é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Beyond malloc efficiency to fleet efficiency:
a hugepage-aware memory allocator

A.H. Hunter, Jane Street Capital; Chris Kennelly, Paul Turner, Darryl Gove,
Tipp Moseley, and Parthasarathy Ranganathan, Google

https://www.usenix.org/conference/osdi21/presentation/hunter

This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems
Design and Implementation.

July 14-16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation
is sponsored by USENIX.

Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator

A.H. Hunter
Jane Street Capital”

Chris Kennelly
Google

Paul Turner
Google

Darryl Gove
Google

Tipp Moseley
Google

Parthasarathy Ranganathan
Google

Abstract

Memory allocation represents significant compute cost at
the warehouse scale and its optimization can yield consid-
erable cost savings. One classical approach is to increase
the efficiency of an allocator to minimize the cycles spent in
the allocator code. However, memory allocation decisions
also impact overall application performance via data place-
ment, offering opportunities to improve fleetwide productivity
by completing more units of application work using fewer
hardware resources. Here, we focus on hugepage coverage.
We present TEMERAIRE, a hugepage-aware enhancement
of TCMALLOC to reduce CPU overheads in the applica-
tion’s code. We discuss the design and implementation of
TEMERAIRE including strategies for hugepage-aware mem-
ory layouts to maximize hugepage coverage and to minimize
fragmentation overheads. We present application studies for
8 applications, improving requests-per-second (RPS) by 7.7%
and reducing RAM usage 2.4%. We present the results of
a 1% experiment at fleet scale as well as the longitudinal
rollout in Google’s warehouse scale computers. This yielded
6% fewer TLB miss stalls, and 26% reduction in memory
wasted due to fragmentation. We conclude with a discussion
of additional techniques for improving the allocator develop-
ment process and potential optimization strategies for future
memory allocators.

1 Introduction

The datacenter tax [23,41] within a warehouse-scale com-
puter (WSC) is the cumulative time spent on common service
overheads, such as serialization, RPC communication, com-
pression, copying, and memory allocation. WSC workload
diversity [23] means that we typically cannot optimize sin-
gle application(s) to strongly improve total system efficiency,
as costs are borne across many independent workloads. In
contrast, focusing on the components of datacenter tax can
realize substantial performance and efficiency improvements

*Work performed while at Google.

in aggregate as the benefits can apply to entire classes of appli-
cation. Over the past several years, our group has focused on
minimizing the cost of memory allocation decisions, to great
effect; realizing whole system gains by dramatically reducing
the time spent in memory allocation. But it is not only the cost
of these components we can optimize. Significant benefit can
also be realized by improving the efficiency of application
code by changing the allocator. In this paper, we consider
how to optimize application performance by improving the
hugepage coverage provided by memory allocators.

Cache and Translation Lookaside Buffer (TLB) misses are
a dominant performance overhead on modern systems. In
WSCs, the memory wall [44] is significant: 50% of cycles are
stalled on memory in one analysis [23]. Our own workload
profiling observed approximately 20% of cycles stalled on
TLB misses.

Hugepages are a processor feature that can significantly
reduce the number, and thereby the cost, of TLB misses [26].
The increased size of a hugepage enables the same number of
TLB entries to map a substantially larger range of memory.
On the systems under study, hugepages also allow the total
stall time for a miss+fill to be reduced as their page-table
representation requires one fewer level to traverse.

While an allocator cannot modify the amount of memory
that user code accesses, or even the pattern of accesses to
objects, it can cooperate with the operating system and con-
trol the placement of new allocations. By optimizing huge-
page coverage, an allocator may reduce TLB misses. Memory
placement decisions in languages such as C and C++ must
also deal with the consequence that their decisions are final:
Objects cannot be moved once allocated [11]. Allocation
placement decisions can only be optimized at the point of
allocation. This approach ran counter to our prior work in
this space, as we can potentially increase the CPU cost of an
allocation, increasing the datacenter tax, but make up for it
by reducing processor stalls elsewhere. This improves appli-
cation metrics' such as requests-per-second (RPS).

'While reducing stalls can improve IPC, IPC alone is a poor proxy [3] for
how much useful application work we can accomplish with a fixed amount

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 257

Our contributions are as follows:

* The design of TEMERAIRE, a hugepage-aware enhance-
ment of TCMALLOC to reduce CPU overheads in the
rest of the application’s code. We present strategies for
hugepage-aware memory layouts to maximize hugepage
coverage and to minimize fragmentation overheads.

An evaluation of TEMERAIRE in complex real-world ap-
plications and scale in WSCs. We measured a sample of
8 applications running within our infrastructure observed
requests-per-second (RPS) increased by 7.7% and RAM
usage decreased by 2.4%. Applying these techniques
to all applications within Google’s WSCs yielded 6%
fewer TLB miss stalls, and 26% reduction in memory
wasted due to fragmentation.

Strategies for optimizing the development process of
memory allocator improvements, using a combination
of tracing, telemetry, and experimentation at warehouse-
scale.

2 The challenges of coordinating Hugepages

Virtual memory requires translating user space addresses to
physical addresses via caches known as Translation Looka-
side Buffers (TLBs) [7]. TLBs have a limited number of
entries, and for many applications, the entire TLB only covers
a small fraction of the total memory footprint using the default
page size. Modern processors increase this coverage by sup-
porting hugepages in their TLBs. An entire aligned hugepage
(2MiB is a typical size on x86) occupies just one TLB entry.
Hugepages reduce stalls by increasing the effective capacity
of the TLB and reducing TLB misses [5,26].

Traditional allocators manage memory in page-sized
chunks. Transparent Huge Pages (THP) [4] provide an oppor-
tunity for the kernel to opportunistically cover consecutive
pages using hugepages in the page table. A memory allocator,
superficially, need only allocate hugepage-aligned and -sized
memory blocks to take advantage of this support.

A memory allocator that releases memory back to the OS
(necessary at the warehouse scale where we have long running
workloads with dynamic duty cycles) has a much harder chal-
lenge. The return of non-hugepage aligned memory regions
requires that the kernel use smaller pages to represent what re-
mains, defeating the kernel’s ability to provide hugepages and
imposing a performance cost for the remaining used pages.
Alternatively, an allocator may wait for an entire hugepage
to become free before returning it to the OS. This preserves
hugepage coverage, but can contribute significant amplifica-
tion relative to true usage, leaving memory idle. DRAM is a
significant cost the deployment of WSCs [27]. The manage-
ment of external fragmentation, unused space in blocks too

of hardware. A busy-looping spinlock has extremely high IPC, but does little
useful work under contention.

Figure 1: Allocation and deallocation patterns leading to frag-
mentation

small to be used for requested allocations, by the allocator is
important in this process. For example consider the alloca-
tions in Figure 1. After this series of allocations there are 2
units of free space. The choice is to either use small pages,
which result in lower fragmentation but less efficient use of
TLB entries, or hugepages, which are TLB-efficient but have
high fragmentation.

A user-space allocator that is aware of the behavior pro-
duced by these policies can cooperate with their outcomes
by densely aligning the packing of allocations with hugepage
boundaries, favouring the use of allocated hugepages, and
(ideally) returning unused memory at the same alignment’.
A hugepage-aware allocator helps with managing memory
contiguity at the user level. The goal is to maximally pack
allocations onto nearly-full hugepages, and conversely, to min-
imize the space used on empty (or emptier) hugepages, so that
they can be returned to the OS as complete hugepages. This
efficiently uses memory and interacts well with the kernel’s
transparent hugepage support. Additionally, more consistently
allocating and releasing hugepages forms a positive feedback
loop: reducing fragmentation at the kernel level and improv-
ing the likelihood that future allocations will be backed by
hugepages.

3 Overview of TCMALLOC

TCMALLOC is a memory allocator used in large-scale appli-
cations, commonly found in WSC settings. It shows robust
performance [21]. Our design builds directly on the structure
of TCMALLOC.

Figure 2 shows the organization of memory in TCMALLOC.
Objects are segregated by size. First, TCMALLOC partitions
memory into spans, aligned to page size”.

TCMALLOC’s structure is defined by its answer to the
same two questions that drive any memory allocator.

1. How do we pick object sizes and organize metadata to

2This is important as the memory backing a hugepage must be physically
contiguous. By returning complete hugepages we can actually assist the
operating system in managing fragmentation.

3Confusingly, TCMALLOC’s “page size” parameter is not necessarily the
system page size. The default configuration is to use an 8 KiB TCMALLOC
“page”, which is two (small) virtual memory pages on x86.

