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Abstract
Pollux improves scheduling performance in deep learning

(DL) clusters by adaptively co-optimizing inter-dependent

factors both at the per-job level and at the cluster-wide level.

Most existing schedulers expect users to specify the number of

resources for each job, often leading to inefficient resource use.

Some recent schedulers choose job resources for users, but do

so without awareness of how DL training can be re-optimized

to better utilize the provided resources.

Pollux simultaneously considers both aspects. By moni-

toring the status of each job during training, Pollux models

how their goodput (a metric we introduce to combine system

throughput with statistical efficiency) would change by adding

or removing resources. Pollux dynamically (re-)assigns

resources to improve cluster-wide goodput, while respecting

fairness and continually optimizing each DL job to better

utilize those resources.

In experiments with real DL jobs and with trace-driven

simulations, Pollux reduces average job completion times

by 37–50% relative to state-of-the-art DL schedulers, even

when they are provided with ideal resource and training

configurations for every job. Pollux promotes fairness among

DL jobs competing for resources, based on a more meaningful

measure of useful job progress, and reveals a new opportunity

for reducing DL cost in cloud environments. Pollux is

implemented and publicly available as part of an open-source

project at https://github.com/petuum/adaptdl.

1 Introduction

Deep learning (DL) training has rapidly become a dominant

workload in many shared resource environments such as

datacenters and the cloud. DL jobs are resource-intensive and

long-running, often demanding distributed execution using

expensive hardware devices (eg. GPUs or TPUs) in order to

complete within reasonable amounts of time. To meet this

resource demand, dedicated clusters are often provisioned for

deep learning [31, 67], with a scheduler that mediates resource

sharing between many competing DL jobs.

Existing schedulers require users to manually configure

their jobs, which if done improperly, can greatly degrade

training performance and resource efficiency. For example,

allocating too many GPUs may result in long queuing times

and inefficient resource usage, while allocating too few GPUs

may result in long runtimes and unused resources. Such

decisions are especially difficult to make in a shared-cluster

setting, since optimal choices are dynamic and depend on the

cluster load while a job is running.

Even though recent elastic schedulers can automatically

select an appropriate amount of resources for each job, they do

so blindly to inter-dependent training-related configurations

that are just as important. For example, the batch size and

learning rate of a DL job influence the amount of computation

needed to train its model. Their optimal choices vary between

different DL tasks and model architectures, and they have

strong dependence on the job’s allocation of resources.

The amount of resources, batch size, and learning rate are

difficult to configure appropriately without expert knowledge

about both the cluster hardware performance and DL model

architecture. Due to the inter-dependence between their

optimal values, they should be configured jointly with each

other. Due to the dynamic nature of shared clusters, their

optimal values may change over time. This creates a complex

web of considerations a user must make in order to configure

their job for efficient execution and resource utilization.

How can a cluster scheduler help to automatically con-

figure user-submitted DL jobs? Fundamentally, a properly-

configured DL job strikes a balance between two often oppos-

ing desires: (1) system throughput, the numberof training exam-

ples processed per wall-clock time, and (2) statistical efficiency,

the amount of progress made per training example processed.

System throughput can be increased by increasing the

batch size, as illustrated in Fig. 1a. A larger batch size enables

higher utilization of more compute resources (e.g., more

GPUs). But, even with an optimally-retuned learning rate,

increasing the batch size often results in a decreased statistical

efficiency [46,57]. For every distinct allocation of GPUs, there

is potentially a different batch size that best balances increasing
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(a) Job scalability (and thus

resource utilization) depends on

the batch size.

(b) The most efficient batch

size depends on the allocated

resources and stage of training.

Figure 1: Trade-offs between the batch size, resource

scalability, and stage of training (ResNet18 on CIFAR-10).

The learning rate is separately tuned for each batch size.

system throughput with decreasing statistical efficiency, as

illustrated in Fig. 1b. Furthermore, how quickly the statistical

efficiency decreases with respect to the batch size depends on

the current training progress. A job in a later stage of training

can potentially tolerate 10x or larger batch sizes without de-

grading statistical efficiency, than earlier during training [46].

Guided by these insights, this paper presents Pollux, a hybrid

resource scheduler that co-adaptively allocates resources and

tunes the batch size and learning rate for all DL jobs in a shared

cluster. Pollux achieves this by jointly managing several

system-level and training-related parameters, including the

number of GPUs, co-location of workers, per-GPU batch size,

gradient accumulation, and learning rate scaling. In particular:

⋆ We propose a formulation of goodput for DL jobs, which

is a holistic measure of training performance that takes into

account both system throughput and statistical efficiency.

⋆ We show that a model of a DL job’s goodput can be

learned by observing its throughput and statistical behavior

during training, and used for predicting the performance given

different resource allocations and batch sizes.

⋆We design and implement a scheduling architecture that uses

such models to configure the right combination of resource al-

location and training parameters for each pending and running

DL job. This includes locally tuning system-level and training-

related parameters for each DL job, and globally optimizing

cluster-wide resource allocations. The local and global com-

ponents actively communicate and cooperate with each other,

operating based on the common goal of goodput maximization.

⋆ We evaluate Pollux on a cluster testbed using a workload

derived from a Microsoft cluster trace. Compared with recent

DL schedulers, Tiresias [22] and Optimus [52], Pollux reduces

the average job completion time by up to 73%. Even when

all jobs are manually tuned beforehand, Pollux reduces the

average job completion time by 37%–50%. At the same time,

Pollux improves finish-time fairness [43] by 1.5×–5.4×.

⋆ We show that, in cloud environments, using goodput-driven

auto-scaling based on Pollux can potentially reduce the cost

of training large models by 25%.

2 Background: Distributed DL Training

Training a deep learning model typically involves minimizing

a loss function of the form

L(w)=
1

|X | ∑
xi∈X

ℓ(w,xi), (1)

where w ∈ R
d are the model parameters to be optimized, X

is the training dataset, xi is an individual sample in X , and ℓ
is the loss evaluated at a single sample.

The loss function can be minimized using stochastic

gradient descent (SGD) or its variants like AdaGrad [15] and

Adam [36]. For the purpose of explaining system throughput

and statistical efficiency, we will use SGD as the running

example. SGD repeatedly applies the following update until

the loss converges to a stable value: w(t+1) = w(t)−ηĝ(t). η
is known as the learning rate, which is a scalar that controls

the magnitude of each update, and ĝ(t) is a stochastic gradient

estimate of the loss function L , evaluated using a random

mini-batch M (t)⊂X of the training data:

ĝ(t)=
1

M
∑

xi∈M (t)

∇ℓ(w(t),xi). (2)

The learning rate η and batch size M = |M (t)| are training

parameters which are typically chosen by the user.

2.1 System Throughput

The system throughput of DL training can be defined as the

number of training samples processed per unit of wall-clock

time. When a DL job is distributed across several nodes, its

system throughput is determined by several factors, including

(1) the allocation and placement of resources (e.g. GPUs)

assigned to the job, (2) the method of distributed execution

and synchronization, and (3) the batch size.

Data-parallel execution. Synchronous data-parallelism is a

popular method of distributed execution for DL training. The

model parameters w(t) are replicated across a set of distributed

GPUs 1, ... , K, and each mini-batch M (t) is divided into

equal-sized partitions per node, M
(t)

1 ,...,M
(t)

K . Each GPU k

computes a local gradient estimate ĝ
(t)
k using its own partition:

ĝ
(t)
k =

1

m
∑

xi∈M
(t)
k

∇ℓ(w(t),xi), (3)

where m = |M (t)
k | is the per-GPU batch size. These local

gradient estimates are then averaged across all GPUs to obtain

the desired ĝ(t). Finally, each node applies the same update

using ĝ(t) to obtain the new model parameters w(t+1).

