
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

Marius: Learning Massive Graph Embeddings
on a Single Machine

Jason Mohoney and Roger Waleffe, University of Wisconsin-Madison;
Henry Xu, University of Maryland, College Park; Theodoros Rekatsinas

and Shivaram Venkataraman, University of Wisconsin-Madison

https://www.usenix.org/conference/osdi21/presentation/mohoney

https://www.usenix.org/conference/osdi21/presentation/mohoney

Marius: Learning Massive Graph Embeddings on a Single Machine

Jason Mohoney, Roger Waleffe, Henry Xu*, Theodoros Rekatsinas, Shivaram Venkataraman
University of Wisconsin-Madison

Abstract
We propose a new framework for computing the em-

beddings of large-scale graphs on a single machine. A
graph embedding is a fixed length vector representa-
tion for each node (and/or edge-type) in a graph and
has emerged as the de-facto approach to apply mod-
ern machine learning on graphs. We identify that cur-
rent systems for learning the embeddings of large-scale
graphs are bottlenecked by data movement, which re-
sults in poor resource utilization and inefficient training.
These limitations require state-of-the-art systems to dis-
tribute training across multiple machines. We propose
Marius, a system for efficient training of graph embed-
dings that leverages partition caching and buffer-aware
data orderings to minimize disk access and interleaves
data movement with computation to maximize utiliza-
tion. We compare Marius against two state-of-the-art in-
dustrial systems on a diverse array of benchmarks. We
demonstrate that Marius achieves the same level of ac-
curacy but is up to one order of magnitude faster. We
also show that Marius can scale training to datasets an
order of magnitude beyond a single machine’s GPU and
CPU memory capacity, enabling training of configura-
tions with more than a billion edges and 550 GB of to-
tal parameters on a single machine with 16 GB of GPU
memory and 64 GB of CPU memory. Marius is open-
sourced at www.marius-project.org.

1 Introduction
Graphs are used to represent the relationships between

entities in a wide array of domains, ranging from so-
cial media and knowledge bases [38, 7] to protein in-
teractions [3]. Moreover, complex graph analysis has
been gaining attention in neural network-based machine
learning with applications in clustering [30], link predic-
tion [39, 32], and recommendation systems [37]. How-
ever, to apply modern machine learning on graphs one
needs to convert discrete graph representations (e.g., tra-
ditional edge-list or adjacency matrix) to continuous vec-
tor representations [10]. To this end, learnable graph
embedding methods [9, 5, 35] are used to assign each

*Currently at Maryland, work done while at UW-Madison.

Figure 1: The GPU utilization of DGL-KE and PBG for
one training epoch of ComplEx embeddings on the Free-
base86m knowledge graph.

node (and/or edge) in a graph to a specific continuous
vector representation such that the structural properties
of the graph (e.g., the existence of an edge between two
nodes or their proximity due to a short path) can be ap-
proximated using these vectors. In general, graph em-
bedding models aim to capture the global structure of a
graph and are complementary to graph neural networks
(GNNs) [19]. Graph embedding models are primarily
used in link prediction tasks and can also be used to ob-
tain vector representations that form the input to GNNs.

However, learning a graph embedding model is a re-
source intensive process. First, training of graph em-
bedding models can be compute intensive: many graph
embedding models assign a high-dimensional continu-
ous vector to each node in a graph [2, 36, 33]. For exam-
ple, it is common to assign a 400-dimensional continuous
vector to each node [18, 40]. Consequently, the compu-
tational capabilities of GPUs and optimization methods
such as mini-batch Stochastic Gradient Descent (SGD)
are needed to accelerate training. Second, graph embed-
ding models are memory intensive: the model from our
previous example needs 1600 bytes of storage per node
and requires 80 GB (the largest GPU memory) for a mod-
est 50 million node graph. Thus, it is necessary to store
the learnable parameters in off-GPU memory. Third, the
training of graph embedding models requires optimizing
over loss functions that consider the edges of the graph
as training examples (e.g., the loss can enforce that the
cosine similarity between the vector representations of
two connected nodes is close to one, see Section 2.1)
making training IO-bound for models that do not fit in
GPU memory. This limitation arises due to irregular data
accesses imposed by the graph structure. As a result,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 533

training of large graph embedding models is a non-trivial
challenge.

Due to the aforementioned factors, scaling graph em-
bedding training to instances that do not fit in GPU
memory introduces costly data movement overheads that
can result in poor resource utilization and slow train-
ing. In fact, current state-of-the-art systems, includ-
ing DGL-KE [40] from Amazon, and Pytorch BigGraph
(PBG) [18] from Facebook, exhibit poor GPU utilization
due to these overheads. Figure 1 shows the GPU utiliza-
tion during a training epoch when using a single GPU
for DGL-KE and PBG. As shown, DGL-KE only utilizes
10% of the GPU, and average utilization for PBG is less
than 30%, dropping to zero during data movement.

GPU under-utilization can be attributed to how these
systems handle data movement: To support out-of-GPU-
memory training, DGL-KE stores parameters in CPU
memory and uses synchronous GPU-based training over
minibatches. However, the core computation during
graph embedding training corresponds to dot-product op-
erations between vectors (see Section 2), and thus, data
transfers dominate the end-to-end run time. Moreover,
DGL-KE is fundamentally limited by CPU memory ca-
pacity. To address this last limitation, PBG uses a dif-
ferent approach for scaling to large graphs. PBG parti-
tions the embedding parameters into disjoint, node-based
partitions and stores them on disk where they can be ac-
cessed sequentially. Partitions are then loaded from stor-
age and sent to the GPU where training proceeds syn-
chronously. Doing so avoids copying data from the CPU
memory for every batch, but results in GPU underutiliza-
tion when partitions are swapped.

This problem is exacerbated if the storage device has
low throughput. Thus, to scale to large instances both
systems opt for distributed training over multiple com-
pute nodes, making training resource hungry. However,
the problems these systems face are not insurmountable
and can be mitigated. We show that one can train embed-
dings on billion-edge graphs using just a single machine.

We introduce a new pipelined training architecture that
can interleave data access, transfer, and computation to
achieve high utilization. In contrast to prior systems, our
architecture results in high GPU utilization throughout
training: for the same workload shown in Figure 1, our
approach can achieve an average ⇠ 70% GPU utilization
while achieving the same accuracy (see Section 5).

To achieve this utilization, our architecture introduces
asynchronous training of nodes with bounded staleness.
We combine this with synchronous training for edge em-
beddings to handle graphs that may contain edges of dif-
ferent types, for example knowledge graphs where an
edge may capture different relationships between nodes.
Specifically, we consider learning a separate vector rep-
resentation for each edge-type. For clarity, we refer to

edge-type embeddings as relation embeddings. This is
because updates to the embedding vectors for nodes are
sparse and therefore well suited for asynchronous train-
ing. However due to the small number of edge-types in
real-world graphs (10, 000s), updates to relation embed-
ding parameters are dense and require synchronous up-
dates for convergence. We design the pipeline to main-
tain and update node embedding parameters in CPU
memory asynchronously, allowing for staleness, while
keeping and updating relation embeddings in GPU mem-
ory synchronously. Using this architecture, we can train
graph embeddings for a billion-edge Twitter graph one
order of magnitude faster than state-of-the-art industrial
systems for the same level of accuracy: Using a single
GPU, our system requires 3.5 hours to learn a graph em-
bedding model over the Twitter graph. For the same set-
ting, DGL-KE requires 35 hours.

To scale training beyond CPU memory, unlike prior
out-of-memory graph processing systems [17], we need
to iterate over edges while computing on data associ-
ated with both endpoints. We propose partitioning the
graph and storing embedding parameters on disk. We
then design an in-memory partition buffer that can hide
and reduce IO from swapping of partitions. Partitions are
swapped from disk into the partition buffer in CPU mem-
ory and then used by the training pipeline. Our partition
buffer supports pre-fetching and async writes of parti-
tions to hide waiting for IO, resulting in a reduction of
training time by up to 2⇥. Further, we observe that the
order in which edge partitions are traversed can impact
the number of IOs. Thus, we introduce a buffer-aware
ordering that uses knowledge of the buffer size and what
resides in it to minimize the number of IOs. We show
that this ordering achieves IO close to the lower bound
and provides benefits when compared to locality-based
orderings such as Hilbert ordering [14].

In summary, the key technical contributions of our
work are: 1) to show that existing state-of-the-art graph
embedding systems are hindered by IO inefficiencies
when moving data from disk and from CPU to GPU, 2)
to introduce the Buffer-aware Edge Traversal Algorithm
(BETA), an algorithm to generate an IO minimizing data
ordering for graph learning, 3) to combine the BETA or-
dering with a partition buffer and async IO via pipelining
to introduce the first graph learning system that utilizes
the full memory hierarchy (Disk-CPU-GPU).

Our design is implemented in Marius, a graph embed-
ding engine that can train billion-edge graphs on a sin-
gle machine. Using one AWS P3.2xLarge instance, we
demonstrate that Marius improves utilization of compu-
tational resources and reduces training time by up to an
order of magnitude in comparison to existing systems.
Marius is 10⇥ faster than DGL-KE on the Twitter graph
with 1.46 billion edges, reducing training times from 35

534 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GA

MB

A

TA

Plays for

Teammate of

Brother of

Born in

?