258 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

requested from OS

03000
00000000

Figure 2: Organization of memory in TCMALLOC. System-
mapped memory is broken into (multi-)page spans, which are
sub-divided into objects of an assigned, fixed sizeclass, here
25 KiB.

minimize space overhead and fragmentation?
2. How do we scalably support concurrent allocations?

Sufficiently large allocations are fulfilled with a span con-
taining only the allocated object. Other spans contain multiple
smaller objects of the same size (a sizeclass). The “small” ob-
ject size boundary is 256 KiB. Within this “small” threshold,
allocation requests are rounded up to one of 100 sizeclasses.
TCMALLOC stores objects in a series of caches, illustrated in

(large) malloc ()

(large) free ()

, 256KiB

central

CPU 0 cache

free()

malloc()

Figure 3: The organization of caches in TCMALLOC; we see
memory allocated from the OS to the pageheap, distributed
up into spans given to the central caches, to local caches. This
paper focuses on a new implementation for the pageheap.

Figure 3. Spans are allocated from a simple pageheap, which
keeps track of all unused pages and does best-fit allocation.

CPU 9 cache

The pageheap is also responsible for returning no-longer-
needed memory to the OS when possible. Rather than do-
ing this on the free () path, a dedicated release-memory
method is invoked periodically, aiming to maintain a con-
figurable, steady rate of release in MB/s. This is a heuristic.
TCMALLOC wants to simultaneously use the least memory
possible in steady-state, avoiding expensive system alloca-
tions that could be elided by using previously provisioned
memory. We discuss handling this peak-to-trough allocation
pattern in more detail in Section 4.3.

Ideally, TCMALLOC would return all memory that user
code will not need soon. Memory demand varies unpre-
dictably, making it challenging to return memory that will
go unused while simultaneously retaining memory to avoid
syscalls and page faults.. Better decisions about memory re-
turn policies have high value and are discussed in section 7.

TCMALLOC will first attempt to serve allocations from a
“local” cache, like most modern allocators [9,12,20,39]. Orig-
inally these were the eponymous per-Thread Caches, storing
a list of free objects for each sizeclass. To reduce stranded
memory and improve re-use for highly threaded applications,
TCMALLOC now uses a per-hyperthread local cache. When
the local cache has no objects of the appropriate sizeclass to
serve a request (or has too many after an attempt to free ()),
requests route to a single central cache for that sizeclass. This
has two components—a small fast, mutex-protected transfer
cache (containing flat arrays of objects from that sizeclass)
and a large, mutex-protected central freelist, containing every
span assigned to that sizeclass; objects can be fetched from,
or returned to these spans. When all objects from a span have
been returned to a span held in the central freelist, that span
is returned to the pageheap.

In our WSC, most allocations are small (50% of allocated
space is objects < 8192 bytes), as depicted in Figure 4. These
are then aggregated into spans. The pageheap primarily al-
locates 1- or 2-page spans, as depicted in Figure 5. 80% of
spans are smaller than a hugepage.

The design of “stacked” caches make the system usefully
modular, and there are several concomitant advantages:

* Clean abstractions are easier to understand and test.

* It’s reasonably direct to replace any one level of the
cache with a totally new implementation.

* When desired, cache implementations can be selected at
runtime, with benefits to operational rollout and experi-
mentation.

TCMALLOC’s pageheap has a simple interface for manag-
ing memory.

* New (N) allocates a span of N pages

e Delete (S) returns a New’d span (S) to the allocator.

* Release (N) gives >= N unused pages cached by the
page heap back to the OS

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 259

1.0

0.8 1

Proportion
o©
)

=}
i
L

0.2 1

0.0 T T T T T
102 104 106 108 101
Allocated Size (bytes)

Figure 4: CDF of allocation sizes from WSC applications,
weighted by bytes.

4 TEMERAIRE’s approach

TEMERAIRE, this paper’s contribution to TCMALLOC, re-
places the pageheap with a design that attempts to maximally
fill (and empty) hugepages. The source code is on Github
(see Section 9). We developed heuristics that pack allocations
densely onto highly-used hugepages and simultaneously form
entirely unused hugepages for return to the OS.

We refer to several definitions. Slack is the gap between an
allocation’s requested size and the next whole hugepage. Vir-
tual address space allocated from the OS is unbacked without
reserving physical memory. On use, it is backed, mapped by
the OS with physical memory. We may release memory to
the OS once again making it unbacked. We primarily pack
within hugepage boundaries, but use regions of hugepages for
packing allocations across hugepage boundaries.

From our telemetry of malloc usage and TCMALLOC
internals, and knowledge of the kernel implementation, we
developed several key principles that motivate TEMERAIRE’S
choices.

1. Total memory demand varies unpredictably with
time, but not every allocation is released. We have
no control over the calling code, and it may rapidly (and
repeatedly) modulate its usage; we must be hardened to
this. But many allocations on the pageheap are immortal
(and it is difficult to predict which they are [30]); any
particular allocation might disappear instantly or live
forever, and we must deal well with both cases.

1.0

0.8 1

Proportion
o
(<))

=)
»
.

0.2 1

0.0 ‘ - - ; ; ; ;
104 10° 106 107 108 10° 10
Span Size (bytes)

Figure 5: CDF of TCMALLOC span sizes from WSC appli-
cations, weighted by bytes.

2. Completely draining hugepages implies packing
memory at hugepage granularity. Returning huge-
pages that aren’t nearly-empty to the OS is costly (see
section 2). Generating empty/nearly-empty hugepages
implies densely packing the other hugepages in our bi-
nary. Our design must enable densely packing alloca-
tions into as few, saturated, bins as possible.

While we aim to use exclusively hugepage-sized bins,
malloc must support allocation sizes larger than a sin-
gle hugepage. These can be allocated normally, but we
place smaller allocations into the slack of the allocation
to achieve high allocation density. Only when small al-
locations are dominated by slack do we need to place
large allocations end on end in regions.

3. Draining hugepages gives us new release decision
points. When a hugepage becomes completely empty,
we can choose whether to retain it for future memory
allocations or return it to the OS. Retaining it until re-
leased by TCMALLOC’s background thread carries a
higher memory cost. Returning it reduces memory us-
age, but comes at a cost of system calls and page faults
if reused. Adaptively making this decision allows us to
return memory to the OS faster than the background
thread while simultaneously avoiding extra system calls.

4. Mistakes are costly, but work is not. Very few alloca-
tions directly touch the pageheap, but all allocations are
backed via the pageheap. We must only pay the cost of al-
location once; if we make a bad placement and fragment

260 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

a hugepage, we pay either that space or the time-cost
of breaking up a hugepage for a long time. It is worth
slowing down the allocator, if doing so lets it make better
decisions.

Our allocator implements its interface by delegating to
several subcomponents, mapped in Figure 6. Each component
is built with the above principles in mind, and each specializes
its approximation for the type of allocation it handles best. As
per principle #4, we emphasize smart placement over speed”.

While the particular implementation of TEMERAIRE is
tied to TCMALLOC internals, most modern allocators share
similar large backing allocations of page (or higher) granu-
larity, like TCMALLOC’s spans: compare jemalloc’s “ex-
tents” [20], Hoard’s “superblocks” [9], and mimalloc’s
“pages” [29]. Hoard’s 8KB superblocks are directly allo-
cated with ‘mmap°, preventing hugepage contiguity. Those
superblocks could instead be densely packed onto hugepages.
mimalloc places its 64KiB+ “pages” within “segments,” but
these are maintained per-thread which hampers dense pack-
ing across the segments of the process. Eagerly returning
pages to the OS minimizes the RAM cost here, but breaks
up hugepages. These allocators could also benefit from a
TEMERAIRE-like hugepage aware allocator’.

HugeAllocator

unbacked hugepages

HugeCache
backed hugepages

' HugeRegion |
b E

: sometimes

medium.requests
(1 MiB - 1 GiB)

small requests
(< 1 MiB)

large requests
(> 1GiB)

Figure 6: TEMERAIRE’s components. Arrows represent the
flow of requests to interior components.

4.1 The overall algorithm

We will briefly sketch the overall approach and each com-
ponent’s role, then describe each component in detail. Our
goal is to minimize generated slack, and if we do generate
slack, to reuse it for other allocations (as with any page-level
fragmentation.)

4As each operation holds an often-contended mutex, we do maintain
reasonable efficiency: most operations are O(1), with care taken to optimize
constant factors.

SIndeed, jemalloc is doing so, based on TEMERAIRE.