The run-time of each training iteration is determined

by two main components. First, the time spent computing

each ĝ
(t)
k , which we denote by Tgrad . Second, the time spent
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averaging ĝ
(t)
k (e.g. using collective all-reduce [51, 56]) and/or

synchronizing w(t) (e.g. using parameter servers [8,11,26,53])

across all GPUs, which we denote by Tsync. Tsync is influenced

by the size of the gradients, performance of the network, and

is typically shorter when the GPUs are co-located within the

same physical node or rack.

Limitations due to the batch size. When the number of GPUs

is increased, Tgrad decreases due to a smaller per-GPU batch

size. On the other hand, Tsync, which is typically independent

of the batch size, remains unchanged. By Amdahl’s Law,

no matter how many GPUs are used, the run-time of each

training iteration is lower bounded by Tsync. To overcome this

scalability limitation, a common strategy is to increase the

batch size. Doing so causes the local gradient estimates to be

computed over more training examples and thereby increasing

the ratio of Tgrad to Tsync. As a result, using a larger batch size

enables higher system throughput when scaling to more GPUs

in the synchronous data-parallel setting.

2.2 Statistical Efficiency

The statistical efficiency of DL training can be defined as the

amount of training progress made per unit of training data pro-

cessed, influenced by parameters such as batch size or learning

rate; for example, a larger batch size normally decreases the sta-

tistical efficiency. The ability to predict statistical efficiency is

key to improving said statistical efficiency, because we can use

the predictions to better adapt the batch sizes and learning rates.

Gradient noise scale. Previous work [32, 46] relate the

statistical efficiency of DL training to the gradient noise

scale (GNS), which measures the noise-to-signal ratio of

the stochastic gradient. A larger GNS means that training

parameters such as the batch size and learning rate can be

increased to higher values with relatively less reduction of

the statistical efficiency. The GNS can vary greatly between

different DL models [19]. It is also non-constant and tends to

gradually increase during training, by up to 10× or more [46].

Thus, it is possible to attain significantly better statistical

efficiency for large batch sizes later on during training.

The gradient noise scale mathematically captures an

intuitive explanation of how the batch size affects statistical

efficiency. When the stochastic gradient has low noise,

adding more training examples to each mini-batch does not

significantly improve each gradient estimate, which lowers

statistical efficiency. When the stochastic gradient has high

noise, adding more training examples to each mini-batch

reduces the noise of each gradient estimate, which maintains

high statistical efficiency. Near convergence, the stochastic

gradients have relatively lower signal than noise, and so larger

batch sizes can be more useful later in training.

Learning rate scaling. When training with an increased total

batch size M, the learning rate η should also be increased,

otherwise the final trained model quality/accuracy can be

significantly worse [57]. How to increase the learning rate

varies between different models and training algorithms (e.g.

SGD, Adam [36], AdamW [42]), and several well-established

scaling rules may be used. For example, the linear scaling

rule [21], which prescribes that η be scaled proportionally with

M, or the square-root scaling rule [40, 69] (commonly used

with Adam), which prescribes that η be scaled proportionally

with
√

M. More recent scaling rules such as AdaScale [32]

may scale the learning rate adaptively during training.

In addition to decreasing statistical efficiency, using large

batch sizes may also degrade the final model quality in terms

of validation performance [19, 35, 60], although the reasons

behind this effect are not completely understood at the time of

this paper. However, for each of the learning rate scaling rules

mentioned above, there is usually a problem-dependent range

of batch sizes that achieve similar validation performances.

Within these ranges, the batch size may be chosen more freely

without significantly degrading the final model quality.

2.3 Existing DL Schedulers

We broadly group existing DL schedulers into two categories,

to put Pollux in context. First, non-scale-adaptive schedulers

are agnostic to the performance scalability of DL jobs with

respect to the amount of allocated resources. For example, Tire-

sias [22] requires users to specify the number of GPUs at the

time of job submission, which will be fixed for the lifetime of

the job. Gandiva [66] also requires users to specify number of

GPUs, but enhances resource utilization through fine-grained

time sharing and job packing. Although Gandiva may dynam-

ically change the number of GPUs used by a job, it does so op-

portunistically and not based on knowledge of job scalability.

Second, scale-adaptive schedulers automatically decide

the amount of resources allocated to each job based on how

well they can be utilized to speed up the job. For example,

Optimus [52] learns a predictive model for the system

throughput of each job given various amounts of resources,

and optimizes cluster-wide resource allocations to minimize

the average job completion time. SLAQ [71], which was

not evaluated on DL, uses a similar technique to minimize

the average loss values for training general ML models.

Gavel [48] goes further by scheduling based on a throughput

metric that is comparable across different accelerator types.1

AntMan [67] uses dynamic scaling and fine-grained GPU

sharing to improve cluster utilization, resource fairness, and

job completion times. Themis [43] introduces the notion of

finish-time fairness, and promotes fairness between multiple

DL applications with a two-level scheduling architecture.

Crucially, existing schedulers are agnostic to the statistical

efficiency of DL training and the inter-dependence of resource

decisions and training parameters. Pollux explicitly co-adapts

these inter-dependent values to improve goodput for DL jobs.

1Pollux’s current throughput model does not consider accelerator

heterogeneity. We believe that extending with Gavel’s metric would allow

Pollux to co-adapt for goodput in heterogeneous DL clusters.
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3 The Goodput of DL Training and Pollux

In this section, we define the goodput2 of DL jobs, which is

a measure of training performance that takes into account both

system throughput and statistical efficiency. We then describe

how the goodput can be measured during training and used

as a predictive model, which is leveraged by Pollux to jointly

optimize cluster-wide resource allocations and batch sizes.

Definition 3.1. (Goodput) The goodput of a DL training job

at iteration t is the product between its system throughput and

its statistical efficiency at iteration t,

GOODPUTt(⋆)=THROUGHPUT(⋆)×EFFICIENCYt(M(⋆)), (4)

where ⋆ represents any configuration parameters that jointly

influence the throughput and batch size during training, and M

is the total batch size summed across all allocated GPUs.

While the above definition is general across many training

systems, we focus on three configuration parameters of par-

ticular impact in the context of efficient resource scheduling,

i.e. ⋆=(a,m,s), where:

• a∈ZN : the allocation vector, where an is the number of

GPUs allocated from node n.

• m∈Z: the per-GPU batch size.

• s∈Z: number of gradient accumulation steps (§3.2).

The total batch size is then defined as

M(a,m,s)=SUM(a)×m×(s+1).

Pollux’s approach. An initial batch size M0 and learning rate

(LR) η0 are selected by the user when submitting their job.

Pollux will start each job using a single GPU, m = M = M0,

s=0, and η=η0. As the job runs, Pollux profiles its execution

to learn and refine predictive models for both THROUGHPUT

(§3.2) and EFFICIENCY (§3.1). Using these predictive models,

Pollux periodically re-tunes (a,m,s) for each job, according

to cluster-wide resource availability and performance (§4.2).

EFFICIENCYt is measured relative to the initial batch size

M0 and learning rate η0, and Pollux only considers batch

sizes that are at least the initial batch size, ie. M ≥ M0. In

this scenario, EFFICIENCYt(M) is a fraction (between 0 and

1) relative to EFFICIENCYt(M0). Therefore, goodput can be

interpreted as the portion of the throughput that is useful for

training progress, being equal to the throughput if and only

if perfect statistical efficiency is achieved.

Plug-in Learning Rate Scaling. Recall from §2.2 that

different training jobs may require different learning rate

scaling rules to adjust η in response to changes in M. In order

2Our notion of goodput for DL is analogous to the traditional definition

of goodput in computer networks, ie. the useful portion of throughput as

benchmarked by training progress per unit of wall-clock time.

to support a wide variety of LR scaling rules, including state-of-

the-art rules such as AdaScale [32], Pollux provides a plug-in

interface that can be implemented using a function signature

SCALE_LR(M0,M)−→λ.

