
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

CLP: Efficient and Scalable Search
on Compressed Text Logs

Kirk Rodrigues, Yu Luo, and Ding Yuan, University of Toronto and YScope Inc.
https://www.usenix.org/conference/osdi21/presentation/rodrigues

CLP: Efficient and Scalable Search on Compressed Text Logs

Kirk Rodrigues, Yu Luo, Ding Yuan
University of Toronto & YScope Inc.

Abstract
This paper presents the design and implementation of CLP, a
tool capable of losslessly compressing unstructured text logs
while enabling fast searches directly on the compressed data.
Log search and log archiving, despite being critical problems,
are mutually exclusive. Widely used log-search tools like
Elasticsearch and Splunk Enterprise index the logs to provide
fast search performance, yet the size of the index is within the
same order of magnitude as the raw log size. Commonly used
log archival and compression tools like Gzip provide high
compression ratio, yet searching archived logs is a slow and
painful process as it first requires decompressing the logs. In
contrast, CLP achieves significantly higher compression ratio
than all commonly used compressors, yet delivers fast search
performance that is comparable or even better than Elastic-
search and Splunk Enterprise. In addition, CLP outperforms
Elasticsearch and Splunk Enterprise’s log ingestion perfor-
mance by over 13x, and we show CLP scales to petabytes of
logs. CLP’s gains come from using a tuned, domain-specific
compression and search algorithm that exploits the significant
amount of repetition in text logs. Hence, CLP enables effi-
cient search and analytics on archived logs, something that
was impossible without it.

1 Introduction

Today, technology companies easily generate petabytes of log
data per day. For example, eBay reported generating 1.2 PB
of logs per day in 2018 [46]. This data can be used for a
variety of important use cases including security forensics,
business insights, trend analysis, resource optimization, and
so on. Since many of these cases benefit from large amounts
of data, companies strive to retain their logs for as long as
possible. Moreover, some industries (e.g., health services) are
required by law to store their logs for up to six years [5].

However, storing and analyzing a large amount of log data
impose significant costs. Although it is difficult to obtain
transparent, publicly available information about companies’
storage costs, studies have estimated that a lower bound for
capital depreciation and operational costs could be on the
order of two cents per gigabyte, per month [7]. For a company
like eBay, this translates to over $50 million to store the logs
generated in a year, and nearly $500 million to store the logs

generated over three years. As a result, the log management
industry has grown incredibly large.

Currently, Elastic [2] and Splunk [4] are two of the largest
companies in the industry. In just their last fiscal year, Elastic
reported revenue of $428 million with a total of 11,300 cus-
tomers [14] while Splunk reported revenue of $2.359 billion
with 19,400 customers [36]. Moreover, their offerings, Elas-
ticsearch [15] and Splunk Enterprise [37], are used by several
large companies like eBay, Verizon, and Netflix.

Tools like Splunk Enterprise and Elasticsearch operate by
generating external indexes on the log messages during in-
gestion. Then in response to a query, these tools can quickly
search the indexes corresponding to the logs, decompressing
only the chunks of data that may contain logs matching the
search phrase. Elasticsearch, for example, is built around a
general-purpose search engine Lucene [42]. However, this
approach comes at the cost of a large amount of storage space
and memory usage. Although these tools apply light com-
pression to the logs, the indexes often consume an amount of
space that is the same order of magnitude as the raw logs’ size;
furthermore, these indexes must be kept mostly in memory or
on fast random access storage in order to be fully effective.
Thus, Splunk Enterprise and Elasticsearch users with large
amounts of data can only afford to retain their indexed logs
for a short period, typically a few weeks [8].

To avoid discarding logs at the end of their retention pe-
riod, companies can use industry-standard compression tools
like Gzip [21] to archive them, potentially gaining a 95%
reduction in storage costs. In addition, recent advancements
in compression algorithms like Zstandard [16] bring signif-
icantly improved compression and decompression speeds.
However, these general-purpose compressors are not designed
with search (on compressed data) in mind. They typically en-
code duplicates in length-distance pairs [40, 49], i.e., starting
from the current position, if the next L (length) characters
are the same as the ones starting at D (distance) behind, we
can encode the next L characters with (D,L), and directly
embed this pair at the current position, an approach known as
an internal macro scheme [40]. Performing searches on this
archived data, however, is painful and slow—the tool needs
to sequentially scan the entire data set, essentially decom-
pressing the data. This leads to the unfortunate reality that log
analysis and log archiving are generally mutually exclusive.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 183

To bridge this gap, we have created a method for lossless
log compression that still allows efficient searches on the
compressed data, without the need to decompress every log
message. It works by combining a domain-specific compres-
sion and search algorithm with a lightweight general-purpose
compression algorithm. The former allows us to achieve a
modest amount of compression without sacrificing search
performance. The latter increases the overall compression
ratio significantly with a minor impact on compression and
decompression performance.

The domain-specific compression algorithm uses an ex-
ternal macro scheme, i.e., it extracts the duplicated patterns
into a dictionary that is stored separately from the encoded
log messages [40]. A search query will be processed by first
searching in the dictionary, and then searching those encoded
messages for which the dictionary search suggests possible
matches. This method relies on the simple observation that to-
day’s software logs contain a large amount of repetitive static
text. By systematically separating the static text from the vari-
able values, the algorithm can deduplicate the static text into
a dictionary. Applying a similar process to the variable values,
the algorithm converts an entire log message into a series of
integers and dictionary entries that are easily compressible
using a general-purpose compressor.

The search process similarly encodes the query string as a
compressed message and searches for a match; but supporting
queries with wildcards makes this process significantly more
involved. For example, a wildcard can make it ambiguous
whether a token is part of the message’s static text or whether
it is part of a variable. As a result, the algorithm must consider
the effect of wildcards at every stage of the encoding and
search process.

Using this method of compression and search, we have built
an end-to-end log management tool, CLP1, that enables real-
time data ingestion, search, analytics, and alerting on top of an
entire history of logs. CLP is agnostic to the format of logs and
can ingest heterogeneous and unstructured logs. As a result,
CLP is capable of reducing the size of currently archived logs
while simultaneously enabling search and analytics on the
compressed data.

Our evaluation shows that CLP’s compression ratio is sig-
nificantly higher compared to all tested compressors (e.g., 2x
of Gzip), while enabling efficient search on compressed data.
This comparison even includes industry-standard tools like Zs-
tandard at their highest (and slowest) compression level. Fur-
thermore, CLP’s search speed outperforms commonly used
sequential search tools on compressed data by 8x in a wide
range of queries. Even compared with index-based log-search
tools Splunk Enterprise and Elasticsearch, CLP outperforms
them by 4.2x and 1.3x respectively. CLP’s distributed archi-
tecture further allows it to scale to petabytes of logs. CLP is
open-sourced and can be found at https://yscope.com. It

1CLP stands for Compressed Log Processor

is also hosted in the cloud so users can use it as a service.
CLP’s main limitation is that its algorithm is designed pri-

marily for text logs. This is not a problem in the vast majority
of software logs that we have seen, but we acknowledge that
there are projects that log primarily binary or structured data.
However, if converted to text with a verbose schema, these
logs can be compressed and searched using CLP without
additional overhead.

The rest of this paper is organized as follows. §2 describes
the core elements of CLP’s design for compression and search.
§3 details how CLP handles the various intricacies of han-
dling wildcards and patterns of variables. §4 describes our
syntax for variable patterns. §5 explains how CLP can cache
queries in reusable manner for performance. §6 describes a
characteristic of CLP’s compression format that can be used
for privacy control. §7 discusses the evaluation results of CLP
compared with other tools. Finally, §8 discusses related work,
before we conclude in §9.

2 Design Overview

CLP is a complete end-to-end system for ingesting, archiv-
ing, searching, and analyzing log messages. Figure 1 shows
an overview of CLP’s compression and search architecture.
Within the compression architecture, logs can be ingested ei-
ther through CLP’s real-time ingestion engine (e.g., from rsys-
log, Fluentd, Logstash, etc.) or by reading them directly from
local or cloud storage (e.g., Amazon S3 [29]). The compres-
sion nodes compress the ingested logs into a set of archives.
Users can access the compressed logs transparently using a
Unix terminal through the Filesystem in Userspace (FUSE)
layer or by querying them through CLP’s search interface.

CLP allows users to query their logs using a wildcard
search followed by a series of operators. An example query is
shown in Figure 2, containing four commands pipelined with
a Unix-style pipe (‘|’). The first command returns all log mes-
sages matching the search phrase (‘*’ is a wildcard character
that matches zero or more characters). Results are piped to the
regex operator which uses a regular expression to extract the
container ID and operation runtime, storing them in user de-
fined variables. Next, the filter operator filters for runtimes
that are above “0.1”. Finally, the unique operator generates
a list of unique container IDs that satisfy the filter. Overall,
this query returns the unique containers where the assignment
operation took over 0.1 seconds in the 172.128.*.* subnet.
We refer to this type of query as a pipelined query.