Span New (N) {
// Slack is too small to matter
if (N >= 1 GiB) return HugeCache.New (N);
// Help bin-pack a single hugepage
if (N <= 1 MiB) return HugeFiller.New (N);

if (N < 2 MiB) {
// If we can reuse empty space, do so
Span s = HugeFiller.TryAllocate (N);
if (s != NULL) return s;

// If we have a region, use it
Span s = HugeRegion.TryAllocate (N);
if (s != NULL) return s;

// We need a new hugepage.
s = HugeCache.New (N);
HugeFiller.DonateTail (s);

return s;

Figure 7: Allocation flow for subcomponents. Hugepage size
is 2 MiB.

Behind all components is the HugeAllocator, which deals
with virtual memory and the OS. It provides other compo-
nents with unbacked memory that they can back and pass on.
We also maintain a cache of backed, fully-empty hugepages,
called the HugeCache.

We keep a list of partially filled single hugepages (the
HugeFiller) that can be densely filled by subsequent small
allocations. Where binpacking the allocations along hugepage
boundaries would be inefficient, we implement a specialized
allocator (the HugeRegion).

TEMERAIRE directs allocation decisions to its subcompo-
nents based on request size with the algorithm in Figure 7.
Each subcomponent is optimized for different allocation sizes.

Allocations for an exact multiple of hugepage size, or those
sufficiently large that slack is immaterial, we forward directly
to the HugeCache.

Intermediate sized allocations (between 1MiB and 1GiB)
are typically also allocated from the HugeCache, with a final
step of donation for slack. For example, a 4.5 MiB allocation
from the HugeCache produces 1.5 MiB of slack, an unaccept-
ably high overhead ratio. TEMERAIRE donates that slack to
the HugeFiller by pretending that the last hugepage of the
request has a single “leading” allocation on it (Figure 8).

When such a large span is deallocated, the allocator also
marks the fictitious leading allocation as free. If the slack is un-
used, it is returned to the tail hugepage along with the rest. Oth-
erwise the tail hugepage is left behind in the HugeFiller and

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 261

1
allocation !

Figure 8: The slack from a large allocation spanning 3 huge-
pages is “donated” to the HugeFiller. The larger allocation’s
tail is treated as a fictitious allocation.

only the first N — 1 hugepages are returned to the HugeCache.

For certain allocation patterns, intermediate-size alloca-
tions produce more slack than we can fill with smaller al-
locations in strict 2MiB bins. For example, many 1.1MiB
allocations will produce 0.9MiB of slack per hugepage (see
Figure 12). When we detect this pattern, the HugeRegion
allocator places allocations across hugepage boundaries to
minimize this overhead.

Small requests (<= 1MiB) are always served from the
HugeFiller. For allocations between 1MiB and a hugepage,
we evaluate several options:

1. We try the HugeFiller: if we have available space there
we use it and are happy to fill a mostly-empty page.

2. If the HugeFiller can’t serve these requests, we next
consider HugeRegion; if we have regions allocated
which can serve the request, we do so. If no region exists
(or they’re all too full) we consider allocating one, but
only, as discussed below, if we’ve measured high ratios
of slack to small allocations.

3. Otherwise, we allocate a full hugepage from the
HugeCache. This generates slack, but we anticipate that
it will be filled by future allocations.

We make a design choice in TEMERAIRE to care about
external fragmentation up to the level of a hugepage, but
essentially not at all past it (but see Section 4.5 for an excep-
tion.) For example, a system with a single 1 GiB free range
and one with 512 discontiguous free hugepages is handled
equally well by TEMERAIRE. In either case, the allocator
will (typically) return all of the unused space to the OS; a
fresh allocation of 1 GiB will require faulting in memory in
either case. In the fragmented scenario, we will need to do
so on fresh virtual memory. Waste of virtual address range
unoccupied by live allocations and not consuming physical
memory is not a concern, since with 64-bit address spaces,
virtual memory is practically free.

while (true) {
Delete (New (512KB))

Figure 9: Program which repeatedly drains a single hugepage.

4.2 HugeAllocator

HugeAllocator tracks mapped virtual memory. All OS map-
pings are made here. It stores hugepage-aligned unbacked
ranges (i.e. those with no associated physical memory.) Vir-
tual memory is nearly free, so we aim for simplicity and rea-
sonable speed. Our implementation tracks unused ranges with
a treap [40]. We augment subtrees with their largest contained
range, which lets us quickly select an approximate best-fit.

4.3 HugeCache

The HugeCache tracks backed ranges of memory at full huge-
page granularity. A consequence of the HugeFiller filling
and draining whole hugepages is that we need to decide when
to return empty hugepages to the OS. We will regret returning
memory we will need again, and equally regret not returning
memory that will languish in the cache. Returning memory
eagerly means we make syscalls to return the memory and
take page faults to reuse it. Releasing memory only at the rate
requested by TCMALLOC’s periodic release thread means
memory is held unused.

Consider the artificial program in Figure 9 with no addi-
tional heap allocations. On each iteration of the loop, ‘New*
requires a new hugepage and places it with the HugeFiller.
‘Delete removes the allocation and the hugepage is now com-
pletely free. Returning eagerly would require a syscall every
iteration for this simple, but pathological program.

We track periodicity in the demand over a 2-second slid-
ing window and calculate the minimum and maximum seen
(demandyy;,,demand,,,,). Whenever memory is returned to
the HugeCache, we return hugepages to the OS if the cache
would be larger than demand,;,, — demand,y,;,,. We also tried
other algorithms, but this one is simple and suffices to capture
the empirical dynamics we’ve seen. The cache is allowed
to grow as long as our windowed demand has seen a need
for the new size. In oscillating usage, this will (incorrectly)
free memory once, then (correctly) keep it from then on. Fig-
ure 10 shows our cache size for a Tensorflow workload which
rapidly oscillates usage by a large fraction; we track the actu-
ally needed memory tightly.

4.4 HugeFiller

The HugeFiller satisfies smaller allocations that each fit
within a single hugepage. This satisfies the majority of allo-
cations (78% of the pageheap is backed by the HugeFiller

262 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

500

total usage

400

300 -

200 -

memory (MiB)

100

time

Figure 10: Tensorflow’s demand on the HugeCache over time,
plotted with the cache limit (+demand). Notice that we tightly
track their saw-toothed demand the first time it drops. After
that, we recognize the pattern and keep the peak demand in
cache.

on average across the fleet) and is the most important—and
most optimized—component of our system. Within a given
hugepage, we use a simple (and fast) best-fit algorithm to
place an allocation; the challenging part is deciding which
hugepage to place an allocation on.

This component solves our binpacking problem: our goal
is to segment hugepages into some that are kept maximally
full, and others that are empty or nearly so. The emptiest
hugepages can be reclaimed (possibly breaking up a huge-
page as needed) while minimizing the impact on hugepage
coverage as the densely-filled pages cover most used memory
with hugepages. But it is challenging to empty out hugepages,
since we cannot rely on any particular allocation disappearing.

A secondary goal is to minimize fragmentation within each
hugepage, to make new requests more likely to be served.
If the system needs a new K-page span and no free ranges
of > K pages are available, we require a hugepage from
the HugeCache. This creates slack of (2MiB — K * pagesize),
wasting space.

These give us two goals to prioritize. Since we want to
maximize the probability of hugepages becoming totally free,
nearly-empty hugepages are precious. Since we need to mini-
mize fragmentation, hugepages with long free ranges are also
precious. Both priorities are satisfied by preserving hugepages
with the longest free range, as longer free ranges must have
fewer in-use blocks. We organize our hugepages into ranked
lists correspondingly, leveraging per-hugepage statistics.

Inside each hugepage, we track a bitmap of used pages;
to fill a request from some hugepage we do a best-fit search
from that bitmap. We also track several statistics:

o the longest free range (L), the number of contiguous
pages not already allocated,

* the total number of allocations (A),
¢ the total number of used pages (U).

These three statistics determine a priority order of huge-
pages to place allocations. We choose the hugepage with the
lowest sufficient L and the highest A. For an allocation of K
pages, we first consider only hugepages whose longest free
range is sufficient (L > K). This determines whether a huge-
page is a possible allocation target. Among hugepages with
the minimum L > K, we prioritize by fullness. Substantial
experimentation led us to choose A, rather than U.

This choice is motivated by a radioactive decay-type al-
location model [16] where each allocation, of any size, is
equally likely to become free (with some probability p). In
this model a hugepage with 5 allocations has a probability
of becoming free of p> << p; so we should very strongly
avoid allocating from hugepages with very few allocations.
In particular, this model predicts A is a much better model of
"emptiness" than U: one allocation of size M is more likely
to be deallocated than M allocations of size 1.