Figure 2: A sample knowledge graph.

hours to 3.5 hours. Marius is 1.5⇥ faster than PBG on
the same dataset. On Freebase86m with 86 million nodes
and 338 million edges, Marius trains embeddings 3.7⇥
faster than PBG, reducing training times from 7.5 hours
to 2 hours. We also show that Marius can scale to con-
figurations where the parameter size exceeds GPU and
CPU memory by an order of magnitude, training a con-
figuration with 550 GB of total parameters, 35⇥ and 9⇥
larger than GPU and CPU memory respectively. Finally,
we show that despite using a single-GPU on a single-
machine, Marius achieves comparable runtime with the
multi-GPU configurations of PBG and DGL-KE, thus,
providing a cost reduction on cloud resources between
2.9⇥ and 7.5⇥ depending on the configuration.

2 Preliminaries
We first discuss necessary background on graph em-

beddings and related systems. Then, we review chal-
lenges related to optimizing data movement for training
large scale graph embedding models. These are the chal-
lenges that this work addresses.

2.1 Background and Related Work
Graphs with Multiple Edge Types We focus on graphs
with multiple edge types defined as G = (V,R,E)
where V is the set of nodes, R is a set of edge-types
or relations, and E is the set of edges. Each edge
e = (s, r, d) 2 E is defined as a triplet containing a
source node, relation, and destination node. An example
of such a graph is a knowledge graph, e.g., Freebase [8].
Here, the source node in a triplet defines a subject (an en-
tity), the relation defines a predicate, and the destination
node an object (see example in Figure 2). Knowledge
graphs are commonly used both in industry and academia
to represent real-world facts.
Graph Embedding Models A graph embedding is a
fixed length vector representation for each node (and/or
edge-type) in a graph. That is, each node and relation is
represented by a corresponding d-dimensional vector ✓,
also known as an embedding [10]. There are d(|V |+|R|)
total learnable parameters. To learn these vector rep-
resentations, embedding models rely on score functions
that capture structural properties of the graph. We de-
note the score function f(✓s, ✓r, ✓d) where ✓s, ✓r, ✓d are

the vector representations of the elements of a triplet
e = (s, r, d). For example, a score function can be the
scaled dot product f(✓s, ✓r, ✓d) = ✓Ts diag(✓r)✓d with
the requirement that the parameter vectors are such that
f(✓s, ✓r, ✓d) ⇡ 1.0 if nodes s and d are connected via
an edge of type r and f(✓s, ✓r, ✓d) ⇡ 0.0 otherwise.
There are several score functions proposed in the liter-
ature ranging from linear score functions [2, 22] to dot
products [36, 33, 27] and complex models [11, 10].

Score functions are used to form loss functions for
training. The goal is to maximize f(✓s, ✓r, ✓d) if e 2 E
and minimize it if e 62 E. Triplets that are not present
in E are known as negative edges. A standard ap-
proach [40, 18] is to use the score function f(✓s, ✓r, ✓d)
with a contrastive loss of the form:

L = �
X

s,r,d2E

(f(e✓)� log(
X

s0,r0,d0 62E

ef(e✓
0))) (1)

where e✓ = (✓s, ✓r, ✓d) and e✓ 0 = (✓0s, ✓
0
r, ✓

0
d).

The first summation term is over all true edges in
the graph and the second summation is over all nega-
tive edges. There are a total of |V |2|R| � |E| negative
edges in a knowledge graph; this makes it computation-
ally infeasible to perform the full summation and thus
it is commonly approximated by negative sampling, in
which a set of negatives edges is generated by taking a
(typically uniform) sample of nodes from the graph for
each positive edge. With negative sampling the term in
the logarithm is approximated as

P
s,r,d02Ne

ef(e✓
0). Where

Ne is the set of negative samples for e.
Graph embeddings are commonly used for link predic-

tion, where the similarity of two node vector representa-
tions is used to infer the existence of a missing edge in
a graph. For example, in the knowledge graph in Fig-
ure 2 we can use the vector representation of TA and
MB and the relation embedding for plays-for to predict
the existence of the edge TA plays-for

=====) MB, marked with
a questionmark in the figure.
The Need for Scalable Training The largest publicly
available multi-relation graphs have hundreds of millions
of nodes and tens of thousands of relations [34] (Table 1).
Companies have internal datasets which are an order of
magnitude larger than these, e.g., Facebook has over 3
billion users [4]. Learning a 400-dimensional embed-
ding for each of the users will require the ability to store
and access 5 TB of embedding parameters efficiently, far
exceeding the CPU memory capacity of the largest ma-
chines. Furthermore, using a larger embedding dimen-
sion has been shown to improve overall performance on
downstream tasks [31]. For these two reasons it is im-
portant that a system for learning graph embeddings can
scale beyond the limitations of GPU and CPU memory.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 535

3210

(3, 0) (3, 3)(3, 1) (3, 2)

(2, 3)(2, 0) (2, 1) (2, 2)

(1, 1)(1, 0) (1, 3)(1, 2)

(0, 3)(0, 2)(0, 1)(0, 0)

Node Partitions

Destination Node
Partition

So
ur

ce
 N

od
e

Pa
rti

tio
n

Edge Buckets

Figure 3: Partitions and edge-buckets with p = 4. All
edges in edge-bucket (0, 2) have a source node in node-
partition 0 and a destination node in node-partition 2.

Scaling Beyond GPU-Memory We review approaches
for scaling the training of graph embedding models out
of GPU memory. Prior works follow in two categories:
1) methods that use CPU Memory to store embedding
parameters, and 2) methods that use block storage and
partitioning of the model parameters. We discuss these
two approaches in turn.

Following the first approach, systems such as DGL-
KE [40] and GraphVite [41], store node embedding pa-
rameters in CPU memory and relation embedding pa-
rameters in GPU memory. Shown in Algorithm 1, mini-
batch training is performed synchronously and batches
are formed and transferred on-demand. While syn-
chronous training is beneficial for convergence, it is re-
source inefficient. The GPU will be idle while waiting
for the batch to be formed and transferred; furthermore,
gradient updates also need to be transferred from the
GPU to CPU memory and applied to the embedding ta-
ble, adding additional delays. The effect of this approach
on utilization can be seen in Figure 1, where DGL-KE
on average only utilizes about 10% of the GPU. This ap-
proach is also fundamentally limited by the size of the
CPU memory, preventing the training of large graph em-
bedding models.

Algorithm 1: Synchronous Embedding Training
for i in range(num_batches) do

1 Bi = getBatchEdges(i);
2 ⇥n = getCpuParameters(Bi);
3 transferBatchToDevice(Bi,⇥n);
4 ⇥r = getGpuParameters(Bi);
5 B✓ = formBatch(Bi,⇥n,⇥r);
6 Gn,Gr = computeGradients(B✓);
7 updateGpuParameters(Bi,Gr);
8 transferGradientsToHost(Gn);
9 updateCpuParameters(Bi,Gn);

The second approach is adopted by PyTorch BigGraph
(PBG) [18]. PBG uses uniform partitioning to split up
node embedding parameters into p disjoint partitions and
stores them on a block storage device (see example in

Figure 3). Edges are then grouped according the partition
of their source and destination nodes into p2 edge buck-
ets, where all edges in edge bucket (i, j) have a source
node which has an embedding in the i-th partition, and
the destination node which has an embedding in the j-th
partition. A single epoch of training requires performing
mini-batch training over all edge buckets while swapping
corresponding pairs of node embedding partitions into
memory for each edge bucket. This approach enables
scaling beyond CPU memory capacity.

The major drawback of partitioning is that partition
swaps are expensive and lead to the GPU being idle while
a swap is happening. In fact, utilization goes towards
zero during swaps as shown in Figure 1. We find that
PBG yields an average GPU utilization of 28%. To best
utilize resources, a system using partitioning to scale be-
yond the memory size of a machine, will need to mitigate
overheads that arise from swapping partitions.

2.2 Data Movement Challenges
We discuss how to optimize data movement and re-

lated challenges that Marius’ architecture addresses; we
discuss the architecture in detail in Sections 3 and 4.
Traditional Optimizations for Data Movement
Pipelining is a common approach used in a number
of system designs to overlap computation with data
movement, thereby improving utilization [13, 25, 28].
Using an image classifier as an example, a simple
pipeline will consist of multiple worker threads that
pre-process training images in parallel, forming batches
and transferring them to the GPU. Once on the GPU,
batches of training data are pushed onto a queue, with
a training process constantly polling the queue for new
batches. By keeping the queue populated with new
batches, the GPU will be well utilized.

In IO-bound applications, buffer management can also
be used to prevent unnecessary IO by caching data in
memory. Buffer management is well studied in the area
of databases and operating systems and has been ap-
plied to a myriad of applications and workloads [29, 12].
When using a buffer, the order in which data is accessed
and swapped impacts end-to-end performance. When the
data access pattern exhibits good locality, buffer man-
agers typically yield good performance. Additionally, if
the ordering is known ahead of time the buffer manager
may prefetch data items and use Belady’s optimal cache
replacement algorithm to minimize IO [1].

