é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

Bringing Decentralized Search
to Decentralized Services

Mingyu Li, Jinhao Zhu, and Tianxu Zhang, Institute of Parallel and Distributed Systems, Shanghai
Jiao Tong University; Shanghai Al Laboratory; Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China; Cheng Tan, Northeastern University; Yubin Xia,
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University; Shanghai Al Laboratory;
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China;
Sebastian Angel, University of Pennsylvania; Haibo Chen, Institute of Parallel and Distributed
Systems, Shanghai Jiao Tong University; Shanghai Al Laboratory; Engineering Research Center for
Domain-specific Operating Systems, Ministry of Education, China

https://www.usenix.org/conference/osdi21/presentation/li

This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems
Design and Implementation.

July 14-16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation
is sponsored by USENIX.

+ - :

Bringing Decentralized Search to Decentralized Services

Mingyu Li, Jinhao Zhu, Tianxu Zhang, Cheng Tan', Yubin Xia, Sebastian Angel*, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Shanghai Al Laboratory

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

tNortheastern University

Abstract

This paper addresses a key missing piece in the current ecosys-
tem of decentralized services and blockchain apps: the lack of
decentralized, verifiable, and private search. Existing decen-
tralized systems like Steemit, OpenBazaar, and the growing
number of blockchain apps provide alternatives to existing
services. And yet, they continue to rely on centralized search
engines and indexers to help users access the content they
seek and navigate the apps. Such centralized engines are in a
perfect position to censor content and violate users’ privacy,
undermining some of the key tenets behind decentralization.
To remedy this, we introduce DESEARCH, the first decen-
tralized search engine that guarantees the integrity and privacy
of search results for decentralized services and blockchain
apps. DESEARCH uses trusted hardware to build a network
of workers that execute a pipeline of small search engine
tasks (crawl, index, aggregate, rank, query). DESEARCH then
introduces a witness mechanism to make sure the completed
tasks can be reused across different pipelines, and to make
the final search results verifiable by end users. We implement
DESEARCH for two existing decentralized services that han-
dle over 80 million records and 240 GBs of data, and show
that DESEARCH can scale horizontally with the number of
workers and can process 128 million search queries per day.

1 Introduction

Most of today’s online services—including search, social net-
works, and e-commerce—are centralized for reasons such
as economies of scale, compatible monetization strategies,
network effects, legal requirements, and technical limitations.
Yet, since the birth of the Internet, there have been periods of
intense interest in decentralization, including the peer-to-peer
systems bonanza of the early and mid 2000s [57, 90, 107] and
the current blockchain boom [39, 94, 113]. A rich set of de-
centralized services have appeared and are able to offer most
of the functionalities that common centralized online services
provide, as listed in Figure 1. Proponents of decentralization
argue that centralized services often employ anti-consumer
practices owing to their monopolistic positions [18, 27], and
the mismatch between users’ expectations and operators’ in-
centives [44]. Further, centralized services are particularly sus-
ceptible to censorship [4, 41] (either self-imposed or coerced
through technical or legal means) and collect vast amounts of
user information [13, 14].

*University of Pennsylvania

Service Centralized Decentralized
Currency U.S. Dollars Bitcoin [94]
Online Marketplace eBay OpenBazaar [28]
Social Media Twitter Steemit [40]
Video Sharing Youtube DTube [8]
Social Network Facebook Mastodon [16]
Public Storage DropBox IPFS [59]
Messaging Slack Matrix [25]
Video Conference Zoom Zipcall [50]
Website Hosting WiX [47] ZeroNet [49]
Financial Betting Etoro [12] Augur [1]
Supercomputing Titan [45] Golem [17]
Document Collaboration Google Docs Graphite [21]

FIGURE 1—Centralized services and decentralized alternatives.

While the idea of building fully decentralized services is
alluring, developers must currently make a significant com-
promise: they must defer search functionality to a central-
ized service. For example, OpenBazaar [28] makes a strong
case for a decentralized marketplace, but users must use a
centralized search engine such as Bazaar Dog [46] or Duo
Search [9] to discover what items are for sale in the first
place. A similar compromise is made by other popular ser-
vices [8, 16, 28, 40, 49]. This state of affairs is problematic be-
cause search is not an optional feature but rather a core compo-
nent of these systems. Without decentralized search, the pur-
ported goals of anti-censorship is hard to attain: the search en-
gine could trivially track users’ queries, and opaquely censor
particular content [3, 4, 7, 32, 41]. For example, Steemit [40]
is a decentralized social media service where posts are stored
on the public Steem blockchain [39], but Steemit developers
have been known to prevent users’ posts from appearing on
the front end site [41].

Prior proposals. Several search engines [29, 81] propose
reaching consensus amongst replicas to ensure the correctness
of search indexes. However, these engines rely on a central
website hosted at the third party to answer queries. As a result,
an end-user who visits this website has no way to validate
the integrity of the displayed results, or to determine whether
there are missing entries. As an alternative, peer-to-peer-based
search engines [24, 48] allow shared indexes between peers
and queries can be issued to any peer (essentially implement-
ing a distributed hash table). However, these engines do not
support verifiable indexes, and allow peers to monitor clients’

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 331

requests, leading to severe privacy concerns. Finally, many
blockchains encourage users to run their own indexer node
or to use a third-party indexer [30, 35] to access the content
in the blockchain. However, most users lack the resources
and the expertise needed to deploy their own indexers, and
third-party indexers must be trusted to not censor content or
violate users’ privacy.

Goals and contribution. Building a decentralized search en-
gine that avoids the aforementioned shortcomings is far from
trivial. First, the search engine should be able to authenticate
the data source to make sure the dataset contains all data
items and is free from forgeries. Second, the user’s intention,
including the query keywords and search results, should be
kept private from any party. Third, the search engine should
be able to provide a proof of execution to clients that explains
how the search results were generated, and why the results
are correct. Last, the search engine should have reasonable
costs and scale to support many users.

To meet these goals, we introduce DESEARCH, the first
decentralized search engine that allows users to verify the
correctness of their search results, and preserves the privacy
of user queries. DESEARCH outsources fragments of search
tasks such as crawling, indexing, aggregation, ranking, and
query processing to trusted execution environments (TEEs)
running on untrusted executors that compose a decentralized
network, and introduces new data structures and mechanisms
that make executors’ operations reusable and externally veri-
fiable.

First, since each executor only has a local view of the com-
putation, DESEARCH uses witnesses, which are a type of
object that reflects the dataflow and establishes the correct-
ness of results. A witness ensures that executors cannot lie
about which sources they crawled, how they aggregated data,
computed the index, or responded to a query. Verifying wit-
nesses is not cheap, so DESEARCH amortizes the verification
cost by reusing previously checked witnesses across queries,
using designated executors—yverifiers—to check witnesses
on behalf of clients.

Second, DESEARCH uses a public storage service called
Kanban. Kanban allows executors in the network to exchange
intermediate information, agree on a snapshot of data in the
system, manage membership, tolerate faults, and verify re-
sults. To detect rollback on Kanban data, DESEARCH summa-
rizes an epoch-based snapshot and stores it on an append-only
distributed log.

Finally, DESEARCH protects the privacy of queries with
two techniques. To prevent leaks from access patterns, DE-
SEARCH adapts an existing oblivious RAM library [102]. To
resist volume side channels, DESEARCH returns the same
amount of data for all search queries. It does so by equalizing
the lengths of result entries. This approach does not reduce
the performance or quality of the service because search en-
gines need not display all of the content but rather a small

snippet. As an analogy in the Web context, search engines
like Google do not display the entirety of a Web site’s content
in the search result; instead, they typically display the URL
of each site and a small text snippet.

We built a prototype of DESEARCH in 2, 600 lines of code,
and have adapted it to work with Steemit (a decentralized
social media service), and OpenBazaar (a decentralized e-
commerce service). Our evaluation of DESEARCH on 1312
virtual machines across the wide-area network with variable
network latency and executor failures shows that DESEARCH
scales well as executors join the network, and can handle over
128 million requests per day. Checking the correctness of the
displayed results is also affordable: users can verify results in
under 1.2 seconds by consulting dedicated verifiers.

To summarize, the contributions of this paper are:

* The design of DESEARCH, the first decentralized search
engine that allows any executors with a TEE to join and
provide search functionality for decentralized services.

* A witness mechanism that organizes verifiable proofs from
short-lived executors to form a global dataflow graph.
Through these witnesses, DESEARCH offers fast verifi-
cation for search queries.

* A prototype of DESEARCH built for Steemit [40] and
OpenBazaar [28], and an evaluation of DESEARCH’s per-
formance and scalability.

While DESEARCH enables, for the first time, scalable, ver-
ifiable, and private search for existing decentralized services,
it is not a viable replacement for traditional Web search en-
gines (e.g., Google). Besides the obvious issue of scale, DE-
SEARCH’s target applications expose a single source of data
(their underlying distributed log or proof of storage mech-
anism), which gives DESEARCH an anchor for its witness
data structure. In contrast, the Web has no such single log,
which would prevent DESEARCH from proving that all Web
pages had been crawled and indexed. Nevertheless, we believe
DESEARCH fills a crucial void.

The rest of the paper is organized as follows. Section 2
describes the motivation, the problem, and the threat model of
DESEARCH, and discusses potential solutions. Section 3 pro-
vides an overview of DESEARCH, highlights DESEARCH’s
components, and explains how they work cooperatively. Sec-
tion 4 presents how DESEARCH achieves a decentralized
yet verifiable search; Section 5 introduces Kanban, a verifi-
able storage; Section 6 describes how DESEARCH provides
oblivious search. Section 7 gives the implementation details.
Section § evaluates DESEARCH in a local heterogeneous clus-
ter and a geo-distributed environment. Finally, Section 9 dis-
cusses other aspects and Section 10 compares related work.

2 Motivation and problem statement

This section describes our motivation, target setting and threat
model, and potential solutions that fall short.

332 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

2.1 Motivation

We give a brief overview of two representative decentralized
services and the problems related to search that might arise
in those systems.

Social Media. Steemit [40] is a social media platform
that stores user-generated contents on the public Steem
blockchain [39]. Although the raw data from the blockchain
is tamper-proof, Steemit’s front-end servers can censor or ma-
nipulate the search results before delivering them to users [41].
One can think of these servers as centralized curators for de-
centralized storage. These servers also know who searches
for what, which may reveal users’ interests and preferences.

Marketplaces. OpenBazaar [28] is an e-commerce market-
place built on top of a peer-to-peer network and storage. To
help users search for items, OpenBazaar provides an API [5]
for third-party search engines to crawl and index items. But
existing search engines [2, 9, 34, 46] are opaque; they can
bias results towards item listings that benefit them financially.
For example, a listing owner could pay the search engine to
promote its listing or hide other listings. Additionally, these
engines can learn users’ purchasing habits (and other infor-
mation) from keywords and search histories.

In short, existing decentralized services currently lack
trusted search that offers integrity and privacy. A decentral-
ized search engine should have strict requirements on the
visibility of the search queries and the correctness of the
search results. Below, we formalize these goals.