The decay model isn’t perfectly true in real applications, but
it is an effective approximation, and experimentation backs up
its primary claim: prioritizing by A empties substantially more
pages than prioritizing by U. (In practice, using U produces
acceptable results, but meaningfully worse ones.)

In some more detail, A is used to compute a chunk index C,
given by min(0,Ciax — log2(A)). We compute our chunk in-
dex so that our fullest pages have C = 0 and the emptiest have
C = Cpax — 1. In practice, we have found that Cy,x = 8 chunks
are sufficient to avoid allocation from almost-empty pages.
Distinguishing hugepages with large counts is less important:
For example, we predict a hugepage with 200 allocations and
one with 150 as both very unlikely to completely drain. This
scheme prioritizes distinguishing gradations among pages
that might become empty.

We store hugepages in an array of lists, where each huge-
page is stored on the list at index I = Cyax * L+ C. Since
a K-page allocation is satisfiable from any hugepage with
L >=K, the hugepages which can satisfy an allocation are ex-
actly those in lists with I >= Cpax * K. We pick an (arbitrary)
hugepage from the least such nonempty list, accelerating that
to constant time with a bitmap of nonempty lists.

Our strategy differs from best fit. Consider a hugepage X
with a 3 page gap and a 10 page gap and another hugepage
Y with a 5 page gap. Best fit would prefer X. Our strategy
prefers Y. This strategy works since we are looking to allocate
on the most fragmented page, since fragmented pages are less
likely to become entirely free. If we need, say, 3 pages, then
pages which contain at most a gap of 3 available pages are
more likely to be fragmented and therefore good candidates
for allocation. Under the radioactive-decay model, allocations

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 263

500 [R
400 |- N
=)
S 300 N
z
S
é 200 | .
—_— Demand
| | —— LFR-priority |
1001 ... Best-fit
- - - Fullness-priority
0

time

Figure 11: HugeFiller with various bin-packing strate-
gies. Best fit is outperformed by prioritizing either fullness or
longest free range (LFR); LFR dominates fullness.

near large gaps are as likely as any other to become free,
which can cause those gaps to substantially grow; they can
then be used for large allocations. We treat that 10-page gap
as precious and avoid allocating near it unless nothing else
works, which allows it to grow.

Figure 11 demonstrates this in a simple case. We plot the
demand on the HugeFiller from a synthetic trace (see Sec-
tion 6.1). We also show the total used memory from three
approaches: HugeFiller’s actual search, a search that priori-
tizes fullness over fragmentation (A over L), and a global best
fit. Note that the trace includes a substantial one-time drop,
to go with random fluctuations in usage. Our LFR-priority
algorithm beats both other approaches. In particular, we see
that after the usage drop, best-fit barely recovers any total
memory, and finishes with close to 100% overhead, whereas
both other algorithms closely match the actual demand.

Surprisingly, this simple strategy substantially outperforms
a global best fit algorithm—placing a request in the single gap
in any hugepage that is closest to its size. Best-fit would be
prohibitively expensive—we cannot search 10-100K huge-
pages for every request, but it’s quite counter-intuitive that it
also produces higher fragmentation. Best-fit being far from
optimal for general fragmentation problems is not a new re-
sult [36], but it’s interesting to see how poor it can be here.

A last important detail is that donated hugepages are less
desirable allocation targets than any non-donated hugepage.
Consider the pathological program looping:

while (true) {
// Reserve 51 hugepages + donate tail of last
L = New (100 MiB + 1 page);
// Make a small allocation
S = New(l);

// Delete large allocation
Delete (L) ;

Each iteration only allocates 1 (net) page, but if we always
use the slack from L to satisfy S, we will end up placing
each S on its own hugepage. In practice, simply refusing to
use donated pages if others are available prevents this, while
effectively using slack where it’s needed.

4.5 HugeRegion

HugeCache (and HugeAllocator behind it) suffices for large
allocations, where rounding to a full hugepage is a small
cost. HugeFiller works well for small allocations that can
be packed into single hugepages. HugeRegion helps those
between.

Consider a request for 1.1 MiB of memory. We serve it
from the HugeFiller, leaving 0.9 MiB of unused memory
from the 2MiB hugepage: the slack space. The HugeFiller
assumes that slack will be filled by future small (<1MiB)
allocations, and typically it is: our observed byte ratio of fleet-
wide small allocations to slack is 15:1. In the limit we can
imagine a binary that requests literally nothing but 1.1 MiB
spans in Figure 12.

The HugeRegion deals with this problem, which is to
some extent caused by our own choices. We focus heavily
on packing allocations into hugepage-sized bins with the
HugeFiller, and our desire to do that with donated slack
is catastrophic with some allocation patterns. Most normal
binaries are of course fine without it, but a general purpose
memory allocator needs to handle diverse workloads, even
those dominated by slack-heavy allocations. Clearly, we must
be able to allocate these lying across hugepage boundaries.
HugeRegion neatly eliminates this pathological case.

A HugeRegion is a large fixed-size allocation (currently 1
GiB) tracked at small-page granularity with the same kind
of bitmaps used by individual hugepages in the HugeFiller.
As with those single hugepage ranges, we best-fit any request
across all pages in the region. We keep a list of these re-
gions, ordered by longest free range, for the same reason as
HugeFiller. Allocating from these larger bins immediately
allows large savings in wasted space: rather than losing 0.9
MiB/hugepage in our pessimal load, we lose 0.9 MiB per

O
a 1S 1 1
Figure 12: Slack (“s”) can accumulate when many allocations
(“a”) are placed on single hugepages. No single slack region
is large enough to accommodate a subsequent allocation of

[T L]

size “a.

264 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

HugeRegion, only about 0.1%. (This motivates the large size
of each region.)

Most programs don’t need regions at all. We do not allocate
any region until we’ve accumulated large quantities of slack
that are larger than the total of the program’s small allocations.
Fleetwide, only 8.8% of programs trigger usage of regions,
but the feature is still important: 53.2% of allocations in those
binaries are served from regions. One such workload is a
key-value store that loads long-lived data in large chunks
into memory and makes a small number of short-lived small
allocations for serving requests. Without regions, the request-
related allocations are unable to fill the slack generated by the
larger allocations. This technique prevents this slack-heavy
uncommon allocation pattern from bloating memory use.

4.6 Memory Release

As discussed above, Release (N) is invoked periodically by
support threads at a steady trickle.

To implement our interface’s Release (N) methods,
TEMERAIRE typically just frees hugepage ranges from
HugeCache and possibly shrinks its limit as described above.
Releasing more than the hinted N pages is not a problem; the
support threads use the actual released amount as feedback,
and adjust future calls to target the correct overall rate.

If the HugeCache cannot release N pages of memory, the
HugeFiller will subrelease just the free (small) pages on the
emptiest hugepage.

Returning small pages from partially filled hugepages
(“subreleasing” them) is the last resort for reducing memory
footprints as the process is largely irreversible®. By returning
some but not all small pages on a hugepage, we cause the OS
to replace the single page table entry spanning the hugepage
with small entries for the remaining pages. This one-way op-
eration, through increased TLB misses, slows down accesses
to the remaining memory. The Linux kernel will use small
pagetable entries for the still-used pages, even if we re-use
the released address space later. We make these return deci-
sions in the HugeFiller, where we manage partially filled
hugepages.

The HugeFiller treats the subreleased hugepages sepa-
rately: we do not allocate from them unless no other hugepage
is usable. Allocations placed on this memory will not benefit
from hugepages, so this helps performance and allows these
partially released hugepages to become completely empty.

5 Evaluation of TEMERAIRE

We evaluated TEMERAIRE on Google’s WSC workloads.
The evaluation was concerned with several metrics, includ-

SWhile the THP machinery may reassemble hugepages, it is non-
deterministic and dependent on system utilization. There is a negative feed-
back loop here where high-utilization scenarios actually compete with and
impede THP progress that might benefit them the most.

ing both CPU and memory savings. We present evaluations
of TEMERAIRE on several key services, measuring 10% of
cycles and 15% of RAM usage in our WSC. In section 6.4
we discuss workload diversity; in this evaluation we examine
data across all workloads using our experimental framework
and fleetwide-profiler telemetry. We’ve argued for prioritizing
workload efficiency over the attributable cost of malloc; we
therefore examine IPC metrics (as a proxy for user through-
put) and where possible, we obtained application-level perfor-
mance metrics to gauge workload productivity (e.g., requests-
per-second per core) on our servers. We present longitudinal
data from the rollout of TEMERAIRE to all TCMALLOC users
in our fleet.

Overall, TEMERAIRE proved a significant win for CPU and
memory.