In graph processing, locality-aware data layouts of
graph edges have been shown to improve locality of ac-
cesses and performance of common graph algorithms
such as PageRank [24]. One such data layout, utilizes
Hilbert space filling curves to define an ordering over the
adjacency matrix of the graph. The ordering produced
is a 1D index that preserves the locality of the 2D adja-

536 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Node
Embedding
Parameters

Compute
Relation

Embedding
Parameters

CPU Memory GPU Memory

Edges

Transfer

TransferLoad

Update

Legend
Queue

 Batch

 Data flow

 Stage

Figure 4: Marius training pipeline.

cency matrix. Storing and accessing edges according to
this index improves OS cache hit rates [24, 23].
Challenges for Graph Embeddings For large graphs
and embedding sizes, graph embedding models can be
multiple orders of magnitude larger than the GPU’s
memory capacity, a key difference from deep neural net-
work models that typically fit in a single GPU. To design
a pipeline for graph embedding training, not only will
training data (formed by considering edges) have to be
piped to the GPU but also the corresponding model pa-
rameters (the node and relation embeddings of the end-
points and the type of each edge). Furthermore, model
updates need to be piped back from the GPU and applied
to the underlying storage. By pipelining model param-
eters and updates, we introduce the possibility of stale
parameters, which must mitigated (see Section 3).

Buffer management techniques paired with data or-
derings can be used to buffer partitions in CPU mem-
ory to reduce IO from disk. However, we find that prior
locality-aware data orderings such as space-filling curves
fall short and still result in IO bound training due to a
non-optimal amount of swaps (Sections 4.1 and 5.3). To
address this challenge we propose a buffer-aware data or-
dering which results in a near-optimal number of swaps,
referred to as BETA ordering, in Section 4.

3 Pipelined Training Architecture
We review Marius’ pipelined architecture for training

graph embedding models. We first discuss the overall
design, then the details of each stage, and finally dis-
cuss how staleness arises due to interleaving computation
with data movement and how we can mitigate it.
Pipeline Design Our architecture follows Algorithm 1
and divides its steps into a five-stage pipeline with
queues separating each stage (Figure 4). Four stages are
responsible for data movement operations, and one for
model computation and in-GPU parameter updates. The
four data movement stages have a configurable number
of worker threads, while the model computation stage
only uses a single worker to ensure that relation embed-
dings stored on the GPU are updated synchronously.

We now describe the different stages of the pipeline
and draw connections to the steps in Algorithm 1:

Stage 1: Load This stage is responsible for loading the
edges (i.e., entries that correspond to a pair of node-ids
and the type of edge that connects them) and the cor-
responding node embedding vectors that form a batch of
inputs used for training. The edge payload constructed in
this stage includes the true edges appearing in the graph
and a uniform sample of negative edges (i.e., fake edges)
necessary to form the loss function in Equation 1 (Lines
1-2 in Algorithm 1).
Stage 2: Transfer The input to this stage consists of the
edges (node-id and edge-type triples) and the node em-
beddings from the previous stage. Worker threads in this
stage asynchronously transfer data from CPU to GPU us-
ing cudaMemCpy (Line 3 in Algorithm 1).
Stage 3: Compute The compute stage is the only stage
that does not involve data movement. This stage takes
place on GPU where the payload of edges and node em-
beddings created in Stage 1 is combined with relation
embedding vectors (corresponding to the edge-type asso-
ciated with each entry) to form a full batch. The worker
thread then computes model updates and applies updates
to relation embeddings stored in the GPU. The updates to
node embeddings (i.e., the scaled gradients that need to
be added to the previous version of the node embedding
parameters) are placed on the output queue to be trans-
ferred from GPU memory (Lines 4-7 in Algorithm 1).
Stage 4: Transfer The node embedding updates are
transferred back to the CPU. We use similar mechanisms
as in Stage 2 (Line 8 in Algorithm 1).
Stage 5: Update. The final stage in our pipeline applies
node embedding updates to stored parameters in CPU
memory (Line 9 in Algorithm 1).

This hybrid-memory architecture allows us to exe-
cute sparse parameter updates asynchronously (i.e., the
node embedding parameter updates) and dense updates
(i.e., the relation embedding parameter updates) syn-
chronously, and optimize resource utilization as we show
experimentally in Section 5.
Bounded Staleness The main challenge with using a
pipelined design as described above, is that it introduces
staleness due to asynchronous processing [15]. To illus-
trate this, consider a batch entering the pipeline (Stage 1)
with the embedding for node A. Once this batch reaches

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 537

the GPU (Stage 3), the gradients for the embedding for A
will be computed. While the gradient is being computed,
consider another batch that also contains the embedding
for node A entering the pipeline (Stage 1). Now, while
the updates from the first batch are being transferred back
to the CPU and applied to parameter storage, the second
batch has already entered the pipeline, and thus it con-
tains a stale version of the embedding for node A.

To limit this staleness, we bound the number of
batches in the pipeline at any given time. For example,
if the bound is 4, embeddings in the pipeline will be at
worst 4 updates behind. However, due to the sparsity of
node embedding updates, it is unlikely a node embed-
ding will even become stale. To give a realistic exam-
ple, take the Freebase86m graph which has 86 million
nodes. A typical batch size and staleness bound for this
benchmark is 10,000 and 16 respectively. Each batch
of 10,000 edges will have at most 20,000 node embed-
dings and given this staleness bound there can be at most
320,000 node embeddings in the pipeline at any given
time, which is just about .4% of all node embeddings.
Even with this worst case, only a very small fraction of
node embeddings will be operated on at a given time.
The same property does not hold for relation embeddings
since there are very few of them (15K in Freebase86m),
hence our design decision to keep relation embeddings in
GPU memory and update them synchronously, bypasses
the issue of stale relation embeddings. We study the ef-
fect of staleness and Marius’ performance as we vary the
bound in Section 5.5.

4 Out-of-memory Training
As described in Section 2.1, to learn embedding mod-

els for graphs that do not fit in CPU memory, existing
systems partition the graph into non-overlapping blocks.
They correspondingly partition the parameters as well
so that they can be loaded sequentially for processing.
However as IO from disk can be slow (e.g, a partition can
be around 10s of GB in size), it is desirable to hide the
IO wait times and minimize the number of swaps from
disk to memory. In this section, we describe how we
can effectively hide IO wait time by integrating our train-
ing pipeline with a partition buffer that constitutes an in-
memory buffer of partitions. We also describe how we
can minimize the number of swaps from disk to memory
by developing a new ordering for traversing graph data.
Partition-based training Consider a graph that is par-
titioned into p2 edge buckets corresponding to p node-
partitions. Training one epoch requires iterating over
all p2 edge buckets, where each edge in a given bucket
(i, j), will have a source node in partition i and destina-
tion node in partition j.

When processing an edge bucket (i, j), node parti-

Algorithm 2: Training Using a Partition Buffer
1 Buffer = {};
2 for k in range(p2) do
3 Eij, i, j = getEdgeBucket(Ordering[k]);
4 if i not in Buffer then
5 if Buffer.size() == c then
6 Buffer.evictFurthest(Ordering, k);
7 Buffer.admit(i);
8 if j not in Buffer then
9 if Buffer.size() == c then

10 Buffer.evictFurthest(Ordering, k);
11 Buffer.admit(j);
12 ⇥i = Buffer.get(i); // Source Node Partition
13 ⇥j = Buffer.get(j); // Destination Node Partition
14 trainEdgeBucket(Eij,⇥i,⇥j);

tion i and node partition j must be present in the CPU
partition buffer in order for learning to proceed using
the pipelined training architecture (see Section 3). If ei-
ther one is not present, it must be loaded from disk and
swapped into the buffer, replacing an already present par-
tition if the buffer is full. Partition-based training is de-
scribed in Algorithm 2.

Given a partitioned graph, there are a number of edge
bucket orderings that can be used for traversal. To min-
imize the number of times partitions need to be loaded
from disk, we seek an ordering over edge buckets which
minimizes the number of required partition swaps.

We note that once an edge bucket ordering has been
selected, we can further mitigate IO overhead by 1)
prefetching to load node partitions as they are needed
in the near future and 2) using the optimal buffer evic-
tion policy which removes partitions used farthest in the
future.

We next discuss the problem of determining an opti-
mal ordering over edge buckets and describe the BETA
ordering, a new ordering scheme that achieves near-
optimal number of partition swaps.

4.1 Edge Bucket Orderings
We develop an edge bucket ordering scheme that min-

imizes the number of swaps. First, we derive a lower
bound on the number of swaps necessary to complete
one training epoch for a buffer of size c and p (p >= c)
partitions. To derive the lower bound, we view an edge
bucket ordering as a sequence of partition buffers over
time, where each item in the sequence describes what
node partitions are in the buffer at that point. Each suc-
cessive buffer differs by one swapped partition.