2.2 Decentralized search

Consider a decentralized system where volunteers called ex-
ecutors together operate a search engine. Users want to search
over some source data (e.g., data stored in a blockchain) using
some search algorithm. Both the source data and the search
algorithm are public and accessible to all users. For each
search, a user sends keywords to the executors running the
search algorithm and expects a search result—a ranked list
of summaries for entries in the source data alongside pointers
to the corresponding full entries.

After receiving the search results, users want to verify that
the results are actually correct—that they are derived from
executing the search algorithm on the latest source data and
the provided keywords. Users also want to keep their searches
private. In detail, the challenge is to design a decentralized
search engine that meets these goals:

¢ Integrity: the search results should correspond to the cor-
rect execution of the published search algorithm on the
most recent source data. We divide this into two prop-
erties: (1) Execution integrity, meaning that the search
algorithm is faithfully executed on some source data and
the output search results are ranked in the correct order.
(2) Data integrity, meaning that the source data used is
legitimate, up-to-date, and there are no missing or forged

Search Engine Integrity Privacy Scalability
Execution Data Content Metadata
YaCy [48] @) @) O @)]
Presearch [29] [) [) O O [)
The Graph [20] [) [) @) O o
IPSE [24] o @) O O o
BITE [89] o o ([J] @)
Rearguard [108]] @) o D @)
Oblix [91] o @) o] @)
vChain [114] o o O @) @)
GEM2-Tree [117] o o O @) o
X-Search [92] O O L)) O O
CYCLOSA [98] @) @) O @) o
DESEARCH o o [] o o

FIGURE 2—Comparison between prior work and DESEARCH. X-
Search [92] obfuscates query keywords but does not hide them.
Rearguard [108] hides the index size but not the result size.

data records. In combination, these two properties prevent
(undetectable) biased results and censorship.

* Privacy: the search engine (or any third party) should not
leak the user’s search query or the corresponding search re-
sults. There are two aspects to this. (1) Content: the user’s
query (search keywords) and the corresponding search re-
sults are never available in the clear to the search engine.
(2) Metadata: the number and size of the messages ex-
changed by the user and the search engine is independent
of the search results and the provided keywords.

* Scalability: executors that join the search engine should
contribute meaningfully towards its capacity: more execu-
tors should result in higher search throughput.

Figure 2 shows existing decentralized or private search
engines. None of them meets all of our desired goals.

2.3 Potential approaches

How to provide integrity and/or privacy for an execution
(for example, search) has been studied broadly. We list some
approaches below (see more in Section 10).

Replication such as PBFT [67] and Ethereum [113] is one
approach to build systems that can guarantee execution in-
tegrity within a given number of (Byzantine) faults. However,
it requires performing the computation multiple times and
traditional replication protocols do not provide privacy.

Another line of work [99, 105, 111] uses cryptography—
such as fully homomorphic encryption (FHE) [74], secure
multi-party computation (MPC) [116], and verifiable com-
putation (VC) [62, 97, 105]—to provide execution integrity
and/or privacy. Though promising, it remains an open prob-
lem to build a system that can support a complex enough
search model and the large-scale datasets used by today’s
decentralized services.

Trusted execution environments (TEE) provide another
approach to build systems that protect a sensitive execution
from being tampered with or eavesdropped. However, exist-
ing TEEs either (1) have limited private memory (128 MB

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 333

per node); (2) lack memory encryption [55] which makes
them vulnerable to physical attacks that are realistic in a
decentralized setting; or (3) are susceptible to memory tam-
pering [54, 84]. Although newly proposed TEEs [43] have
expanded enclave memory to 1 TB, they relax the security
guarantees (e.g., they are vulnerable to physical replay at-
tacks) owing to the loss of integrity tree protection. Prior
distributed frameworks like VC3 [104] and Ryoan [77] ad-
dress many of the above shortcomings but are not designed
for a decentralized environment. Their predefined computa-
tion graph is not a good fit for a dynamic environment where
the source data and the set of executors is constantly in flux.
Finally, systems like Dory [71] that implement private
search for a file system allow users to get pointers to objects
that match certain keywords, but they do not implement fea-
tures expected from a search engine such as finding non-exact
matches, ranking results, or providing summaries.
DESEARCH uses a combination of new and existing
techniques—TEEs, an append-only log, an epoch-based stor-
age service, authenticated data structures (hash trees), and
oblivious RAM—to address the challenges in Section 2.2.

2.4 Threat model

DESEARCH assumes a decentralized network where untrusted
executors are operated by unknown parties, but are equipped
with TEEs. We assume reliable TEEs with no microarchitec-
tural or analog side channels [64, 110] or vulnerabilities to
voltage changes or physical tampering [93]. We also assume
the TEE manufacturers do not inject backdoors into TEEs,
or share their private keys. Finally, we assume that the TEE
remote attestation mechanism works as intended. While these
assumptions are undeniably strong given existing TEE’s track
record, we expect this technology to mature over the years
and for many of the current weaknesses to be addressed.

In DESEARCH, executors join the system and volunteer
their TEEs (or they are paid or incentivized to do so, which
is orthogonal). Executors can be malicious: they can deny
services, modify the inputs that go into the TEE or the out-
puts that come out of it. They can also corrupt data outside
the TEE’s protected memory, or replay inputs and outputs.
Moreover, executors observe memory accesses, and I/O pat-
terns [65, 115] (either which memory is accessed or how
much data/how many times).

DESEARCH requires that the data over which the decentral-
ized service will offer search be stored in a publicly auditable
source. This requirement boils down to ensuring that the data
source has its own mechanism to check that the data added
is not removed or tampered with (e.g., storing the data in a
blockchain or IPFS [59]).

3 System overview

In this section we give the design principles of DESEARCH,
which is a decentralized search engine for decentralized ser-
vices and blockchain apps. We start by highlighting some of

Kanban (epoch 1)

Executors

Crawlers
Indexers

Rtk
: Request " !

R s
| Response |

1

1

Data
Source

Kanban (epoch ...)

Kanban (epoch N)

Generated by
executors

Private Domain

Verify

FIGURE 3—DESEARCH’s architecture. DESEARCH obtains raw
data from public decentralized services (e.g., Steem blockchain)
as the data sources, and stores the intermediate data (i.e., items
and indexes) on Kanban, a public append-only storage that creates
snapshots periodically. DESEARCH executors generate witnesses
along with the search pipeline. Privacy (§2.2) is offered for users in
the query phase (within the dashed rectangle).

the challenges present when building a decentralized search
engine that meets our requirements (§2.2). Some of these
challenges stem from our decentralized environment, while
others come from the limitations of today’s TEEs and the
dynamic nature of search.

First, decentralization requires that executors be allowed
to freely join and depart the system (§2.2), which means
that executors can go offline unexpectedly. Thus, a standard
search engine design with long-running tasks and stateful
components is unfavorable, as one executor’s leaving can
heavily impact the service.

Second, today’s TEE instances (DESEARCH uses Intel
SGX) have limited memory (128MB or 256MB); working
sets in excess of this limit require expensive paging mech-
anisms. Indeed, our experiments reveal that the latency in-
curred by paging far exceeds what is acceptable for a user-
facing service like search. For example, when we run a search
service for Steemit, which requires a 31 GB index, in a single
optimized SGX instance, it takes 16 (resp., 65) seconds to
respond to a single-keyword (resp., two-keyword) query. Re-
cent work [95, 96] has explored ways to enlarge the trusted
memory through software-based swapping (either via a man-
aged runtime or compiler instrumentation), but those solutions
leak the application’s memory access pattern. As a result, we
find that to achieve acceptable latency, it is necessary for the
search engine’s functionality to be split into small tasks that
are processed by many SGX instances in parallel.

Third, search services are dynamic, and it is hard to track
and verify the whole search process from crawling to query
servicing. In particular, a search engine is unable to plan a
computation graph (like in big-data [73, 104, 111] or machine-
learning [79, 87] systems) as the arrival of new source data or
user search queries is unpredictable, and the set of available
executors is unknown a priori.

Overview. DESEARCH addresses these challenges by de-
composing a search into a pipeline of short-lived tasks where

334 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

each executor is responsible for a single task at a time and op-
erates only on a small portion of data. Executors are stateless.
They fetch inputs and write outputs from and to a storage
service named Kanban. Kanban is a cloud-based key-value
store that provides high-availability and data integrity. We
describe Kanban in detail in Section 5.

To track the completion of the dynamically executing tasks
within the search pipeline, DESEARCH uses witnesses (§4),
which are cryptographic summaries that capture the correct
transfer of data among executors. A witness is also a proof
of an executor’s behavior, which allows users to verify their
search results ex post facto.

Figure 3 shows the architecture of DESEARCH.

Search pipeline and Kanban. In DESEARCH, executors
are categorized into four roles: crawlers, indexers, queriers,
and masters (for simplicity, masters are omitted in Fig-
ure 3). The first three roles comprise a full search pipeline—
crawlers fetch data from public sources (for example a
blockchain [39, 94, 113] or P2P storage [28, 59]); indexers
construct inverted indexes; queriers process queries, rank and
build search results.

Instead of point-to-point communication, executors in the
pipeline communicate through Kanban. Kanban also stores
the data (items, indexes, and witnesses) generated by ex-
ecutors, and provides data integrity (but not confidentiality)
by periodically creating snapshots of all current state and
committing a digest of the snapshot to a public log (e.g.,
Ethereum [113] or Steem [39]). We call the time between two
consecutive snapshots an epoch; we call the data correspond-
ing to the beginning of an epoch, an epoch snapshot.

For privacy (§2.2), DESEARCH comprises public and pri-
vate domains. Executors in the public domain access public
data (like public source data) and produce shared information
(like indexes). On the other hand, users’ interactions with
DESEARCH happen in the private domain, and their com-
munication (for example, search requests and responses) are
encrypted and kept secret.

Masters. Masters are the executors that provide crucial mem-
bership services: (1) a service that authenticates a TEE node
who wants to join DESEARCH; (2) a job assignment service
that coordinates the independent executors to form the search
pipeline with minimal repeated work; (3) a key management
service (KMS) that allows anyone to identify if an executor
is a legitimate DESEARCH member. Regarding managing
the KMS and task coordination, masters periodically (in the
beginning of an epoch), release a list of public keys from
legitimate executors on Kanban so that users can verify their
signatures and communicate with them. This list includes
the active nodes to ensure the service’s availability. Masters
hold the root key that serves as the identity of the DESEARCH
system, allowing the public to recognize DESEARCH. We
describe how the system is bootstrapped, how new masters
join, and how the root key is generated in Section 9.

epochl epoch2 epoch3 epoch4... Timeline
® \ 4 & \ 4 >

Crawlers

O\O\g ndexers
. O queriers

e O Users

FIGURE 4—In DESEARCH, executors and users use data from the
last epoch as inputs, which we call the offset-by-one strategy. For
example, an indexer uses items of the last epoch to generate new
indexes (denoted by oblique arrows), and may merge indexes from
the prior epoch (denoted by horizontal arrows).