5.1 Application Case Studies

We worked with performance-sensitive applications to enable
TEMERAIRE in their production systems, and measure the
effect. We summarize the results in Table 1. Where possible,
we measured each application’s user-level performance met-
rics (throughput-per-CPU and latency). These applications
use roughly 10% of cycles and 15% of RAM in our WSC.

Four of these applications (searchl; search2; search3;
and loadbalancer) had previously turned off the periodic
memory release feature of TCMALLOC. This allowed them
to have good hugepage coverage, even with the legacy page-
heap’s hugepage-oblivious implementation, at the expense of
memory. We did not change that setting with TEMERAIRE.
These applications maintained their high levels of CPU per-
formance while reducing their total memory footprint.

With the exception of Redis, all of these applications are
multithreaded. With the exception of search3, these work-
loads run on a single NUMA domain with local data.

* Tensorflow [1] is a commonly used machine learning ap-
plication. It had previously used a high periodic release
rate to minimize memory pressure, albeit at the expense
of hugepages and page faults.

e searchl, search?, adsl, ads2, ads4, ads5 receive
RPCs and make subsequent RPCs of their own other
services.

* search3, ads3, ads6 are leaf RPC servers, performing
read-mostly retrieval tasks.

* Spanner [17] is a node in a distributed database. It also
includes an in-memory cache of data read from disk
which adapts to the memory provisioned for the process
and unused elsewhere by the program.

* loadbalancer receives updates over RPC and periodi-
cally publishes summary statistics.

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 265

Applicati Th hput Mean RSS RAM IPC dTLB Load Walk (%) l malloc (% of cycles) l Page Fault (% of cycles)
pplication roughpu Latency (GiB) change [Before] After] Before] After] Before] After] Before] After
Tensorflow [1] +26%
searchl [6, 18]+ 8.4 -8.7% 1.3340.04 1.4340.02 9.5£0.6 9.0£0.6 5.9+0.09 59+0.12 0.005£0.003 0.131£0.071
search2t 37 -20% 1.28+0.01 1.29+0.01 10.3+0.2 10.240.1 4.37+0.05 4.38+0.02 0.003£0.003 0.032£0.002
search3 f 234 -7% 1.64+0.02 1.67+£0.02 8.940.1 8.9+0.3 3.2+0.02 3.3+0.04 0.0010.000 0.005+0.001
adsl +2.5% -14% 4.8 -6.9% 0.7740.02 0.8440.01 38.1+£1.3 15.940.3 2.3+0.04 2.74+0.05 0.012+£0.003 0.011+0.002
ads2 +3.4% -1.7% 5.6 -6.5% 1.12+£0.01 1.224£0.01 27.4+0.4 10.34+0.2 2.7+0.03 3.54+0.08 0.022+£0.001 0.047 £0.001
ads3 +0.5% -0.2% 50.6 -0.8% 1.36£0.01 1.43+£0.01 27.1£0.5 11.64+0.2 2.9+0.04 3.240.03 0.067 £0.002 0.0340.003
adsd +6.6% -1.1% 25 -1.7% 0.8740.01 0.9340.01 28.5+£09 11.14£0.3 4.2+0.05 4.9+0.04 0.022£0.001 0.008 £0.001
ads5 +1.8% -0.7% 10.0 -1.1% 1.16£0.02 1.16£0.02 21.9+1.2 16.7+2.4 3.6+0.08 3.84+0.15 0.018 £0.002 0.033£0.007
ads6 +15% -10% 535 -2.3% 1.40£0.02 1.59+£0.03 33.6+£2.4 17.8+£0.4 13.5£0.48 9.9+£0.07 0.037£0.012 0.048 £0.067
Spanner [17] +6.3% 7.0 1.55£0.30 1.70£0.14 31.0£43 15.7£1.8 3.1£0.88 3.0+0.24 0.025£0.08 0.024£0.01
loadbalancerf 1.4 -40% 1.3840.12 1.3940.28 19.6£1.2 9.5+4.5 11.540.60 10.740.46 0.094+0.06 0.057 £0.062
Average (all WSC apps) +5.2% -71.9% 1.26 1.33 233 12.4 52 5.0 0.058 0.112
RedisT +0.75%
Redis +0.44%

Table 1: Application experiments from enabling TEMERAIRE. Throughput is normalized for CPU. f: Applications’ periodic
memory release turned off. dTLB load walk (%) is the fraction of cycles spent page walking, not accessing the L2 TLB. malloc
(% of cycles) is the relative amount of time in allocation and deallocation functions. 90%th confidence intervals reported.

* Redis is a popular, open-source key-value store. We
evaluated the performance of Redis 6.0.9 [42] with
TEMERAIRE, using TCMALLOC’s legacy page heap as
a baseline. These experiments were run on servers with
Intel Skylake Xeon processors. Redis and TCMALLOC
were compiled with LLVM built from Git commit
‘cd442157ct* using ‘-O3°. In each configuration, we ran
2000 trials of ‘redis-benchmark®, with each trial making
1000000 requests to push 5 elements and read those 5
elements.

For the 8 applications with periodic release, we observed a
mean CPU improvement of 7.7% and a mean RAM reduction
of 2.4%. Two of these workloads did not see memory reduc-
tions. TEMERAIRE’s HugeCache design handles Tensorflow’s
allocation pattern well, but cannot affect its bursty demand.
Spanner maximizes its caches up to a certain memory limit,
so reducing TCMALLOC’s overhead meant more application
data could be cached within the same footprint.

5.2 Fleet experiment

We randomly selected 1% of the machines distributed through-
out our WSCs as an experiment group and a separate 1% as
a control group (see section 6.4). We enabled TEMERAIRE
on all applications running on the experiment machines. The
applications running on control machines continued to use
the stock pageheap in TCMALLOC.

Our fleetwide profiler lets us correlate performance metrics
against the groupings above. We collected data on memory
usage, hugepage coverage, overall IPC, and TLB misses. At
the time of the experiment, application-level performance
metrics (throughput-per-CPU, latency) were not collected. In
our analysis, we distinguish between applications that period-
ically release memory to the OS and those that turn off this
feature to preserve hugepages with TCMALLOC’s prior non-
hugepage-aware pageheap. Figure 13 shows that TEMERAIRE
improved hugepage coverage, increasing the percentage of
heap memory backed by hugepages from 11.8% to 23% for
applications periodically releasing memory and from 44.3%
to 67.3% for applications not periodically releasing memory.

80 |
%67.3
0]
& 60|
2
o %44.3
g 401
)
o0
2
® 20| 423
118
0k ! !

periodic release on periodic release off

dcontrolATEMERAIRE

Figure 13: Percentage of heap memory backed by hugepages
during fleet experiment and 90%th confidence interval. (Error
bars in "release on" condition are too small to cleanly render.)

We observed a strong improvement even in the case that pe-
riodic release was disabled. Since these binaries do not break
up hugepages in either configuration, the benefit is derived
from increased system-wide availability of hugepages (due
to reduced fragmentation in other applications). TEMERAIRE
improves this situation in two ways: since we aggressively re-
lease empty hugepages (where the traditional pageheap does
not), we consume fewer hugepages that we do not need, allow-
ing other applications to more successfully request them, and
other co-located applications are no longer breaking up huge-
pages at the same rate. Even if we map large aligned regions
of memory and do not interfere with transparent hugepages,
the kernel cannot always back these with hugepages [26, 33].
Fragmentation in physical memory can limit the number of
available hugepages on the system.

We next examine the effect this hugepage coverage had

266

15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://github.com/llvm/llvm-project/commit/cd442157cf
https://github.com/llvm/llvm-project/commit/cd442157cf

Periodic Walk Cycles (%) MPKI

Release Control ‘ Exp. Control ‘ Exp.
On 12.5 11.9 (-4.5%) 1.20 1.14 (-5.4%)
Off 14.1 ‘ 13.4 (-5%) ‘ 1.36 ‘ 1.29 (-5.1%)

Table 2: dTLB load miss page walk cycles as percentage of
application usage and dTLB misses per thousand instructions
(MPKI) without TEMERAIRE (Control) TEMERAIRE enabled

(Exp.)

on TLB misses. Again, we break down between apps that
enable and disable periodic memory release. We measure the
percentage of total cycles spent in a dTLB load stall’.

We see reductions of 4.5-5% of page walk miss cycles
(Table 2). We see in the experiment data that apps not re-
leasing memory (which have better hugepage coverage) have
higher dTLB stall costs, which is slightly surprising. Our dis-
cussions with teams managing these applications is that they
turn off memory release because they need to guarantee per-
formance: on average, they have more challenging memory
access patterns and consequently greater concerns about mi-
croarchitectural variance. By disabling this release under the
prior implementation, they observed better application perfor-
mance and fewer TLB stalls. With TEMERAIRE, we see our
improved hugepage coverage leads to materially lower dTLB
costs for both classes of applications.