CLP’s search architecture supports pipelined queries by
combining search nodes with a MapReduce-style [11] frame-
work. CLP receives queries through its web UI or Python
APIs. Queries are first serviced by the search nodes which
perform a wildcard search on the archives. Results are then
forwarded to the operator nodes, after which the final results
are sent back to the user. Users can also create alerts that
trigger when newly added log messages satisfy a saved query.

184 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://yscope.com

Timestamp

Timestamp

Timestamp

Logtype ID

Logtype ID

Logtype ID

Variable IDs & values

Variable IDs & values

Variable IDs & values

Segment

Logtype

table

Variable

table

Archive

Deduplicate & Encode

Lightweight Compress

(Zstandard)

Compress Compressed Data Format

Text logs

Search

Command Line

Figure 1: Overall architecture of CLP.

"Task * assigned to container*:172.128" |
regex "(?<container>container_\d+).* took (?<runtime>\d+)"
| filter float(runtime) > 0.1 | unique container

Figure 2: A query example. CLP operator and keywords are in blue,
and user-defined variables are in red.

Note that because search is the first stage of every query, it is
also the most important for performance since it operates on
compressed data and all other stages operate on the decom-
pressed data it outputs.

We aim to satisfy three objectives with this design: First,
logs should be compressed losslessly so that users can delete
their original logs without worrying that CLP would destruc-
tively transform them (e.g., by changing the precision of
floating-point values). Second, users should be able to search
their logs for any value, in contrast to index-based search tools
which typically only allow searches for indexed values. For
example, unlike grep-like tools that respect all characters in
a search phrase, indexed-based search tools typically ignore
punctuation and stop words (e.g., “and”). Finally, CLP should
be performant and scalable so that users can use it to ingest
and search a large amount of log data while saving on storage
costs. By satisfying these objectives, we aim to bridge the
gap between conventional log archival and search, e.g., using
gzip and grep, and large-scale log analysis, e.g., using Splunk
Enterprise or Elasticsearch.

The core of CLP is implemented in C++ for performance
while higher-level functionality is built in a variety of lan-
guages from Java to JavaScript.

2.1 Compression

CLP’s compression consists of two steps: first it deduplicates
highly repetitive parts of each log message and encodes them
in a special format, then it applies a lightweight compressor
to the encoded data, further reducing its size. This section
focuses on explaining the first step.

CLP splits each message into three pieces: 1) the log type,
which is typically the static text that is highly repetitive, 2)
variable values, and 3) the timestamp (if the message con-
tains one). CLP further separates variable values into two

categories: those that are repetitive, such as various identifiers
(e.g., a username), and those that are not (e.g., a job’s com-
pletion time). We refer to the former as dictionary variables
since CLP extracts and stores them in a dictionary; the lat-
ter are called non-dictionary variables. Figure 3 shows a log
message and how CLP converts it into a compressed form.
Overall, this requires parsing the message to extract the afore-
mentioned components and then compressing it using CLP’s
domain-specific compression algorithm.

2.1.1 Parsing Messages

CLP parses logs using a set of user-specified rules for match-
ing variables. For example, Figure 4 lists a set of rules that
can be used to parse the example log message. Lines 3–5
contain three dictionary variable schemas and line 8 contains
a non-dictionary variable schema. This is similar to tools
like Elasticsearch and Splunk Enterprise that either provide
application-specific parsing rules or ask users to write their
own. CLP provides a default set of schemas that can be ap-
plied universally to all log formats, or users can optimize
them to achieve better compression and faster searches on
their workloads.

One challenge with using variable schemas is that they can
match pieces of a log message in multiple ways. For instance,
“172.128.0.41” could match the schema for an IP address or
it could match two instances of the floating point number
schema, joined by a period. However, we have observed that
developers typically separate different variable values with
one or more delimiter characters. Furthermore, they also use
delimiters to separate variable values from static tokens in the
log type. We call this the tokenization rule, which states that
a token is inseparable. That is, an entire token is either a vari-
able value or part of the log type. In this case, “172.128.0.41”
will be treated as a single token, so it can only match an IP ad-
dress instead of two floating point numbers joined by a period.
Accordingly, CLP allows users to specify a set of delimiters
that ensures their schemas only match variables in a way that
respects the tokenization rule.

To parse a log message, CLP first parses and encodes the
message’s timestamp as milliseconds from the Unix epoch.
CLP then tokenizes the log message using the user-specified

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 185

ID Schema Ptr

0 task_\d+

1 \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}

2 container_\d+

ID Log type Segments

4 INFO Task \x11\x00 assigned to container: [NodeAddress:\x11\x01, ...

 ContainerID:\x11\x02], operation took \x12\x13 seconds

ID Variable value Segments

8 task_12 ...

Timestamp Log type ID Variable values

1577934245006 4 8 9 9 0x3FD570A3D70A3D71

ID Variable value Segments

9 172.128.0.41 ...

ID Variable value Segments

9 container_15 ...

Log type

dictionary

Variable

dictionary

Encoded

messages

2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: [NodeAddr

ess:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds
Log message

Figure 3: A log message and its encoding. Dictionary variables are in blue; Non-dictionary variables are in orange.

1 delimiters: "[],: "
2 dictionary_variables:
3 "task_\d+" # Task ID
4 "\d{1 ,3}\.\d{1 ,3}\.\d{1 ,3}\.\d{1,3}" # IP
5 "container_\d+" # Container ID
6

7 non_dictionary_variables:
8 "\d+\.\d+" as floating_point_number

Figure 4: Schemas used to parse the example in Figure 3.

delimiters. For each token, CLP compares it with each vari-
able schema to determine whether it is a variable value. In
Figure 3, CLP identifies three dictionary variables in the log
message—“task_12”, “172.128.0.41”, and “container_15”—
and a non-dictionary variable value, “0.335”.

2.1.2 Compressing Messages

Once parsed, the dictionary variables are stored in a two-
level variable dictionary, referred to as a vDict. The first level
maps each dictionary variable schema to a unique ID. Each
schema is also mapped to a pointer that points to the second
level of the vDict, where the actual variable value is stored.
In Figure 3, the schemas for the task ID, IP address, and
container ID are mapped to IDs 0, 1, and 2 in the first level,
and the actual variable values are stored in the second level.

Non-dictionary variable values are stored directly in the
encoded log message if possible. For example, “0.335” is en-
coded using the IEEE-754 standard [1] and stored as a 64-bit
value in the encoded message. CLP currently supports en-
coding floating point numbers and integers as non-dictionary
variables. If a non-dictionary variable cannot be encoded pre-
cisely within 64-bits (e.g., its value overflows), it is stored as
a dictionary variable instead. Non-dictionary variables tend

to be unique values like counters, so they do not benefit from
being stored in a dictionary. We use a fixed-width 64-bit
encoding instead of a variable-width encoding because it is
simple to implement, and the space inefficiency is diminished
by the lightweight compressor applied to the encoded data.

The remaining portion of the log message is treated as
being part of the log type, where variable values are replaced
with special placeholder characters. Each unique log type is
stored in the log type dictionary, or ltDict, and is indexed by
an ID. CLP uses byte ‘\x11’ to represent a dictionary variable
value. The next one or more bytes after ‘\x11’ are an index into
the vDict’s first level, i.e., an index to the variable schema. In
Figure 3, ‘\x00’, ‘\x01’, and ‘\x02’ in the log type are indices
to the three schemas for the task ID, IP address, and container
ID in the vDict. CLP uses ‘\x12’ as the placeholder for a
floating point non-dictionary value. The next byte, ‘\x13’, in
the log type indicates that there is one digit before and three
digits after the ‘.’ character in the raw log message, ensuring
the floating point value can be losslessly decompressed.

Note that we could choose any bytes for the placeholder
characters, but since ‘\x11’ and ‘\x12’ are not printable ASCII
characters, they are unlikely to appear in text logs. If they do,
CLP will escape them before insertion into the log type.

CLP outputs the encoded message as a tuple with three
elements as shown in Figure 3: a 64-bit timestamp, a 32-
bit log type ID, and a sequence of 64-bit variable IDs and
encoded variable values.

We have experimented with additional encoding schemes
that can further reduce the size of the encoded data, but de-
cided not to adopt them due to their undesirable trade-off.
For example, we could store variable IDs and non-dictionary
variable values using a variable-length encoding, instead of a
fixed-length 64-bit encoding. We have also experimented with
delta encodings, run-length encodings, and so on. However,
these would come at the cost of search performance since

186 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Timestamps Log types Variables

Log file 1 Log file 2 Log file 3

Figure 5: Storing encoded messages in column-oriented manner. It
shows a segment that contains three encoded log files.

it is faster to scan fixed-length values than variable-length
values. Moreover, the space savings are negligible after the
lightweight compressor is applied on the encoded data.

2.1.3 Decompressing Messages

CLP’s decompression process is generally a reversal of the
compression process. Given an encoded message, CLP uses
the message’s log type ID to find the corresponding log type
in the ltDict. CLP then reconstructs the variable values and
replaces the placeholders in the log type. For example, CLP re-
constructs the variable value “task_12” in Figure 3 as follows:
the first ‘\x11’ in the log type indicates that it is a dictionary
variable, so CLP uses the next byte, ‘\x00’ as an index into the
first level of the vDict. CLP then uses the variable ID stored
in the encoded message (8 in this case) to index the corre-
sponding second level of the vDict, and restores the variable
value “task_12”. Finally, CLP converts the timestamp back to
text and inserts it into the message.