DeSearch Pipeline

Workflow. DESEARCH’s executors perform an ordinary
search pipeline—crawling, indexing, and serving queries. In
DESEARCH, data integrity (§2.2) is defined with respect to a
particular epoch snapshot; DESEARCH uses an offset-by-one
strategy where an executor always uses data from the last
epoch in order to ensure that the flow of data is verifiable
when expressed as a pipeline of tasks. Figure 4 shows an ex-
ample of this process. Along every step of the pipeline, each
executor generates a witness, a proof of what the executor has
seen, has done, and how the data has been transferred. We
discuss witnesses in Section 4.

To conduct a search, a user first retrieves a list of active
queriers. This list is maintained by both masters and queriers:
queriers update their status on the list with signed proofs
specifying that they have seen the most-recent epoch; the
legitimacy of the status proofs is verified by masters. Users
know this by checking that the list is signed by masters.

With the active querier list, the user randomly selects one
as the leader, and sends (encrypted) search keywords to the
leader. The leader then seeks more peer queriers to collec-
tively handle the request. That is, different queriers have dif-
ferent portions of indexes and together serve one user search
request. The leader finally aggregates results by ranking based
on relevance, and returns to the user a list of the £ most rele-
vant items. One item comprises a link (to the original content)
and a content snippet that summarizes the item and often
contains the searched keywords.

Together with the search results, the user also receives wit-
nesses from queriers. The witnesses produced by the search
pipeline (all of them) form a witness tree, which users can
verify by starting from the witnesses received from the leader
querier, traversing the tree, checking every node (witness),
and confirming that the search has been correctly executed.
We discuss this verification process next.

4 Verifiable search

In DESEARCH, search functions are outsourced to indepen-
dent executors in a decentralized environment, and data is

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 335

Input & Witness;,

Computation Sandbox

Function

Verifiable

Witness |
- Lambda

Sandbox

Y

Output & Witness .

FIGURE 5—A verifiable lambda is composed of a witness sandbox
and a computation sandbox. The function is one of: crawling, in-
dexing, and querying. The witness;,, contains the hash for inputs
and is from prior lambdas. The witness,.: is the witness generated
by this lambda. The sandbox design is necessary because it isolates
the witness processing from the function execution; the buggy or
malicious function cannot tamper with the integrity of witness.

partitioned across executors. As a result, an executor only has
a local view of its own computation and cannot protect the en-
tire search pipeline even though it runs on a TEE assumed to
be correct. Specifically, guaranteeing integrity (§2.2) has two
parts: (a) ensuring that results are generated by the correct al-
gorithm (execution integrity) despite intermediate data being
transferred among executors through untrusted channels; and
(b) ensuring that results are derived from the desired dataset
without the absence of data records or the inclusion of bogus
data (data integrity).

DESEARCH uses verifiable lambdas and witnesses to ad-
dress challenge (a), and Kanban with epochs for challenge
(b). We detail them below.

Verifiable lambda and witnesses. As stated earlier (§3),
DESEARCH splits a search pipeline into small tasks. Each
task is executed by a basic unit, called verifiable lambda. The
concept of a verifiable lambda (short as lambda) is borrowed
from serverless computing [36] and SGX sandboxing sys-
tems [77, 104]. A key difference is that DESEARCH’s lambda
requires a TEE enclave abstraction that yields a witness (we
discuss it briefly, but it is a type of certificate of correct ex-
ecution) after every computation, allowing the intermediate
data to be verified and reused.

A lambda is composed of the two sandboxes shown in
Figure 5: (1) a witness sandbox that validates the input upon
loading, and generates a witness before delivering the result
to the next lambda; (2) a computation sandbox which runs
the main function in a self-contained execution environment
that does not use any external services; the goal is to resist
Tago attacks [68] (attacks in which a malicious OS causes the
process to harm itself). All I/O activity of the computation
sandbox must be routed to the witness sandbox, which logs
the I/O data and produces a auditable record stored within the
witness. This design isolates the buggy or malicious function
execution from witness processing, so that the integrity of
the witness is easier to reason about. For multiple inputs, a
lambda can batch them to avoid generating many witnesses.

For a chain of lambdas, to ensure correct results, a seem-

ingly straightforward solution is to encode a signed nonce in
each execution of the pipeline. However, this approach does
not work for search because a search pipeline often requires
the data (such as crawling data and indexes) from multiple
previous pipeline executions, and a signed nonce fails to cap-
ture the relationship between these multiple inputs and the
output (critical for verifying data integrity such as data com-
pleteness). Hence, we introduce a certificate called witness
for each lambda.
A lambda’s witness is a tuple:

<[H(in1), H(in2),--- |, H(func), H(out)>

signed
that mirrors how an output is generated by performing a func-
tion over a list of inputs. The H (in) and H (out) are hashes
of the input and output blobs, and H (func) is the hash of the
program binary that runs in this lambda. A witness is signed
by the lambda, and anyone can verify the signature using
DESEARCH’s KMS (§3). A witness has a feature called “mul-
tiple input, single output” (MISO), which consumes multiple
inputs and produces exactly one output. We find that search
is a natural fit for MISO, as mutilple on-chain items yield an
index, and multiple indexes serve a query.

Generally speaking, witnesses can be thought of as a proof-
carrying metadata for a decentralized system, which explains
how an output is being generated and with which piece of
code, and enables a user to examine the computation process
from the effect to the cause for a whole-pipeline verification.
The notion of verifiable lambda and its witness mechanism
are general enough to support other scenarios such as a de-
centralized and verifiable recommender system (§9).

Witness-based verification. All witnesses from a search
process form a tree, which we call a witness tree (see an
example in Figure 6). Users can verify their search results by
traversing and checking the corresponding trees, the roots of
which are the witnesses that users receive from queriers.

To check a single witness, a user first verifies whether the
witness is signed by a legitimate executor and then checks
if the hash of the executed function is as expected. This ap-
proach, combined with the integrity guarantees of the underly-
ing TEE, ensures that the lambda which produced the witness
faithfully executed the desired function.

Now consider the data transition between two adjacent
lambdas in a search pipeline. The former lambda commits
its output and a signed witness to Kanban; the latter lambda
fetches one (or multiple) pair of data and witnesses from Kan-
ban, checks their signatures, validates if the hash in the wit-
ness matches the data, and feeds the data to the computation
function. A user can verify that the inputs of a latter lambda
are indeed the outputs from a former lambda by checking
whether H (in) of the latter equals H (out) from the former.

Finally, users check if data sources are genuine by checking
whether H (in) in the beginning (the crawling phase) is indeed
a correct summary of the original data source. Users need

336 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

New

<[H(block)], <[H(blocky)],
H(Crawler), H(Crawler),

<[H(b|ock3)], <[H(b|ock4)], <[H(b|ock5)],
H(Crawler), H(Crawler), H(Crawler),

H(item1)> H(item2)> H(item3)> " H(item4)> Index H(i(em5)>

merge

<[H(item1), H(i(emz)].

H(Indexer),
H(mdexl)>

<[H(item3), H(item4)]. <[H(mdc><l), H(i‘ems)],

H(Indexer), H(Indexer),
H(\ndex2)> H(wrvdcx3)>

<[H(qy), H(indexy), H(index;)],

H(Querier),
H(answery)>

<[H(q2), H(index,), H(mdexS)],

H(Querier),

H(answer;)> Root

FIGURE 6—Two example witness trees. A rectangle represents a
witness, edges represent data dependencies, and “H(...)” indicates
hashes. This figure contains two search queries (“q1” and “g2"): ¢1
happens first, and there is a merge update to the indexes (indexs
derives from index: and items), then g2 happens. As a result, g1
and g2 share a subtree indicated in gray color.

to download the contents from the data source and calculate
their hashes, which is a very expensive procedure (we address
this issue shortly). If all the above checks pass, users con-
firm that their search results are faithfully produced because
all steps—crawling from the data source, the intermediate
data transferring between tasks, and each task in the search
pipeline—are verified to be authentic and faithfully executed.

Providing efficient verification. The aforementioned veri-
fication process works in principle, but in practice, a perfor-
mance challenge arises. To verify a search, a user would have
to download all the witnesses, check all the signatures and
hashes, and examine the data source. To lighten the burden
of verification on the user side, DESEARCH uses delegated
verification: users offload parts of their verifications to some
executors dedicated for verification, which we call verifiers.

Beyond simplifying user-side verification, delegated verifi-
cation also saves work by batching and deduplicating verifi-
cations from different users. This is based on an observation
that serving different search requests uses a lot of shared in-
dexes, hence the witnesses from the shared portion can be
reused (as an example, see the gray subtree in Figure 6). Be-
cause of delegated verification, verifiers have the opportunity
to batch many common witnesses, which they verify once
for all. Finally, users only have to verify the final step—the
querier phase’s witness, significantly accelerating the verifi-
cation (see delegated verification’s speedup in §8.2). Because
verifiers are only delegated to accelerate the verification of
the witnesses in the public domain, it does not leak any infor-
mation about particular users or their queries.

Data integrity. The above verification ensures that functions
are executed as expected, but there is no guarantee that these
functions see all data even if all functions are protected by
TEEs. In fact, there is no definition of “all data” from a user’s
perspective because newly generated data takes time to be
reflected in the search results. It is therefore unspecified what
data must appear in any particular search result.

To define data completeness (a part of data integrity, §2.2)
for searches, DESEARCH divides time into epochs, and execu-

tors write data to Kanban annotated with the current epoch
(we elaborate on epochs in §5). We define a search that uses
a complete set of data if each step (represented by witnesses)
in a search pipeline (represented by a witness tree) uses all
inputs in Kanban before the step’s epoch, and each input is
from the most recent epoch available. For example, a querier’s
task in epoch 7 satisfies our condition if the querier loads all
indexes generated before epoch ¢, and the loaded portions of
the indexes are from their latest version before epoch 1.

To check the data integrity of a witness, verifiers first rec-
ognize the epoch when the witness was generated, then load
the snapshot of Kanban immediately before that epoch (§5),
and finally verify if the executor used all the up-to-date inputs.
In practice, verifiers need not load the data in the snapshot;
they load the metadata including data ids and their hashes.

5 Kanban

As mentioned in Section 4, Kanban is a storage system that
provides high availability and data integrity. Kanban is hosted
in public clouds for availability, but as a decentralized sys-
tem, DESEARCH does not trust these cloud providers for
correctness. Instead, DESEARCH creates snapshots of Kan-
ban periodically for each epoch, called epoch snapshots, and
commits their digests (hashes) to a public distributed log. This
approach provides epoch-based data integrity: DESEARCH
guarantees the integrity of all of the data included in a commit-
ted epoch. Of course, an alternative—using SGX-based cloud
storage [100] for Kanban—works in principle, but current
SGX cannot scale to a large trusted memory with integrity
support (§3).