For our last CPU consideration, we measured the over-
all impact on IPC®. Fleetwide overall IPC in the control
group was 0.796647919 + 4e—9; in the experiment group,
0.806301729 + 5e—9 instructions-per-cycle. This 1.2% im-
provement is small in relative terms but is a large absolute
savings (especially when considered in the context of the
higher individual application benefits discussed earlier).

For memory usage, we looked at pageheap overhead: the
ratio of backed memory in the pageheap to the total heap
memory in use by the application. The experiment group
decreased this from 15.0% to 11.2%, again, a significant im-
provement. The production experiments comprise thousands
of applications running continuously on many thousands of
machines, conferring high confidence in a fleetwide benefit.

5.3 Full rollout trajectories

With data gained from individual applications and the
1% experiment, we changed the default’ behavior to use
TEMERAIRE. This rolled out to 100% of our workloads grad-
ually [10, 38].

Over this deployment, we observed a reduction in cycles
stalled on TLB misses (L2 TLB and page walks) from 21.6%

"More precisely cycles spent page walking, not accessing the L2 TLB.

80ur source of IPC data is not segmented by periodic background memory
release status.

9This doesn’t imply, quite, that every binary uses it. We allow opt outs
for various operational needs.

[\
S

15

—_
e

Yoage of TLB miss cycles

10 20 30 40 50 60
time (days)

— load (old) — store (old)
[1load (TEMERAIRE) [store (TEMERAIRE)

Figure 14: Stacked line graph showing effect of TEMERAIRE
rollout on TLB miss cycles. We see an overall downward
trend from 21.6% to 20.3% as TEMERAIRE became a larger
fraction of observed usage in our WSC.

to 20.3% (6% reduction) and a reduction in pageheap over-
head from 14.3% to 10.6% (26% reduction). Figure 14 shows
the effect on TLB misses over time: at each point we show
the total percentage of cycles attributable to TLB stalls (load
and store), broken down by pageheap implementation. As
TEMERAIRE rolled out fleetwide, it caused a noticeable down-
ward trend.

Figure 15 shows a similar plot of pageheap overhead. We
see another significant improvement. Hugepage optimization
has a natural tradeoff between space and time here; saving the
maximum memory possible requires breaking up hugepages,
which will cost CPU cycles. But TEMERAIRE outperforms
the previous design in both space and time. We highlight
several conclusions from our data:

Application productivity outpaced IPC. As noted above
and by Alameldeen et al. [3], simple hardware metrics don’t
always accurately reflect application-level benefits. By all
indication, TEMERAIRE improved application metrics (RPS,
latencies, etc.) by more than IPC.

Gains were not driven by reduction in the cost of malloc.
Gains came from accelerating user code, which was some-
times drastic—in both directions. One application (ads2) saw
an increase of malloc cycles from 2.7% to 3.5%, an apparent
regression, but they reaped improvements of 3.42% RPS, 1.7%
latency, and 6.5% peak memory usage.

There is still considerable headroom, and small percent-
ages matter. Even though TEMERAIRE has been successful,
hugepage coverage is still only 67% when using TEMERAIRE

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 267

90age memory overhead

20 40 60 80
time (days)

[old ——1 TEMERAIRE

Figure 15: Stacked line graph showing effect of TEMERAIRE
rollout on pageheap overhead. Total memory overhead goes
from 14.3% to 10.6%, as TEMERAIRE became a larger frac-
tion of observed usage in our WSC by growing from a handful
of applications (section 5.1) to nearly all applications.

without subrelease due to physical memory contiguity limita-
tions. Increasing to 100% would significantly improve appli-
cation performance.

6 Strategies used in building TEMERAIRE

It is difficult to predict the best approach for a complex sys-
tem a priori. Iteratively designing and improving a system
is a commonly used technique. Military pilots coined the
term “OODA (Observe, Orient, Decide, Act) loop” [13] to
measure a particular sense of reaction time: seeing incom-
ing data, analyzing it, making choices, and acting on those
choices (producing new data and continuing the loop). Shorter
OODA loops are a tremendous tactical advantage to pilots
and accelerate our productivity as well. Optimizing our own
OODA loop-how quickly we could develop insight into a
design choice, evaluate its effectiveness, and iterate towards
better choices—was a crucial step in building TEMERAIRE.

While our final evaluation was driven by execution on
our production servers, this was both too disruptive and too
risky to test intermediate ideas; however, malloc microbench-
marks are also not particularly interesting at the page level.
To address these challenges, we generated traces to drive the
development of TCMALLOC in two ways.

6.1 ‘“Empirical” distribution sampling

Our production fleet implements a fleet wide profiler [35].
Among the data collected by this profiler are fleet-wide sam-
ples of malloc tagged with request size and other useful prop-
erties. We collect a sample of currently-live data in our heap
and calls to malloc. From these samples we can infer the
empirical distribution of size both for live objects and mal-
loc calls. Our empirical driver generates calls to malloc and
free as a Poisson process'” that replicates these distributions,
while also targeting an arbitrary (average) heap size. That
target size can be changed over simulated time, reproducing
factors such as diurnal cycles, transient usage, or high startup
costs. We have made this driver and its inputs available on
Github (see Section 9).

Despite the name “empirical driver,” this remains a highly
unrealistic workload: every allocation (of a given size) is
equally likely to be freed at any timestep, and there is no cor-
relation between the sizes of consecutive allocation. Neither
does it reproduce per-thread or per-CPU dynamics. Never-
theless, the empirical driver is a fast, efficient way to place
malloc under an extremely challenging load that successfully
replicates many macro characteristics of real work.

6.2 Heap tracing

Tracing every call to malloc without the instrumentation
overhead perturbing the workload itself is extremely difficult,
even infeasible over long timescales. Typical applications
can make millions of calls to malloc per second. Even if
tracing was accomplished non-disruptively, replaying these
traces back accurately into a memory allocator in real time or
faster is similarly intractable: it’s difficult to force the right
combinations of threads to allocate, access, and free the right
buffers on the right CPU at the right (relative) time.

Fortunately, tracing the pageheap is considerably easier. It
is a single-threaded allocator, only invoked by a small fraction
of requests. Playback is also simple—our abstractions allow
directly instantiating and manipulating our pageheap repre-
sentation, rather than going through malloc () itself. Traces
taken from both real binaries and, surprisingly, the empirical
driver itself, played a major role in developing TEMERAIRE.

TEMERAIRE’s components serve a request for K pages
with memory at address [p, p+ K), but never read or write
that memory range. We built this for unit testing—allowing
the test of corner cases such as 64 GiB of allocations without
actually needing 64 GiB of memory-but this is also crucial
to accelerating simulations. What might take hours with the
empirical driver can be played back in minutes.

10Ljittle’s law tells us that the average number of live objects L is equal to

the product of the arrival rate A and average lifetime W. To replicate a given

distribution of live/allocation object sizes where p, of live objects have size
— CPa

a,weset W, = s (c is a scaling parameter that determines the total heap
; »
size.)

268 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

6.3 Telemetry

Beyond producing numbers motivating and evaluating our
work, our fleetwide profiler is itself a powerful tool for de-
signing allocators. It reveals patterns of allocation we can use
to derive heuristics, it allows validation of hypotheses about
typical (or even possible) behavior, it helps identify which pat-
terns we can safely ignore as unimportant and which we must
optimize. Besides being used in obvious ways—such as tuning
cache sizes to fit typical use or determining thresholds for
“small” allocations based on the CDF of allocations—querying
the profiler was our first step whenever we were unsure of
useful facts. We gained confidence that our approach to filling
slack (see section 4.5) worked on diverse workloads by query-
ing the profiler for ratios of page allocation sizes. Providing
large scale telemetry that can be consumed by data analysis
tools makes it easy to test and eliminate hypotheses. Such
"tiny experiments" [8] lead to better designs.

This reflects a cultivated mindset in identifying new teleme-
try. Our first question for any new project is “What metrics
should we add to our fleetwide profiler?” We continually
expose more of the allocator’s internal state and derived statis-
tics, such as cache hit rates. While we can form some hypothe-
ses using traditional loadtests, this technique helps validate
their generality.

6.4 Experiment framework

We have also developed an experiment framework allowing us
to A/B test implementations or tuning choices across our fleet
at scale. We can enable or disable experiment groups across
a small percentage of all our machines, without requiring
product teams running services on those machines to take any
action. A/B testing is not a new approach, but enabling it at
the scale of our WSC is a powerful development tool.