2.1.4 On-disk Format

Figure 1 also shows the on-disk format of CLP’s compressed
logs. CLP encodes each message and stores them in the same
temporal order as in the original log file. This ensures the
file can be losslessly decompressed. The encoded messages
are initially buffered in memory, and once the buffer reaches
a certain size, they are compressed using Zstandard before
being written to disk, creating what we call a segment.

Encoded messages are stored in a column-oriented man-
ner [39], as shown in Figure 5—CLP stores the timestamp
column of the messages from log file 1, then its log type IDs,
and finally the variable IDs and values column, before storing
the three columns of the next log file. Storing columnar data-
series reduces data entropy within Zstandard’s compression
window, significantly improving compression ratio. In addi-
tion, columnar data-series can improve search performance:
for instance, if users search for a message in a specific time
range, CLP can skip messages outside that time range by only
scanning the timestamp column rather than all columns.

Multiple segments further belong to an archive, where all
segments in an archive use the same log type and variable
dictionaries. CLP automatically closes and creates a new
archive when the dictionaries reach a size threshold. This
ensures that the dictionaries do not grow too large such that
they have non-negligible loading times for decompression

and search. CLP also compresses the dictionaries using the
same lightweight compressor applied to the segments.

Each entry in the ltDict and the vDict’s second level also
has a list of pointers to segments that contain the particular log
type or variable value. CLP is I/O bound reading segments, so
this serves the purpose of a coarse-grained search index. We
index at the granularity of segments since any query that has
a hit in a segment requires the segment to be decompressed
from its beginning to the matched message. Without the index,
any search that matched a dictionary entry required searching
all segments in the archive.

For each archive, CLP also stores metadata about the log
files and directories that were compressed. For each file, the
metadata contains the original filesystem path of the file, the
number of log messages it contains, the starting and ending
timestamp of the messages in the file, the format of its times-
tamp (used to reconstruct the timestamp during decompres-
sion), and the segment that contains the compressed messages
from the log file. In addition, the metadata contains the three
offsets in the segment corresponding to the starting locations
of the messages in this log file: one for each of the timestamp
column, log type column, and variable column. These offsets
are used to speedup the search when users use search filters.
For example, a user could search for filenames that match
a specific pattern, such as yarn.log (the log produced by
YARN in a Hadoop cluster). Users can also specify the time
range of the search, so CLP will first filter log files based on
the starting and ending timestamps. In such cases, the meta-
data as well as the content in the data columns themselves
allow CLP to skip scanning parts of data columns or files.

For directories, the metadata in the archive stores the paths
of any empty directory that was compressed. An empty direc-
tory may be indicative of missing logs or it may be named
after an identifier that the user wishes to keep. Thus, to ensure
lossless decompression, these paths must be stored.

CLP also supports different compression modes that can
offer improved compression at the cost of a minor reduction
in performance. This is achieved by changing the lightweight
compressor’s settings. CLP currently ships with three modes:
“Default” that uses Zstandard at level 3 and is concurrently
optimized for compression speed and search performance;
“Archive” that uses 7z-lzma at level 1 and offers higher com-
pression with slightly reduced search performance; and finally,
“Ultra” that uses 7z-lzma at level 9 and offers even higher com-
pression with further reduced search performance. CLP can
migrate between these modes by simply decompressing and
recompressing the segment.

2.2 Search

Given a search phrase, CLP processes it in the same way
that it compresses a log string: CLP tokenizes the phrase,
extracts variable values, and constructs the log type. Next,
CLP searches the archive’s dictionaries for the log type and

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 187

Log type Variables CLP’s processing
1 "Task * assigned to container*:\x11\x01" "172.128*" (IP address) Log type, var. search, scan segments
2 "Task * assigned to container*:\x12?" "172.128*" (float num.) Log type search (no match)
3 "Task * assigned to container*:178.128*" - Log type search (no match)
4 "Task * assigned to \x11\x02*:\x11\x01" "container*" (container ID) Log type search (no match)

"172.128*" (IP address)
5 "Task * assigned to \x11\x02*:\x12?" "container*" (container ID) Log type search (no match)

"172.128*" (floating point num.)
6 "Task * assigned to \x11\x02*:178.128*" "container*" (container ID) Log type search (no match)

Table 1: Processing of the search example in Figure 2. Each row is a sub-query generated by CLP.

dictionary variables. If matches are found for the log type and
all dictionary variables, CLP proceeds to search the segments
for encoded messages that contain the matching log type ID,
dictionary variable IDs, and encoded non-dictionary variables.

However, wildcards in the search phrase complicate this
process. CLP supports search phrases that can contain two
types of wildcard characters: ‘*’ (henceforth referred to as a
*-card) that can match zero or more characters and ‘?’ (hence-
forth referred to as as a ?-card) that matches any single char-
acter. First, it is nontrivial to tokenize a string with wildcards.
For example, the string “Task*assigned” could be a single to-
ken or two tokens (“Task*” and “*assigned”) since a *-card

can match both non-delimiter and delimiter characters. Fur-
thermore, it is nontrivial to determine if a token with a wild-
card matches a variable schema. Finally, without wildcards,
a token will be unambiguously categorized as either a log
type, a dictionary variable, or a non-dictionary variable; but
with wildcards, a token could belong to multiple categories.
We address the first two issues in Section 3 and continue a
discussion of the third challenge below.

2.2.1 Handling Ambiguous Tokens

Consider the search command in Figure 2. CLP first inserts a
*-card at the beginning and end of the search string, turning it
into a substring search to match user-expectations. Then after
tokenization, CLP recognizes the following tokens: “*Task”,
“assigned”, “to”, “container*”, “172.128*”. Note that CLP
does not consider a lone *-card as a token. For example, the
*-card after “Task” is not treated as a token.

Each token is then compared against all of the variable
schemas. CLP determines that “*Task”, “assigned”, and “to”
do not match any schemas, hence they are part of the log
type. Ambiguity exists for the other two tokens: “172.128*”
could match an IP address schema or a floating point number,
“container*” could match a container ID, and both could also
be part of the log type. This creates a total of six combinations,
and CLP generates a sub-query for each possibility.

Table 1 lists the six generated sub-queries. The first three
treat “container*” as part of the log type, and “172.128*” is
treated as part of an IP address, a floating point number, and
the log type in sub-query 1, 2, and 3 respectively. When treat-

ing “172.128*” as a floating point number, CLP does not know
the value’s exact precision, so it inserts a ?-card to match all
possibilities. Sub-query 4–6 in Table 1 consider the cases that
“container*” is treated as a dictionary variable container ID.

Each sub-query will be processed in three steps. First, CLP
searches the ltDict for matching log type. Only when there is
a matching log type, it proceeds to the next step of searching
the vDict for the dictionary variables. And only when there
is at least one matching result for every dictionary variable,
CLP proceeds to the third step. It takes the intersection of
the segment indexes of the matching log type and dictionary
variables, and for each of these segments, CLP decompresses
the segment and searches for encoded messages matching the
encoded query. If any of the first two steps return no matching
result, or the intersection of the segment indexes is empty,
the sub-query processing returns with no match. Different
sub-queries will be processed in parallel.

For the six sub-queries shown in Table 1, only the first sub-
query will exercise all three steps and return the matching log
message shown in Figure 3. The processing of the other five
sub-queries will return after step one, because the generated
log type does not match any log types in the ltDict (these log
types are impossible).

2.2.2 Optimizing CLP Queries

The way users write their search phrase can significantly affect
the speed of the search. In our evaluation, dictionary search
time is negligible compared to a segment scan; furthermore,
log type dictionary search time is negligible compared with
variable dictionary search. Therefore the best practice is to
provide enough information in the search phrase to help CLP
narrow down the log type or the dictionary variable values
or both. The user can also speedup the search by filtering for
a specific time range or log file path, dramatically shrinking
the search scope. For example, the user could use a search
phrase “172.128” to perform the previous query, but the search
performance may be much worse. CLP will determine that
“172.128” could be part of an IP address, floating point number,
or the log type, and generate three sub-queries with log types
being “\x11\x01”, “\x12?”, and “172.128”. However, the first
two sub-queries will likely result in numerous matching log

188 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

types in practice, i.e., any log type that contains an IP address
or a floating point number, so CLP will end-up scanning a
large number of segments.

Currently CLP does not use any additional index on its
dictionary entries. A search on the ltDict, for example, will
sequentially scan each entry. This is not a problem for now as
the bottleneck in search is in scanning the segments, because
the dictionaries are small. CLP also does not have any index
on non-dictionary variables. We plan to add index (e.g., B-
trees) to non-dictionary variables in the near future.

2.3 Handling Special Cases
Users have two options for changing variable schemas after
log data has already been compressed. The new schema can
be applied only to newly compressed data, in which case each
archive will also need to retain the schemas that were used
to compress the data. Alternatively, the users can ask CLP to
update existing archives to use the new schema, and CLP will
have to decompress and recompress the data.

