917.24634-3-ming.lei@redhat.com/
https://lore.kernel.org/linux-nvme/20191114025917.24634-3-ming.lei@redhat.com/
https://lkml.org/lkml/2019/8/20/45
https://lkml.org/lkml/2019/8/20/45
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://community.mellanox.com/s/article/how-to-enable-large-receive-offload--lro-x
https://community.mellanox.com/s/article/how-to-enable-large-receive-offload--lro-x
https://www.merriam-webster.com/dictionary/calibrate
https://www.merriam-webster.com/dictionary/calibrate
https://docs.microsoft.com/en-us/windows/win32/winsock/protocol-independent-out-of-band-data-2#oob-data-in-tcp
https://docs.microsoft.com/en-us/windows/win32/winsock/protocol-independent-out-of-band-data-2#oob-data-in-tcp
https://docs.microsoft.com/en-us/windows/win32/winsock/protocol-independent-out-of-band-data-2#oob-data-in-tcp
https://nvmexpress.org/wp-content/uploads/NVM_Express_Revision_1.3.pdf
https://nvmexpress.org/wp-content/uploads/NVM_Express_Revision_1.3.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClWACA0
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClWACA0
https://man7.org/linux/man-pages/man2/preadv2.2.html
https://man7.org/linux/man-pages/man2/preadv2.2.html
https://github.com/facebook/rocksdb

[67] SPDK: Storage performance development kit. https://spdk.io/.
Accessed: May, 2021.

[68] Charles E. Spurgeon and Joann Zimmerman. Ethernet: The definitive
guide, 2nd edition. https://www.oreilly.com/library/view/et
hernet-the-definitive/9781449362980/ch04.html. Accessed:
May, 2021.

[69] Steven Swanson and Adrian M. Caulfield. Refactor, reduce, recycle:
Restructuring the IO stack for the future of storage. Computer, 2013.

[70] Billy Tallis. Intel Optane SSD DC P4800X 750GB hands-on re-
view. https://www.anandtech.com/show/11930/intel-optane-
ssd-dc-p4800x-750gb-handson-review/3, 2017. Accessed: May,
2021.

[71] Mellanox Technologies. Mellanox ConnectX-5 VPI Adapter.
https://www.mellanox.com/files/doc-2020/pb-connectx-5-
vpi-card.pdf, 2018. Accessed: May, 2021.

[72] The RoCE Initiative. RoCE is RDMA over Converged Ethernet. http
s://www.roceinitiative.org. Accessed: May, 2021.

[73] Dan Tsafrir. The context-switch overhead inflicted by hardware in-
terrupts (and the enigma of do-nothing loops). In ACM Workshop on
Experimental Computer Science (ExpCS), 2007.

[74] John E. Uffenbeck. The 80x86 family: design, programming, and
interfacing. Prentice Hall PTR, 1997.

[75] Western Digital Corporation. Ultrastar DC SN200. https://
documents.westerndigital.com/content/dam/doc-library/
en_us/assets/public/western-digital/product/data-
center-drives/ultrastar-nvme-series/data-sheet-
ultrastar-dc-sn200.pdf. Accessed: May, 2021.

[76] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu
Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. Per-
formance analysis of NVMe SSDs and their implication on real world

dtabases. In ACM International Systems and Storage Conference (SYS-
TOR), 2015.

[77] Jisoo Yang, Dave B. Minturn, and Frank Hady. When poll is better than
interrupt. In USENIX Conference on File and Storage Technologies
(FAST), 2012.

[78] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. Redline: First class support for interactivity in
commodity operating systems. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2008.

[79] Tom Yates. Improvements to the block layer. https://lwn.net/
Articles/735275/. Accessed: May, 2021.

[80] Young Yoon, Jae Yong Oh, and Young Min Yoon. NIDS evasion
method named "SeolMa". Phrack Magazine, Volume 0x0b, Issue 0x39,
2001.

[81] Young Jin Yu, Dong In Shin, Woong Shin, Nae Young Song, Jae Woo
Choi, Hyeong Seog Kim, Hyeonsang Eom, and Heon Young Yeom.
Optimizing the block I/O subsystem for fast storage devices. ACM
Transactions on Computer Systems (TOCS), 2014.

[82] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh, Changlim
Lee, Mohammad Alian, Myoungjun Chun, Mahmut Taylan Kandemir,
Nam Sung Kim, Jihong Kim, and Myoungsoo Jung. FlashShare: Punch-
ing through server storage stack from kernel to firmware for ultra-low
latency SSDs. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018.

[83] Jie Zhang, Miryeong Kwon, Michael Swift, and Myoungsoo Jung. Scal-
able parallel flash firmware for many-core architectures. In USENIX
Conference on File and Storage Technologies (FAST), 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 145

https://spdk.io/
https://www.oreilly.com/library/view/ethernet-the-definitive/9781449362980/ch04.html
https://www.oreilly.com/library/view/ethernet-the-definitive/9781449362980/ch04.html
https://www.anandtech.com/show/11930/intel-optane-ssd-dc-p4800x-750gb-handson-review/3
https://www.anandtech.com/show/11930/intel-optane-ssd-dc-p4800x-750gb-handson-review/3
https://www.mellanox.com/files/doc-2020/pb-connectx-5-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-vpi-card.pdf
https://www.roceinitiative.org
https://www.roceinitiative.org
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://lwn.net/Articles/735275/
https://lwn.net/Articles/735275/

	Introduction
	Background and Related Work
	Cinterrupts
	Design Overview
	Adaptive Coalescing
	Urgent
	Barrier
	Out-of-Order Urgent

	Implementation
	Software Modifications
	Kernel Modifications
	Application Case Studies

	Hardware Modifications
	Firmware Emulation

	Discussion

	Evaluation
	Methodology
	Selection of and thr
	Microbenchmarks
	Macrobenchmarks
	RocksDB
	KVell

	Colocated Applications
	RocksDB + Dump Tool
	RocksDB + KVell

	Cinterrupts for Networking
	Conclusion
	Acknowledgements

