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Abstract
The NVMe zoned namespace (ZNS) is emerging as a new stor-
age interface, where the logical address space is divided into
fixed-sized zones, and each zone must be written sequentially
for flash-memory-friendly access. Owing to the sequential
write-only zone scheme of the ZNS, the log-structured file sys-
tem (LFS) is required to access ZNS solid-state drives (SSDs).
Although SSDs can be simplified under the current ZNS in-
terface, its counterpart LFS must bear segment compaction
overhead. To resolve the problem, we propose a new LFS-
aware ZNS interface, called ZNS+, and its implementation,
where the host can offload data copy operations to the SSD to
accelerate segment compaction. The ZNS+ also allows each
zone to be overwritten with sparse sequential write requests,
which enables the LFS to use threaded logging-based block
reclamation instead of segment compaction. We also pro-
pose two file system techniques for ZNS+-aware LFS. The
copyback-aware block allocation considers different copy
costs at different copy paths within the SSD. The hybrid
segment recycling chooses a proper block reclaiming policy
between segment compaction and threaded logging based on
their costs. We implemented the ZNS+ SSD at an SSD em-
ulator and a real SSD. The file system performance of the
proposed ZNS+ storage system was 1.33–2.91 times better
than that of the normal ZNS-based storage system.

1 Introduction
In the NVMe zoned namespace (ZNS) [9] interface, the logi-
cal address space is divided into fixed-sized zones. Each zone
must be written sequentially and reset explicitly for reuse. The
ZNS SSD has several benefits over legacy SSDs. First, perfor-
mance isolation between different IO streams can be provided
by allocating separate zones to each IO stream, which is use-
ful for multi-tenant systems. Second, if the zone size becomes
a multiple of the flash erase block size (64–1,024 KB), the
ZNS SSD can maintain a zone-level logical-to-physical ad-
dress mapping (i.e., mapping between zone and flash blocks)
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because each zone is sequentially written. The coarse-grained
mapping requires a small internal DRAM of SSD. Compared
with legacy SSDs, which require a large DRAM equivalent to
0.1% of storage capacity (e.g., 1 GB DRAM for 1 TB SSD)
for a fine-grained mapping, the DRAM usage of the ZNS SSD
is significantly reduced. In particular, because the mapped
flash blocks of a zone will be fully invalidated at zone reset,
the SSD-internal garbage collection (GC) is not required, and
thus, the log-on-log [34] problem can be solved by the GC-
less SSD. The over-provisioned space for GC is not necessary
anymore, and the unpredictable long delays by GC can be
avoided. The write amplification by GC can also be elimi-
nated, which will allow triple-level cell (TLC) or quad-level
cell (QLC) SSDs with low endurance to proliferate.

IO Stack for ZNS. Generally, new storage interfaces re-
quire revamping the software stack. For the ZNS, we need
to revise two major IO stack components, file system and IO
scheduler. First, the in-place updating file systems such as
EXT4 must be replaced with append logging file systems such
as the log-structured file system (LFS) to eliminate random
updates. Because a segment of LFS is written sequentially by
append logging, each segment can be mapped to one or more
zones. Second, the IO scheduler must guarantee the in-order
write request delivery for a zone. For example, an in-order
queue for each zone can be used, and the scheduler only needs
to determine the order of services between different zones.