CLP can also warn the user if the schemas they provided
are not optimal. For example, if the user forgot to specify the
schema of a variable, that variable would be encoded as part
of the log type, and could “pollute” the log type dictionary
where a large number of similar log types are created, with
the only difference being that variable value. CLP can detect
this case by comparing the edit distance between log types
and issue a warning.

Although rarely used, CLP also supports the deletion of
log messages. The encoded messages will be deleted from the
affected segments, which involves recompressing the segment
data using the general-purpose compressor and writing it to
disk. The segment index in the dictionaries will also need to
be updated.

Currently CLP does not support SQL-style join operations
in a single query. However, users can perform joins in their
client program using CLP’s APIs.

2.4 Distributed Architecture
CLP adopts a simple controller and data node design that
enables high scalability, similar to other widely used big data
systems [9,11,22,41]. The central controller simply manages
metadata and node failures, while the data intensive com-
putation of compression and search as described above are
performed by each data node independently. Compressed data
is stored on a distributed filesystem to ensure reliability.

The controller maintains three metadata tables: 1) log files,
2) archives, and 3) empty directories. The log files table stores
the metadata of each raw log file (its file system path, the
number of log messages, etc.) as well as the archive that
contains this log file. Note that if the log messages are directly
streamed to CLP using a log aggregation tool (e.g., rsyslog,
Fluentd, Logstash, etc.), CLP still splits them into logical

files once the buffered log messages reach a certain size or
time frame. The archives table stores the metadata of each
archive including which data node stores this archive. The
empty directories table stores the paths of empty directories
compressed in each archive.

The purpose of these metadata tables is only to speedup
the search. For example, a user can specify a filter to only
search log files whose file names match a certain pattern.
The information stored in these tables is also stored in the
archives, so even if the tables are lost, there is no risk of
data loss. Nevertheless, we replicate the metadata tables three
times with failover handling.

In order for CLP’s compression and search to scale in a dis-
tributed system, each archive is independent of other archives
and immutable once written. This independence makes com-
pression easily parallelizable without any synchronization
between threads writing different archives. The immutability
ensures that a search thread can query an archive without syn-
chronizing with a compression thread. To avoid coordination
between search threads, each archive is only queried by a
single thread for a given query. Thus, CLP parallelizes com-
pression and search at the granularity of individual archives.

File System Integration Using FUSE. CLP has the ability
to transparently integrate with a user’s existing environment.
For example, a user can use GNU find to search for files, and
use VIM to open a compressed log file. We implement this by
intercepting the file system operations using FUSE (Filesys-
tem in Userspace) [44]. It walks the directory hierarchy stored
in the log files table and decompresses the required data on
demand to satisfy I/O requests. Common I/O optimizations
such as caching, I/O request re-ordering and batching are per-
formed to further increase CLP’s efficiency and performance.

3 Wildcards and Schemas

We face two fundamental challenges in handling wildcards.
Recall that CLP’s encoding process requires tokenizing the
input, extracting each token that matches a variable schema,
and finally composing the log type. The first challenge in
handling wildcards is determining how to tokenize a string
containing wildcards, given that a wildcard could either match
a delimiter or non-delimiter character. The second is determin-
ing if a token containing wildcards (a wildcard token) could
match a given variable schema. Both of these challenges oc-
cur because a wildcard string has a range of possible inputs
that it could match, and CLP’s task is to encode all possible
inputs so that they can be used for search.

3.1 Wildcard String Tokenization

To tokenize a wildcard search string, we need to consider
each possible interpretation of every wildcard in the string.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 189

*-card interpretation Spans
1 Delimiters only “*to”, “*”, “container*”
2 Non-delimiters only “*to*container*”
3 Both “*to*”, “*”, “*container*”

Table 2: The spans generated by tokenizing “*to*container*”
depending on the interpretation of the central *-card.

For example, consider the search string “*to?container*”. If
the ?-card is interpreted as a delimiter, the string will gen-
erate three spans: “*to”, “?”, and “container*”. We use the
term span to refer to either a contiguous set of non-delimiter
characters, or a contiguous set of delimiter characters. Using
the schemas in Figure 4 on these spans, CLP will find that
the last span matches a variable schema and the rest match
the log type in Figure 3. However, if the ?-card is interpreted
as a non-delimiter, then the entire string will be treated as a
single token and CLP will find neither a matching schema nor
log type. Accordingly, CLP must generate sub-queries from
each unique tokenization of the search string.

To handle *-cards, CLP technically needs to consider
that a *-card can be interpreted as either 1) matching non-
delimiters only, 2) matching delimiters only, or 3) matching
non-delimiters and delimiters. However, because a *-card

matches zero or more characters, we can skip a case.
Consider the search string “*to*container*”. To simplify

the discussion, we only consider the interpretation of the
central *-card and assume the others are interpreted as non-
delimiters only. Table 2 lists the spans generated for each
case. Note that the third tokenization is from interpreting the
*-card as zero or more non-delimiters, followed by zero or
more non-delimiters and delimiters, followed by zero or more
non-delimiters. Comparing the first and third tokenization, we
can see that the third is a more general version of the first. As
a result, CLP does not need to consider the first tokenization.
We can generalize this as follows: If a *-card is interpreted to
have a different type than either of the characters surrounding
it, the tokenization should split the string at the *-card while
leaving *-cards attached to the surrounding character.

3.2 Comparing Expressions
To compare a wildcard token to a variable schema, CLP needs
to determine if they overlap in the words that they could
match. More formally, let U represent the words matched
by the wildcard-containing token, and V represent the words
matched by the variable schema. CLP needs to determine if
U

⋂
V 6= /0. For example, the wildcard token, “task_?”, and

the variable schema, “task_\d+” both match task IDs with one
digit. Therefore, CLP can consider that this token matches
the schema. However, this intersection does not imply that
U =V , so CLP must still consider that “task_?” may be part
of the log type (e.g., if the ?-card matches an alphabet). To
determine if U =V , CLP could verify that U

⋂
V c = /0, where

V c is the set complement of V , but we find that this is rarely
true in practice.

This is a standard problem of comparing the accepted in-
put sets of two regular expressions. However, modern regular
expression engines support irregular expressions (e.g., back-
references) that prevent them from supporting this standard
operation. Furthermore, we could not find a widely-used en-
gine that supported strictly regular languages. So we built our
own engine and use it to compute this intersection as well as
enforce rules on the supported variable schemas.

4 Schema Design

Up until this point, we have only discussed schemas that
match a single token. However, there are several variable
values that fall outside this definition. For example, using the
delimiters in Figure 4, the variable value “0.0.0.0:80” is a set
of two tokens (“0.0.0.0” and “80”) joined by a delimiter (‘:’).
Similarly, “ block id : 1073741827 ” is a variable value that
can only be categorized as a block ID if the schema takes into
account the tokens before the actual variable value. To handle
these cases, we extend our definition of a schema to include
multiple regular expressions.

A schema in CLP is a sequence of regular expressions,
where each expression exclusively contains non-delimiters or
delimiters; we refer to the former as a token expression and
the latter as a delimiter expression. In addition, the sequence
must alternate between token and delimiter expressions, or
else the tokenization rule could be violated. Finally, a schema
may include non-capturing prefix and suffix expressions that
are used to contextualize the schema.

CLP ships with a few default schemas that we have found
are effective in capturing most variables. Specifically, we have
a schema each for non-dictionary integer and floating point
values. In addition, we have a schemas that match any token
with a digit or any token preceded by an equals sign. Finally,
we treat most non-alphanumeric characters as delimiters ex-
cept for a few like underscores and periods.

5 Compressed Persistent Caching

Our experience with CLP shows that it is typically bottle-
necked by I/O. Although, the dictionaries and segment index
help to avoid much of this I/O, queries that match rare log
types can still end up reading an entire segment. Thus, we
designed a caching mechanism to improve the performance
of these queries.

Consider a segment with two log types: ltA comprising
90% of messages in the segment and ltB comprising 10%
of messages. A query for either log type without applying
any filtering requires reading the entire segment since ltA and
ltB’s messages are interspersed. A query for ltB would read

190 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

90% more data (i.e., those belonging to ltA) than necessary,
and a query for ltA would read 10% unnecessary data.

One possible solution is to sort the log types in each seg-
ment, but this introduces two problems. First, since the seg-
ment is compressed as a single stream, if a log type’s messages
start in the middle of the segment, queries for that log type will
require decompressing all messages before it. Second, since
messages are no longer ordered as in the raw log file, each
message would also need to store its position in the original
log file so that we could maintain lossless decompression.

Another solution is to store each log type in its own seg-
ment, but this too introduces complications: For example,
compression performance will be decreased since CLP will
have to repeatedly open and close several segments, one for
each log type in a file (in reality, the number of such single-
log-type segments may exceed the number of open files per
process that the OS allows, preventing CLP from keeping the
files open at the same time). As a result, we do not use this
strategy as our primary storage method but rather as a cache.

CLP’s policy is to cache recently read, infrequent log types
by storing each log type in its own segment. These segments
are created in addition to the existing segments compressed by
CLP, instead of replacing them. Specifically, when a user runs
a query containing one or more log types, CLP will attempt
to cache messages with those log types (henceforth referred
to as caching log types) if the query does not return too many
messages. The specific number of messages is configurable
and will depend on the user’s performance requirements and
system resources. Only infrequent log types are cached be-
cause they offer both the best speedup and least additional
storage cost.