SCALE_LR is called before every model update step, and λ is

used by Pollux to scale the learning rate. The implementation

of SCALE_LR can utilize metrics collected during training,

such as the gradient noise scale. Using this interface, one can

implement rules including AdaScale, square-root scaling [40],

linear scaling [21] and LEGW [69].

3.1 Modeling Statistical Efficiency

We model EFFICIENCYt(M) as the amount of progress made

per training example using M, relative to using M0. For

SGD-based training, this quantity can be expressed in terms

of the gradient noise scale (GNS) [46]. To support popular

adaptive variants of SGD like Adam [36] and AdaGrad [64],

we use the pre-conditioned gradient noise scale (PGNS),

derived by closely following the original derivation of the GNS

(“simple” noise scale in [46]) starting from pre-conditioned

SGD3 rather than vanilla SGD. The PGNS, which we denote

by ϕt , is expressed as

ϕt =
tr(PΣPT )

|Pg|2 , (5)

where g is the true gradient, P is the pre-conditioning matrix

of the adaptive SGD algorithm, and Σ is the covariance

matrix of per-example stochastic gradients. The PGNS is a

generalization of the GNS and is mathematically equivalent

to the GNS for the special case of vanilla SGD.

Similar to the GNS (Appendix D of [46]), it takes 1+ϕt/M

training iterations to make a similar amount of training progress

across different batch sizes M. Therefore, we can use the PGNS

ϕt to define a concrete expression for EFFICIENCYt(M) as

EFFICIENCYt(M)=
ϕt+M0

ϕt+M
. (6)

Intuitively, Eqn. 6 measures the contribution from each train-

ing example to the overall progress. If EFFICIENCYt(M)=E,

then (1) 0 < E ≤ 1, and (2) training using batch size M will

need to process 1/E times as many training examples to make

the same progress as using batch size M0.

During training, Pollux estimates the value of ϕt , then uses

Eqn 6 to predict the EFFICIENCYt at different batch sizes. The

measured value of ϕt varies according to the training progress

at iteration t, thus EFFICIENCYt(M) reflects the lifetime-

dependent trends exhibited by the true statistical efficiency.

3Pre-conditioned SGD optimizes L(Pw) instead of L(w), where P is

known as a pre-conditioning matrix. Adaptive variants of SGD such as Adam

and AdaGrad may be viewed as vanilla SGD (with momentum) applied

together with a particular pre-conditioning matrix P.
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(a) ImageNet (b) YoloV3 (c) DeepSpeech2 (d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 2: Statistical efficiency for all models described in Table 1. TOP: validation metric vs training progress for three different

batch sizes: M0, an intermediate batch size, and the max batch size limit we set for each DL task. Metrics are as defined in

Table 1 except for YoloV3 for which validation loss is shown. MIDDLE: measured statistical efficiency vs. training progress

for two different batch sizes. Training progress (x-axis) in the top two rows is shown in terms of “statistical epochs”, defined

as M
|X | ∑t EFFICIENCYt(M) where |X | is the size of the training dataset. BOTTOM: measured EFFICIENCYt vs. predicted

EFFICIENCYt for a range of batch sizes (log-scaled), using ϕt measured using the median batch size from each range, during

an early-training epoch (roughly 1/8th of the way through training).

Fig. 2 (TOP) shows the validation metrics on a held-out

dataset for a variety of DL training tasks (details in Table

1) versus their training progress. “Statistical epochs”4 is the

number of training iterations normalized by EFFICIENCYt so

that each statistical epoch makes theoretically, as projected

by our model, the same training progress across different

batch sizes. Thus, the degree of similarity between validation

curves at different batch sizes is an indicator for the accuracy

of EFFICIENCYt as a predictor of actual training progress.

Although there are differences in the validation curves for

several DL tasks (especially in earlier epochs), they achieve

similar best values across the different batch sizes we evaluated

(±1% relative difference for all tasks except DeepSpeech2

at±4%). We note that these margins are within the plateau of

high-quality models expected from large-batch training [45].

Fig. 2 (MIDDLE and BOTTOM) show the measured

and predicted EFFICIENCYt during training and for a range

of different batch sizes. In general, larger batch sizes have

lower EFFICIENCYt early in training, but close the gap

4Similar to the notion of “scale-invariant iterations” defined in [32].

later on in training. The exceptions being BERT, which

is a fine-tuning task starting from an already pre-trained

model, and recommendation, which uses a much smaller

and shallower model architecture than the others. How

EFFICIENCYt changes during training varies from task to

task, and depends on specific properties like the learning rate

schedule. For example, EFFICIENCYt for ImageNet, which

uses step-based learning rate annealing, experiences sharp

increases whenever the learning rate is annealed.

Finally, we note that the EFFICIENCYt function (which is

supplied with estimates of ϕt by Pollux) is able to accurately

model observed values at a range of different batch sizes. This

means that ϕt measured using batch size M can be used by

Pollux to predict the value of EFFICIENCYt at a different batch

size M′ without needing to train using M′ ahead of time.

Upper batch size limit. In some cases, as the batch size in-

creases, the chosen LR scaling rule may break down before the

statistical efficiency decreases, which degrades the final model

quality. To address these cases, the application may define

a maximum batch size limit that will be respected by Pollux.

Nevertheless, we find that a batch size up to 32× larger works
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well in most cases. Furthermore, limits for common models

are well-studied for popular LR scaling rules [21, 32, 57, 69].

As better LR scaling rules are developed, they may be

incorporated into Pollux using its plug-in interface (§3).

Estimating ϕt . The PGNS ϕt can be estimated in a similar

fashion as the GNS by following Appendix A.1 of [46],

except using the pre-conditioned gradient Pg instead of

the gradient g. This can be done efficiently when there are

multiple data-parallel processes by using the different values

of ĝ
(t)
k already available on each GPU k. However, this method

doesn’t work when there is only a single GPU (and gradient

accumulation is off, i.e. s = 0). In this particular situation,

Pollux switches to a differenced variance estimator [63] which

uses consecutive gradient estimates ĝ(t−1) and ĝ(t).

3.2 Modeling System Throughput

To model and predict the system throughput for data-parallel

DL, we aim to predict the time spent per training iteration,

Titer, and then calculate the throughput as

THROUGHPUT(a,m,s)=M(a,m,s)/Titer(a,m,s). (7)

We start by separately modeling Tgrad , the time in each

iteration spent computing local gradient estimates, and Tsync,

the time in each iteration spent averaging gradient estimates

and synchronizing model parameters across all GPUs. We

also start by assuming no gradient accumulation, i.e. s=0.

Modeling Tgrad . The local gradient estimates are computed

using back-propagation, whose run-time scales linearly with

the per-GPU batch size m. Thus, we model Tgrad as

Tgrad(m)=αgrad+βgrad ·m, (8)

where αgrad ,βgrad are fittable parameters.

Modeling Tsync. When allocated a single GPU, no synchro-

nization is needed and Tsync=0. Otherwise, we model Tsync as a

linear function of the number of GPUs since in data-parallelism,

the amount of data sent and received from each replica is

typically only dependent on the size of the gradients and/or pa-

rameters. We include a linear factor to account for performance

retrogressions associated with using three or more GPUs, such

as increasing likelihood of stragglers or network delays.

Co-location of GPUs on the same node reduces network

communication, which can improve Tsync. Thus, we use

different parameters depending on GPU placement. Letting

K=SUM(a) be the number of allocated GPUs,

Tsync(a,m)=











0 if K=1

αlocal
sync +βlocal

sync ·(K−2) if N=1, K≥2

αnode
sync +βnode

sync ·(K−2) otherwise,

(9)

where N is the number of physical nodes occupied by at least

one replica. αlocal
sync and βlocal

sync are the constant and retrogression

parameters for when all processes are co-located onto the

same node. αnode
sync and βnode

sync are the analogous parameters

for when at least two process are located on different nodes.