Increased Host Overhead. Under the append logging
scheme of LFS, the obsolete blocks of a dirty segment must
be reclaimed by segment compaction (also called segment
cleaning or garbage collection), which moves all valid data
in the segment to other segments to make the segment clean.
The compaction invokes a large number of copy operations,
especially when the file system utilization is high. The host-
side GC must be performed in exchange for using GC-less
ZNS SSD, although the duplicate GCs by the log-on-log situ-
ation can be avoided. The overhead of host-side GC is higher
than that of device-side GC because the host-level block copy
requires IO request handling, host-to-device data transfer, and
page allocation for read data [20]. In addition, segment com-
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paction needs to modify file system metadata to reflect data
relocation. Moreover, the data copy operations for a segment
compaction are performed in a batch, and thus, the average
waiting time of many pending write requests is significant.
According to the experiments of F2FS [19] — one of the
widely used log-structured file systems, the performance loss
by segment compaction is about 20% when the file system
utilization is 90%. Therefore, it can be said that the current
ZNS focuses on the SSD-side benefit without considering
the increased complexity of the host. To simplify the design
of SSD, all the complicated things are passed to the host.
(Nevertheless, the host can benefit from the ZNS, in terms of
performance isolation and predictability.)

In addition, ZNS storage systems will involve diminishing
returns as we increase the bandwidth of SSD by embedding
more flash chips. The zone size of a ZNS device will be deter-
mined to be large enough to utilize the SSD-internal flash chip
parallelism. Therefore, a higher bandwidth of ZNS SSD will
provide a larger zone size, and the file system must use a larger
segment size accordingly. Then, the host suffers from segment
compaction overhead more seriously because the overhead
generally increases in proportion to the segment size [25]. To
improve IO performance and overcome diminishing returns,
a host-device co-design is required, which places each sub-
task of segment compaction in the most appropriate location
without harming the benefit of the original ZNS, instead of
simply moving the GC overhead from the SSD to the host.

LFS-aware ZNS. We need some device-level support to
alleviate the segment compaction overhead of LFS. Two ap-
proaches can be considered: compaction acceleration and
compaction avoidance. We propose a new LFS-aware ZNS
interface, called ZNS+, and its implementation, which sup-
ports internal zone compaction (IZC) and sparse sequen-
tial overwrite via two new commands of zone_compaction
and TL_open. A segment compaction requires four sub-tasks:
victim segment selection, destination block allocation, valid
data copy, and metadata update. Whereas all others must be
performed by the host file system, it is better to offload the
data copy task to the SSD, because the device-side data copy
is faster than the host-side copy. For compaction acceleration,
ZNS+ enables the host to offload the data copy task to the
SSD via zone_compaction.

To avoid segment compaction, LFS can utilize an alterna-
tive reclaiming scheme, called threaded logging [19, 26, 28],
which reclaims invalidated space in existing dirty segments
by overwriting new data. It requires no cleaning operations,
but generates random overwrites to segments. In the F2FS ex-
periments using a normal SSD [19], threaded logging showed
smaller write traffic and higher performance than segment
compaction. However, threaded logging is incompatible with
the sequential write-only ZNS interface owing to its random
writes. Therefore, the current F2FS patch for the ZNS is dis-
abling threaded logging [3]. In this paper, we will use the
term segment recycling to cover both segment compaction

and threaded logging.
The sparse sequential overwrite interface of ZNS+ is a re-

laxed version of the dense sequential append write constraint
in ZNS. For a zone opened via TL_open, the sparse sequential
overwrite is permitted for threaded logging. The ZNS+ SSD
transforms sparse sequential write requests to dense sequen-
tial requests by plugging the holes between requests with un-
touched valid blocks in the same segment (internal plugging)
and redirects the merged requests to a newly allocated flash
blocks. Similar to IZC, internal plugging internally copies the
valid data of a segment without involving any host-side oper-
ations. The only requirement of the write pattern for internal
plugging is that the block addresses of the consecutive writes
must be in the increasing order. Because the internal plugging
is handled between write requests, it improves the average
response time of write requests compared with the batch-style
segment compaction. Although there are significant exten-
sions in ZNS+ compared to the original ZNS, ZNS+ SSD
can provide the same merits of the original ZNS SSD such as
small mapping table, no duplicate GC, no over-provisioned
space, and performance isolation/predictability.