Given such a sequence, an edge bucket ordering can be
constructed by processing edge bucket (i, j) when parti-
tions i and j are in the buffer. For simplicity, we can do
this the first time i and j appear together. Note that 1)

538 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 3: BETA Ordering Buffer Sequence
1 PartitionBufferSequence = {};
2 CurrentBuffer = [0 . . . c� 1];
3 OnDisk = [c . . . p� 1];
4 PartitionBufferSequence.append(CurrentBuffer);
5 while OnDisk.size() > 0 do
6 for i in range(OnDisk.size()) do
7 swap(CurrentBuffer[�1], OnDisk[i]);
8 PartitionBufferSequence.append(CurrentBuffer);
9 n = 0;

10 for i in range(c� 1) do
11 if i � OnDisk.size() then
12 break;
13 n = n+ 1;
14 CurrentBuffer[i] = OnDisk[i];
15 PartitionBufferSequence.append(CurrentBuffer);
16 OnDisk = OnDisk[n : end];
17 return PartitionBufferSequence;

Algorithm 4: Buffer Seq. to Edge Bucket Order
1 EdgeBuckets = {};
2 SeenPairs = zeros(p, p);
3 for Buffer in PartitionBufferSequence do
4 NewEdgeBuckets = {};
5 for i in Buffer do
6 for j in Buffer do
7 if SeenPairs[i, j] == 0 then
8 SeenPairs[i, j] = 1;
9 NewEdgeBuckets.append((i, j));

10 shuffle(NewEdgeBuckets);
11 EdgeBuckets.append(NewEdgeBuckets);
12 return EdgeBuckets;

i and j must appear together at least once otherwise no
ordering over all edge buckets can be constructed, 2) self-
edge buckets (i.e. (i, i)) can also be added to the order-
ing the first time i appears in the buffer, and 3) there are
many edge bucket orderings with the same sequence of
partition buffers (depending on the order in which edge
buckets in a particular buffer are processed). Viewed in
this light, we seek the shortest (min. swaps) buffer se-
quence where all node partition pairs appear together in
the buffer at least once.
Lower bound We assume that initializing the first full
buffer does not count as part of the total number of
swaps as all orderings must incur this cost. Thus, there
are p(p�1)

2 (the total number of pairs) minus c(c�1)
2 (the

number of pairs we get in the first buffer) remaining
partition pairs that must appear together in the partition
buffer. On any given swap, the most new pairs we can
cover is if the partition entering the buffer has not been
paired with anything already in the buffer (everything in
the buffer has already been paired with everything else

in the buffer). Thus, for each swap the best we can hope
for is to get c � 1 pairs we have not already seen. With
this in mind a lower bound on the minimum number of
swaps required is:

&
p(p�1)

2 � c(c�1)
2

c� 1

'
(2)

We use this lower bound to evaluate the performance
of different edge bucket orderings in the next section. We
experimentally show that the new ordering strategy we
propose is nearly optimal with respect to this bound.
BETA ordering We describe the Buffer-aware Edge
Traversal Algorithm (BETA), an algorithm to compute
the edge bucket ordering that achieves close to optimal
number of partition swaps and improves upon locality-
aware orderings such as Hilbert space-filling curves [14].

Algorithm 3 describes how the BETA ordering of par-
tition buffers is generated. Consider a partition buffer
that was initialized with the first c node-partitions in the
graph (Line 2 in Algorithm 3). The remaining p�c node-
partitions start on disk (Line 3 in Algorithm 3). To gen-
erate the partition buffer sequence we then proceed as
follows: First we fix the leading c � 1 node-partitions
in the buffer and swap each of the outstanding partitions
into the final buffer spot, one at a time (Line 6-8 in Al-
gorithm 3). Each swap creates a new partition buffer in
the sequence. Once this is complete, the fixed c� 1 par-
titions have been paired in the buffer with all other node-
partitions and are therefore no longer needed. We refresh
our buffer by replacing the finished c� 1 partitions with
new node-partitions from the unfinished set on disk (Line
10-15 in Algorithm 3). The incoming partitions can then
be deleted from the on disk set (Line 16 in Algorithm 3)
since they are now in the buffer. As before, each swap
results in a partition buffer added to the sequence. We
repeat this process until there are no remaining unfin-
ished node-partitions (Line 5 and 11-12 in Algorithm 3).
As described at the beginning of Section 4.1 and in more
detail in Algorithm 4, the partition buffer sequence can
be easily converted to the final edge bucket ordering. We
show an example BETA ordering in Figure 5.

We observe that our BETA ordering has a number of
useful properties that make it advantageous to implement
in practice. Since all partitions are symmetrically pro-
cessed we do not need to track any extra state or use any
priority mechanisms. Further, for every disk IO (swap)
with a fixed set of c�1 partitions (Line 7 in Algorithm 3),
the incoming node-partition has yet to be paired with any
other partition in the buffer. This means we can process
c�1 edge buckets before performing another swap—the
most possible (excluding self edge buckets)—allowing
us to hide IO operations behind longer compute times.
The only bottleneck arises when the fixed c�1 partitions

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 539

Partition Buffers

0, 1, 2 0, 1, 3 0, 1, 4 0, 1, 5 2, 1, 5 2, 3, 5 2, 3, 4 5, 3, 4

fix: {0, 1}, cycle: {2, 3, 4, 5} replace: {0, 1} with {2, 3}, cycle: {4, 5}swap 2 with 3

Destination Node Partition

S
o
u
rc

e
 N

o
d

e
 P

a
rt

iti
o
n 0 1 2 3 4 5

0

1

2

3

4

5

Edge Bucket Ordering Node Partitions: {0, 1, 2, 3, 4, 5}
0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

50 1 2 3 4

0

1

2

3

4

5

replace: {2, 3} with {5}

Figure 5: Example BETA ordering for p = 6 and c = 3. The sequence of partition buffers corresponds to first fixing
{0, 1}, then replacing {0, 1} with {2, 3}, fixing {2, 3}, and finally replacing {2, 3} with {5}. Each successive buffer
differs by one swap. A corresponding edge bucket ordering is shown above the buffers. For each partition buffer in
the sequence, all previously unprocessed edge buckets which have their source and destination node partitions in the
buffer are added to the ordering (red edge buckets). For each buffer, these edge buckets can be added in any order.

(a) Hilbert Ordering (b) BETA Ordering

Figure 6: Hilbert and BETA edge bucket orderings.
Numbers indicate the order in which the bucket is pro-
cessed. Gray cells indicate misses to the buffer.

are replaced, but this only happens at most
j
p�c
c�1

k
+ 1

times in one epoch. Additionally, the BETA ordering
can be randomized to create different graph traversals by
shuffling which partitions start in the buffer, by permut-
ing the buffer and/or on disk set before Line 6 in Algo-
rithm 3, or by permuting the on disk set before Line 10
in Algorithm 3.

Finally, we analyze the number of swaps generated by
the BETA ordering: given p partitions and a buffer of size
c the number of swaps is

(p� c) + (x+ 1)

(p� c)� 1

2
x(c� 1)

�

where x =

�
p� c

c� 1

⌫
.

(3)

Comparison with Hilbert, lower bound We compare
the number of IO operations incurred by the BETA or-
dering with space-filling curve based orderings, and the
analytical lower bound. Space filling curve orderings like
Hilbert [14] attempt to define a graph traversal that pre-
serves 2D locality over the n⇥n matrix of edge buckets.
We also compare to a second version of the Hilbert or-
dering, termed Hilbert Symmetric, which modifies the
former by processing edge buckets (i, j) and (j, i) suc-
cessively. A key advantage of the BETA ordering when

BETA

Figure 7: Simulated total IO performed during a single
epoch of training Freebase86m with d = 100.

compared to these methods is that it is buffer-aware, i.e.,
the algorithm knows the buffer size and specifically aims
to minimize partition swaps. In contrast, space-filling
curve based orderings are unaware of this information,
aiming instead for locality.

We illustrate how the BETA ordering compares to a
Hilbert space-filling curve on a small p = 4, c = 2
case in Figure 6. We see that while the Hilbert ordering
has nine buffer misses the BETA ordering only has five
misses. We also performed simulations to compare each
method. Figure 7 shows the number of IO accesses when
varying p and using a buffer with size p

4 for the BETA,
Hilbert, and Hilbert Symmetric orderings, together with
the lower bound. The BETA ordering yields nearly opti-
mal performance across partition configurations and re-
quires significantly less IO than the other methods.

We leave an investigation of a provably-optimal or-
dering for future work. Our initial studies have shown
that there exist cases of p, c where no valid ordering can
match the lower bound as well as cases where an order-
ing which requires slightly fewer swaps than the BETA
ordering does exist. Thus, the optimal algorithm requires
IO-swaps somewhere between the lower bound and the
BETA ordering in Figure 7.

4.2 Partition Buffer
We next describe mechanisms that we use in the par-

tition buffer to further minimize IO overhead. The par-

540 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tition buffer is a fixed sized memory region that has ca-
pacity to store c embedding partitions in memory. We
co-design the buffer replacement policies with the BETA
ordering described above. Co-designing the edge traver-
sal with buffer replacement policy means that we have
knowledge about which partitions will be accessed in the
future. This allows the buffer to use the optimal replace-
ment policy: evict the partition that will be used furthest
in the future [1]. Given this policy we also design a
prefetching mechanism that can minimize the amount of
time spent waiting for partitions to swap. Again, based
on knowing the order in which partitions are used, we
use a prefetching thread that reads the next partition in
the background. Correspondingly when a partition needs
to be evicted from memory, we perform asynchronous
writes using a background writer thread.