Note that our model for Tsync can be extended to account for

rack-level locality by adding a third pair of parameters.

Combining Tgrad and Tsync. Modern DL frameworks can

partially overlap Tgrad and Tsync by overlapping gradient

computation with network communication [70]. The degree

of this overlap depends on structures in the specific DL model

being trained, like the ordering and sizes of its layers.

Assuming no overlap, then Titer =Tgrad+Tsync. Assuming

perfect overlap, then Titer =max(Tgrad ,Tsync). A realistic value

of Titer is somewhere in between these two extremes. To

capture the overlap between Tgrad and Tsync, we model Titer as

Titer(a,m,0)=
(

Tgrad(a,m)γ+Tsync(a)
γ
)1/γ

, (10)

where γ≥1 is a learnable parameter. Eqn. 10 has the property

that Titer =Tgrad+Tsync when γ=1, and smoothly transitions

towards Titer =max(Tgrad ,Tsync) as γ→∞.

Gradient Accumulation. In data-parallelism, GPU memory

limits the per-GPU batch size, and many DL models hit this

limit before the batch size is large enough for Tgrad to over-

come Tsync (or experience diminishing statistical efficiency),

resulting in suboptimal scalability. Several techniques exist for

overcoming the GPU memory limit [9,10,27,30]; we focus on

gradient accumulation, which is easily implemented using pop-

ular DL frameworks. Per-GPU gradients are aggregated locally

over s forward-backward passes before being synchronized

across all GPUs during the (s+1)th pass, achieving a larger to-

tal batch size. Thus, one iteration of SGD spans s accumulation

steps followed by one synchronization step, modeled as

Titer(a,m,s)=s×Tgrad(a,m)+
(

Tgrad(a,m)γ+Tsync(a)
γ
)1/γ

. (11)

Throughput model validation. Fig. 3 shows an example of

our THROUGHPUT function fit to measured throughput values

for a range of resource allocations and batch sizes. Each DL

task was implemented using PyTorch [51], which overlaps the

backward pass’ computation and communication. Gradients

are synchronized with NCCL 2.7.8, which uses either ring all-

reduce or tree all-reduce depending on the detected GPUs and

their placements and its own internal performance estimates.

Overall, we find that our model can represent the observed

data closely, while varying both the amount of resources as

well as the batch size. In particular, all models we measured

except ImageNet exhibited high sensitivity to inter-node

synchronization, indicating that they benefit from co-location

of GPUs. Furthermore, YOLOv3 and BERT benefit from

using gradient accumulation to increase their total batch sizes.

These detailed characteristics are well-represented by our

THROUGHPUT function, and can be optimized for by Pollux.

In addition to the configurations in Fig. 3, we fitted the

THROUGHPUT function on a diverse set of GPU placements

and batch sizes in a 64-GPU cluster. Across all DL tasks, the

average error of the fitted model was at most 10%, indicating

that it represents the observed throughput measurements well.
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(a) ImageNet (b) YoloV3 (c) DeepSpeech2 (d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 3: System throughput for all models described in Table 1, as measured using g4dn.12xlarge instances in AWS each with

4 NVIDIA T4 GPUs and created within the same placement group. Eqn. 11 was fitted using the observed data that appeared in each

plot. TOP: time per training iteration vs. the number of allocated GPUs (log-scaled), with the per-GPU batch size held constant.

The GPUs are placed in as few 4-GPU nodes as possible, which causes a sharp increase beyond 4 GPUs (when inter-node network

synchronization becomes required). BOTTOM: system throughput (examples per second) vs. total batch size (log-scaled), with

the number of GPUs held constant. To the left of the vertical dashed line, the entire mini-batch fits within GPU memory. To the

right, the total batch size is achieved using gradient accumulation.

Limits of the throughput model. Pollux models data-parallel

training throughput only in the dimensions it cares about,

i.e. number and co-locality of GPUs, batch size, and gradient

accumulation steps. The simple linear assumptions made in

Eqn. 11, although sufficiently accurate for the settings we

tested, may diverge from reality for specialized hardware [33],

sophisticated synchronization algorithms [7, 65, 72], different

parallelization strategies [28,47,58,59], at larger scales [6,68],

or hidden resource contention not related to network used for

gradient synchronization. Rather than attempting to cover

all scenarios with a single throughput model, we designed

GOODPUTt (Eqn. 4) to be modular so that different equations

for THROUGHPUT may be easily plugged in without interfering

with the core functionalities provided by Pollux.

4 Pollux Design and Architecture

Pollux adapts DL job execution at two distinct granularities.

First, at a job-level granularity, Pollux dynamically tunes the

batch size and learning rate for best utilization of the allocated

resources. Second, at the cluster-wide granularity, Pollux

dynamically (re-)allocates resources, driven by the goodput of

all jobs sharing the cluster combined with cluster-level goals

including fairness and job-completion time. To achieve this

co-adaptivity in a scalable way, Pollux’s design consists of

two primary components, as illustrated in Fig. 4.

First, a PolluxAgent runs together with each job. It fits the

EFFICIENCYt and THROUGHPUT functions for that job, and

tunes its batch size and learning rate for efficient utilization

Figure 4: Co-adaptive scheduling architecture of Pollux.

of its current allocated resources. PolluxAgent periodically

reports the goodput function of its job to the PolluxSched.

Second, the PolluxSched periodically optimizes the

resource allocations for all jobs in the cluster, taking into

account the current goodput function for each job and

cluster-wide resource contention. Scheduling decisions made

by PolluxSched also account for the overhead associated

with resource re-allocations, slowdowns due to network

interference between multiple jobs, and resource fairness.

PolluxAgent and PolluxSched co-adapt to each other.

While PolluxAgent adapts each training job to make efficient

use of its allocated resources, PolluxSched dynamically

re-allocates each job’s resources, taking into account the

PolluxAgent’s ability to tune its job.
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4.1 PolluxAgent: Job-level Optimization

An instance of PolluxAgent is started with each training job.

During training, it continually measures the job’s gradient

noise scale and system throughput, and it reports them to

PolluxSched at a fixed interval. It also uses this information

to determine the most efficient batch size for its job given its

current resource allocations, and adapts its job’s learning rate

to this batch size using the appropriate plug-in LR scaling rule

(e.g. AdaScale for SGD or square-root scaling for Adam).

Online model fitting. In §3.2, we defined the system

throughput parameters of a training job as the 7-tuple

θsys=
(

αgrad ,βgrad ,α
local
sync ,β

local
sync ,α

node
sync ,β

node
sync ,γ

)

, (12)

which are required to construct the THROUGHPUT function. To-

gether with the PGNS ϕt (for predicting EFFICIENCYt ) and ini-

tial batch size M0, the triple (θsys,ϕt ,M0) specifies theGOODPUT

function. While M0 is a constant configuration provided by

the user, and ϕt can be computed according to §3.1, θsys is

estimated by fitting the THROUGHPUT function to observed

throughput values collected about the job during training.

PolluxAgent measures the time taken per iteration, Titer, and

records the tuple (a,m,s,Titer) for all combinations of resource

allocations a, per-GPU batch size m, and gradient accumu-

lation steps s encountered during its lifetime. Periodically,

PolluxAgent fits the parameters θsys to all of the throughput

data collected so far. Specifically, we minimize the root

mean squared logarithmic error (RMSLE) between Eqn. 11

and the collected data triples, using L-BFGS-B [73]. We set

constraints for each α and β parameter to be non-negative,

and γ to be in the range [1,10]. PolluxAgent then reports the

updated values of θsys and ϕt to PolluxSched.

Prior-driven exploration. At the beginning of each job,

throughput values have not yet been collected. To ensure that

Pollux finds efficient resource allocations through systematic

exploration, we impose several priors which bias θsys towards

the belief that throughput scales perfectly with more resources,

until such resource configurations are explored.