The rest of this section will introduce Kanban’s usage and
guarantees, and then discuss how DESEARCH uses Kanban
as a storage and coordination service.

Kanban overview. Kanban serves two main purposes: stor-
ing data for the search pipeline (including items, indexes, and
their witnesses), and enabling executors to communicate and
coordinate their tasks. Kanban exposes APIs for each service.
As a data storage, Kanban exposes key-value-like APIs
with put (key, val) and get(key). Keys are constructed
by the data types, epoch numbers, and chunk numbers. For
example, “INDEX-#1000-v3” represents the 3rd chunk of the
index for epoch 1000. Witnesses are also stored in the data
storage, using the output hash H (out) as the key. Thanks to
the MISO feature of witnesses (§4), anyone can download a
particular value from Kanban via get (), calculate its hash,
and use this hash as the key to retrieve the corresponding
witness in order to understand how the data was generated.
For communication, Kanban provides a mailbox for every
executor with send (mailbox, msg) and recv(mailbox),
using the executor’s public key as the mailbox address. In-
voking send () allows an executor to submit a message to a
specified mailbox, and recv() to download messages. All
messages are encrypted using the mailbox owner’s public key,

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 337

which can be obtained from the KMS (§3). Consequently,
only owners can read message contents. For example, masters
and queriers use the mailbox to negotiate the active querier
list; this negotiation is encrypted in case Kanban maliciously
attempts to forge or block particular executors.

Note that both storage and communication APIs are wrap-
pers of the canonical key-value APIs, and Kanban can easily
adapt to different underlying (cloud) storage systems. Our
Kanban implementation uses Redis, a popular key-value store,
as the underlying storage (see §7).

Epoch-based data integrity. Kanban requires executors to
sign their submitted data (using Ed25519) to prevent data tam-
pering or forgeries. Still, the underlying storage can equivo-
cate and show different views of the data to different executors
by omitting, rolling back, or forking the data. Detecting such
divergences often requires clients (executors in our context)
to synchronize out-of-band [83, 86], which is too expensive
in a decentralized environment.

DESEARCH uses a loose synchronization approach: mas-
ters periodically synchronize Kanban’s states with other ex-
ecutors. This loose synchronization works because of two
observations. First, search engines are not supposed to in-
stantly reflect newly generated data in search results because
crawling and indexing takes time; as a (admittedly apples-
to-oranges) comparison, Google crawls a site every 3 days
or even longer [6]. Second, most of the tasks in the search
pipeline are idempotent, so it is acceptable if two executors
end up working on the same task. For example, it is safe for
two crawlers to crawl the same data source, or two indexers
to generate indexes for the same items, as the results are the
same. Duplicate work sacrifices efficiency but not correctness.

To synchronize states with other executors, masters period-
ically create epoch snapshots of Kanban’s data (excluding the
data in the mailboxes which is used for coordination and is
ephemeral), summarizes the snapshot as a digest, and com-
mits the digest to a public append-only log (DESEARCH’s
implementation uses an EOS blockchain [11]). After the log
accepts the digest, a new epoch is committed and is visible to
all executors (assuming the public log is available).

DESEARCH guarantees epoch-based data integrity: for a
committed epoch, all data included in this epoch is immutable
and must be visible to all executors; otherwise, verification
will fail. To see how DESEARCH guarantees this, if Kanban
hides data from or returns stale data to an executor, the data
integrity checks (§4) of this executor’s witness will fail. This
is because verifiers know the epoch of the witness (say epoch
1) and the data this executor should have read (data in epoch
i — 1). If the witness missed any data or read some stale ver-
sion, the verifier rejects. Before using one epoch for checking
the data integrity, verifiers must ensure that the data (repre-
sented by their ids and hashes) in one epoch is consistent with
the digest on the log. The verifier fetches all the data ids and
hashes in one epoch, calculates their digest, and compares it

with the digest on the public log.

Task coordination by epochs. DESEARCH’s pipeline is co-
ordinated through Kanban, which is based on epochs. An
epoch is 15 minutes by default. Executors learn the current
epoch number by querying the public log. As mentioned ear-
lier, executors follow an offset-by-one strategy where they
read data from the last committed epoch rather than the
current epoch (see Figure 4). This guarantees that the DE-
SEARCH pipeline only uses data that is already authenticated
by the epoch-based digests on the log.

Our current implementation uses masters to assign jobs
for crawlers and indexers. Masters also take charge of data
collection in each epoch—they decide what data to include
in the current epoch. DESEARCH requires other executors to
put the current/correct epoch number in their outputs. If an
executor in epoch ¢ fails to do so, for example, it disregards
the epoch or fails to submit its outputs on time (before masters
commit epoch %), the data is discarded by the masters and
the work is wasted. But this waste is acceptable as tasks are
small.

Supporting multiple clouds. Though our current implemen-
tation only uses one cloud as Kanban’s underlying storage,
we plan to extend Kanban with multiple clouds for better
availability [60], and more importantly, to lower the risk of
vendor lockdown. With multiple clouds, executors write to
all clouds and read from any one of them. Master executors
are obligated to synchronize different clouds.

Data synchronization among clouds is challenging, which
often requires running an expensive consensus protocol. How-
ever, by Kanban’s epoch design, DESEARCH is able to do
synchronization infrequently, only when committing an epoch.
And if data diverges between clouds (note that data cannot
be forged, due to signatures), master executors are in charge
of merging the data. The key takeaway is that DESEARCH
(or rather a search service) can tolerate infrequent synchro-
nizations, so masters have plenty of leeway to orchestrate an
epoch on which all clouds agree.

6 Oblivious search

DESEARCH guarantees integrity (§2.2) by leveraging wit-
nesses and SGX. One might hope that SGX would also pro-
vide privacy for searches, as SGX supports confidential com-
puting [26] and we assume that SGX works as designed (§2.4).
However, DESEARCH’s design in Section 4 leaks informa-
tion: an adversary can learn users’ keywords without breaking
any of the guarantees of SGX. Below, we discuss concrete
privacy violations, and then show how DESEARCH addresses
these violations with ORAM and equalizing message lengths.

Privacy violations. To start a search, a user initiates an en-
crypted session (via TLS) to a querier selected from the active
list of queriers published on Kanban by masters. Although the
messages are encrypted/authenticated and computations are
confidential (offered by SGX), adversaries can still conduct

338 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Keyword Volume Keyword Location
apple 1018*20 apple 0xffff000a
Network Executor
Adversary zip 256*10 Adversary zip Oxfffffccc
8 Request Verifiable Lambda
Response R
Users Executor Machine

FIGURE 7—A search faces two privacy challenges: a network adver-
sary can learn keyword information by monitoring request/response
volumes, and an executor adversary can infer keywords by observing
memory accesses.

two types of attacks (see examples in Figure 7).

First, an executor adversary that runs queriers can observe
memory access patterns (both EPC and DRAM) to infer user
keywords. Specifically, the adversary issues search requests
with all possible keywords to the querier it hosts; by observing
memory accesses, it can construct a dictionary that maps a
keyword to a memory location [115]. Consequently, when
a real user sends a query, the adversary can infer the user’s
keywords by observing which memory locations are accessed
by looking them up in the dictionary.

Second, a network adversary can eavesdrop on the com-
munication between users and queriers, and among queriers
(which occurs when collaboratively serving one request). By
monitoring the number of packets and their sizes, the ad-
versary can learn information about keywords [66] because
candidate lists for different keywords have different lengths,
and returned items (e.g., a post on Steemit) also vary in size.
Similar to an executor adversary, a network adversary can con-
struct a dictionary that maps keywords to response lengths.

DESEARCH + ORAM. To prevent attacks from the executor
adversaries, DESEARCH, like much prior work [89, 102], uses
Oblivious RAM (ORAM) to hide memory access patterns. In
particular, DESEARCH uses Circuit-ORAM [112] as follows:
DESEARCH creates a key-value store where the keys are
search keywords and values are lists of item ids. ORAM then
guarantees that an executor adversary cannot learn anything
about which object in the key-value store is being accessed
(that is, which search keywords or item ids) from the memory
accesses themselves. For a keyword that does not match any
item, DESEARCH performs dummy accesses.

Note that Circuit-ORAM does not support concurrent ac-
cesses, so DESEARCH leverages multiple ORAM replicas
for higher throughput. Specifically, DESEARCH encodes the
underlying data in multiple ORAM instances, and accesses
different instances to process queries. This is safe because we
use ORAM exclusively for read-only workloads, and each
instance is independent and has its own position map. This re-
quires more storage space, but DESEARCH allows executors
to make this trade-off.

Equalizing response lengths. Beyond ORAM, DESEARCH
needs to avoid leaking information from the number of
matched result items (count) and the length of each item (vol-

DESEARCH Components Language Total LoC
Openbazaar Crawler Golang 178
Steemit Crawler Python 190
Indexer C++ 701
Querier C++ 925
Master C++ 106
Verifier C++ 502
Search Engine Library (Sphinx [38]) C++ 37,271 (+63)
ORAM Library (ZeroTrace [102]) C++ 3,851 (+188)
Crypto Library (HACLx) C/C++ 4,071

FIGURE 8—Lines of code of each component in DESEARCH.

ume). We observe that results from search engines are highly
regular: search results are displayed in multiple pages; each
page contains a fixed number of items; and each item contains
a link (e.g., URL) and a small content snippet highlighting
the keywords. Therefore, DESEARCH equalizes result lengths
by returning a fixed number of entries for each search request,
and each entry has a 256-byte summary of the original con-
tents, which we believe to be sufficient for most cases. For
comparison, we find that over 80% of search results from
Google are within 256 bytes. DESEARCH hides the counts
and volume of keywords by padding search queries to the
same length and limiting the number of keywords to 32 (the
maximum supported by Google).

7 Implementation

System components. Figure 8 lists the components of DE-
SEARCH’s implementation. We implement our own crawlers
that parse raw data from Steemit and OpenBazaar. The
Steemit crawlers aggregate data from the Steem blockchain,
and the OpenBazaar crawlers work as OpenBazaar peers to
retrieve the online shopping items. Our indexer and querier
borrow the tokenizer implementation from Sphinx v2.0 [38].
DESEARCH’s indexer is implemented to support oblivious
index access with ZeroTrace’s ORAM implementation [102].

DESEARCH’s verifiable lambda is built on Inte]l SGX SDK
2.13. We use Redis v6.2 as Kanban, and implement a Kanban
protocol using Redis++ v1.2 [31] (a Redis client library).
DESEARCH commits epoch snapshot digests to an EOS
blockchain [11] testnet, which acts as an append-only log.
Further, we deploy a dedicated smart contract that provides
APIs to read and write the on-log data.

DESEARCH parameters. DESEARCH has several parame-
ters that heavily influence the search performance. We elabo-
rate on these parameters and our choices below.

We set up Circuit-ORAM with a bucket size of 2 (parameter
Z) and set the stash size to 10 because they can achieve the
best temporal and spatial efficiency. We use two independent
ORAM instances, one for the index and another for the search
result summaries, and overlap their operations to minimize
the latency.