5 Evaluation
We evaluate Marius on standard benchmarks using a

single AWS P3.2xLarge instance and compare against
SoTA graph embedding systems. We show that:
(1) Due to optimized resource utilization, Marius yields
up to 10⇥ faster training in comparison to SoTA systems
and cost reductions on cloud resources between 2.9⇥ and
7.5⇥ depending on the configuration.
(2) The BETA ordering reduces IO required by up to 2⇥
when compared to other locality-based graph orderings,
thus alleviating the IO bottleneck during training.
(3) Marius is able to scale to graph embedding mod-
els that rely on increased vector dimensions to achieve
higher accuracy. Due to the increased vector dimensions
these models exceed CPU memory size. For instance, we
show that Marius can learn an embedding model using
800-d vector representations on a graph with 86M nodes
on a single machine. In this configuration there are 550
GB of total parameters and optimizer state, which is 35⇥
GPU memory size and 9⇥ CPU memory size.

5.1 Setup
Implementation Marius is implemented in about 10,000
lines of C++. We use LibTorch [21], which is the
C++ API of PyTorch, as the underlying tensor engine.
LibTorch provides access to the wide-ranging function-
ality of PyTorch, making it easy to extend Marius to sup-
port more complex embedding models. We also imple-
ment an abstracted storage API, which allows for embed-
ding parameters to be stored and accessed across a vari-
ety of backends under one unified API. This allows us to
easily switch between storage backends, say from using
a CPU memory-based backend to a disk-based backend.
Hardware Setup Single machine experiments are run on
a single AWS P3.2xLarge instance which has: 1 Telsa

V100 GPU with 16 GB of memory, 8 vCPUs with 64
GB of memory, and an attached EBS volume with 400
MBps of read and write bandwidth. For multi-GPU ex-
periments, we use the AWS P3.16xLarge instance which
has 8 Tesla V100 GPUs with 16 GB of memory each,
64 vCPUs, and 524 GB of CPU memory. For distributed
multi-core experiments we use 4 c5a.8xLarge instances
with 32 vCPUs and 69 GB of CPU memory each. DGL-
KE ran out of memory when using a single GPU with
the Twitter and Freebase86m datasets. For these cases,
we use a larger machine with 1 Telsa V100 GPU with 32
GB of memory and 200 CPUs with 500 GB of memory.
Datasets For our evaluation, we use standard bench-
mark datasets that include social networks (Twitter [16],
Livejournal [20]) and knowledge graphs (FB15k and
Freebase86m [18, 40] derived from Freebase [8]). A
summary of the dataset properties is shown in Table 1.
FB15k uses an 80/10/10 train, validation and test split.
All others use a 90/5/5 split.
Embedding Models On FB15k, we use ComplEx [33]
and DistMult [36]. On LiveJournal and Twitter we use
Dot [19], which is a dot product between the node em-
beddings of an edge. On Freebase86m we use ComplEx
embeddings. We chose these models to match the evalu-
ation of Zheng et al. [40] and Lerer et al. [18].
Hyperparameters To ensure fair comparisons, we use
the same hyperparameters across each system instead of
tuning separately. Hyperparameter values for each con-
figuration were chosen based on those used in the eval-
uation of DGL-KE and PBG and are shown in Table 1.
All systems use the Adagrad optimizer [6] for training,
which empirically yields much higher-quality embed-
dings over SGD. One drawback of using Adagrad is that
it effectively requires storing a learning rate per param-
eter, doubling the overall memory footprint of the em-
beddings during training. For Marius, we use a staleness
bound of 16 for all cases which utilize the pipeline.
Evaluation Task and Metrics We evaluate the quality
of the embeddings using the link prediction task. Link
prediction is a commonly used evaluation task in which
embeddings are used to predict if a given edge is present
in the graph. Link prediction metrics reported are Mean
Reciprocal Rank (MRR) and Hits@k, which are derived
from the rank of the score of each candidate edge, where
the scores are produced from the embedding score func-
tion f . For a given candidate edge i, it has a rank ri
which denotes the position of the score of the candidate
edge in descending sorted array Si, where Si contains
the score of the candidate edge and the scores of a set of
negative samples. Given this, the MRR and Hits@k can
be computed from a set of candidate edges C as follows:
1

|C|
P

i2C

1

ri
and

1

|C|
P

i2C 1ri<=k respectively.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 541

Name Type |E| |V| |R| Size Hyperparameters

FB15k KG 592k 15k 1.3k 52 MB d = 400, lr = .1, b = 104, nt = 103, ↵nt = .5, FilteredMRR
LiveJournal Social 68M 4.8M - 1.9 GB d = 100, lr = .1, b = 5⇥ 104, nt = 103, ↵nt = .5, ne = 104, ↵ne = 0

Twitter Social 1.46B 41.6M - 33.2 GB d = 100, lr = .1, b = 5⇥ 104, nt = 103, ↵nt = .5, ne = 103, ↵ne = .5
Freebase86m KG 338M 86.1M 14.8K 68.8 GB d = 100, lr = .1, b = 5⇥ 104, nt = 103, ↵nt = .5, ne = 103, ↵ne = .5

Table 1: Datasets used for evaluation. The size column indicates total size of embedding parameters with the embed-
ding dimension d, including the Adagrad optimizer state. lr: learning rate, b: batch size, nt: training negatives, ↵nt :
train degree-based negatives fraction, ne: evaluation negatives, ↵ne : eval degree-based negatives fraction.

Metrics can be filtered or unfiltered. Filtered evalua-
tion involves comparing candidate edges with |N | neg-
ative samples, produced using all of the nodes in the
graph. Some of the produced negative samples will be
false negatives, which will not be used in filtered evalu-
ation. Because all nodes in the graph are used, filtered
evaluation is expensive for large graphs. Unfiltered eval-
uation samples ne nodes from the graph, with a fraction
↵nene by degree and (1� ↵ne)ne uniformly. False neg-
atives are not removed in unfiltered evaluation, but will
not be common if ne << |V |. Unfiltered evaluation is
much less expensive and is well suited for large scale
graphs. We use filtered metrics only on FB15k and unfil-
tered metrics elsewhere. The same evaluation approach
is adopted by prior systems [18].

5.2 Comparison with Existing Systems
To demonstrate that Marius utilizes resources better

than current SoTA systems leading to faster training, we
compare Marius with PBG and DGL-KE on four bench-
mark datasets. We do not compare with GraphVite since
it is significantly slower than DGL-KE as reported in
Zheng et al. [40]. FB15k and LiveJournal fit in the ma-
chine’s GPU memory and therefore do not have data
movement overheads. Twitter exceeds GPU memory
which introduces data movement overheads from stor-
ing parameters off-GPU. Freebase86m exceeds the CPU
memory of the machine, which prevents DGL-KE from
training these embeddings on a single P3.2xLarge in-
stance, therefore we only compare against PBG.
FB15k In this experiment, we compare Marius with PBG
and DGL-KE on FB15k to show that Marius achieves
similar embedding quality as the other systems on a com-
mon benchmark. We measure the FilteredMRR, Hits@k,
and runtime of the systems when training ComplEx and
DistMult embeddings with d = 400 to peak accuracy,
averaged over five separate runs. Results are shown
in Table 2. It should be noted that all parameters and
training data fit in GPU memory for this dataset. We
find that Marius achieves near identical metrics as PBG
when learning the same embeddings, this is expected as
both systems have similar implementations for sampling
edges and negative samples. DGL-KE on the other hand
only achieves a similar FilteredMRR. DGL-KE has im-
plementation differences for initialization and sampling

System Model Filtered Hits Time
MRR @1 @10 (s)

DGL-KE ComplEx .795 .766 .848 35.6s ± .69
PBG ComplEx .795 .736 .888 40.3s ± .1

Marius ComplEx .795 .736 .888 27.7s ± .12
DGL-KE DistMult .792 .766 .848 32.8s ± .88

PBG DistMult .790 .728 .888 46.2s ± .46
Marius DistMult .790 .727 .889 28.7s ± .15

Table 2: FB15k Results. All systems reach peak accu-
racy at about the same number of epochs with 30 and 35
epochs for ComplEx and DistMult respectively.