In particular, we set αlocal
sync = 0 while the job had not used

more than one GPU, αlocal
sync =βlocal

sync =0 while the job had not

used more than one node, and βlocal
sync =βnode

sync =0 while the job

had not used more than two GPUs. This creates the following

behavior: each job starts with a single GPU and is initially

assumed to scale perfectly to more GPUs. PolluxSched is then

encouraged to allocate more GPUs and/or nodes to the job,

naturally as part of its resource optimization (§4.2), until the

PolluxAgent can estimate θsys more accurately. Finally, to

prevent a job from being immediately scaled out to arbitrarily

many GPUs, we restrict the maximum number of GPUs that

can be allocated to at most twice the maximum number of

GPUs the job has been allocated in its lifetime.

Although other principled approaches to exploration can

be applied (e.g., Bayesian optimization), we find that this

simple prior-driven strategy is sufficient in our experiments.

Sec. 5.3.2 shows that prior-driven exploration performs close

(within 2-5%) to an idealized scenario in which the model is

fitted offline for each job before being submitted to the cluster.

Training job tuning. With θsys, ϕt , and M0, which fully

specify the DL job’s GOODPUT function at its current training

progress, PolluxAgent determines the most efficient per-GPU

batch size and gradient accumulation steps,

(m∗,s∗)=argmax
m,s

GOODPUT(a,m,s), (13)

where a is the job’s current resource allocation.

Once a new configuration is found, the job will use it for

its subsequent training iterations, using the plug-in LR scaling

rule to adapt its learning rate appropriately. As the job’s

EFFICIENCYt function changes over time, PolluxAgent will

periodically re-evaluate the most efficient configuration.

4.2 PolluxSched: Cluster-wide Optimization

The PolluxSched periodically allocates (and re-allocates)

resources for every job in the cluster. To determine a set of

efficient cluster-wide resource allocations, it maximizes a

fitness function that is defined as a generalized (power) mean

across speedups for each job:

FITNESSp(A)=

(

1

J

J

∑
j=1

SPEEDUP j(A j)
p

)1/p

. (14)

A is an allocation matrix with each row A j being the allocation

vector for a job j, thus A jn is the number of GPUs on node

n allocated to job j, and J is the total number of running and

pending jobs sharing the cluster. We define the speedup of

each job as the factor of goodput improvement using a given

resource allocation over using a fair-resource allocation, ie.

SPEEDUP j(A j)=
maxm,sGOODPUT j(A j,m,s)

maxm,sGOODPUT j(a f ,m,s)
, (15)

where GOODPUT j is the goodput of job j at its current training

iteration, and a f is a fair resource allocation for the job, defined

to be an exclusive 1/J share of the cluster.5

In §3, we described how the GOODPUT function can be fitted

to observed metrics during training and then be evaluated as a

predictive model. PolluxSched leverages this ability to predict

GOODPUT to maximize FITNESS via a search procedure, and

then it applies the outputted allocations to the cluster.

Fairness and the effect of p. When p = 1, FITNESSp is

the average of SPEEDUP values across all jobs. This causes

PolluxSched to allocate more GPUs to jobs that achieve a high

SPEEDUP when provided with many GPUs (i.e., jobs that scale

5We note that SPEEDUP has similarities with finish-time fairness [43]. But,

SPEEDUP is related to training performance at a moment in time, whereas

finish-time fairness is related to end-to-end job completion time.
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well). However, as p→−∞, FITNESSp smoothly approaches

the minimum of SPEEDUP values, in which case maximizing

FITNESSp promotes equal SPEEDUP between training jobs,

but ignores the overall cluster goodput and resource efficiency.

Thus, p can be considered a “fairness knob”, with larger

negative values being more fair. A cluster operator may select

a suitable value, based on organizational priorities. In our

experience and results in §5, we find that p = −1 achieves

most goodput improvements and reasonable fairness.

Re-allocation penalty. Each time a job is re-allocated to a

different set of GPUs, it incurs some delay to re-configure

the training process. Using the the popular checkpoint-restart

method, we measured between 15 and 120 seconds of delay

depending on the size of the model being trained and other

initialization tasks in the training code. To prevent an excessive

number of re-allocations, when PolluxSched evaluates the

fitness function for a given allocation matrix, it applies a

penalty for every job that needs to be re-allocated,

SPEEDUP j(A j)←−SPEEDUP j(A j)×REALLOC_FACTOR j(δ).

We define REALLOC_FACTOR j(δ) = (Tj − R jδ)/(Tj + δ),
where Tj is the age of the training job, R j is the number of

re-allocations incurred by the job so far, and δ is an estimate

of the re-allocation delay. Intuitively, REALLOC_FACTOR j(δ)
scales SPEEDUP j(A j) according to the assumption that the

historical average rate of re-allocations for job j will continue

indefinitely into the future. Thus, a job that has historically

experienced a higher rate of re-allocations will be penalized

more for future re-allocations.

Interference avoidance. When multiple distributed DL jobs

share a single node, their network usage while synchronizing

gradients and model parameters may interfere with each other,

causing both jobs to slow down [31]; Xiao et al. [66] report

up to 50% slowdown for DL jobs which compete with each

other for network resources. PolluxSched mitigates this issue

by disallowing different distributed jobs (each using GPUs

across multiple nodes) from sharing the same node.

Interference avoidance is implemented as a constraint

in Pollux’s search algorithm, by ensuring at most one

distributed job is allocated to each node. We study the effects

of interference avoidance in §5.3.2.

Supporting non-adaptive jobs. In certain cases, a user may

want to run a job with a fixed batch size, i.e. M =M0. These

jobs are well-supported by PolluxSched, which simply fixes

EFFICIENCYt for that job to 1 and can continue to adapt its

resource allocations based solely on its system throughput.

4.3 Implementation

PolluxAgent is implemented as a Python library that is im-

ported into DL training code. We integrated PolluxAgent with

PyTorch [51], which uses all-reduce as its gradient synchro-

nization algorithm. PolluxAgent inserts performance profiling

code that measures the time taken for each iteration of training,

as well as calculating the gradient noise scale. At a fixed

time interval, PolluxAgent fits the system throughput model

(Eqn. 10) to the profiled metrics collected so far, and reports the

fitted system throughput parameters, along with the latest gra-

dient statistics, to PolluxSched. After reporting to PolluxSched,

PolluxAgent updates the job’s per-GPU batch size and gradient

accumulation steps, by optimizing its now up-to-date goodput

function (Eqn. 4) with its currently allocated resources.

PolluxSched is implemented as a service in Kubernetes [2].

At a fixed time interval, PolluxSched runs its search algorithm,

and then applies the resultant allocation matrix by creating and

terminating Kubernetes Pods that run the job workers. To find

a good allocation matrix, PolluxSched uses a population-based

search algorithm that perturbs and combines candidate alloca-

tion matrices to produce higher-value allocation matrices, and

finally modifies them to satisfy node resource constraints and

interference avoidance. The allocation matrix with the highest

fitness score is applied to the jobs running in the cluster.

Both PolluxAgent and PolluxSched require a sub-procedure

that optimizes GOODPUTt(a,m, s) given a fixed a (Eqn. 13).

We implemented this procedure by first sampling a range

of candidate values for the total batch size M, then finding

the smallest s such that m = ⌈M/s⌉ fits into GPU memory

according to a user-defined upper-bound, and finally taking

the configuration which results in the highest GOODPUT value.

5 Evaluation

We compare Pollux with two state-of-the-art DL sched-

ulers using a testbed cluster with 64 GPUs. Although one

primary advantage of Pollux is automatically selecting

the configurations for each job, we find that Pollux still

reduces average job completion times by 37–50% even when

the baseline schedulers are supplied with well-tuned job

configurations (a scenario that strongly favors the baseline

schedulers). Pollux is able to dynamically adapt each job

by trading-off between high-throughput/low-efficiency and

low-throughput/high-efficiency modes of training, depending

on the current cluster state and training progress.