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 339

Shard Size

Metrics 10K 100K M
SGX Load Time 0.3s 2.9s 20.8s
ORAM Setup Time 2.0s 23.6s 267.7s
Worst Response Time 24ms 52ms 452ms
DRAM Required 121MB 285MB 2.34GB
SGX EPC Used 79MB 80MB 86MB

FIGURE 9—Execution time and memory usage of a DESEARCH
querier under different shard sizes. SGX load time includes fetching
the index/summary files from Kanban and in-enclave deserialization.
ORAM setup time includes initializing two Circuit-ORAM instances
for inverted index and search result summaries, respectively.

When the targeted dataset exceeds one executor’s capacity
(including both SGX EPC’s and ORAM’s capacity), DE-
SEARCH has to split the dataset into shards. We experiment
with several shard sizes (Figure 9), and choose 1M data items
per shard because 1M-item-shard does not exceed SGX phys-
ical memory capacity and the response time is acceptable
(within 1 second).

In DESEARCH, each epoch is set to 15min because most
existing blockchains yield at least one block in this time
frame [22]. It is also long enough for the master to summarize
the epoch snapshot on Kanban. For shorter epochs, one could
use an incremental hash function [58, 105] to create the digest
incrementally throughout the epoch.

Side-channel defenses. DESEARCH use the Ed25519 im-
plementation from a formally verified cryptographic library
HACL* v0.2.1 [120], which is resistant to digital (cache and
timing) side channels [69, 82]. For ORAM block encryp-
tion, we choose AES-NI-based AES-128-GCM. AES-NI is
purportedly side-channel resistant according to Intel [78]. Fi-
nally, we apply patch (commit f74c8a4) from Intel for SGX-
OpenSSL [23] to mitigate hardware vulnerabilities [110].

Limitations. DESEARCH’s current implementation only sup-
ports full-text search. The links of images, audio, or video,
encoded in the texts may be hosted in other unverified servers.
DESEARCH does not guarantee their integrity. In terms of pri-
vacy, DESEARCH implementation does not hide the frequency
of ORAM accesses. Frequency smoothing techniques [76]
can help at the cost of additional storage overhead.

8 Evaluation

Our evaluation answers the following questions:
e What is the overall performance of DESEARCH, in terms
of end-to-end latency, throughput, and scalability? (§8.1)
* How long does it take to verify a search result? (§8.2)
¢ Does DESEARCH tolerate executor failures? (§8.3)

Experimental setup. We deploy DESEARCH on a small set
of SGX-enabled desktop machines: three machines with 12-
core Intel 17-8700, three with 8-core Intel 17-8559U, three

with 8-core Intel 17-9700, and all nine machines have at least
8GB DRAM. These machines are connected by a 1Gbps
local network. To simulate a large-scale decentralized envi-
ronment, we also deploy DESEARCH on 1312 nodes of AWS
EC2 VMs. Each node is an AWS t2.medium instance with 2-
vCPU of Xeon E5-2676 and 4GB of DRAM. These nodes are
spread across four geographic regions: Singapore (Asia), Lon-
don (Europe), West Virginia (East America), Califonia (West
America), and are connected through a wide-area network.

In the following experiments, we run DESEARCH in one of
two modes: (1) normal mode, in which we run DESEARCH as-
is; and (2) simulation mode, where we run DESEARCH under
SGX SDK simulation mode and add ORAM latencies to
each query instead of actually interacting with DESEARCH’S
ORAM implementation. We use the simulation mode for
the large-scale scalability experiment (“Scalability” in §8.1)
which requires hundreds to thousands of executors.

Datasets. We run DESEARCH on two datasets:

» Steemit. Steemit [40] is a decentralized blogging and so-
cial media service built upon the Steem blockchain [39].
DESEARCH crawlers constantly fetch the latest posts from
the Steem blockchain and write them to Kanban. At the
time of evaluation, we fetched a total of 81,681,388 posts,
distributed across 952 epochs (nearly 10 days) leading to a
234GB dataset. The corresponding indexes contain 296K
keywords (we omit 659 stopwords according to Google
stopword list [42]). All of this results in 37.68GB crawling-
phase witnesses and 6.25GB indexing-phase witnesses.

* OpenBazaar. OpenBazaar [28] is a decentralized e-
commerce platform where individuals can trade goods
without middlemen. The OpenBazaar frontend provides
an API [5] for a customized search engine to update the
shop contents by crawling IPFS [59], an append-only stor-
age. DESEARCH crawls all OpenBazaar’s shopping lists
but ignores the ones that are removed by sellers (though
they still exist in IPFS). At the time of evaluation, Open-
Bazaar has (on average) 21K listings per day, and there
are 85K keywords in the indexes. Crawling and indexing
witnesses are 10.26MB and 1.28MB in size.

8.1 Serving performance

Querier bootstrap. To offer search for Steemit, DESEARCH
splits the Steemit dataset (234GB) into 82 shards, each manag-
ing 1 million data items (Steemit posts). One Steemit querier
serves one shard. It takes 333.5s for a querier to finish boot-
strap, which includes establishing an SGX verifiable lambda,
fetching the index and summary files from Kanban, and ini-
tializing ORAM instances. An OpenBazaar querier takes 25s
to boot because it has a much smaller dataset—a querier
serves 21K OpenBazaar data items.

Search throughput and latency. We run a DESEARCH
querier for the two datasets on an SGX normal-mode machine
and run clients on another machine. To capture a steady-state

340 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

ol 3 Vanilla = Vanilla+SGX+Witness
= Vanilla+SGX = Vanilla+SGX+Witness+ORAM
2
~ 40 L
>
o
c
Q
©
=1 20+
0
1 2 3 4 5
Number of kevwords
(a) The 99th percentile latency of multi-keyword searches.
3 Vanilla Bl Vanilla+SGX+Witness
8 = Vanilla+SGX = Vanilla+SGX+Witness+ORAM
w
&1000
Q
3 100
<
[=2}
3
o
= 1o}
=

3 5
Number of kevwords

(b) The average throughput of multi-keyword searches.

FIGURE 10—Differential analysis of latency and throughput for
multi-keyword searches. “Vanilla” is a native (unprotected) querier;
“SGX” represents the SGX-based isolation; “Witness” represents the
lambda confinement; “ORAM?” represents the Circuit-ORAM pro-
tection. Note that the applied ORAM does not support concurrency
while others use 8 threads.

performance, we warm up each querier by issuing 10,000
requests before the experiments. We measure the end-to-end
throughput and latency by randomly searching from a list of
10,000 frequently appeared keywords (in each dataset).

For the Steemit dataset, DESEARCH has an average
throughput of 133.8 requests/sec, and the 99 percentile end-
to-end latency is 21.71ms. Although the measured throughput
is modest, we expect that a decentralized network can achieve
higher throughput as more executors join (see “Scalability”
below). For OpenBazaar, DESEARCH’s throughput is 581 re-
quests/sec on average, and the 99 percentile latency is 9.19ms.

Overhead analysis. How do DESEARCH’s techniques (in-
cluding trusted hardware, the witness mechanism, and oblivi-
ous protections) affect search performance? To answer this
question, we conduct a differential analysis for a Steemit
querier, which manages 1M data items. Again, clients is-
sue search queries by randomly picking keywords from a
top-10,000 keyword list. But now we experiment with multi-
keyword searches with up to 5 keywords. Figure 10 shows
the average throughputs and the 99th percentile latency for
different multi-keyword searches.

Figure 10 illustrates that putting a querier into SGX with
DESEARCH’s lambda enforcement decreases throughputs by
15.2% and adds 0.4% overhead to latency. This is because
each request triggers ecalls (i.e., a context switch between
SGX enclave and user-space) in DESEARCH’s isolated sand-
boxes. In the future, we can optimize DESEARCH with the
asynchronous call mechanism as studied in SCONE [56].

. [ES(w/ cache) I:I‘ ES(w/o cache) ‘ = DS(unprotécted) = DS(sec‘:ure)
$10000
@2

(%)

g 1000t
=]

S 100t
(=

3

= 10t
=

1 2 3 4 5
Number of kevwords

FIGURE 11—Throughput comparison between ElasticSearch and
DESEARCH for multi-keyword searches. “ES” represents Elastic-
Search and “DS” represents DESEARCH. Both “ES” and “DS (un-
protected)” use multi-threading with 8 threads (CPU core number
is 8).“DS (secure)” uses ORAM which does not support concurrent
accesses, hence it does not benefit from multi-threading.

DESEARCH’s witness generation imposes 7.6% overhead in
throughput and 8ms in latency. Specifically, the witness gener-
ation consists of hashing the lambda’s inputs and outputs with
standard SHA-256, and signing this witness with Ed25519.
Finally, the dominating overhead factor is Circuit-ORAM,
which incurs 12.6x throughput degradation and increases
latency by 4.5-11.9x. While this overhead is considerable,
ORAM provides strong privacy guarantees against the execu-
tor adversary that controls the lambda.

Considering different multi-keyword searches, their latency
is proportional to the number of keywords as searching mul-
tiple keywords requires fetching multiple rounds of index
blocks from the Circuit-ORAM server. Historical statistics
[19] show that 71.3% search queries do not exceed four key-
words. Four-keyword ORAM-based searches in DESEARCH
have a 46.3ms (99 percentile) latency, which is acceptable in
a human interactive process.

Comparison with ElasticSearch. ElasticSearch [10] (or ES)
is a popular search engine system that has been widely de-
ployed. We compare DESEARCH with ES under an 1 M-items
dataset. We configure ES’s Java runtime memory to 2.5GB,
which is the maximum memory consumed by a DESEARCH
Steemit querier. Figure 11 depicts the results.

By enabling caching, ES can achieve a throughput of 13.9K
requests/sec, 4.8 x faster than a DESEARCH implementation
without integrity and privacy protection. But this is an un-
fair comparision because DESEARCH does not have caches
(caches will break the security guarantee of ORAM). We
further experiment with ES by disabling caching. Figure 11
shows that DESEARCH has higher throughputs than ES with-
out caching because DESEARCH’s implementation is simpler
and has less functionality (e.g., complex item ranking policy).
Finally, we compare ES with the full-fledged DESEARCH
with SGX verifiable lambda and ORAM. As the ORAM op-
erations limit the concurrency of the service, DESEARCH’S
throughput drops significantly.

We also observe that ES’s throughput decreases mildly
as the number of search keywords increases (around 11%

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 341

1800
< 1600
(&)
8 1400 b
g 1200 ——
= 1000
2 —
S 800 ==
2 o
S 400
F 200
0 = |
1 4 8 12 16

Number of replicas

FIGURE 12—DESEARCH’s throughputs for different number of
replicas. Each replica consists of 82 queriers.