System Model MRR Hits Time
@1 @10 (min)

DGL-KE Dot .753 .675 .876 25.7m +-.17
PBG Dot .751 .672 .873 23.6m +-.17

Marius Dot .750 .672 .872 12.5m +-.01

Table 3: LiveJournal results after 25 epochs.

which likely account for the difference in metrics. While
Marius is not designed for small knowledge graphs, we
can see that it performs comparably to SoTA systems,
achieving similar embedding quality in lesser time.
LiveJournal To show that the systems are compara-
ble on social graphs, we compare the quality of 100-
dimensional embeddings learned by the three systems
using a dot product score function. While Livejournal
is two orders of magnitude larger than FB15k, all param-
eters still fit in GPU memory with a total of 2 GB. As
before, we measure MRR, hits@k, and runtime, averag-
ing over three runs; but we use unfiltered MRR instead of
FilteredMRR. We do so because FilteredMRR is compu-
tationally expensive to evaluate on larger graphs (Section
5.1). Instead of using all nodes in the graph to construct
negative samples, we sample 10,000 nodes uniformly for
evaluation, as done in Lerer et al. [18]. Results are shown
in Table 3. We see that all three systems achieve near
identical metrics for this dataset. There are slight differ-
ences in runtimes that can be attributed to implementa-
tion differences. PBG checkpoints parameters after each
epoch, while this is optional in Marius and DGL-KE.
Without checkpointing, PBG would likely achieve sim-
ilar runtimes to DGL-KE and Marius. Overall, we find
that Marius performs as well or better than SoTA systems
on this social graph benchmark.
Twitter We now move on to evaluating Marius on large-
scale graphs for which embedding parameters do not fit

542 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

System Model MRR Hits Time
@1 @10

PBG Dot .313 .239 .451 5h15m
DGL-KE Dot .220 .153 .385 35h3m
Marius Dot .310 .236 .445 3h28m

Table 4: Twitter results after training for 10 epochs.
System Model MRR Hits Time

@1 @10
PBG ComplEx .725 .692 .789 7h27m

Marius ComplEx .726 .694 .786 2h1m

Table 5: Freebase86m results with embedding size 100
after training for 10 epochs.

in GPU memory. The Twitter follower network has ap-
proximately 1.4 billion edges and 41 million nodes. We
train 100-dimensional embeddings on each system us-
ing a dot product score function. We report results for
one run for each system since we observed that train-
ing times and MRR are stable between runs. In total,
there are 16 GB of embedding parameters with another
16 GB of optimizer state, since all systems use the Ada-
grad optimizer, as discussed above. To construct nega-
tives for evaluation we use the approach from Zheng et
al. [40], where 1,000 nodes are sampled uniformly from
the graph, and 1,000 nodes are sampled by degree.

Unlike the previous two datasets, each system uses a
different methodology for training embeddings beyond
GPU memory sizes. DGL-KE uses the approach de-
scribed in Algorithm 1, storing parameters in CPU mem-
ory and processing batches synchronously while waiting
for data movement. PBG does not utilize CPU memory
and instead uses the partitioning approach with 16 par-
titions. Marius stores parameters in CPU memory, and
utilizes its pipelined training architecture to overlap data
movement with computation.

We compare the peak embedding quality learned by
each of the systems after ten epochs of training in Table
4. We find that Marius is able to train similar quality em-
beddings faster than the other systems, 10⇥ faster than
DGL-KE and 1.5⇥ faster than PBG. DGL-KE’s long
training times can be attributed to data movement wait
times inherent in synchronous processing. PBG on the
other hand, only pays a data movement cost when swap-
ping partitions. PBG achieves comparable runtimes be-
cause this dataset has a large amount of edges relative to
the total number of parameters, meaning that computa-
tion times dominate partition swapping times.

Turning our attention to the embedding quality, we
find that Marius learns embedding of comparable qual-
ity to the next-best system: Marius yields an MRR of
0.310 versus 0.313 PBG. On the other hand, DGL-KE
only achieves an MRR of 0.220. We attribute this gap
in quality to to implementation differences between the
systems (all use the same hyperparameters for training).

Figure 8: GPU utilization of Marius, DGL-KE and PBG
during a single epoch of training d = 50 embeddings on
Freebase86m. Utilization is smoothed over 25 seconds.

Freebase86m We now evaluate Marius on a large-
scale knowledge graph for which embedding parame-
ters do not fit in CPU or GPU memory. We train 100-
dimensional ComplEx embeddings for each system. In
total, there are about 32 GB of embedding parameters
with another 32 GB of Adagrad optimizer state. We do
not evaluate DGL-KE on this dataset since it is unable
to process this configuration on a single P3.2xLarge in-
stance. For evaluation, we sample 1000 nodes uniformly
and 1000 nodes based on degree as negative samples.

We compare the peak embedding quality of Marius
and PBG where both systems are trained to 10 epochs in
Table 5. Both systems use 16 partitions for training and
in Marius we vary the number of partitions we hold in the
CPU memory buffer. We find that Marius is able to train
to peak embedding quality 3.7⇥ faster when the buffer
has a capacity of 8 partitions while reaching a similar ac-
curacy. The runtime difference between the two systems
can be attributed to the fewer number of partition swaps
Marius performs and the ability to prefetch partitions.
Utilization We include a comparison of GPU utilization
during a single epoch of training d = 50 embeddings on
Freebase86m. Figure 8 shows the utilization of two con-
figurations of Marius compared to DGL-KE and PBG.
One configuration of Marius stores embeddings in CPU
memory while the other uses eight partitions on disk with
four partitions buffered in CPU memory. We see that
Marius is able to utilize the GPU 8⇥ more than DGL-
KE when training in memory and about 6⇥ more when
using the partition buffer. Compared to PBG, our par-
tition buffer design leads to nearly 2⇥ GPU utilization
with fewer drops in utilization when waiting for parti-
tion swaps. While better than the baseline systems, Mar-
ius still doesn’t achieve 100% GPU utilization for this
configuration. When profiling Marius with NVIDIA’s
nvprof, we found that all GPU operations were executed
on the default CUDA stream, which is the default be-
havior of PyTorch. We plan to improve our implemen-
tation to leverage multiple CUDA streams thereby en-
abling GPU data transfer and compute to run in parallel,
thereby improving GPU utilization. We have also found

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 543

System Deployment Epoch Time (s) Per Epoch Cost ($)
Marius 1-GPU 288 .248

DGL-KE 2-GPUs 761 1.29
DGL-KE 4-GPUs 426 1.45
DGL-KE 8-GPUs 220 1.50
DGL-KE Distributed 1237 1.69

PBG 1-GPU 1005 .85
PBG 2-GPUs 430 .73
PBG 4-GPUs 330 1.12
PBG 8-GPUs 273 1.86
PBG Distributed 1199 1.64

Table 6: Cost comparisons with d=50 on Freebase86m.

System Deployment Epoch Time (s) Per Epoch Cost ($)
Marius 1-GPU 727 .61

DGL-KE 2-GPUs 1068 1.81
DGL-KE 4-GPUs 542 1.84
DGL-KE 8-GPUs 277 1.88
DGL-KE Distributed 1622 2.22

PBG 1-GPU 3060 2.6
PBG 2-GPUs 1400 2.38
PBG 4-GPUs 515 1.75
PBG 8-GPUs 419 2.84
PBG Distributed 1474 2.02

Table 7: Cost Comparisons with d=100 on Freebase86m.

that the host CPU utilization could be a potential bottle-
neck (P3.2xLarge instance only has 8 vCPUs) and we
plan to study techniques to mitigate CPU bottlenecks.
Comparison vs. Distributed and Multi-GPU We com-
pare the training time and cost per epoch1 for Mar-
ius with the multi-GPU and distributed multi-CPU con-
figurations of PBG and DGL-KE. PBG and DGL-KE
support single machine multi-GPU training, and have
a distributed multi-machine mode which is CPU-only.
In the distributed configurations, the two systems par-
tition parameters across the CPU memory of the ma-
chines and perform asynchronous training with CPU
workers [18, 40]. Tables 6 and 7 show the configura-
tion for each system and the corresponding epoch run-
time and cost based on On-Demand AWS pricing. We
observe that despite using a single GPU, Marius achieves
comparable runtime with the multi-GPU configurations,
while being more cost effective than all cases, ranging
from 2.9⇥ to 7.5⇥ cheaper depending on the configura-
tion. We also note that Marius can be extended to the
multi-GPU setting; we discuss this in future work.

5.3 Partition Orderings
We now evaluate our buffer-aware BETA ordering and

compare it to two Hilbert curve based orderings. The
first, Hilbert, is the ordering generated directly from
a Hilbert curve over the n ⇥ n matrix of edge buck-
ets. The second, HilbertSymmetric, modifies the previ-
ous curve by processing edge buckets (i, j) and (j, i) to-
gether, which reduces the overall number of swaps that
need to be performed by about 2⇥. All experiments use
32 partitions and a buffer capacity of 8 partitions.

1All three systems converge in a similar number of epochs.

BETA

Figure 9: Total IO during a single epoch of training.

We compare the orderings on Freebase86m with d =
50 and d = 100 sized embeddings, where the latter con-
figuration exceeds CPU memory size. For d = 50 we
include an in-memory configuration which does not use
partitioning as a baseline. Results are shown in Figure
10. We find that the BETA ordering reduces training time
to nearly in-memory speeds, while only keeping 1/4 of
the partitions in memory at any given time. The run-
time of the three orderings is directly correlated with the
amount of IO required to train a single epoch (Figure
9). Since the Hilbert and HilbertSymmetric orderings re-
quire more IO, training stalls more often waiting for IO
to complete. Results for d = 100, also in Figure 10, show
that BETA has the lowest training time, which is directly
correlated with the amount of IO performed. Overall,
the BETA ordering is well suited for training large-scale
graph embeddings through reducing IO.

We also compare the orderings on Twitter with d =
100 and d = 200 sized embeddings. Results are shown
in Figure 11. We find that the choice of ordering does
not impact runtime for this configuration. Even though
BETA results in the smallest amount of total IO, the
prefetching of partitions to the buffer always outpaces
the speed of computation for the other orderings. We see
this in Twitter and not Freebase86m, because Twitter has
nearly 10⇥ the density of Freebase86m, i.e., more com-
putation needs to be performed per partition. When we
increase the embedding dimension to d = 200 (Figure
11) we see a difference in running time. By increasing
the embedding dimension by 2⇥ we increase the total
amount of IO by 2⇥, and now the prefetching of parti-
tions is outpaced by the computation.