When CLP tries to cache a new log type and the cache is
full, it will need to decide whether to evict an existing log type
or discard the new log type. Its policy is to evict log types
that 1) have not been recently queried, and 2) that contain
more messages than the new log type to be cached. The
first condition is necessary to ensure that the cache does not
eventually become filled with the most infrequent log types
due to the second condition. The duration that is considered
recent can also be configured by the user and again depends
on their deployment. Note that in practice, a user’s query
may match multiple log types, in which case, CLP creates a
persistent cache file for each log type independently.

The format of each log type segment in the cache is similar
to the regular segments, but with a few key differences. First,
there is no log type column since the entire file has the same
log type. Second, each message additionally includes a log
file path identifier, a timestamp format identifier and an op-
tional message number. These identifiers are necessary since
messages in this file may come from many different log files.
Finally, the log type segment is named in a way that it can be
easily referenced using the corresponding log type ID.

With the cache enabled, CLP processes a query in two
parts: one for the log type cache and one for the non-cache

Name Files Log Messages Size (GB)
/var/log/*-7GB 9,335 63,197,765 7
OpenStack-33GB 810 74,188,154 33
Apache-6TB 5,293 26,135,489,184 6,304
Hadoop-14TB 18,170 57,323,941,112 14,510

Table 3: The log datasets used to evaluate CLP.

segments. To determine which log types are in the cache, CLP
simply uses each log type’s ID to locate its corresponding
segment. If one exists, it is searched like any other segment
and the log type is removed from the query. Then, any re-
maining uncached log types are searched for in the non-cache
segments, completing the query.

6 Data Scrubbing and Obfuscation

A useful feature of CLP’s design is the ability to quickly ob-
fuscate data (e.g., to comply with data privacy laws) using
the compression dictionaries. Consider a case where a user
wants to obfuscate a username, “johnsmart9”, from all log
messages. Since this username will be stored in the variable
dictionary, it can be easily replaced with an obfuscated string
like “x93n4f9”. Similarly, if a user wanted to hide all user-
names from a certain log type, they could simply modify the
log type in the dictionary to contain a generic username in
place of the actual username. Moreover, since the dictionaries
are typically much smaller than the segments or the raw data,
these replacement operations will be much faster than they
would be if the logs were not compressed.

7 Evaluation

CLP has been used to compress petabytes of logs from hun-
dreds of different applications, and we have verified that its
compression is lossless in all cases. Our evaluation focuses
on CLP’s performance. Specifically, we explore: 1) CLP’s
compression ratio and speed; 2) CLP’s search performance;
and 3) CLP’s scalability and resource efficiency.

7.1 Experiment Setup
Table 3 shows the log corpuses used in our evaluation. The
/var/log/* corpus contains all of the logs in the /var/log/

directory generated by a cluster of more than 30 Linux
servers over the past six years. The OpenStack-33GB log
set was gathered by running the cloud scalability benchmark
tool, Rally [45], on top of OpenStack. Apache-6TB contains
Apache httpd access logs collected over a 15-year period by
the U.S. Securities and Exchange Commission’s EDGAR
system [43]. The Hadoop-14TB logs were generated by three
Hadoop clusters, each containing 48 data nodes, running work-
loads from the HiBench Benchmark Suite [25] for a month.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 191

Note that the datasets generated by benchmarking tools may
be artificially uniform, as benchmarks do not always capture
the randomness of real-world deployments. However, this
should not affect our claims since we compare CLP relative
to other tools on the same datasets.

Experiments were performed on a cluster of 16 Linux
servers connected over a 10GbE network, each with an eight-
core Intel Xeon E5-2630v3 processor and 128GB of DDR4
memory. Unless otherwise specified, all data is stored on a
3TB (labelled 3TB, real-size 2.73TB) 7200RPM SATA HDD
connected to each machine.

We compare CLP with Gzip 1.6, Zstandard 1.3.3, and
7z 16.02 for compression, in addition to ripgrep 12.1.0, Elas-
ticsearch 7.8.0 and Splunk Enterprise 8.0.3 for search. All
versions were the latest releases from Ubuntu 18.04’s package
manager, Elastic, and Splunk at the time of the experiments.

We use ripgrep to search the archives produced by general-
purpose compressors. ripgrep is a grep-derivative designed
with aggressive system and algorithmic optimizations that
allow it to outperform grep significantly. Moreover, ripgrep
offers advanced parallelization and can directly search the
contents of Gzip, Zstandard, and 7z-lzma archives.

We modified Elasticsearch and Splunk Enterprise’s default
configuration only enough to ensure they matched CLP’s
search capabilities without storing more data. In practice, we
expect a user in need of CLP’s capabilities would do the same.
Recall CLP can perform wildcard searches on log messages as
well as filtering based on file paths and time ranges. We do not
explicitly evaluate the filtering features but supporting them
increases the amount of data that Elasticsearch and Splunk
Enterprise store in their indexes.

Splunk Enterprise’s default configuration matches almost
all of CLP’s capabilities with the exception of wildcard
searches. Due to the way Splunk Enterprise indexes tokens
with punctuation like “AA-BB-123”, it cannot perform queries
with wildcards in the middle of the token like “AA*23” [38].

For Elasticsearch, we first had to configure an index before
logs could be ingested. Typically, Elasticsearch’s ingestion
tool, Filebeat, configures a default index; but because Filebeat
was not fast enough for our use, we ingested logs using our
own parser. Elasticsearch indexes are configured with a set
of fields, each of which has a type indicating how it should
be indexed. Elasticsearch only supports wildcard searches on
fields with type “keyword”. Alternatively, Elasticsearch can
perform full text searches on “text” type fields, but this does
not match CLP’s capabilities. For example, Elasticsearch’s de-
fault tokenizer ignores stop words like “and”, whereas CLP’s
wildcard search does not. We initially tested indexing the con-
tent of each log message as a keyword-field but found that
this required 58% more storage, took 7% longer to ingest,
and was 4750% slower to search compared to indexing the
content as a text-field. Elastic also recommends indexing un-
structured content as a text-field [13]. Thus, we configured
Elasticsearch’s index with three fields: message_content with

type “text,” timestamp with type “date,” and file_path with
type “keyword.” Following Elasticsearch’s best practices [12],
we set the max heap size to 30GB for its Java Virtual Machine.

For CLP, we configured the persistent cache to store less
than 0.01% of all compressed messages and used the general-
purpose default schemas to parse the logs in all experiments.

7.2 Compression Speed and Ratio

512 256 128 64 32 16 8 4 2

compression speed (MB/s)

0

10

20

30

40

50

60

70

80

c
o
m

p
re

s
s
io

n
 r

a
ti

o

CLP
(Default)

CLP
(Archive) CLP

(Ultra)

Zstandard
(Default)

Gzip
(Default)

7z-lzma
(Default)

7z-PPMd
(Default)

CLP

Gzip

Zstandard

7z-PPMd

7z-lzma

Figure 6: Compression ratio and speed trade-off for CLP and
general-purpose compressors. CLP’s compression generally exceeds
all other compressors and its current speed is competitive.

We first examine CLP’s tradeoff between compression ratio
and speed compared to general-purpose compressors. Each
tool was used to compress a 30GB subset of the Hadoop
corpus. In addition, all data was read from and written to a
tempfs RAM disk in order to minimize I/O overhead and fully
expose the tools’ algorithmic performance. For each tool,
we measured its single-threaded compression speed since
not all tools support multiple threads; for those that do, we
observed a minor decrease in per-core performance when
running them with multiple threads rather than independent
processes. Finally, we vary each tool’s compression level from
low to high.

Figure 6 shows the compression ratio and speed for the eval-
uated tools. Overall, CLP achieves higher compression than
Gzip or Zstandard. Compared to PPMd, a natural-language
optimized compressor, CLP slightly exceeds its compression
at their default levels and significantly exceeds it at higher
compression levels. In addition, CLP’s default level offers
performance competitive with Gzip’s default level but with
double the compression. We use CLP’s default mode for all
remaining experiments.