Native Delegated Speedup
Execution Integrity
Witness Download 517.0s -
Signature Verification 4h25min -
Data Integrity
Witness Tree Verification 201.9s -
Final-Phase Verify
Verifier Interaction Os 1.0s
Signature Verification 0Os 0.2s
Total Time 4h33min 1.2s 13,681x

FIGURE 13—User-side verification costs for a native (with an 8-core
CPU) verification and a delegated verification.

decrease from single-keyword to five-keyword search), while
the throughput of the full-fledged DESEARCH drops more
rapidly (72.3% decrease). This is because multi-keyword
searches require multiple rounds of ORAM item retrievals.

Scalability. To evaluate DESEARCH’s scalability, we mea-
sure the overall throughput of DESEARCH with different
number of replicas; each replica is a fully functional DE-
SEARCH instance that consists of 82 Steemit queriers. We run
DESEARCH in simulation mode, and use 82 x 16 2-core AWS
EC2 VMs as servers to simulate a decentralized network of
executors. Each virtual machine hosts a Steemit querier. From
4 to 16 replicas, we compose a geo-distributed setup where
these replicas are equally deployed on four regions (i.e., Sin-
gapore, London, West Virginia, Califonia). We deploy clients
on 8 other 96-core c5.24xlarge machines.

The results are shown in Figure 12. DESEARCH’s through-
puts increase horizontally with the number of replicas. With
16 replicas, DESEARCH can support 1484 requests/sec, that
is 128 million requests per day.

8.2 Verification cost

A user verifies the final results by holding: (1) the digests of
each epoch-based snapshot (retrieved from the public log),
(2) executors’ public keys, (3) witnesses from queriers (sent
to users with search results) and other executors (stored on
Kanban). Since the first two can be prefetched, a verification
does not include fetching them. Figure 13 shows the user-side
costs of native verifications and delegated verifications for a

1400 : !
= ‘ —*— 1% Failure Model
g 1200 |- 2% | 5% Failure Model |5
g 1000 —a
5 800
g A— A
2 600
o
£ 400
=

200

20 40 60 80 100 120
Time (min)

FIGURE 14—DESEARCH throughput changes under 1% and 5%
per-epoch executor failure rate. The experiment uses Steemit dataset
with 16 replicas and runs for 2 hours (8 epochs).

single-keyword search on the Steemit dataset.

In a native verification, a user verifies the search results
on their own. To verify execution integrity, it takes 517s to
download witnesses from Kanban, and 15698s to verify the
signatures using Ed25519. The majority of the time is spent
on checking crawlers’ witnesses, as the number of witnesses
is proportional to the number of items crawled. To verity data
integrity, the user first ensures the witnesses from Kanban
are consistent with the digests from the public log, and then
breadth-first traverses the witness tree. This process takes
201.9s to complete.

In a delegated verification, the user sends the witnesses
received from queriers to a verifier, and the verifier examines
the execution and data integrity on behalf of the user. If the
verifier accepts, the user only needs to verify the witnesses
in the private domain, namely the witnesses from queriers.
It takes 1.0s to interact with a verifier and 0.2s to verify the
hashes and signatures of queriers’ witnesses.

8.3 Fault tolerance

To understand how executor failures affect DESEARCH’s
performance, we run DESEARCH for Steemit with 16 replicas
and 20 shards (4 x 20 queriers), and randomly kill a certain
number of queriers in each epoch. In particular, we have
two failure workloads: one kills 1% of the current available
queriers in each epoch (15 min), and the other kills 5% per
epoch. If a querier does not respond in 1 second, clients will
issue the request to other queriers. Note that our experiment
ensures that the remaining online queriers always comprise
a complete dataset, otherwise all queries will fail (since they
will only be able to provide partial results).

We run the experiments under these two workloads for 2
hours (8 epochs) each. Figure 14 shows the results. When
1% queriers fail per epoch, we observe that DESEARCH’S
throughput drops from 1,179 requests/sec to 761 requests/sec
after 2 hours, a 35.4% decrease. As a comparison, in the last
epoch, DESEARCH loses 7.7% (= 1 — 0.99%) of the initial
queriers. The throughput degrades significantly because ev-
ery search has to get responses from all shards to make up a
full result, but killed nodes do not perfectly distribute across
shards. Hence, shards with fewer available queriers become a
performance bottleneck. In the workload with 5% failure rate

342 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

per epoch, the throughput drops from 1,171 requests/sec to
412 requests/sec in 8 epochs (a 64.8% throughput degrada-
tion), while 33.7% (= 1 — 0.95%) queriers are killed.

9 Discussion

Incentive model. As with existing decentralized systems [94,
113], DESEARCH relies on volunteers to offer service avail-
ability. To encourage TEE owners to join in DESEARCH, we
discuss a possible incentive model, inspired by Teechain [85],
where cryptocurrency can be securely transferred from a
blockchain to a TEE enclave. We observe that current Steem
Dollars (SBD) flow from readers to mostly popular post au-
thors as rewards. Our incentive model, instead, transfers SDB
from readers — queriers — indexers — crawlers — authors,
where data needs to be paid for the usage. Our witness is
a natural fit for proving the usage. A higher contribution of
TEE computing power would then translate into a higher
cryptocurrency reward.

System bootstrap. To bootstrap DESEARCH, any TEE ex-
ecutor can become a master, as long as it downloads the code
of master and runs the code within an attestable enclave. The
master’s initialization will generate a pair of public/private
keys. The former is recorded on the append-only log for pub-
lic availability, and the latter is kept within the enclave, being
DESEARCH’s root key. Any party can use the TEE’s remote
attestation mechanism to verify the root key’s genuineness.
The first master then registers itself in the active list on Kan-
ban. A set of executors (say, 21, a DESEARCH parameter) are
required to join and serve as masters to start the first epoch.
DESEARCH masters run independently and form a decentral-
ized network to avoid a single point of failure. Masters can
change over time via periodic selections (e.g., BFT sortition
protocols [75]). Executors that join at a later time after the
masters network is active will simply be assigned other roles.

Further, to resist possible supply-chain attacks [37], DE-
SEARCH can use reproducible builds [33] to ensure verifiabil-
ity from source code to lambda images.

Beyond search. DESEARCH, as a general framework, is not
limited to search. As an example, it is intuitive to extend DE-
SEARCH to a verifiable recommender system for OpenBazaar
by replacing querier’s ranking function with a recommenda-
tion function. A user can verify that the advertisements are
chosen based on their interests, without opaque manipulation.
Also, DESEARCH can be used as a “watchdog” for other
search services. Users can continue to use an existing search
engine, and cross-validate the results with DESEARCH.

10 Related Work

Decentralized search engines. There are several prior ef-
forts in building decentralized search services. For exam-
ple, YaCy [48] is a peer-to-peer distributed search engine
since 2004. It enables decentralized index generation and

supports shared indexes among peers. YaCy assumes that
peers are honest, which might not be true in an open envi-
ronment. Presearch [29] leverages a blockchain to provide
decentralized search, but inherits blockchain’s characteristics,
including duplicated computations and no privacy guarantees.
The Graph [20] and PureStake [30] are indexing services
for decentralized storage, but neither provides privacy, and
PureStake does not provide integrity either.

Verifiable search for decentralized services. There is an
increasing interest in providing verifiable search for decen-
tralized services, due to the diversified usages of decentral-
ized applications (see Figure 1). For verifiable blockchain
searches, vChain [114] adopts authenticated data structures
(ADS) while GEM2-Tree [117] explores on-chain indexes.
Compared with vChain and GEM?2-Tree which only support
range-based searches, DESEARCH provides full-text search
and offers verifiability via witness-based dataflow tracking.

IPSE [24] provides search over IPFS [59] (a decentral-
ized storage) and provides hash-based content verifiability.
Freenet [15] is an anonymous file-sharing network (similar
to BitTorrent) but is not search-oriented. Compared to DE-
SEARCH, IPSE and Freenet lack data integrity (§2.2), which
is troublesome because incomplete data sources can make the
search vulnerable to censorship [41].

Private search with TEE. TEE is a hot topic for pro-
viding private search. To hide users’ search intention, X-
Search [92] uses a cloud-side TEE proxy while Cyclosa
[98] adopts browser-side TEE proxies. X-Search and Cy-
closa are metasearch engines (a proxy between users and
a search engine) that reveal query keywords and results to
search providers, whereas DESEARCH is a complete search
engine that provides query and result privacy.

A long line of prior works (Opaque [119], OCQ [72], Ze-
roTrace [102], Oblix [91], Obliviate [51], etc.) have explored
TEE and ORAM combination to protect search. Similar ef-
forts have been made by combining symmetric searchable
encryption and TEEs (e.g., Rearguard [108]), or private in-
formation retrieval and TEE (e.g., SGX-IR [106]). While
DESEARCH uses similar primitives, DESEARCH’s architec-
ture results in the first fully built decentralized system to serve
searches on real-world datasets with integrity and privacy.

Secure big-data systems with TEE. Many prior systems
use TEEs for big-data computation [61, 72,77, 101, 104, 119].
VC3 [104] secures a map-reduce framework with TEE, and
Opaque [119] protects SQL queries for Spark SQL. Unlike
the setting of VC3 and Opaque, DESEARCH faces a dynamic
computation graph because the set of live executors is con-
stantly changing given our decentralized environment. DE-
SEARCH therefore employs an epoch-based snapshot and
witnesses mechanism to ensure data and execution integrity.
Ryoan [77] provides distributed sandboxes for private data
computation. Compared with Ryoan, DESEARCH offers pub-
licly verifiable witnesses for reusable intermediate data and

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 343

effectively reduces the verification cost (see Section 8.2).

TEE and serverless computing. The notion of verifiable
lambda is inspired by serverless computing. DESEARCH ex-
tends this notion from centralized cloud-based computing to
decentralized computing. S-Faa$S [52], T-FaaS [63], Clemmys
[109] are TEE-based serverless systems that protect server-
less workloads with TEE. Instead, DESEARCH utilizes epoch-
based Kanban and TEE-generated witnesses to maintain and
verify the state of the (stateless) TEE lambdas.

New decentralized systems. Recently, new architectures of
decentralized systems have been proposed to address the lim-
itations (low-throughput, resource waste, lack of privacy) of
conventional decentralized ledgers or blockchains. Algorand
[75] and Blockene [103] propose new consensus protocols
to achieve high-throughput. Omniledger [80] and Protean
[53] introduce sharding to scale out the blockchain. Similarly,
DESEARCH shards executors to different roles, and offloads
states to Kanban to achieve high scalability.

Other TEE-based systems for decentralized services.
TEEs have been used to build a provable blockchain ora-
cle [118], off-chain smart contracts [70], Bitcoin fast payment
channel [85] and lightweight clients [89], and online-service
secure sharing [88]. They share the same goal towards shap-
ing a better decentralized world but differ from DESEARCH
in their target functionality.