Overall, we see that certain configurations are data
bound and others are compute bound. For data bound
configurations like d = 50 and d = 100 on Freebase86m
and d = 200 on Twitter, the choice of ordering will im-
pact overall training time, with BETA performing best.
But for compute bound workloads such as d = 100 on
Twitter, the choice of ordering makes little difference
since the prefetching always outpaces computation.

5.4 Large Embeddings
We evaluate the ability of Marius to scale training be-

yond CPU memory sizes in this section. We vary the em-
bedding dimension from a small dimension of d = 20,
for which training fits in GPU memory, to a large em-

544 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

BETA

Figure 10: 10 epochs runtime per edge
bucket ordering on Freebase86m.

BETA

Figure 11: 10 epochs runtime per
edge bucket ordering on Twitter.

Sync Relations
Async Relations
All Sync

Ed
ge
s/s
ec

M
R
R

0.25

0.50

Staleness Bound

0.75

Figure 12: Impact of staleness bound.

d Size Partitions MRR Runtime (Epoch)
20 13.6 GB - .698 4m
50 34.4 GB - .722 4.8m
100 68.8 GB 32 .726 12.1m
400 275.2 GB 32 .731 92.4m
800 550.4 GB 64 .731 396m

Table 8: Freebase86m. d = 400 and d = 800 trained to
5 epochs, other cases are trained to 10.

bedding dimension d = 800, which is well beyond the
memory capacity of a single P3.2xLarge instance. The
results are shown in Table 8. We find that the embed-
ding quality increases with increased embedding dimen-
sion. We also see that as the embedding size increases,
the training time increases quadratically. We see this be-
cause the number of swaps and total IO scales quadrat-
ically with the number of partitions, if the buffer capac-
ity is held fixed. And because training is bottlenecked
by IO for large embedding sizes, we see quadratic run-
time increases. It should be noted that with a faster disk
we would observe improved runtimes, with a 2⇥ faster
disk leading to 2⇥ faster training for large embeddings.
With NVMe-based SSDs becoming more common, the
design of Marius will best be able to leverage future fast
sequential storage mediums and scale training to embed-
ding sizes beyond what we show here.

5.5 Microbenchmarks
Bounded Staleness We now show how our pipelined
training architecture with bounded staleness affects the
embedding quality and throughput of training. We train
Marius on Freebase86m with d = 50, and vary the num-
ber of batches allowed into the pipeline at any given
time. We evaluate how the performance and MRR vary
as we vary the staleness bound. We compare three cases,
synchronous updates to all parameters, synchronous up-
dates to only the relation embeddings, and asynchronous
updates to all parameters.2 Results are shown in Fig-
ure 12. We see that increasing the staleness bound when
asynchronously updating the relation embeddings results
in severe degradation of embedding quality. For syn-
chronous updates of the relation embeddings and asyn-

2For asynchronous updates to the relation embeddings, we pipe
them to the GPU from CPU memory as with the node embeddings.

Figure 13: Effect of prefetching with Freebase86m.

chronous updates to the node embeddings, we see that
MRR does not degrade significantly with increasing stal-
eness bound. This suggests that relation embeddings are
sensitive to staleness, which might be due to dense up-
dates. These results additionally show that node embed-
dings are not sensitive to asynchronous updates, which
may be due to sparse updates. We also find that increas-
ing the bound improves the throughput of the system by
about a factor of 5 over synchronous training but that the
benefits diminish beyond a staleness bound of 8.
Prefetching Effects We evaluate the effect of prefetch-
ing partitions to the buffer on GPU utilization. We train
Marius on Freebase86m with d = 100, 32 partitions, and
a buffer capacity of eight. We show the average utiliza-
tion of the GPU during each iteration of a single epoch
of training in Figure 13. We can see that prefetching re-
sults in a higher sustained utilization of the GPU since
less time is spent waiting for partition swaps. Interest-
ingly, both configurations see a utilization bump start-
ing at about iteration 12,000. This is because the BETA
ordering does not require any swaps during this period.
Overall, prefetching is able to mitigate wait times for par-
tition swaps improving utilization and training times.

6 Discussion
We next discuss some lessons learned from Marius de-

ployments in the cloud and discuss how the BETA order-
ing aims to optimize a workload that is fundamentally
different than those considered by prior large-scale graph
processing paradigms.

6.1 Deployment Considerations
Given the diverse set of cloud computing instances of-

fered by vendors, there are a wide variety of possible
hardware deployments with associated costs and bene-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 545

fits. It is challenging to determine what the best deploy-
ment option is, especially with performance also being
impacted by the choice of model and dataset. Here we
list some considerations when deploying Marius.
Properties of the Input Graph Training time and stor-
age overhead are largely driven by the size of the input
graph. More edges lead to more computation, and more
nodes and edge-types results in a larger storage footprint.
The density of the graph impacts the bottleneck of the
system when using the partition buffer. A graph with
high density will be compute bound, as more computa-
tion will have to be performed on each node partition, as
we see in Figure 11. For sparse graphs the training will
be data bound, as we see in Figure 10. For data bound
settings, utilizing a storage device with high throughput
can improve training times, while for compute bound
workloads, more GPUs and parallelism can help.
Model Complexity Some models such as DistMult,
ComplEx, and Dot are computationally simple, only re-
quiring dot products and element-wise multiplication,
while others such as CapsE [26] utilize convolutions and
a capsule neural network. Training simple models re-
quires less compute to perform the forward and back-
wards pass and therefore is more likely to be data bound.
The opposite is true for complex models.
Configuration and Tuning A major challenge with
training graph embedding models is the number of hy-
perparameters which impact embedding quality, training
throughput, and convergence rates. In terms of batch
size, we observe that large batches (⇡10000) can im-
prove training throughput with no impact on model ac-
curacy for large graphs, but throughput benefits dimin-
ish after a certain batch size. Throughput can also be
increased by using a larger number of partitions (Fig-
ure 7), but this affects embedding quality. IO can also be
reduced by increasing the capacity of the buffer, which
quadratically reduces the number of swaps; thus it is best
to size the buffer to the maximum number of partitions
that will fit in CPU memory. Finally, as seen in Fig-
ure 12, increasing the staleness bound improves training
throughput but can negatively impact embedding quality.
Overall, the effect of these parameters are graph depen-
dent, and efficiently tuning hyperparameters for a given
graph is an interesting direction for future work.

6.2 Out-of-core Graph Processing
The graph embedding workload requires iterating over

edges and computing on data associated with both end-
points (i.e., the embeddings of source, destination). The
BETA ordering is designed to minimize IO when access-
ing node embedding vectors associated with edges that
are being processed. Classic graph processing systems
and methods such as GraphChi’s Parallel Sliding Win-

dow (PSW) [17] are tailored for workloads that iterate
over vertices and process data associated with the in-
coming edges of each node. Applying such schemes
(e.g., PSW) to graph embeddings would require perform-
ing redundant IO (scaling quadratically with partitions)
to access embeddings for both incoming/outgoing ver-
tices. Furthermore, for classic graph processing algo-
rithms such as PageRank, the storage overhead of node
data is only a single float or a low dimensional vector.
Based on this, traditional graph processing systems make
the assumption that storing and accessing node data is in-
expensive and fits in memory. In contrast, graph embed-
dings are high dimensional vectors making storing and
accessing node data costly, and hence the workload re-
quires new graph traversal algorithms to minimize IO.

7 Conclusion
We introduced Marius, a new framework for comput-

ing large-scale graph embedding models on a single ma-
chine. We demonstrated that the key to scalable train-
ing of graph embeddings is optimized data movement.
To optimize data movement and maximize GPU utiliza-
tion, we proposed a pipelined architecture that leverages
partition caching and the BETA ordering, a novel buffer-
aware data ordering scheme. We showed using standard
benchmarks that Marius achieves the same accuracy but
is up to an order-of magnitude faster than existing sys-
tems. We also showed that Marius can scale to graph
instances with more than a billion edges and up to 550
GB of model parameters on a single AWS P3.2xLarge
instance. In the future, we plan to explore how the ideas
behind Marius’ design and our new data ordering can be
applied to distributed setting and help speed up training
of graph neural networks.

Acknowledgements This work was supported by NSF
under grant 1815538 and DARPA under grant ASKE
HR00111990013. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views, policies, or en-
dorsements, either expressed or implied, of DARPA or
the U.S. Government. This work is also supported by
the National Science Foundation grant CNS-1838733, a
Facebook faculty research award and by the Office of the
Vice Chancellor for Research and Graduate Education at
UW-Madison with funding from the Wisconsin Alumni
Research Foundation.

546 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Laszlo A. Belady. A study of replacement algo-

rithms for a virtual-storage computer. IBM Systems
journal, 5(2):78–101, 1966.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-
relational data. Advances in neural information
processing systems, 26:2787–2795, 2013.

[3] Sylvain Brohee and Jacques Van Helden. Evalua-
tion of clustering algorithms for protein-protein in-
teraction networks. BMC bioinformatics, 7(1):488,
2006.

[4] Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Fer-
ris, Anthony Giardullo, Sachin Kulkarni, Harry Li,
et al. Tao: Facebook’s distributed data store for the
social graph. In USENIX ATC 2013, pages 49–60,
2013.