To compare CLP’s compression speed with Elasticsearch
and Splunk Enterprise’s ingestion speed, we reuse the previ-
ous experiment except each tool is configured to use the num-
ber of threads that provides the highest possible throughput.
In contrast with general-purpose compressors, Elasticsearch
and Splunk Enterprise are designed as multithreaded tools,
so their performance generally suffers when they are forced
to use a single thread. Figure 7 shows the results: Overall,

192 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Query # results # log types # dict. vars.
Log type queries contain no variables, so CLP only searches the log type dictionary and log type columns.
Q1 “ org.apache.hadoop.hdfs.server.common.Storage:←↩

Analyzing storage directories for bpid ”
12 1 0

Q2 “ org.apache.hadoop.hdfs.server.datanode.DataNode:←↩
DataTransfer, at ”

2,026 1 0

Q3 “ INFO org.apache.hadoop.yarn.server.nodemanager.←↩
containermanager.container.ContainerImpl: Container ”

513,893 12 0

Q4 “ DEBUG org.apache.hadoop.mapred.ShuffleHandler:←↩
verifying request. enc_str=”

810,033 84,922 0

Non-dictionary integer queries contain an integer non-dictionary variable, so the variable column is searched in addition to
the log type search.
Q5 “ to pid 21177 as user ” 12 3 0
Q6 “ 10000 reply: ” 13,064 24 0
Q7 “ 10 reply: ” 279,284 24 0

Non-dictionary float queries: contain a float non-dictionary variable.
Q8 “ 178.2 MB ” 2,800 3 0
Q9 “ 1.9 GB ” 1,623,002 5 0

Dictionary variable queries contain dictionary variable, so log type dict., variable dict., and variable columns are searched.
Q10 “job_1528179349176_24837” 51 89,258 3
Q11 “blk_1075089282_1348458” 4,261 89,258 3
Q12 “hdfs://master:8200/HiBench/Bayes/temp/worddict” 178,076 9 1
Non-matching query: contains a potential log type but does not match any log type.
Q13 “ abcde ” 0 0 0

Table 4: The queries used in our search-performance evaluation, grouped based on how CLP processes them. The quotation marks in each
query are used to highlight any leading or trailing spaces and are not part of the query. Similarly, the←↩ symbol indicates a newline that is not
part of the query but was inserted for typesetting.

0 100 200 300 400 500 600

Splunk

Elasticsearch

CLP

35 MB/s

38 MB/s

503 MB/s

Figure 7: Single-node ingestion speed of 30GB of Hadoop logs for
CLP, Elasticsearch, and Splunk Enterprise. CLP far exceeds their
ingestion speed.

CLP is able to ingest the corpus at least an order of magnitude
faster than both Elasticsearch and Splunk Enterprise.2

We also compare the tools’ compression on larger datasets.
To measure Elasticsearch and Splunk Enterprise’s compres-
sion ratio, we shutdown the tools to ensure any in-memory
data was persisted and then measured the size of their data
directory on disk. For Splunk Enterprise, we used a subset of
the terabyte-scale datasets since our evaluation license limited
the amount of data we could ingest per day. Figure 8 shows
the results for Gzip, Zstandard, and 7z-lzma using their de-
fault settings in addition to Elasticsearch, Splunk Enterprise,
and CLP. For all corpuses, CLP significantly outperformed all
of the evaluated tools. On average, using the default compres-

2Elasticsearch’s 38 MB/s ingestion speed can only be achieved when we
replaced its own log parsers (Logstash and Filebeat) with CLP’s, as they were
unable to ingest faster than 1 MB/s. We ported CLP’s log parser to connect
to Elasticsearch’s REST API endpoint.

0 5 10 15 20 25 30 35 40 45

compression ratio

OpenStack-33GB

Hadoop-14TB

var/log/*-7GB

Apache-6TB

CLP-default

7z-lzma-default

Zstd-default

Gzip-default

Splunk Enterprise

Elasticsearch

Figure 8: Compression ratio of tools on different corpuses. CLP
exceeds the ratio of the others.

sion mode without customized parsing rules, CLP’s average
compression ratio is 32. CLP’s advantage is evident on the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 193

OpenStack and Hadoop datasets where the log formats con-
tain a large amount of unstructured natural language. The
Apache-6TB corpus has the worst compression ratio since the
messages largely contain variable values.

In contrast, log indexing tools Elasticsearch and Splunk
Enterprise have significantly lower compression ratios at 1.75
and 2.86 respectively. This means that their on-disk data struc-
tures, including both the index and the compressed logs, are
on the same order of magnitude as the uncompressed log (57%
and 35% respectively). (Both tools recommend users keep
searchable data structures on fast storage such as an SSD.)

On average, across all experiments, CLP’s log type dictio-
nary accounted for 0.03% of the total compressed size and
the variable dictionary accounted for 1.07%. All other CLP
metadata files were negligible in size.

7.3 Search Performance

Commonly used log search tools fall into two categories:
index-based search (e.g., Splunk Enterprise and Elasticsearch)
and sequential search (i.e., variations of the grep tool). In com-
parison, CLP is a mixture. Its dictionaries serve the purpose
of lightweight indexing (with the key difference being that
CLP’s dictionaries deduplicate repetitive data instead of du-
plicating data into a separate index), and when combined with
the segment index as well as each file’s metadata, CLP can
skip files or jump to a specific file in a specific segment. On
the other hand, CLP still searches columns sequentially. Thus,
we compare CLP with tools from both categories.

We benchmark each tool using the set of queries in Table 4,
specific to a 258GB subset of the Hadoop-14TB corpus. In de-
signing the set of queries, we initially tried to make them repre-
sentative, but faced two challenges. First, real-world datasets
and workloads are diverse, meaning we would need a large
number of queries to sufficiently represent most use cases.
Second, any query set will likely be biased towards or against
a tool, and so the benchmark would neglect the strengths and
weaknesses of some tools over others. Instead, we designed
the queries simply to test CLP by exercising its different exe-
cution paths, highlighting its strengths and weaknesses. For
each query type, we used multiple queries that differ in the
number of results they return from a few to many.

We used a 258GB subset of the Hadoop-14TB corpus since
we were limited to one node for several of the evaluated tools.
Specifically, our Splunk Enterprise evaluation license does
not support distributed searches and ripgrep is a single-node
tool. Conversely, we could not evaluate the full corpus on
one node for Elasticsearch and Splunk Enterprise since they
require more storage than the size of the hard drive attached
to each machine.

In designing each query, we also had to ensure that all
tools would return the same result set for each query. As
explained in §7.1, Elasticsearch does not support precise sub-
string searches on text-fields because it indexes a message by

ignoring elements like punctuation. So an Elasticsearch query
that includes punctuation may return results which both in-
clude and do not include the punctuation. As a result, we only
chose queries where differences in interpretation did not af-
fect the results returned. Similarly, because Splunk Enterprise
and Elasticsearch cannot accurately support wildcard searches
(§7.1), the queries do not explicitly contain wildcards. (CLP’s
wildcard handling is still exercised as it implicitly adds wild-
cards to the beginning and the end of each query.)

We ran each query 10 times and report the average of all
runs. To emulate searching cold data stored on low-cost stor-
age (hard drives or network storage), the file system page
cache is cleared and the tools are restarted (to ensure in-
memory caches are cleared) before each run. We also ran
each tool with a varying number of threads, and report the
configuration that yielded the fastest completion time.

Figure 9 shows the search performance of CLP and the
other tools. The averaged normalized completion times of
CLP, Elasticsearch, and Splunk Enterprise, are 1x, 1.3x, 4.2x
respectively, hence CLP outperforms both. In addition, CLP
is faster for queries that return a lot of results (i.e., Q3, Q4,
Q7, Q9, and Q12), and competitive for queries that return
few results. In queries where CLP is slower, Elasticsearch
performed 6–22x less I/O, suggesting its gains are as a result
of using search indexes.

Figure 9 also shows CLP’s performance when a search
is served from its persistent cache. To evaluate CLP’s per-
sistent caching, we ran each query twice—once to build the
cache, and again to evaluate its performance with the cache.
The cache was purged between queries to ensure the next
query was not affected by prior caching. The six queries
which were persistently cached (Q1–Q5 and Q12) received
an average speedup of 43x and a median speedup of 8.64x.
Two of those six queries which were previously 4x slower
than Elasticsearch are now 5x and 51x faster than Elastic-
search, respectively. Under this configuration, CLP is faster
than both Splunk Enterprise and Elasticsearch in every persis-
tently cached query. This shows that the persistent cache can
make CLP even more competitive with a negligible effect on
compression ratio.

Splunk Enterprise and Elasticsearch also have caching
mechanisms but they provide different functionality than CLP.
In particular, Elasticsearch and Splunk Enterprise use the en-
tire query (query phrase, timestamp filter, and so on) as the
cache key, so only an identically repeated query benefits from
the cache. In contrast, CLP’s cache key is a log type, so new
queries can benefit from the cache if they encompass a cached
log type. Also, Elasticsearch and Splunk Enterprise’s caches
are not persistent.

Finally, Figure 9 shows that CLP is able to exceed the per-
formance of every ripgrep-compressor combination for every
query. Analyzing the machine’s usage shows that Zstandard is
being bottlenecked by disk I/O while both 7z-lzma and Gzip
are bottlenecked by the CPU.

194 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

100

101

102

103

c
o
m

p
le

ti
o
n

 t
im

e
 (

s
)

CLP + Persistent-Cache

CLP

Elasticsearch

Splunk Enterprise

7z-lzma + ripgrep

Gzip + ripgrep

Zstd + ripgrep

Figure 9: Search performance of CLP, Elasticsearch, Splunk Enterprise, and popular compressed sequential search combinations. CLP is
faster for longer queries and competitive for shorter queries. CLP’s cache greatly improves its competitiveness.

1 node
258GB

2 nodes
516GB

4 nodes
1TB

8 nodes
2TB

16 nodes
4TB

0

2

4

6

8

10

12

re
s
p

o
n

s
e
 t

im
e
 (

s
)

Q7
Q2
Q6
Q1
Q13
Q5
Q11
Q12
Q10
Q9
Q3
Q8
Q4

Figure 10: Response time of queries for CLP when both data and
resources were horizontally scaled from 1 to 16 nodes.

Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1
0

1

2

3

re
s
p

o
n

s
e
 t

im
e
 (

s
)

Figure 11: CLP’s query response time on a petabyte log corpus.
The response time continues to exhibit the pattern observed in the
horizontal scalability experiment.

7.4 Horizontal, Vertical, and Capacity Scaling

Since CLP’s archives are designed to be independent (§2.4),
compression and search are embarrassingly parallelizable
tasks. Figure 10 shows that as we scale horizontally, adding
more nodes that contain an equal amount of data, CLP’s
search response time stays nearly constant. Response time
is measured from when a query is entered to when the first
matching result is returned (in the case of no matching re-
sult, it is the query completion time). We show response time
instead of completion time because 1) when the output is
large, the completion time will be bottlenecked by how fast

the user’s client can receive results, and 2) in those scenarios,
users typically search and refine their queries before arriving
at a small amount of output. Nevertheless, completion times
also stay nearly constant except for Q3, Q4, Q9, and Q12,
whose completion time grows linearly with the output size.

We also repeated the previous experiment with a petabyte
of data to evaluate CLP at the scale of logs produced by large
internet companies. Since the 3TB hard drives attached to
each machine did not have enough free space to store the
data, the archives were instead stored on a distributed file sys-
tem (MooseFS [10]) running on commodity hard drives. The
results in Figure 11 show CLP still maintains low response
time, but the ordering (by response time) of queries differs
from the the previous experiment. This is because CLP was
I/O-bound in the previous experiment whereas in the current
experiment, MooseFS parallelizes I/O requests across multi-
ple drives, so CLP becomes more CPU-bound. We omitted
Q13 from the figure; its response time is 140 seconds. Q13
represents a worst case for CLP as its response time is the
same as the completion time, because the search returns “no
result.” It took 140s to search all log type dictionaries of over
61,000 archives with only 256 threads. In contrast, the pre-
vious experiment had one search thread per archive. Overall,
the results show that CLP can indeed scale in large Internet
companies, while reducing storage costs.

Using MooseFS, we also measured CLP’s ingestion speed
at the petabyte scale. By adding eight additional nodes to the
existing 16-node cluster, CLP was able to reach an ingestion
speed of about one petabyte of raw logs per day, exhausting
each hard drive’s bandwidth.

To evaluate vertical scalability, we tested CLP’s search
performance on the Hadoop-14TB corpus with a single thread
on a single data-node. The fastest completion time was for a
non-existing result query which took just under a minute, and
most queries started emitting results within 10 seconds.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 195

8 Related Work

We discuss three categories of related work: (1) log compres-
sion, (2) searching the compressed form of general-purpose
indexes for textual data, and (3) log search. Existing log com-
pression tools do not enable search (on compressed data).
Singh and Shivanna’s [35] method of log compression also
aims to deduplicate static text from variable values. They rely
on the applications’ source code to generate patterns, akin to
our concept of a log type. Variables are annotated with the
variable’s primitive type such as integer or long so they can be
encoded into binary bits stored separately. However, they do
not propose any search algorithms on the compressed data. In
addition, the compression in their work is not entirely lossless
in the sense that a number’s precision is not encoded. For
example, the value “1.000” can only be stored as an equiv-
alent floating point number, failing to take into account the
number’s zero padding.

Separating highly redundant static text from variable val-
ues has also been used to design highly efficient log printing
libraries. For example, both NanoLog [47] and Log20 [48]
only log an ID for each log type at runtime, and reconstruct
the textual log message in post-execution phases. Further-
more, some logging systems [34] directly output binary log
messages, representing each log type with an ID. While CLP
is designed to compress text logs, its search algorithms can
be used to search binary logs by associating human-readable
static text with each log ID. Hence, users can use CLP’s in-
tuitive text search interface to analyze binary logs, as if they
are text logs, with minimal storage overhead.

General-purpose text search typically uses indexes such
as suffix trees or tries, which will add 10-20x the size to the
original text data [6, 27]. Compressed forms of these indexes,
typically via smart encoding, have been proposed [17–20, 24,
30–33] such that they can be searched without decompression.
Succinct [6] further proposed an entropy-based representa-
tion of these compressed indexes to further reduce the size
of compressed index. However, regardless of how small the
index is, it still increases storage space instead of reducing it,
and search can only be performed on data that is indexed. In
comparison, CLP does not add any additional index; it simply
deduplicates the static text and dictionary variables, whereas
these works are used to compress indexes.

Several pattern matching algorithms exist for searching
data compressed with general-purpose compressors, but none
operates on data compressed using an algorithm that prac-
tically achieves our compression speed and ratio. Kida et
al. [26] implemented an algorithm for pattern matching in
LZW compressed data, achieving better performance than
decompression followed by a search. Similarly, Navarro and
Raffinot did the same for LZ78 [49] compressed data. How-
ever, LZW has worse compression than CLP while LZ78 uses
a prohibitive amount of memory for large data sizes and is
more likely to experience dictionary explosion.

Tools like Splunk Enterprise [4] and Elasticsearch [15]
allow users to search and analyze logs. They work by treating
logs as normal text files and apply standard indexing and
search techniques to achieve responsive searches. In contrast,
CLP does not need to spend expensive resources to create and
maintain additional indexes.

Conversely, Scalyr [3] is a log search tool that uses a “brute-
force” approach, instead of using any index. It uses a number
of low-level optimizations to achieve a log search speed of up
to 1.25 GB/second per core without using any index [28]. It
also directly works on raw logs. In comparison, by working
directly atop compressed log data, CLP is able to achieve
much higher search performance when translated to the raw
log size, even when the data is uncached and stored on low-
cost HDDs. Through our scalability experiments, we observed
that our fastest queries, which return no results purely by
scanning through the log type dictionaries, can effectively
search through the equivalent of hundreds of gigabytes per
second per core from a single HDD.

Grafana Loki [23] makes a trade-off that lies between index-
based search tools and Scalyr: it only indexes the labels, i.e.,
selected fields of the log. Hence the index size is significantly
reduced, yet users can only search the labels. Moreover, the
index again adds to the storage space.

9 Conclusion

This paper presented the mutually exclusive problem of log
archiving and log analytics. We present an end-to-end solu-
tion, CLP, that allows users to perform “archivalytics” across
their entire history of compressed log messages without the
need for decompression. Using an algorithm customized to
text logs, CLP is able to achieve higher compression ratio than
other compressors while enabling faster search performance
than index-based search tools.

Acknowledgements

We thank our shepherd Lalith Suresh and the anonymous
reviewers for their insightful comments. Michael Stumm pro-
vided invaluable suggestions throughout the project. This
research was supported by the Canada Research Chair fund,
a Connaught Innovation Award, a Huawei grant, the McCha-
rles fellowship, a Mitacs grant, NetApp fellowships, NSERC
discovery grants, and a VMware gift.

References

[1] IEEE Standard for Floating-Point Arithmetic. IEEE
Std 754-2019 (Revision of IEEE 754-2008), pages 1–84,
July 2019.

[2] Elastic. https://www.elastic.co/, 2021.

196 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.elastic.co/

[3] Scalyr. https://www.scalyr.com/, 2021.

[4] Splunk. https://www.splunk.com/, 2021.

[5] 104th United States Congress. Title 45 CFR 164.316.
In United States Code of Federal Regulations. 2003.

[6] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica.
Succinct: Enabling Queries on Compressed Data. In
Proceedings of the 12th Symposium on Networked Sys-
tems Design and Implementation, NSDI ’15, pages 337–
350. USENIX Association, May 2015.

[7] Muthukaruppan Annamalai, Kaushik Ravichandran,
Harish Srinivas, Igor Zinkovsky, Luning Pan, Tony Sa-
vor, David Nagle, and Michael Stumm. Sharding the
Shards: Managing Datastore Locality at Scale with
Akkio. In Proceedings of the 13th Symposium on Op-
erating Systems Design and Implementation, OSDI ’18,
pages 445–460. USENIX Association, October 2018.

[8] Brian Knox. Diving in The Deep End: Logging and Met-
rics at DigitalOcean. Video, November 2013. https:
//www.elastic.co/elasticon/tour/2015/new-
york/logging-and-metrics-at-digital-ocean.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
a Distributed Storage System for Structured Data. In
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 205–218.
USENIX Association, November 2006.

[10] Core Technology Sp. z o.o. MooseFS, 2021. https:
//moosefs.com/products/#moosefs.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In Proceed-
ings of the 6th Symposium on Operating Systems Design
and Implementation, OSDI ’04. USENIX Association,
December 2004.

[12] Elastic B.V. Setting the Heap Size, May
2021. https://www.elastic.co/guide/en/
elasticsearch/reference/7.8/text.html.

[13] Elastic B.V. Text Data Type, May 2021. https:
//www.elastic.co/guide/en/elasticsearch/
reference/7.8/text.html.

[14] Elastic N.V. Annual Report. https://www.sec.
gov/ix?doc=/Archives/edgar/data/0001707753/
000162828020009982/estc-20200430.htm, June
2020.