ZNS+-aware File System. The file system also needs to
be adapted to utilize the new features of ZNS+. First, an SSD-
internal data copy operation will use different copy paths de-
pending on the source and destination logical block addresses
(LBAs). For example, when the two LBAs are mapped to the
same flash chip, the copyback operation of flash memory can
be utilized, which moves data within a flash chip without off-
chip data transfers, thus reducing the data migration latency.
The copyback operation is currently in the standard NAND
interface [6], and its usefulness at SSD-internal garbage col-
lection has been demonstrated by many studies [15, 30, 33].
To fully utilize the copyback operations, we propose the
copyback-aware block allocation for segment compaction,
which attempts to allocate the destination LBA of a data copy
such that both the source LBA and destination LBA of the
target data are mapped to the same flash chip. The technique
can be extended to target other fast copy paths of SSDs.

Second, because ZNS+ supports both segment compaction
acceleration and threaded logging, the host file system needs
to choose one of those segment recycling policies. Although
threaded logging can avoid the segment compaction overhead,
it has several drawbacks, as will be explained at §3.3.2. Con-
sidering both the merits and demerits of threaded logging, we
propose the hybrid segment recycling technique for ZNS+,
which selects either threaded logging or segment compaction
based on their reclaiming costs and benefits.

We implemented the ZNS+ SSD at the SSD emulator of
FEMU [22] and an OpenSSD device [29]. In the experiments,
the file system performance of the storage system composed
of our modified F2FS and ZNS+ SSD was 1.33–2.91 times
better than that of the storage system based on the original
F2FS and ZNS SSD. The source code of ZNS+ is publicly
available at https://github.com/eslab-skku/ZNSplus.
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2 Background
2.1 SSD Architecture
Modern SSDs consist of multiple flash chips and adopt a
multi-channel and multi-way architecture for parallelism.
There are multiple parallel flash controllers (channels), and
each controller can access multiple flash chips (ways) in an
interleaved manner. Each flash chip has multiple flash erase
blocks, and each block is composed of multiple flash pages.
Flash pages cannot be overwritten until the corresponding
flash block is erased. Therefore, SSDs adopt an out-of-place
update scheme and use a special firmware, called the flash
translation layer (FTL), to manage the logical-to-physical
mappings that translate logical addresses used by the host
into physical addresses indicating the location within flash
memory chips. Typically, flash memory manufacturers rec-
ommend that the pages inside a flash block be programmed
sequentially in the page number order owing to inter-cell in-
terference. Because the flash page size in recent flash products
is usually larger than the logical block size (i.e., 4 KB), multi-
ple logically consecutive blocks will be written at a physical
flash page in a cluster. In this study, we refer to the logical
consecutive blocks mapped to a flash page as a chunk.

Flash memory chip generally supports read, program, erase,
and copyback commands. The copyback command is used
to copy data between flash pages within a flash chip without
off-chip data transfer1. The chunk is the basic unit of the copy-
back operation. Because the chip-internal data transfer cannot
check the error correction code (ECC) of the target page, the
bit error propagation problem exists. To cope with the issue,
the error checking can be performed by the flash controller at
the same time while doing the copyback operation. If an error
is detected, the copied page is invalidated and the corrected
data is programmed by the flash controller. Another solution
is to allow only a limited number of consecutive copybacks
using a threshold copyback counts, which is determined based
on copyback error characteristics of flash chip [15, 33].

2.2 Zone Mapping in ZNS SSD
The current NVMe standard interface defines ZNS commands
and zone types [5]. There are several zone management com-
mands, such as open, close, finish, and reset for a zone, as
well as read and write commands. A notable command under
discussion is simple copy, through which the host can order
the SSD to copy data internally from one or more source
logical block ranges to a single consecutive destination log-
ical block range. Although it is apparently similar to our
zone_compaction command, no studies regarding the issues
of the copy command are currently available, and simple
copy does not fit for our ZNS+, as will be explained at §3.