Using a cluster simulator, we evaluate the impact of specific

settings on Pollux, including the total workload intensity, prior-

driven exploration, scheduling interval, and interference avoid-

ance. With its fairness knob, Pollux can improve finish-time

fairness [43] by 1.5–5.4× compared to baseline DL schedulers.

We also reveal a new opportunity for auto-scaling in the cloud

by showing that a Pollux-based auto-scaler can potentially re-

duce the cost of training large models (e.g. ImageNet) by 25%.

5.1 Experimental Setup

Testbed. We conduct experiments using a cluster consisting

of 16 nodes and 64 GPUs. Each node is an AWS EC2

g4dn.12xlarge instance with 4 NVIDIA T4 GPUs, 48

vCPUs, 192GB memory, and a 900GB SSD. All instances

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation    9



are launched within the same placement group. We deployed

Kubernetes 1.18.2 on this cluster, along with CephFS 14.2.8

to store checkpoints for checkpoint-restart elasticity.

Synthetic Workload Construction. We randomly sampled

160 jobs from the busiest 8-hour range (hours 3–10) in the

deep learning cluster traces published by Microsoft [31]. Each

job in the orginal trace has information on its submission time,

number of GPUs, and duration. However, no information is

provided on the model architectures being trained or dataset

characteristics. Instead, our synthetic workload consists of

the models and datasets described in Table 1.

We categorized each job in the trace and in Table 1 based

on their total GPU-time: Small (0–1 GPU-hours), Medium

(1–10 GPU-hours), Large (10–100 GPU-hours), and XLarge

(100–1000 GPU-hours). For each job in the trace, we picked

a training job from Table 1 that is in the same category.

Manually-tuned jobs for baseline DL schedulers. We

manually tuned the number of GPUs and batch sizes for each

job in our synthetic workload, as follows. We measured the

time per training iteration for each model in Table 1 using a

range of GPU allocations and batch sizes, and fully trained

each model using a range of different batch sizes (see §5.3 for

details). We considered a number of GPUs valid if using the

optimal batch size for that number of GPUs achieves 50% –

80% of the ideal (i.e., perfectly linear) scalability versus using

the optimal batch size on a single GPU. For each job submitted

from our synthetic workload, we selected its number of GPUs

and batch size randomly from its set of valid configurations.

Our job configurations assume that the users are highly

rational and knowledgeable about the scalability of the models

they are training. Less than 50% of the ideal scalability would

lead to under-utilization of resources, and more than 80% of

the ideal scalability means the job can still utilize more GPUs

efficiently. We emphasize that this assumption of uniformly

sophisticated users is unrealistically biased in favor of the

baseline schedulers and only serves for comparing Pollux with

the ideal performance of baseline systems.

Comparison of DL schedulers. We compare Pollux to two re-

cent deep learning schedulers, Tiresias [22] and Optimus [52],

as described in §2.3. Whereas Pollux dynamically co-adapts

the number of GPUs and batch sizes of DL training jobs,

Optimus only adapts the number of GPUs, and Tiresias adapts

neither. To establish a fair baseline for comparison, for all

three schedulers, we scale the learning rate using AdaScale for

SGD, and the square-root scaling rule for Adam and AdamW.

Pollux. We configured PolluxSched to use a 60s scheduling

interval, and compute REALLOC_FACTOR(δ) using δ = 30s.

PolluxAgent reports its most up-to-date system throughput

parameters and gradient statistics every 30s. Unless otherwise

specified, the default fairness knob value of p=−1 is used.

Tiresias. We configured Tiresias as described in the testbed

experiments of Gu et al. [22], with two priority queues

and the PromoteKnob disabled. We manually tuned the

queue threshold to perform well for our synthetic workload.

Whenever possible, we placed jobs onto as few different nodes

as possible to promote worker locality.

Optimus+Oracle. Optimus leverages a throughput predic-

tion model that is specific to jobs using the parameter server

architecture. To account for differences due to the perfor-

mance model, our implementation of Optimus uses our own

throughput model as described in §3.2. Furthermore, Optimus

predicts the number of training iterations until convergence

by fitting a simple function to the model’s convergence curve.

Since this method does not work consistently for all models

in our synthetic workload, we run each job ahead of time and

provide Optimus with the exact number of iterations until

completion. We call this version of Optimus Optimus+Oracle.

For each job, Tiresias uses the number of GPUs and batch

size specified in our synthetic workload. Optimus+Oracle uses

the batch size specified, but determines the number of GPUs

dynamically. Each job uses gradient accumulation if they are

allocated too few GPUs to support the specified batch size.

5.2 Testbed Macrobenchmark Experiments

Table 2 summarizes the results of our testbed experiments for

seven configurations: Pollux compared with, first, baseline

schedulers using well-tuned job configurations; second,

baseline schedulers using more realistic job configurations;

third, Pollux using two alternate values for its fairness knob.

Comparisons using well-tuned job configurations. Even

when Optimus+Oracle and Tiresias are given well-tuned

job configurations as described in §5.1, they are still signif-

icantly behind Pollux. In this setting, Pollux (with p = −1)

achieved 50% and 37% shorter average JCT, 27% and 27%

shorter tail (99th percentile) JCT, and 20% and 33% shorter

makespan, in comparison to Optimus+Oracle+TunedJobs and

Tiresias+TunedJobs, respectively. As we previously noted,

this setting highly favors the baseline schedulers, essentially

mimicking users who possess expert knowledge about system

throughput, statistical efficiency, and how their values change

with respect to resource allocations and batch sizes.

One key source of improvement for Pollux is its ability

to trade-off between high-throughput/low-efficiency and

low-throughput/high-efficiency modes during training. Fig. 5

shows the total number of allocated GPUs and average

EFFICIENCYt during the execution of our synthetic workload.

During periods of low cluster contention, Pollux can allocate

more GPUs (indicated by (A)) and use larger batch sizes to

boost training throughput, even at the cost of lower statistical

efficiency, because doing so results in an overall higher

goodput. On the other hand, during periods of high cluster

contention, Pollux may instead use smaller batch sizes to

increase statistical efficiency (indicated by (B)).

Comparisons using realistic job configurations. Without

assistance from a system like Pollux, users are likely to try

various numbers of GPUs and batch sizes, before finding a

configuration that is efficient. Other users may not invest time
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Task Dataset Model Optimizer LR Scaler M0 Validation Size Frac. Jobs

Image Classification ImageNet [12] ResNet-50 [24] SGD AdaScale 200 imgs 75% top1 acc. XL 2%

Object Detection PASCAL-VOC [16] YOLOv3 [55] SGD AdaScale 8 imgs 84% mAP L 6%

Speech Recognition CMU-ARCTIC [38] DeepSpeech2 [3] SGD AdaScale 20 seqs 25% word err. M 10%

Question Answering SQuAD [54] BERT (finetune) [14] AdamW Square-Root 12 seqs 88% F1 score M 10%

Image Classification Cifar10 [39] ResNet18 [24] SGD AdaScale 128 imgs 94% top1 acc. S 36%

Recommendation MovieLens [23] NeuMF [25] Adam Square-Root 256 pairs 69% hit rate S 36%

Table 1: Models and datasets used in our evaluation workload. Each training task achieves the provided validation metrics. The

fraction of jobs from each category are chosen according to the public Microsoft cluster traces.

Policy
Job Completion Time

Makespan
Average 99%tile

Pollux (p=−1) 0.76h 11h 16h

Optimus+Oracle+TunedJobs 1.5h 15h 20h

Tiresias+TunedJobs 1.2h 15h 24h

Optimus+Oracle 2.7h 22h 28h

Tiresias 2.8h 25h 31h

Pollux (p=+1) 0.83h 10h 16h

Pollux (p=−10) 0.84h 12h 18h

Table 2: Summary of testbed experiments.