11 Conclusion

DESEARCH is the first decentralized search engine to support
existing decentralized services, while guaranteeing verifia-
bility owing to its witness mechanism and offering privacy
for query keywords and search results. DESEARCH achieves
good scalability and minimizes fault disruptions through a
novel architecture that decouples the decentralized search
process into a pipeline of verifiable lambdas and leverages
a global and highly available Kanban to exchange messages
between lambdas. We implement DESEARCH on top of In-
tel SGX machines and evaluate it on two decentralize sys-
tems: Steemit and OpenBazaar. Our evaluation shows that
DESEARCH can scale horizontally with the number of execu-
tors and can achieve the stringent subsecond latency required
for a search engine to be widely usable.

DESEARCH ’s source code will be released at:
https://github.com/SJTU-IPADS/DeSearch

Acknowledgments

We thank the anonymous reviewers of OSDI 2020 and
OSDI 2021 for their helpful and constructive comments,
and our shepherd Marko Vukolic for his guidance. We also
thank Sajin Sasy for helpful discussion about ORAM. This
work was supported in part by National Key Research and
Development Program of China (No. 2020AAA0108500),
China National Natural Science Foundation (No. 61972244,

U19A2060, 61925206), the HighTech Support Program
from Shanghai Committee of Science and Technology (No.
19511121100). Sebastian Angel was funded by NSF Award
CNS-2045861 and DARPA contract HR0011-17-C0047.
Cheng Tan was funded by AFOSR FA9550-18-1-0421 and
NSF CNS-1514422. Yubin Xia (xiayubin @sjtu.edu.cn) is the
corresponding author.

References

[1] Augur. https://wuw.augur.net/.

[2] Blockstamp openbazaar explorer.
blockstamp.market/.

[3] Cam4 live-streaming adult site exposed 7tb records
publicly. https://www.2-spyware.com/cam4-live-
streaming-adult-site-exposed-7tb-records-
publicly.

[4] Censorship by google. https://en.wikipedia.org/
wiki/Censorship_by_Google.

[5]1 Content discovery on OpenBazaar. https://openbazaar.
org/blog/decentralized-search-and-content-
discovery-on-openbazaar/.

[6] Crawl stats report - search console help - google
support. https://support.google.com/webmasters/
answer/9679690.

[7] Data-enriched profiles on 1.2b people exposed in gigan-
tic leak. https://threatpost.com/data-enriched-
profiles-1-2b-leak/150560/.

[8] Dtube. https://d.tube.

[9] Duo search is a search engine for openbazaar.
https://bitcoinist.com/duo-search-is-a-
search-engine-for-openbazaar/.

[10] Elasticsearch. https://www.elastic.co/.

[11] Eosio blockchain software & services. https://eos.io/.

[12] Etoro. https://stocks.etoro.com/.

[13] Facebook is illegally collecting user data, court rules.
https://thenextweb.com/facebook/2018/02/12/
facebook-is-illegally-collecting-user-data-
court-rules/.

[14] Facebook suspends cambridge analytica for mis-
use of user data, which cambridge denies. https:
//www.cnbc.com/2018/03/16/facebook-bans-
cambridge-analytica.html.

[15] Freenet. https://freenetproject.org/.

[16] Giving social networking back to you - the mastodon project.
https://joinmastodon.org/.

[17] Golem network. https://golem.network/.

[18] Google faces antitrust investigation by 50 us states and ter-
ritories. https://www.theguardian.com/technology/
2019/sep/09/google-antitrust-investigation-

https://bazaar.

monopoly.

[19] Google search statistics and facts 2020. https://
firstsiteguide.com/google-search-stats/.

[20] The graph is an indexing protocol for querying networks like
ethereum and ipfs. https://thegraph.com.

[21] Graphite docs. https://www.graphitedocs.com/.

[22] How many bitcoins are mined everyday? https:
//www .buybitcoinworldwide.com/how-many-
bitcoins-are-there/.

344 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://github.com/SJTU-IPADS/DeSearch
https://www.augur.net/
https://bazaar.blockstamp.market/
https://bazaar.blockstamp.market/
https://www.2-spyware.com/cam4-live-streaming-adult-site-exposed-7tb-records-publicly
https://www.2-spyware.com/cam4-live-streaming-adult-site-exposed-7tb-records-publicly
https://www.2-spyware.com/cam4-live-streaming-adult-site-exposed-7tb-records-publicly
https://en.wikipedia.org/wiki/Censorship_by_Google
https://en.wikipedia.org/wiki/Censorship_by_Google
https://openbazaar.org/blog/decentralized-search-and-content-discovery-on-openbazaar/
https://openbazaar.org/blog/decentralized-search-and-content-discovery-on-openbazaar/
https://openbazaar.org/blog/decentralized-search-and-content-discovery-on-openbazaar/
https://support.google.com/webmasters/answer/9679690
https://support.google.com/webmasters/answer/9679690
https://threatpost.com/data-enriched-profiles-1-2b-leak/150560/
https://threatpost.com/data-enriched-profiles-1-2b-leak/150560/
https://d.tube
https://bitcoinist.com/duo-search-is-a-search-engine-for-openbazaar/
https://bitcoinist.com/duo-search-is-a-search-engine-for-openbazaar/
https://www.elastic.co/
https://eos.io/
https://stocks.etoro.com/
https://thenextweb.com/facebook/2018/02/12/facebook-is-illegally-collecting-user-data-court-rules/
https://thenextweb.com/facebook/2018/02/12/facebook-is-illegally-collecting-user-data-court-rules/
https://thenextweb.com/facebook/2018/02/12/facebook-is-illegally-collecting-user-data-court-rules/
https://www.cnbc.com/2018/03/16/facebook-bans-cambridge-analytica.html
https://www.cnbc.com/2018/03/16/facebook-bans-cambridge-analytica.html
https://www.cnbc.com/2018/03/16/facebook-bans-cambridge-analytica.html
https://freenetproject.org/
https://joinmastodon.org/
https://golem.network/
https://www.theguardian.com/technology/2019/sep/09/google-antitrust-investigation-monopoly
https://www.theguardian.com/technology/2019/sep/09/google-antitrust-investigation-monopoly
https://www.theguardian.com/technology/2019/sep/09/google-antitrust-investigation-monopoly
https://firstsiteguide.com/google-search-stats/
https://firstsiteguide.com/google-search-stats/
https://thegraph.com
https://www.graphitedocs.com/
https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there/
https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there/
https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there/

(23]

[24]
[25]

[26]

[27]

(28]
[29]

(30]
(31]

(32]

(33]
(34]
(35]
(36]

(37]

(38]

[39]
[40]
[41]

[42]

[43]

[44]

(45]

[46]

Intel® software guard extensions ssl.
com/intel/intel-sgx-ssl.

Ipfs search. https://ipfs-search.com/#/search.
Matrix - an open network for secure, decentralized communi-
cation. https://matrix.org/.

Microsoft azure confidential computing. https://azure.
microsoft.com/en-us/solutions/confidential-
compute/.

The monopoly-busting case against google, amazon, uber,
and facebook. https://www.theverge.com/2018/
9/5/17805162/monopoly-antitrust-regulation-
google-amazon-uber-facebook.

OpenBazaar. https://openbazaar.org/.

Presearch is a decentralized search engine, powered by the
community. https://www.presearch.io/.

Purestake: Blockchain infrastructure for proof of stake net-
works. https://wuw.purestake.com/.

Redis client written in c++. https://github.com/
sewenew/redis-plus-plus.

Report: 267 million facebook users ids and phone numbers
exposed online. https://www.comparitech.com/
blog/information-security/267-million-phone-

https://github.

numbers-exposed-online/.

Reproducible Builds. https://reproducible-builds.
org/.

Searchbizarre. https://searchbizarre.com/.
Searching the blockchain (indexer v2) - algorand devel-
oper docs. https://developer.algorand.org/docs/
features/indexer/.

Serverless computing. https://en.wikipedia.org/
wiki/Serverless_computing.

The solarwinds orion breach, and what you should
know. https://blogs.cisco.com/security/the-
solarwinds-orion-breach-and-what-you-should-
know.

Sphinx: Open source search server. http://sphinxsearch.

com/.

Steem. https://steem. com/.

Steemit. https://steemit.com/.

Steemit censoring users on immutable social media
blockchain’s front-end. https://cryptoslate.com/
steemit-censoring-users-immutable-blockchain-
social-media/.

Stop words - words ignored by search engines. https://
www.link-assistant.com/seo-stop-words.html.
Supporting intel sgx on multi-socket platforms.
https://www.intel.com/content/www/us/en/
architecture-and-technology/software-guard-
extensions/supporting-sgx-on-multi-socket-
platforms.html.

A timeline of facebook’s privacy issues — and its re-
sponses. https://www.nbcnews.com/tech/social-
media/timeline-facebook-s-privacy-issues-its-
responses-n859651.

Tital-advancing the era of accelerated computing. https:
//www.olcf.ornl.gov/olcf-resources/compute-
systems/titan/.

Welcome to bazaar dog, your scrappy open bazaar search
provider. https://www.bazaar.dog/.

[47]
(48]
[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Wix.com: Free website builder. https://www.wix.com/.
Yacy - decentralized search engine. https://yacy.net/.
Zeronet. https://zeronet.io/.

Zipcall.io. https://meet.questo.ai/.

Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sar-
faraz, and Byoungyoung Lee. Obliviate: A data oblivious
filesystem for intel sgx. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd,
and Michael Steiner. S-faas: Trustworthy and accountable
function-as-a-service using intel SGX. In Proceedings of the
ACM Cloud Computing Security Workshop (CCSW), 2019.
Enis Ceyhun Alp, Eleftherios Kokoris-Kogias, Georgia Fragk-
ouli, and Bryan Ford. Rethinking general-purpose decentral-
ized computing. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS), 2019.

AMD. AMD Secure Encrypted Virtualization (SEV). https:
//developer.amd.com/sev/.

ARM. Arm TrustZone Technology. https://developer.
arm.com/ip-products/security-ip/trustzone.
Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind, Di-
vya Muthukumaran, Daniel O’Keeffe, Mark L Stillwell, et al.
Scone: Secure linux containers with intel sgx. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

Randy Baden, Adam Bender, Neil Spring, Bobby Bhattachar-
jee, and Daniel Starin. Persona: An online social network with
user-defined privacy. In Proceedings of the ACM SIGCOMM
Conference, 2009.

Mihir Bellare and Daniele Micciancio. A new paradigm for
collision-free hashing: Incrementality at reduced cost. In Pro-
ceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT),
1997.

Juan Benet. Ipfs - content addressed, versioned, p2p file
system. ArXiv, abs/1407.3561, 2014.

Alysson Neves Bessani, Miguel P. Correia, Bruno Quaresma,
Fernando André, and Paulo Sousa. Depsky: dependable and
secure storage in a cloud-of-clouds. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
2011.

Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya
Mironov, Ananth Raghunathan, David Lie, Mitch Rudominer,
Ushasree Kode, Julien Tinnés, and Bernhard Seefeld. Prochlo:
Strong privacy for analytics in the crowd. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), 2017.

Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath
T. V. Setty, Andrew J. Blumberg, and Michael Walfish. Ver-
ifying computations with state. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2013.
Stefan Brenner and Riidiger Kapitza. Trust more, server-
less. In Proceedings of the ACM International Conference on
Systems and Storage (SYSTOR), 2019.