[15] Elasticsearch B.V. Elasticsearch 7.8.0, June 2020.
https://www.elastic.co/downloads/past-
releases/elasticsearch-7-8-0.

[16] Facebook, Inc. Zstandard. https://facebook.
github.io/zstd/.

[17] Paolo Ferragina and Giovanni Manzini. Opportunistic
Data Structures with Applications. In Proceedings of the
41st Annual Symposium on Foundations of Computer
Science, FOCS 2000, pages 390–398. IEEE, November
2000.

[18] Paolo Ferragina and Giovanni Manzini. An Experimen-
tal Study of a Compressed Index. Information Sciences,
135(1-2):13–28, June 2001.

[19] Paolo Ferragina and Giovanni Manzini. An Experimen-
tal Study of an Opportunistic Index. In Proceedings
of the 12th Annual SIAM Symposium on Discrete Al-
gorithms, SODA ’01, pages 269–278. ACM, January
2001.

[20] Paolo Ferragina and Giovanni Manzini. Indexing Com-
pressed Text. Journal of the ACM (JACM), 52(4):552–
581, July 2005.

[21] Free Software Foundation, Inc. GNU Gzip, August
2020. https://www.gnu.org/software/gzip/.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In Proceedings of
the 19th Symposium on Operating Systems Principles,
SOSP ’03, pages 29–43. ACM, October 2003.

[23] Grafana Labs. Loki Documentation, May 2021. https:
//grafana.com/docs/loki/latest/.

[24] Roberto Grossi and Jeffrey Scott Vitter. Compressed
Suffix Arrays and Suffix Trees with Applications to
Text Indexing and String Matching. SIAM Journal on
Computing, 35(2):378–407, 2005.

[25] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie,
and Bo Huang. The HiBench Benchmark Suite: Char-
acterization of the MapReduce-based Data Analysis. In
Proceedings of the 26th International Conference on
Data Engineering Workshops, ICDEW 2010, pages 41–
51. IEEE, March 2010.

[26] Takuya Kida, Masayuki Takeda, Ayumi Shinohara,
Masamichi Miyazaki, and Setsuo Arikawa. Multiple
Pattern Matching in LZW Compressed Text. In Proceed-
ings of the Data Compression Conference, DCC ’98,
pages 103–112. IEEE, March 1998.

[27] Stefan Kurtz. Reducing the Space Requirement of
Suffix Trees. Software: Practice and Experience,
29(13):1149–1171, November 1999.

[28] Steve Newman. Searching 1.5TB/Sec: Sys-
tems Engineering Before Algorithms, May 2014.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 197

https://www.scalyr.com/
https://www.splunk.com/
https://www.elastic.co/elasticon/tour/2015/new-york/logging-and-metrics-at-digital-ocean
https://www.elastic.co/elasticon/tour/2015/new-york/logging-and-metrics-at-digital-ocean
https://www.elastic.co/elasticon/tour/2015/new-york/logging-and-metrics-at-digital-ocean
https://moosefs.com/products/#moosefs
https://moosefs.com/products/#moosefs
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001707753/000162828020009982/estc-20200430.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001707753/000162828020009982/estc-20200430.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001707753/000162828020009982/estc-20200430.htm
https://www.elastic.co/downloads/past-releases/elasticsearch-7-8-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-8-0
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://www.gnu.org/software/gzip/
https://grafana.com/docs/loki/latest/
https://grafana.com/docs/loki/latest/

https://www.scalyr.com/blog/searching-1tb-
sec-systems-engineering-before-algorithms/.

[29] Cloud Object Storage | Amazon Simple Storage Service
(S3). https://aws.amazon.com/s3/.

[30] Kunihiko Sadakane. Compressed Text Databases with
Efficient Query Algorithms Based on the Compressed
Suffix Array. In Proceedings of the 11th Interna-
tional Conference on Algorithms and Computation,
ISAAC ’00, pages 410–421. Springer, December 2000.

[31] Kunihiko Sadakane. Succinct Representations of LCP
Information and Improvements in the Compressed Suf-
fix Arrays. In Proceedings of the 13th Annual SIAM
Symposium on Discrete Algorithms, SODA ’02, pages
225–232. ACM, January 2002.

[32] Kunihiko Sadakane. New Text Indexing Functionalities
of the Compressed Suffix Arrays. Journal of Algorithms,
48(2):294–313, September 2003.

[33] Kunihiko Sadakane. Compressed Suffix Trees with
Full Functionality. Theory of Computing Systems,
41(4):589—-607, December 2007.

[34] Kedar Sadekar. Scalable Logging and Tracking, June
2012. https://netflixtechblog.com/scalable-
logging-and-tracking-882bde0ddca2.

[35] Pranay Singh and Srikanta Shivanna. Method and Sys-
tem for Compressing Logs. US Patent 9,619,478, April
2017.

[36] Splunk Inc. Annual Report. https://www.sec.
gov/ix?doc=/Archives/edgar/data/0001353283/
000135328320000008/a01312010k.htm, March 2020.

[37] Splunk Inc. Splunk® Enterprise 8.0.3, April
2020. https://www.splunk.com/en_us/download/
previous-releases.html.

[38] Splunk Inc. Wildcards, February 2021.
https://docs.splunk.com/Documentation/
Splunk/8.0.3/Search/Wildcards.

[39] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xue-
dong Chen, Mitch Cherniack, Miguel Ferreira, Edmond
Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store:
A Column-Oriented DBMS. In Proceedings of the 31st
International Conference on Very Large Data Bases,
VLDB ’05, pages 553––564. ACM, August 2005.

[40] James A. Storer and Thomas G. Szymanski. Data Com-
pression via Textual Substitution. Journal of the ACM,
29(4):928–951, October 1982.

[41] The Apache Software Foundation. HDFS Archi-
tecture, July 2020. https://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html.

[42] The Apache Software Foundation. Apache Lucene,
2021. https://lucene.apache.org/.

[43] The Division of Economic and Risk Analysis. EDGAR
Log File Data Set, June 2017. https://www.sec.gov/
dera/data/edgar-log-file-data-set.html.

[44] The Kernel Development Community. FUSE, May
2021. https://www.kernel.org/doc/html/latest/
filesystems/fuse.html.

[45] The OpenStack Foundation. Rally, 2021. https://
opendev.org/openstack/rally.

[46] Vijay Samuel. Monitoring Anything and Every-
thing with Beats at eBay. Video, February 2018.
https://www.elastic.co/elasticon/conf/2018/
sf/monitoring-anything-and-everything-with-
beats-at-ebay.

[47] Stephen Yang, Seo Jin Park, and John Ousterhout.
NanoLog: A Nanosecond Scale Logging System. In
Proceedings of the 2018 USENIX Annual Technical Con-
ference, USENIX ATC ’18, pages 335–350. USENIX
Association, July 2018.

[48] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm,
Ding Yuan, and Yuanyuan Zhou. Log20: Fully Au-
tomated Optimal Placement of Log Printing Statements
under Specified Overhead Threshold. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 565–581. ACM, October 2017.

[49] Jacob Ziv and Abraham Lempel. A Universal Algorithm
for Sequential Data Compression. IEEE Transactions
on Information Theory, 23(3):337–343, May 1977.

198 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.scalyr.com/blog/searching-1tb-sec-systems-engineering-before-algorithms/
https://www.scalyr.com/blog/searching-1tb-sec-systems-engineering-before-algorithms/
https://aws.amazon.com/s3/
https://netflixtechblog.com/scalable-logging-and-tracking-882bde0ddca2
https://netflixtechblog.com/scalable-logging-and-tracking-882bde0ddca2
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001353283/000135328320000008/a01312010k.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001353283/000135328320000008/a01312010k.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001353283/000135328320000008/a01312010k.htm
https://www.splunk.com/en_us/download/previous-releases.html
https://www.splunk.com/en_us/download/previous-releases.html
https://docs.splunk.com/Documentation/Splunk/8.0.3/Search/Wildcards
https://docs.splunk.com/Documentation/Splunk/8.0.3/Search/Wildcards
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://lucene.apache.org/
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://opendev.org/openstack/rally
https://opendev.org/openstack/rally
https://www.elastic.co/elasticon/conf/2018/sf/monitoring-anything-and-everything-with-beats-at-ebay
https://www.elastic.co/elasticon/conf/2018/sf/monitoring-anything-and-everything-with-beats-at-ebay
https://www.elastic.co/elasticon/conf/2018/sf/monitoring-anything-and-everything-with-beats-at-ebay

	Introduction
	Design Overview
	Compression
	Parsing Messages
	Compressing Messages
	Decompressing Messages
	On-disk Format

	Search
	Handling Ambiguous Tokens
	Optimizing CLP Queries

	Handling Special Cases
	Distributed Architecture

	Wildcards and Schemas
	Wildcard String Tokenization
	Comparing Expressions

	Schema Design
	Compressed Persistent Caching
	Data Scrubbing and Obfuscation
	Evaluation
	Experiment Setup
	Compression Speed and Ratio
	Search Performance
	Horizontal, Vertical, and Capacity Scaling

	Related Work
	Conclusion