Figure 5: Comparison between Pollux (p=−1), Optimus, and

Tiresias while executing our synthetic workload (with tuned

jobs). TOP: average cluster-wide allocated GPUs over time.

BOTTOM: average cluster-wide statistical efficiency over

time. Tiresias+TunedJobs dips between hours 16 and 20 due

to a 24-GPU job blocking a 48-GPU job from running.

into configuring their jobs well in the first place.

To set a more realistically configured baseline, we ran

Optimus+Oracle and Tiresias on a version of our synthetic

workload with the number of GPUs exactly as specified in the

Microsoft cluster trace. The batch size was chosen to be the

baseline batch size M0 times the number of GPUs, which is

how we expect most users to initially configure their distributed

training jobs. We find that these jobs typically use fewer GPUs

and smaller batch sizes than their well-configured counterparts.

Using this workload, we find that Pollux has 72% and 73%

shorter average JCT, 50% and 56% shorter tail JCT, and 43%

and 48% shorter makespan, in comparison to Optimus+Oracle

and Tiresias, respectively. Even though Optimus+Oracle can

dynamically increase the GPU allocation of each job, it still

only slightly outperforms Tiresias because it does not also

increase the batch size to better utilize those additional GPUs.

A closer look at co-adapted job configurations. Fig. 6

(LEFT) shows the configurations chosen by Pollux for one Im-

ageNet training job as the synthetic workload progresses. (A)

during the initial period of low cluster contention, more GPUs

are allocated to ImageNet, causing a larger batch size to be used

and lowering statistical efficiency. (B) during the subsequent

period of high cluster contention, fewer GPUs are allocated to

ImageNet, causing a smaller batch size to be used and raising

statistical efficiency. (C) when the cluster contention comes

back down, ImageNet continues to be allocated more GPUs

and uses a larger batch size. However, we note that the batch

size per GPU is much higher than in the first low-contention pe-

riod, since the job is now in its final, high-statistical-efficiency

phase of training. We see similar trade-offs being made over

time for two YOLOv3 jobs (RIGHT).

Effect of the fairness knob. We ran Pollux using three values

of the fairness knob, p = 1,−1,−10. Compared with no

fairness (p = 1), introducing a moderate degree of fairness

(p = −1) improved the average job completion time (JCT)

but degraded the tail JCT. This is because6, in our synthetic

workload, the tail JCT comprises of long but scalable jobs (i.e.

ImageNet), which take a large number of GPUs away from

other jobs in the absence of fairness (p=1). However, further

increasing fairness (p=−10) degraded performance in aver-

age JCT, tail JCT, and makespan. In §5.3.1, we present a more

detailed analysis of the impact of p on scheduling fairness.

System overheads. During each 60s scheduling interval, Pol-

luxSched spent an average of 1 second on 1 vCPU computing

the cluster allocations by optimizing the FITNESSp function.

On average, each job was re-allocated resources once every

7 minutes, resulting in an average 8% run-time overhead due

to checkpoint-restarts. Each PolluxAgent fits its throughput

model parameters on its latest observed metrics every 30 sec-

onds, taking an average of 0.2 seconds each time. Finding the

6We note that p = −1 (harmonic mean over speedups) may be more

suitable than p=1 (arithmetic mean) when optimizing for the average JCT.
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Figure 6: Co-adaptation over time of one ImageNet job (LEFT)

and two YOLOv3 jobs (RIGHT) using Pollux (p=−1). ROW

1: number of jobs actively sharing the cluster. ROW 2: number

of GPUs allocated to the job. ROW 3: batch size (images) used.

ROW 4: statistical efficiency (%).

optimal per-GPU batch size and gradient accumulation steps

by optimizing GOODPUTt takes an average of 0.4 milliseconds.

5.3 Simulator Experiments

We built a discrete-time cluster simulator in order to evaluate

a broader set of workloads and settings. Our simulator is con-

structed by measuring the performance and gradient statistics

of each model in Table 1, under many different resource and

batch size configurations, and re-playing them for each sim-

ulated job. This way, we are able to simulate both the system

throughput and statistical efficiency of the jobs in our workload.

Unless stated otherwise, each experiment in this section is

repeated on 8 different workload traces generated using the

same duration, number of jobs, and job size distributions as

in §5.2, and we report the average results across all 8 traces.

Simulator construction. For each job in Table 1, we mea-

sured the time per training iteration for 146 different GPU

allocations+placements in our testbed cluster of 16 nodes

and 64 total GPUs. For each allocation, we measured a range

of batch sizes up to the GPU memory limit. To simulate the

throughput for a job, we queried a multi-dimensional linear

interpolation on the configurations we measured. For each

model, we also measured the (pre-conditioned) gradient noise

scale during training using a range of batch sizes, and across

every epoch. To simulate the statistical efficiency for a job

using a certain batch size, we linearly interpolated its value of

the PGNS between the two nearest batch sizes we measured.

Simulator fidelity. The data we collected about each job

enables our simulator to reproduce several system effects, in-

cluding the performance impact of different GPU placements.

We also simulate the overhead of checkpoint-restarts by

Figure 7: CDF of Finish Time Fairness (ρ).

injecting a 30-second delay for each job that has its resources

re-allocated. Unless stated otherwise, we do not simulate any

network interference between different jobs. We study the

effects of interference in more detail in §5.3.2.

Compared with our testbed experiments in §5.2, we find

that our simulator obtains similar factors of improvement,

showing that Pollux reduces the average JCT by 48% and 32%

over Optimus+Oracle+TunedJobs and Tiresias+TunedJobs.

5.3.1 Scheduling Fairness

We evaluate the scheduling fairness of Pollux using finish-time

fairness [43] (denoted by ρ), which is defined to be the ratio

of a job’s JCT running on shared resources to that of the job

running in an isolated and equally-partitioned cluster. Under

this metric, jobs with ρ<1 have been treated better-than-fair

by the cluster scheduler, while jobs with ρ > 1 have been

treated worse-than-fair.

In Fig. 7, we compare the finish-time fairness of Pollux

with Optimus+Oracle+TunedJobs and Tiresias+TunedJobs.

Pollux with p = 1 results in poor fairness, similar to Tire-

sias+TunedJobs, which is apparent as a long tail of jobs with

ρ>4. Optimus+Oracle+TunedJobs obtains better fairness due

to its allocation algorithm which attempts to equalize the JCT

improvement for each job. Pollux with p=−1 provides the best

fairness, with 99% of jobs achieving ρ<2, and does so while

still providing significant performance increases (Table 2). For

p=−10, we observe slightly worse fairness overall, caused by

PolluxSched incurring a larger number of re-allocations due to

ignoring the cost in favor of equalizing speedups at all times.

To provide context, we note that the curves for Tiresias

and Optimus are consistent with those reported (for different

workloads) by Mahajan et al. [43]. Although their Themis

system is not available for direct comparison, the ρ range for

Pollux with p=−1 is similar to the range reported for Themis.

The max-ρ improvements (1.5× and 5.4×) over Tiresias and

Optimus are also similar.

5.3.2 Other Effects on Scheduling

Sensitivity to job load. We compare the performance of

Pollux, Optimus+Oracle+TunedJobs, and Tiresias+TunedJobs
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(a) Varying the workload intensity.

(b) Varying scheduling interval. (c) Varying job interference.

Figure 8: Effects of various parameters on Pollux, error bars

and bands represent 95% confidence intervals.

for increasing workload intensity in terms of rate of job

submissions. Fig. 8a shows the results. As expected, all three

scheduling policies suffer longer average JCT and makespan

as the load is increased. Across all job loads, Pollux maintains

similar relative improvements over the baseline schedulers.