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-
Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applica-
tions. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1616–1637, 2018.

[6] John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and
stochastic optimization. Journal of machine learn-
ing research, 12(7), 2011.

[7] Kimm Fairchild, Steven E Poltrock, and George W
Furnas. Graphic representations of large knowledge
bases. Cognitive science and its applications for
human-computer interaction, page 201, 1988.

[8] Google. Freebase data dumps.
https://developers.google.com/freebase, 2018.

[9] Palash Goyal and Emilio Ferrara. Graph embed-
ding techniques, applications, and performance:
A survey. Knowledge-Based Systems, 151:78–94,
2018.

[10] Aditya Grover and Jure Leskovec. node2vec:
Scalable feature learning for networks. CoRR,
abs/1607.00653, 2016.

[11] William L. Hamilton, Rex Ying, and Jure
Leskovec. Representation learning on graphs:
Methods and applications. CoRR, abs/1709.05584,
2017.

[12] Joseph M Hellerstein, Michael Stonebraker, and
James Hamilton. Architecture of a database sys-
tem. Now Publishers Inc, 2007.

[13] John L Hennessy and David A Patterson. Com-
puter architecture: a quantitative approach. Else-
vier, 2011.

[14] David Hilbert. Über die stetige abbildung einer
line auf ein flächenstück. Mathematische Annalen,
38(3):459–460, 1891.

[15] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu
Kim, Seunghak Lee, Phillip B. Gibbons, Garth A.
Gibson, Gregory R. Ganger, and Eric P. Xing. More
effective distributed ml via a stale synchronous
parallel parameter server. In Proceedings of the
26th International Conference on Neural Informa-
tion Processing Systems - Volume 1, NIPS’13, page
1223–1231, Red Hook, NY, USA, 2013. Curran
Associates Inc.

[16] Haewoon Kwak, Changhyun Lee, Hosung Park,
and Sue Moon. What is twitter, a social network
or a news media? In Proceedings of the 19th Inter-
national Conference on World Wide Web, WWW
’10, page 591–600, 2010.

[17] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a
pc. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’12, page 31–46, USA, 2012. USENIX Asso-
ciation.

[18] Adam Lerer, Ledell Wu, Jiajun Shen, Timo-
thee Lacroix, Luca Wehrstedt, Abhijit Bose, and
Alex Peysakhovich. Pytorch-biggraph: A large-
scale graph embedding system. arXiv preprint
arXiv:1903.12287, 2019.

[19] Jure Leskovec. WWW-18 Tutorial:
Representation Learning on Networks.
http://snap.stanford.edu/proj/embeddings-www/.

[20] Jure Leskovec and Andrej Krevl. Snap datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

[21] LibTorch: PyTorch C++ API.
https://pytorch.org/cppdocs.

[22] Hailun Lin, Yong Liu, Weiping Wang, Yinliang
Yue, and Zheng Lin. Learning entity and relation
embeddings for knowledge resolution. Procedia
Computer Science, 108:345–354, 2017.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 547

[23] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim.
Mosaic: Processing a trillion-edge graph on a sin-
gle machine. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, EuroSys
’17, pages 527–543, New York, NY, USA, 2017.
ACM.

[24] Frank McSherry, Michael Isard, and Derek G Mur-
ray. Scalability! but at what {COST}? In 15th
Workshop on Hot Topics in Operating Systems (Ho-
tOS {XV}), 2015.

[25] Deepak Narayanan, Aaron Harlap, Amar Phan-
ishayee, Vivek Seshadri, Nikhil R Devanur, Gre-
gory R Ganger, Phillip B Gibbons, and Matei Za-
haria. Pipedream: generalized pipeline parallelism
for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
1–15, 2019.

[26] Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen,
Dat Quoc Nguyen, and Dinh Phung. A capsule
network-based embedding model for knowledge
graph completion and search personalization, 2019.

[27] Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. A three-way model for collective learn-
ing on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816, 2011.

[28] Shoumik Palkar and Matei Zaharia. Optimiz-
ing data-intensive computations in existing libraries
with split annotations. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles,
pages 291–305, 2019.

[29] Raghu Ramakrishnan, Johannes Gehrke, and Jo-
hannes Gehrke. Database management systems,
volume 3. McGraw-Hill New York, 2003.

[30] Satu Elisa Schaeffer. Graph clustering. Computer
science review, 1(1):27–64, 2007.

[31] C. Seshadhri, Aneesh Sharma, Andrew Stolman,
and Ashish Goel. The impossibility of low-rank
representations for triangle-rich complex networks.
Proceedings of the National Academy of Sciences,
117(11):5631–5637, 2020.

[32] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and
Daphne Koller. Link prediction in relational data.
Advances in neural information processing sys-
tems, 16:659–666, 2003.

[33] Théo Trouillon, Johannes Welbl, Sebastian Riedel,
Eric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In Proceed-
ings of The 33rd International Conference on Ma-
chine Learning, volume 48, pages 2071–2080, 20–
22 Jun 2016.

[34] Denny Vrandečić and Markus Krötzsch. Wikidata:
a free collaborative knowledgebase. Communica-
tions of the ACM, 57(10):78–85, 2014.

[35] Quan Wang, Zhendong Mao, Bin Wang, and
Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on
Knowledge and Data Engineering, 29(12):2724–
2743, 2017.

[36] Bishan Yang, Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575, 2014.

[37] Rex Ying, Ruining He, Kaifeng Chen, Pong
Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
pages 974–983, 2018.

[38] Reza Zafarani, Mohammad Ali Abbasi, and Huan
Liu. Social media mining: an introduction. Cam-
bridge University Press, 2014.

[39] Muhan Zhang and Yixin Chen. Link prediction
based on graph neural networks. Advances in
Neural Information Processing Systems, 31:5165–
5175, 2018.

[40] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan,
Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang,
and George Karypis. DGL-KE: Training knowl-
edge graph embeddings at scale. arXiv preprint
arXiv:2004.08532, 2020.

[41] Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian
Tang. Graphvite: A high-performance cpu-gpu hy-
brid system for node embedding. In The World
Wide Web Conference, pages 2494–2504. ACM,
2019.

548 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract
The artifact includes the Marius source code, configu-

ration and scripts for all experiments, including the base-
lines. Details on how to use the artifact can be found in
the README file in our Github repository.

Scope
The artifact can be used to validate and reproduce

the results for all experiments. The source code and
experiment configuration can be viewed to obtain any
implementation details that were not mentioned in the
paper for brevity. We do not include the source code to
PyTorch Big-Graph and DGL-KE, the versions used in
this work can be found at: https://github.com/
facebookresearch/PyTorch-BigGraph/tree/
4571deee78d0fff974a81312c0c3231d7dc96a69
and https://github.com/awslabs/dgl-ke/
releases/tag/0.1.1

Contents
Marius: The source code for Marius is mostly written in
C++ with bindings to support a Python API. Located in
/src. The version of Marius in the artifact (osdi2021
branch) corresponds to the version used to produce re-
sults in this paper. We are also actively making improve-
ments to Marius and the latest version of the system can
be found in the main branch of the repository. The main
branch of the repository also contains documentation on
how to use Marius directly.
Experiment runner: A collection of Python scripts
that can be used to run the experiments used in the pa-
per. Located in /osdi2021. Experiments can be run
with python3 osdi2021/run_experiment.py
--experiment <EXPERIMENT>. A full list of ex-
periments can be found by passing the --help flag.
Once an experiment has run to completion, results are
output to the terminal and detailed results, metrics and
figures can be found in the experiment directory.
Experiment configuration: Configuration files for all
experiments and baselines are stored in their correspond-
ing experiment directory. The experiment directories
are named based on their corresponding experiment in
this paper. For example, the experiment configura-
tion files and results after running the experiments for
Section 5.2 can be found in /osdi2021/system_
comparisons/<DATASET>/<SYSTEM/

Datasets and preprocessing code: Code to down-
load and preprocess the datasets used in this pa-
per are included in the artifact. For Marius they
can be found in /src/python/tools. For DGL-
KE and PBG, they can be found in /osdi2021/

dglke_preprocessing and /osdi2021/pbg_
preprocessing. We used four datasets in our eval-
uation (Table 1). FB15k and Freebase86m are a sub-
set of the Freebase knowledge graph [8], where each
edge is encoded as a triple. Each triple encodes
general factual information. An example triple is of
the form: (Giannis Antetokounmpo, Plays,
Basketball). LiveJournal [20] is a social network
dataset where nodes represent users and edges denote
friendships between them. Similarly, the Twitter [16]
dataset contains a follower network between users.
Buffer simulator: The buffer simulator was used to de-
velop and test edge bucket orderings. It computes the
number of swaps for any edge bucket ordering for any
number of partitions and any buffer size.

Hosting
Artifact:
https://github.com/marius-team/
marius/tree/osdi2021

Latest version:
https://github.com/marius-team/marius

Requirements
Detailed software requirements and dependencies are

listed in the artifact README. The artifact must be run
on a machine with an NVIDIA GPU. The target deploy-
ment for this artifact is the P3.2xLarge instance from
AWS. There are a few experiments which cannot run on
this instance due to memory limitations. We detail these
in the README.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 549