As discussed above, our A/B experiment for TEMERAIRE
demonstrated improved hugepage coverage, even for jobs
that never released memory. This is an example of an effect—
against neighboring, collocated services—that might go unno-
ticed during the test of an individual service.

We’ve observed two noteworthy advantages to A/B experi-
mentation:

* Reduced cost and uncertainty associated with major be-
havioral changes. Small 1% experiments can uncover
latent problems well before we roll new defaults, at far
less cost [10, Appendix B].

* Reduced likelihood of overfitting to easily tested work-
loads. Tuning for production-realistic loadtests, while
great for the applications they represent, can result in
non-ideal results for other workloads. Instead, we can be
confident our optimization is good on average for every-
one, and detect (and fix) applications that see problems.

Experiments allow us to evaluate changes on diverse work-
loads. Kaneyv, et. al. [24] proposed prefetching the next object

i+ 1 when malloc is returning object i from its freelists. Ef-
fective prefetches need to be timely [28]. Too early and data
can be evicted from the cache before use. Too late and the pro-
gram waits. In this case, prefetching object i when returning
it, turns out to be too late: User code will write to the object
within a few cycles, far sooner than the prefetch’s access to
main memory can complete. Prefetching object i + 1 gives
time for the object to be loaded into the cache by the time
the next allocation occurs. Independent of the experiments
to develop TEMERAIRE, we added this next object prefetch
for TCMALLOC usage in our WSC despite the contrarian
evidence that it appears to slowdown microbenchmarks and
increases apparent malloc cost. We were able to still identify
this benefit thanks to the introspective techniques described
here, allowing us to prove that application performance was
improved at scale in our WSC; both unlocking important per-
formance gains and proving the generality of these macro
approaches.

7 Future Work

Peak vs. average. A job quickly oscillating between peak
and trough demand cannot be usefully binpacked against its
average. Even if the allocator could instantaneously return
unused memory, job schedulers could not make use of it be-
fore it was required again. Thus transient overhead is not a
practical opportunity [43]. This guides us to measure how
overhead changes over time, which can motivate slower re-
lease rates [31] or application of compaction techniques (such
as Mesh [34]).

Intermediate caches / exposed free spans. TCMALLOC’s
design of stacked caches makes for direct optimization and is
highly scalable, but hides useful cross-layer information. A
good example comes from Bigtable at Google [14]. Cached
ranges are 8 KiB malloc’d segments (i.e. one TCMALLOC
page) to avoid fragmentation. Meaning, most freed buffers
won’t make it past the local cache or central freelist; only
when a full span’s worth is simultaneously freed (and some-
how pushed out of TCMALLOC’s local cache) do these freed
buffers get returned to the pageheap. If every alloc/free of
these chunks were visible to the pageheap, we’d be able to re-
duce fragmentation—-we’d have a much more precise estimate
of available space within each hugepage. Of course, if every
malloc(8192) /free went to the pageheap, we would also
eliminate all scalability! There must be a middle ground. Can
we expose the contents of frontline caches to the pageheap
and reduce fragmentation?

Upfront costs / amortization / prediction. The fact we can-
not anticipate what Delete () calls will come in the future
is the hardest part of building a hugepage-friendly algorithm.
We try to generate empty hugepages through heuristics and
hope: we aim to have mostly-empty things stay that way and
hope that the final allocations will quickly get freed. But some
allocations are likely immortal-common data structures that

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation 269

are used throughout the program’s run, or frequently used
pages that will bounce in and out of local caches.

We can improve allocation decisions when we know—
immortal or not-they will be hot and see frequent access.
Ensuring these allocations are placed onto hugepages pro-
vides larger marginal performance benefit. TLB misses occur
on access, so it may be preferable to save memory rather than
improve access latency to colder allocations.

Far memory cooperation “Far memory” [27] allows us to
move data to slower, but less expensive memory, reducing
DRAM costs. Clustering rarely accessed allocations can make
far memory more effective. More overhead can be afforded on
those decisions since they can’t happen very often. Avenues
like machine learning [30] or profile directed optimization [15,
37] show promise for identifying these allocations.

Userspace-Kernel Cooperation TEMERAIRE places mem-
ory in a layout designed to be compatible with kernel huge-
page policy (Section 2), but this is only an implicit cooper-
ation. Kernel APIs which prioritize the allocation of huge-
pages within an address space or across processes would en-
able proactive management of which regions were hugepage-
backed, versus the current best-effort reactive implementation.

In developing TEMERAIRE, we considered but did not de-
ploy an interface to request a memory region be immediately
repopulated with hugepages. TEMERAIRE primarily tries to
avoid breaking up hugepages altogether as the existing THP
machinery is slow to reassemble them (Section 4.6). Being
able to initiate on-demand repopulation would allow an ap-
plication to resume placing allocations in that address space
range without a performance gap.

A common problem today is that the first applications to
execute on a machine are able to claim the majority of huge-
pages, even if higher priority applications are subsequently
assigned. We ultimately imagine that such a management
system might execute as an independent user daemon, coop-
erating with individual applications. Kernel APIs could allow
hugepages to be more intelligently allocated against a more
detailed gradient of priority, benefit, and value.

8 Related work

Some work has optimized malloc for cache efficiency of
user-level applications. To minimize L1 conflicts, Dice [19]
proposed jittering allocation sizes. Similarly, a cache-index-
aware allocator [2] reduces conflict misses by changing rela-
tive placement of objects inside pages. mimalloc [29] tries to
give users objects from the same page, increasing the locality.

Addressing this at the kernel level alone would face the
same fragmentation challenges and be more difficult to handle
because we have less control over application memory usage.
The kernel can back the memory region with a hugepage,
but if the application does not densely allocate from that
hugepage, memory is wasted by fragmentation. Prior work
has examined the kernel side of this problem: Kwon et. al. [26]

proposed managing memory contiguity as a resource at the
kernel level. Panwar et. al. [32] observed memory bloat from
using the Linux’s transparent hugepage implementation, due
to insufficient userspace level packing.

Optimization of TLB usage in general has been discussed
extensively; Basu [7] suggested resurrecting segments to
avoid it entirely, addressing TLB usage at the architectural
level. CoLT [33] proposed variable-size hugepages to mini-
mize the impact of fragmentation. Illuminator [5] improves
page decisions in the kernel to reduce physical memory frag-
mentation. Ingens [26] attempts to fairly distribute a lim-
ited supply of kernel-level hugepages and HawkEye [32]
manages kernel allocation of hugepages to control memory
bloat. Kernel-based solutions can be defeated by hugepage-
oblivious user allocators that return partial hugepages to the
OS and fail to densely pack allocations onto hugepages.

At the malloc level, SuperMalloc [25] considers huge-
pages, but only for very large allocations. MallocPool [22]
uses similar variable-sized TLBs as CoLT [33] but does not
attempt to used fixed-size hugepages. LLAMA [30] studies
a possible solution using lifetime predictions, but solutions
with practical costs remain open problems.

9 Conclusion

In warehouse scale computers, TLB lookup penalties are one
of the most significant compute costs facing large applica-
tions. TEMERAIRE optimizes the whole WSC by changing
the memory allocator to make hugepage-conscious place-
ment decisions while minimizing fragmentation. Application
case studies of key workloads from Google’s WSCs show
RPS/CPU increased by 7.7% and RAM usage decreased by
2.4%. Experiments at fleet scale and longitudinal data during
the rollout at Google showed a 6% reduction in cycles spent
in TLB misses, and 26% reduction in memory wasted due to
fragmentation. Since the memory system is the biggest bot-
tleneck in WSC applications, there are further opportunities
to accelerate application performance by improving how the
allocator organizes memory and interacts with the OS.

Acknowledgments

Our thanks to our shepherd Tom Anderson for his help improv-
ing this paper. We also thank Atul Adya, Sanjay Ghemawat,
Urs Holzle, Arvind Krishnamurthy, Martin Maas, Petros Ma-
niatis, Phil Miller, Danner Stodolsky, and Titus Winters, as
well as the OSDI reviewers, for their feedback.

Availability

The code repository at https://github.com/google/tcmalloc
includes TEMERAIRE. It also includes the empirical driver
(6.1) and its input parameters (CDF of allocation sizes).

270 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://github.com/google/tcmalloc

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

[8

—_—

(9]

[10]

[11]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In /12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 265-283, 2016.

Yehuda Afek, Dave Dice, and Adam Morrison. Cache
Index-Aware Memory Allocation. SIGPLAN Not.,
46(11):55-64, June 2011.