1A flash chip consists of multiple flash dies, each of which has multiple
flash planes. Specifically, the copyback can be used for a data copy within
a flash plane. In this study, we assume that a flash chip has one die and one
plane structure for simplicity. Therefore, we use the term "flash chip" instead
of "flash plane" to denote the target device for the copyback command.
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Figure 1: An example of zone and chunk mapping. With the
zone address, the second FBG in the FCG 1 is selected. With
the chunk offset, the third stripe in the selected FBG and the
third flash page (chip 2) in the stripe are targeted.

There are no zone mapping constraints in the ZNS speci-
fication. The physical locations of a zone and the chunks in
the zone within the storage device are transparent to the host.
Device vendors can choose different mapping policies that
consider internal design issues. We introduce a general and
efficient SSD-internal zone mapping policy, which can mini-
mize the size of required mapping information and maximize
the flash chip-level parallelism. Depending on the zone size,
one zone can be mapped to one or more physical flash blocks,
which are called the flash block group (FBG) mapped to the
zone. The zone size needs to be aligned to the size of the flash
block to prevent the creation of partially valid flash blocks.
To maximize the flash operation parallelism, the flash blocks
from a set of flash chips accessible in parallel will compose
the FBG of a zone, and the chunks of a zone need to be inter-
leavingly placed on the parallel flash chips. The number of
parallel flash chips for the chunk interleaving is referred to
as the zone interleaving degree Dzone, and the set of logically
consecutive chunks across the parallel flash chips is referred
to as a stripe. For a coarse-grained zone-to-FBG mapping, an
FBG has flash blocks at the same block offset in the parallel
flash chips, and the chunks of a stripe are located at the same
page offset in different flash blocks.

Dzone can be smaller than the maximum number of parallel
flash chips, Dmax. Then, Dzone needs to be a divisor of Dmax
to partition all the parallel flash chips of an SSD into the same
size of flash chip groups (FCGs). When NFCG denotes the
number of FCGs, NFCG = Dmax/Dzone. For a given logical
chunk address, SSD must determine the mapped flash page
of the chunk. Figure 1 presents an example of the zone and
chunk mapping, where Dzone is 4, and Dmax is 8. A logical
chunk address is divided into the zone address and chunk
offset. First, the mapped FBG of the target zone is determined
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with its zone address. We assume that the FCG of a zone is
statically determined by the least significant log2 NFCG bits
of the zone address (i.e., FCG ID in Figure 1). Therefore, the
i-th zone is mapped to the (i mod NFCG)-th FCG. Such a static
FCG mapping can reduce the size of zone mapping entry and
support our copyback-aware block allocation. The remaining
bits of zone address (i.e., zone ID) is used to determine the
FBG within the selected FCG. Because the FBG of a zone
is dynamically allocated whenever the zone is opened, SSD
must maintain the zone-to-FBG mapping table.

The chunk offset is composed of a stripe ID and a chip
ID. The former locates a stripe within the target FBG, and
the latter determines the target chip index within the target
FCG. The bit size of chip ID field is same to log2 Dzone, and
the j-th logical chunk of a zone is mapped to the ( j mod
Dzone)-th flash chip of the FCG allocated to the zone. Such a
direct mapping from chunk offset value can avoid chunk-level
fine-grained address mapping. The ZNS SSD only needs
to manage the zone-to-FBG mapping. The host can easily
calculate the mapped flash chip of a logical chunk by using
the FCG ID and chip ID in the logical chunk address without
knowing the SSD-internal zone-to-FBG mapping. When a
logical chunk needs to be copied to other logical address, the
corresponding flash page can be copied within ZNS+ SSD. If
the destination logical address is mapped to the same flash
chip, the copyback operation can be utilized. Otherwise, a
normal copy operation via read and write commands is used.

A zone can be reset via a reset command, which changes the
write pointer (WP) of the zone to the first block location to
overwrite the zone. The WP locates the block address where
new data can be written. Owing to the sequential write-only
scheme of the ZNS, the WP of a zone is always incremented
while the zone space is consumed. Because flash blocks can-
not be overwritten, a new FBG is allocated to the zone to be
reset, and the zone-to-FBG mapping is modified accordingly.
The old FBG can be reused for other zones after it is erased.