Impact of prior-driven exploration. Pollux explores GPU

allocations for each DL job from scratch during training

(Sec. 4.1). We evaluated the potential improvement from more

efficient exploration by seeding each job’s throughput models

using historical data collected offline. We observed minor

(2–5%) reduction in JCT for short jobs like CIFAR10, but

no significant change for longer running jobs, indicating low

overhead from Pollux’s prior-driven exploration.

Impact of scheduling interval. We ran Pollux using a range

of values for its scheduling interval, as shown in Fig. 8b. We

find that Pollux performs similarly well in terms of average

JCT for intervals up to 2 minutes, while longer intervals

result in performance degradation. Since newly-submitted

jobs can only start during the next scheduling interval, we

would expect an increase in the average queuing time due to

longer scheduling intervals. However, we find that queuing

contributed to roughly half of the performance degradation

observed, indicating that Pollux still benefits from a relatively

frequent adjustment of resource allocations.

Impact of interference avoidance. To evaluate the impact

of PolluxSched’s interference avoidance constraint, we artifi-

cially inject various degrees of slowdown for distributed jobs

sharing the same node. Fig. 8c shows the results. With interfer-

ence avoidance enabled, the average JCT is unaffected by even

severe slowdowns, because network contention is completely

mitigated. However, without interference avoidance, the av-

erage JCT is 1.4× longer when the interference slowdown is

50%. On the other hand, in the ideal scenario when there is zero

slowdown due to interference, PolluxSched performs similarly

whether or not interference avoidance is enabled. This indicates

that PolluxSched is still able to find efficient cluster allocations

while obeying the interference avoidance constraint.

5.4 More Applications of Pollux

5.4.1 Cloud Auto-scaling

In cloud environments, computing resources can be obtained

and released as required, and users pay for the duration they

hold onto those resources. Goodput-driven scheduling presents

a unique opportunity: when a DL model’s statistical efficiency

increases during training, it may be more cost-effective to

provision more cloud resources and use larger batch sizes

during the later epochs of a large training job, rather than

earlier on. We present some preliminary evidence using our

cluster simulator, and note that a full design of an auto-scaling

system based on goodput may be the subject of future work.

Auto-scaling ImageNet training. We implemented a simple

auto-scaling policy using Pollux’s goodput function. During

training, we scaled up the number of nodes whenever

maxm,sGOODPUTt(a,m,s)/SUM(a)>U ·maxm,sGOODPUTt(1,m,s), i.e.

the goodput exceeds some fraction U of the predicted ideal

goodput assuming perfect scalability. We set U = 2/3, and

increased to a number of nodes such that the predicted goodput

is approximately L=1/2 of the predicted ideal goodput.

Fig. 9 compares our Pollux-based auto-scaler with the auto-

scaler proposed by Or et al. [50], which allows the batch size

to be increased during training, but models job performance

using the system throughput rather than the goodput. Since

the system throughput does not change with training progress,

throughput-based autoscaling (Or et al.) quickly scales out

to more nodes and a larger batch size (Fig. 9a), which remains

constant thereafter. On the other hand, Pollux starts with a

small number of nodes, and gradually increases the number of

nodes as the effectiveness of larger batch sizes improves over

time. Fig. 9b shows that Pollux maintains a high statistical

efficiency throughout training. Overall, compared to Or et al.’s

throughput-based auto-scaling, Pollux trains ImageNet with

25% cheaper cost, with only a 6% longer completion time.

5.4.2 Hyper-parameter Optimization (HPO)

Hyper-parameter optimization (HPO) is an important DL

workload. In HPO, the user defines a search space over

relevant model hyper-parameters. A HPO algorithm (aka a

trial scheduler) submits many training jobs (trials) to evaluate

the effectiveness of particular hyper-parameters, in terms of

objectives such as model accuracy or energy efficiency.

Different HPO algorithm types manage trials differently.

For example, Bayesian optimization algorithms [37, 62] may

submit a few training jobs at a time, and determine future

trials based on the fully-trained results of previous trials.
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(a) Number of nodes over time. (b) Statistical efficiency over time.

Figure 9: Goodput-based auto-scaling (Pollux) vs throughput-

based auto-scaling (Or et al.) for ImageNet training.

Policy Accuracy (Top 5 trials) Avg JCT Makespan

Pollux 95.4±0.2 25min 10h

Baseline 95.5±0.3 34min 14h

Table 3: Summary of HPO experiments.

Bandit-based algorithms [41] may launch a large number of

trials at once and early-stop ones that appear unpromising.

A full evaluation on how Pollux affects different HPO algo-

rithm types is future work. Table 3 shows results from tuning a

ResNet18 model trained on the CIFAR10 dataset, using a popu-

lar Bayesian optimization-based HPO algorithm known as the

Tree-structured Parzen Estimator (TPE) [5]. The search space

covers the learning rate and annealing, momentum, weight de-

cay, and network width hyper-parameters. We configured TPE

so that 4 trials run concurrently with each other, and 100 trials

are run in total. The testbed consists of two NVIDIA DGX

A100 nodes, each with 8 A100 GPUs. The baseline scheduler

assigns a static allocation of 4 GPUs (all on the same node)

to each trial and uses a fixed per-GPU batch size for every trial.

As expected, similar accuracy values are achieved, but Pollux

completes HPO 30% faster due to adaptive (re-)allocation of

resources as trials progress and adaptive batch sizes.

5.5 Artifact

We provide an artifact containing the full implementation of

Pollux, benchmark model implementations (Table 1), testbed

experiment scripts (Sec. 5.2), cluster simulator implemen-

tation and results (Sec. 5.3), available at https://github.

com/petuum/adaptdl/tree/osdi21-artifact. The raw

testbed experiment (Sec. 5.2) logs and analysis scripts are pro-

vided at https://github.com/petuum/pollux-results.

6 Additional Related Work

Prior DL schedulers are discussed in §2.3.

Adaptive batch size training. Recent work on DL training

algorithms have explored dynamically adapting batch sizes

for better efficiency and parallelization. AdaBatch [13]

increases the batch size at pre-determined iterations during

training, while linearly scaling the learning rate. Smith et

al. [61] suggest that instead of decaying the learning rate

during training, the batch size should be increased instead.

CABS [4] adaptively tunes the batch size and learning rate

during training using similar gradient statistics as Pollux.

These works have a common assumption that extra com-

puting resources are available to parallelize larger batch sizes

whenever desired, which is rarely true inside shared-resource

environments. Pollux complements existing adaptive batch

size strategies by adapting the batch size and learning rate in

conjunction with the amount of resources currently available.

Alternatively, anytime minibatch [17] adapts the batch size

to mitigate stragglers in distributed training.

KungFu [44] supports adaptive training algorithms, includ-

ing adaptive batch sizes, by allowing applications to define

custom adaptation policies and enabling efficient adaptation

and monitoring during training. Although KungFu is directed

at single-job training and Pollux at cluster scheduling, we

believe KungFu offers useful tools which can be used to

implement the adaptive policies used by the PolluxAgent.

Hyper-parameter tuning. A large body of work focuses on

tuning the hyper-parameters for ML and DL models [5, 18,

29, 34, 49], which typically involves many training jobs [1, 20]

as discussed earlier. Although batch size and learning rate are

within the space of hyper-parameters often optimized by these

systems, Pollux’s goal is fundamentally different. Whereas

HPO algorithms search for the highest model quality, Pollux

adapts the batch size and learning rate for the most efficient

execution for each job, while not degrading model quality.

7 Conclusion

Pollux is a DL cluster scheduler that co-adaptively allocates

resources, while at the same time tuning each training job

to best utilize those resources. We present a formulation of

goodput that combines system throughput and statistical

efficiency for distributed DL training. Based on the principle of

goodput maximization, Pollux automatically and jointly tunes

the resource allocations, batch sizes, and learning rates for DL

jobs, which can be particularly difficult for users to configure

manually. Pollux outperforms and is more fair than recent DL

schedulers, even if users can configure their jobs well, and pro-

vides even bigger benefits with more realistic user knowledge.
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