A. R. Alameldeen and D. A. Wood. IPC Considered
Harmful for Multiprocessor Workloads. IEEE Micro,
26(4):8-17, 2006.

Andrea Arcangeli. Transparent hugepage support. 2010.

Aravinda Prasad Ashish Panwar and K. Gopinath. Mak-
ing Huge Pages Actually Useful. In Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’18), 2018.

Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEFE Micro, 23:22-28, 2003.

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient Virtual
Memory for Big Memory Servers. In Proceedings of
the 40th Annual International Symposium on Computer
Architecture, ISCA *13, page 237-248, New York, NY,
USA, 2013. Association for Computing Machinery.

Jon Bentley. Tiny Experiments for Algorithms and Life.
In Experimental Algorithms, pages 182—182, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

Emery D. Berger, Kathryn S. McKinley, Robert D. Blu-
mofe, and Paul R. Wilson. Hoard: A Scalable Memory
Allocator for Multithreaded Applications. SIGPLAN
Not., 35(11):117-128, November 2000.

Jennifer Petoff Betsy Beyer, Chris Jones and
Niall Richard Murphy. Site Reliability Engineering:
How Google Runs Production Systems. O’Reilly Media,
Inc, 2016.

Stephen M. Blackburn, Perry Cheng, and Kathryn S.
McKinley. Myths and Realities: The Performance Im-
pact of Garbage Collection. In Proceedings of the Joint

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’04/Perfor-
mance ’04, page 25-36, New York, NY, USA, 2004.
Association for Computing Machinery.

Jeff Bonwick and Jonathan Adams. Magazines and
Vmem: Extending the Slab Allocator to Many CPUs
and Arbitrary Resources. In Proceedings of the Gen-
eral Track: 2001 USENIX Annual Technical Conference,
page 15-33, USA, 2001. USENIX Association.

John R. Boyd. Patterns of Conflict. 1981.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 205-218, 2006.

Dehao Chen, David Xinliang Li, and Tipp Moseley. Aut-
ofdo: Automatic Feedback-Directed Optimization for
Warehouse-Scale Applications. In CGO 2016 Proceed-
ings of the 2016 International Symposium on Code Gen-
eration and Optimization, pages 12-23, New York, NY,
USA, 2016.

William D. Clinger and Lars T. Hansen. Generational
Garbage Collection and the Radioactive Decay Model.
SIGPLAN Not., 32(5):97-108, May 1997.

James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally-Distributed Database. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), Hollywood, CA, 2012.

Jeffrey Dean. Challenges in building large-scale infor-
mation retrieval systems: invited talk. In WSDM ’09:
Proceedings of the Second ACM International Confer-
ence on Web Search and Data Mining, pages 1-1, New
York, NY, USA, 2009.

Dave Dice, Tim Harris, Alex Kogan, and Yossi Lev. The
Influence of Malloc Placement on TSX Hardware Trans-
actional Memory. CoRR, abs/1504.04640, 2015.

Jason Evans. A scalable concurrent malloc (3) imple-
mentation for FreeBSD. In Proceedings of the BSDCan
Conference, 2006.

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation

271

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

T. B. Ferreira, R. Matias, A. Macedo, and L. B. Araujo.
An Experimental Study on Memory Allocators in Mul-
ticore and Multithreaded Applications. In 2011 12th
International Conference on Parallel and Distributed
Computing, Applications and Technologies, pages 92—
98, 2011.

M. Jagemar. Mallocpool: Improving Memory Perfor-
mance Through Contiguously TLB Mapped Memory. In
2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), volume 1,
pages 1127-1130, 2018.

Svilen Kanev, Juan Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In ISCA ’15 Proceedings of the 42nd Annual
International Symposium on Computer Architecture,
pages 158-169, 2014.

Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David
Brooks. Mallacc: Accelerating Memory Allocation.
SIGARCH Comput. Archit. News, 45(1):33-45, April
2017.

Bradley C. Kuszmaul. Supermalloc: A Super Fast Mul-
tithreaded Malloc for 64-Bit Machines. SIGPLAN Not.,
50(11):41-55, June 2015.

Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J. Rossbach, and Emmett Witchel. Coordinated
and Efficient Huge Page Management with Ingens. In
Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’ 16, page
705721, USA, 2016. USENIX Association.

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan
Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and
Parthasarathy Ranganathan. Software-Defined Far Mem-
ory in Warehouse-Scale Computers. In Proceedings of
the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’19, page 317-330, New York,
NY, USA, 2019. Association for Computing Machinery.

Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When
Prefetching Works, When It Doesn’t, and Why. ACM
Transactions on Architecture and Code Optimization -
TACO, 9:1-29, 03 2012.

Daan Leijen, Ben Zorn, and Leonardo de Moura. Mi-
malloc: Free List Sharding in Action. Technical Report
MSR-TR-2019-18, Microsoft, June 2019.

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

Martin Maas, David G. Andersen, Michael Isard, Mo-
hammad Mahdi Javanmard, Kathryn S. McKinley, and
Colin Raffel. Learning-based Memory Allocation for
C++ Server Workloads. In 25th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

Martin Maas, Chris Kennelly, Khanh Nguyen, Darryl
Gove, Kathryn S. McKinley, and Paul Turner. Adaptive
huge-page subrelease for non-moving memory alloca-
tors in warehouse-scale computers. In Proceedings
of the 2021 ACM SIGPLAN International Symposium
on Memory Management, ISMM 2021, New York, NY,
USA, 2021. Association for Computing Machinery.

Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawk-
Eye: Efficient Fine-Grained OS Support for Huge Pages.
In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 19, page
347-360, New York, NY, USA, 2019. Association for
Computing Machinery.

Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel,
and Abhishek Bhattacharjee. CoLT: Coalesced Large-
Reach TLBs. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-45, page 258-269, USA, 2012. IEEE
Computer Society.

Bobby Powers, David Tench, Emery D. Berger, and An-
drew McGregor. Mesh: Compacting Memory Manage-
ment for C/C++ Applications. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2019, page
333-346, New York, NY, USA, 2019. Association for
Computing Machinery.

Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius
Rus, and Robert Hundt. Google-Wide Profiling: A Con-
tinuous Profiling Infrastructure for Data Centers. IEEE
Micro, pages 65-79, 2010.

John Robson. Worst Case Fragmentation of First Fit
and Best Fit Storage Allocation Strategies. Comput. J.,
20:242-244, 08 1977.

Joe Savage and Timothy M. Jones. HALO: Post-Link
Heap-Layout Optimisation. In Proceedings of the 18th
ACM/IEEE International Symposium on Code Genera-
tion and Optimization, CGO 2020, page 94—106, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck,
and M. Stumm. Continuous Deployment at Facebook
and OANDA. In 2016 IEEE/ACM 38th International

272

15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

[39]

[40]

[41]

[42]
[43]

[44]

Conference on Software Engineering Companion (ICSE-
C), pages 21-30, 2016.

Scott Schneider, Christos D. Antonopoulos, and Dim-
itrios S. Nikolopoulos. Scalable Locality-Conscious
Multithreaded Memory Allocation. In Proceedings of
the 5th International Symposium on Memory Manage-
ment, ISMM °06, page 84-94, New York, NY, USA,
2006. Association for Computing Machinery.

Raimund Seidel and Cecilia R Aragon. Randomized
search trees. Algorithmica, 16(4-5):464-497, 1996.

Akshitha Sriraman and Abhishek Dhanotia. Accelerom-
eter: Understanding Acceleration Opportunities for Data
Center Overheads at Hyperscale. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS °20, page 733-750, New York, NY,
USA, 2020. Association for Computing Machinery.

Redis Team. Redis 6.0.9 and 5.0.10 are out.

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the European Conference on Computer Sys-
tems (EuroSys), Bordeaux, France, 2015.

Wm. A. Wulf and Sally A. McKee. Hitting the Memory
Wall: Implications of the Obvious. SIGARCH Comput.
Archit. News, 23(1):20-24, March 1995.

USENIX Association

15th USENIX Symposium on Operating Systems Design and Implementation

273

	Introduction
	The challenges of coordinating Hugepages
	Overview of TCMalloc
	Temeraire's approach
	The overall algorithm
	HugeAllocator
	HugeCache
	HugeFiller
	HugeRegion
	Memory Release

	Evaluation of Temeraire
	Application Case Studies
	Fleet experiment
	Full rollout trajectories

	Strategies used in building Temeraire
	``Empirical'' distribution sampling
	Heap tracing
	Telemetry
	Experiment framework

	Future Work
	Related work
	Conclusion