Jo Van Bulck, M. Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikei, F. Piessens, M. Silberstein, T. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the
intel sgx kingdom with transient out-of-order execution. In

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation

345

https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://ipfs-search.com/#/search
https://matrix.org/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.theverge.com/2018/9/5/17805162/monopoly-antitrust-regulation-google-amazon-uber-facebook
https://www.theverge.com/2018/9/5/17805162/monopoly-antitrust-regulation-google-amazon-uber-facebook
https://www.theverge.com/2018/9/5/17805162/monopoly-antitrust-regulation-google-amazon-uber-facebook
https://openbazaar.org/
https://www.presearch.io/
https://www.purestake.com/
https://github.com/sewenew/redis-plus-plus
https://github.com/sewenew/redis-plus-plus
https://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/
https://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/
https://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://searchbizarre.com/
https://developer.algorand.org/docs/features/indexer/
https://developer.algorand.org/docs/features/indexer/
https://en.wikipedia.org/wiki/Serverless_computing
https://en.wikipedia.org/wiki/Serverless_computing
https://blogs.cisco.com/security/the-solarwinds-orion-breach-and-what-you-should-know
https://blogs.cisco.com/security/the-solarwinds-orion-breach-and-what-you-should-know
https://blogs.cisco.com/security/the-solarwinds-orion-breach-and-what-you-should-know
http://sphinxsearch.com/
http://sphinxsearch.com/
https://steem.com/
https://steemit.com/
https://cryptoslate.com/steemit-censoring-users-immutable-blockchain-social-media/
https://cryptoslate.com/steemit-censoring-users-immutable-blockchain-social-media/
https://cryptoslate.com/steemit-censoring-users-immutable-blockchain-social-media/
https://www.link-assistant.com/seo-stop-words.html
https://www.link-assistant.com/seo-stop-words.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.nbcnews.com/tech/social-media/timeline-facebook-s-privacy-issues-its-responses-n859651
https://www.nbcnews.com/tech/social-media/timeline-facebook-s-privacy-issues-its-responses-n859651
https://www.nbcnews.com/tech/social-media/timeline-facebook-s-privacy-issues-its-responses-n859651
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.bazaar.dog/
https://www.wix.com/
https://yacy.net/
https://zeronet.io/
https://meet.questo.ai/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

USENIX Security Symposium, 2018.

Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets without
page faults: Stealthy page table-based attacks on enclaved ex-
ecution. In Proceedings of the USENIX Security Symposium,
2017.

David Cash, Paul Grubbs, Jason Perry, and Thomas Risten-
part. Leakage-abuse attacks against searchable encryption.
In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2015.

Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 1999.
Stephen Checkoway and Hovav Shacham. Iago attacks: why
the system call API is a bad untrusted RPC interface. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2013.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang,
Zhiqgiang Lin, and Ten H. Lai. Sgxpectre attacks: Leaking
enclave secrets via speculative execution. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P), 2019.

Raymond Cheng, Fan Zhang, Jernej Kos, Warren He,
Nicholas Hynes, Noah M. Johnson, Ari Juels, Andrew Miller,
and Dawn Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts. In
Proceedings of the IEEE European Symposium on Security
and Privacy (EuroS&P), 2019.

Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa,
and Ion Stoica. Dory: An encrypted search system with
distributed trust. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2020.

Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. Oblivious coopetitive analytics us-
ing hardware enclaves. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2020.

Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang,
Beng Chin Ooi, and Chunwang Zhang. M?2r: Enabling
stronger privacy in mapreduce computation. In Proceedings
of the USENIX Security Symposium, 2015.

Craig Gentry. A Fully Homomorphic Encryption Scheme.
PhD thesis, Stanford University, 2009.

Y. Gilad, Rotem Hemo, S. Micali, G. Vlachos, and N. Zel-
dovich. Algorand: Scaling byzantine agreements for cryp-
tocurrencies. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2017.

Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité,
Lloyd Brown, Lucy Li, Rachit Agarwal, and Thomas Ris-
tenpart. Pancake: Frequency smoothing for encrypted data
stores. In Proceedings of the USENIX Security Symposium,
2020.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and
Emmett Witchel. Ryoan: a distributed sandbox for untrusted
computation on secret data. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2016.

Intel. Intel® 64 and IA-32 Architectures Software Devel-
oper Manuals. https://software.intel.com/content/

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

www/us/en/develop/articles/intel-sdm.html.
Zhihao Jia, Oded Padon, James J. Thomas, Todd Warszawski,
Matei Zaharia, and Alex Aiken. TASO: optimizing deep
learning computation with automatic generation of graph
substitutions. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2019.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ewa Syta, and Bryan Ford. Omniledger:
A secure, scale-out, decentralized ledger via sharding. In
Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2018.

Ziliang Lai, Chris Liu, Eric Lo, Ben Kao, and Siu-Ming
Yiu. Decentralized search on decentralized web. ArXiv,
abs/1809.00939, 2019.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-
soon Kim, and Marcus Peinado. Inferring fine-grained control
flow inside SGX enclaves with branch shadowing. In Pro-
ceedings of the USENIX Security Symposium, 2017.

Jinyuan Li, M. Krohn, David Mazieres, and D. Shasha. Se-
cure untrusted data repository (sundr). In Proceedings of
the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

Mengyuan Li, Yingian Zhang, Zhigiang Lin, and Yan Solihin.
Exploiting unprotected I/O operations in amd’s secure en-
crypted virtualization. In Nadia Heninger and Patrick Traynor,
editors, Proceedings of the USENIX Security Symposium,
2019.

Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Giin Sirer, and Peter R. Pietzuch. Teechain: a secure
payment network with asynchronous blockchain access. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2019.

Prince Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with min-
imal trust. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2010.
Luo Mai, Guo Li, Marcel Wagenlénder, Konstantinos Fer-
takis, Andrei-Octavian Brabete, and Peter Pietzuch. Kungfu:
Making training in distributed machine learning adaptive. In
Proceedings of the USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2020.

Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels,
and Srdjan Capkun. Delegatee: Brokered delegation us-
ing trusted execution environments. In Proceedings of the
USENIX Security Symposium, 2018.

Sinisa Matetic, Karl Wiist, Moritz Schneider, Kari Kosti-
ainen, Ghassan Karame, and Srdjan Capkun. BITE: bitcoin
lightweight client privacy using trusted execution. In Pro-
ceedings of the USENIX Security Symposium, 2019.

P. Maymounkov and David Mazieres. Kademlia: A peer-to-
peer information system based on the xor metric. In Interna-
tional Workshop on Peer-to-Peer Systems, 2002.

Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro
Chiesa, and Raluca Ada Popa. Oblix: An efficient oblivious
search index. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2018.

Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo
Pasin, Rafael Pires, and Valerio Schiavoni. X-search: revisit-
ing private web search using intel SGX. In Proceedings of the

346

15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

(93]

[94]

[95]

[96]

(971

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

ACM/IFIP/USENIX International Middleware Conference,
2017.

Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-
based fault injection attacks against intel sgx. In Proceed-
ings of the 41st IEEE Symposium on Security and Privacy
(S&P’20), 2020.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf, 2008.
Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark
Silberstein. Eleos: Exitless OS services for SGX enclaves. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2017.

Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark
Silberstein. Cosmix: A compiler-based system for secure
memory instrumentation and execution in enclaves. In
USENIX ATC, 2019.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In Proceedings of the IEEE Symposium on Security and
Privacy (§&P), 2013.

Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara
Bouchenak, Antoine Boutet, Pascal Felber, Riidiger Kapitza,
Marcelo Pasin, and Valerio Schiavoni. CYCLOSA: decen-
tralizing private web search through sgx-based browser ex-
tensions. In Proceedings of the International Conference on
Distributed Computing Systems (ICDCS), 2018.

Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. Cryptdb: protecting confiden-
tiality with encrypted query processing. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
2011.

Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
clavedb: A secure database using SGX. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2018.

Do Le Quoc, Franz Gregor, Jatinder Singh, and Christof
Fetzer. Sgx-pyspark: Secure distributed data analytics. In
International World Wide Web Conference (WWW), 2019.
Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher.
Zerotrace : Oblivious memory primitives from intel SGX. In
Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2018.

Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla,
Karan Grover, Muthian Sivathanu, Nishanth Chandran, Di-
vya Gupta, and Satya Lokam. Blockene: A high-throughput
blockchain over mobile devices. In Proceedings of the
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2020.

Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark
Russinovich. Vc3: Trustworthy data analytics in the cloud
using sgx. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2015.

Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan
Lee. Proving the correct execution of concurrent services in
zero-knowledge. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2018.

Fahad Shaon and Murat Kantarcioglu. Sgx-ir: Secure infor-

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

mation retrieval with trusted processors. In DBSec, 2020.
Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In Proceedings
of the ACM SIGCOMM Conference, 2001.

Wenhai Sun, Ruide Zhang, Wenjing Lou, and Y. Thomas Hou.
REARGUARD: secure keyword search using trusted hard-
ware. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), 2018.

Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod
Bhatotia, and Christof Fetzer. Clemmys: towards secure
remote execution in faas. In Proceedings of the ACM In-
ternational Conference on Systems and Storage (SYSTOR),
2019.

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz
Lipp, Marina Minkin, Daniel Genkin, Yarom Yuval, Berk
Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking
Transient Execution through Microarchitectural Load Value
Injection. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2020.

Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell,
Mayank Varia, Andrei Lapets, and Azer Bestavros. Conclave:
secure multi-party computation on big data. Proceedings of
the ACM European Conference on Computer Systems (Eu-
roSys), 2019.

Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit
ORAM: on tightness of the goldreich-ostrovsky lower bound.
In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2015.

Gavin Wood. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151, 2014.
Cheng Xu, Ce Zhang, and Jianliang Xu. vChain: Enabling
verifiable boolean range queries over blockchain databases.
In Proceedings of the ACM SIGMOD Conference, 2019.
Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2015.

Andrew C. Yao. Protocols for secure computations. In Pro-
ceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 1982.

Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron
Choi. GEM?-Tree: A gas-efficient structure for authenticated
range queries in blockchain. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), 2019.

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and
Elaine Shi. Town crier: An authenticated data feed for smart
contracts. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), 2016.

Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca A.
Popa, Joseph Gonzalez, and Ion Stoica. Opaque: An oblivious
and encrypted distributed analytics platform. In Proceedings
of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. Hacl*: A verified mod-
ern cryptographic library. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS),
2017.

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation

347

https://bitcoin.org/bitcoin.pdf

	1 Introduction
	2 Motivation and problem statement
	2.1 Motivation
	2.2 Decentralized search
	2.3 Potential approaches
	2.4 Threat model

	3 System overview
	4 Verifiable search
	5 Kanban
	6 Oblivious search
	7 Implementation
	8 Evaluation
	8.1 Serving performance
	8.2 Verification cost
	8.3 Fault tolerance

	9 Discussion
	10 Related Work
	11 Conclusion