2.3 F2FS Segment Management
In this study, we target F2FS [19] as a ZNS-aware file system,
which is an actively maintained LFS. As shown in Figure 2,
F2FS maintains six types of segments (i.e., hot, warm, and
cold segments for each node and data) and uses the multi-
head logging policy. Only one segment can be open for each
type at a time. Separating hot and cold data into different
segments can reduce segment compaction cost. A node block
contains an inode or indices of data blocks, whereas a data
block contains either directory or user file data. Cold blocks in
the hot and warm segments are moved into the cold segments
during segment compaction. F2FS supports both append log-
ging and threaded logging. In the append logging, blocks are
written to clean segments, yielding strictly sequential writes.
On the other hand, threaded logging writes blocks to obsolete
space in existing dirty segments without cleaning operations.
F2FS uses an adaptive logging policy. When the number of
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Figure 2: F2FS disk layout and logging schemes.

free segments is sufficient, append logging is used first. How-
ever, if free segments become insufficient, threaded logging
is enabled not to consume further free segments, instead of
invoking segment compaction. However, threaded logging is
disabled in the current F2FS patch for ZNS, and thus segment
compactions will be frequently triggered at the F2FS for ZNS.

Regarding to segment compaction, F2FS supports both
foreground and background operations. The foreground com-
paction is invoked when there are no sufficient free segments
to process incoming write requests. Thus, write requests are
delayed during the compaction. The background compaction
is triggered only when the file system is idle and the number
of free segments is below a threshold. Therefore, the IO delay
due to the background compaction is insignificant. Because
the threshold is configured small enough so that the com-
paction does not occur frequently and thus does not harm the
lifespan of SSD, the invalidated space cannot be reclaimed in
time with only the background compaction, especially when
the file system utilization is high and there are a burst of write
requests. Therefore, it is important to optimize foreground
compaction to improve the overall IO performance. In this
paper, we focus on the foreground compaction performance.

3 ZNS+ Interface and File System Support

3.1 Motivation
Normal Segment Compaction. The overall process of nor-
mal LFS segment compaction consists of four tasks: victim
segment selection, destination block allocation, valid data
copy, and metadata update, as shown in Figure 3(a). The vic-
tim selection finds a segment with the lowest compaction
cost (¬). The block allocation allocates contiguous free space
from destination segments (). The data copy task moves all
valid data in the victim segment to the destination segments
via host-initiated read and write requests, which generate sig-
nificant data transfer traffic between the host and the storage
(®). The data copy task has read and write phases.

Read Phase. The host sends read requests for the valid
blocks of the victim segment to the SSD if they are not cached
at the page cache. Prior to sending the read requests, the corre-
sponding memory pages must be allocated in the page cache,
which may invoke write requests to the storage for page frame
reclamation. Because the target blocks to be copied are gen-
erally scattered at the logical address space, multiple read
requests are sent one by one. The SSD reads the target data
for a read request with several flash read operations, whose
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process can be overlapped at different flash chips. If the size of
read requests is small compared to the flash chip parallelism,
there will be many idle intervals of flash chips. The data read
from the flash chips are transferred to the host via a storage
interface such as NVMe. At the experiments using an SSD
emulator, we observed that the request submission/completion
handling and the device-to-host data transfer accounted for
about 7% and 44% of the total read latency, respectively. (De-
tailed experimental environments are presented in §4.)

Write Phase. This phase can start after all the read requests
issued at the read phase are completed. Because the LFS
sequentially allocates new blocks for write operations at the
destination segment in the append logging scheme, the file
system will make one large write request to reduce the request
handling overhead. Therefore, the file system waits until all
the target blocks are transferred to the page cache, instead of
immediately issuing a write request for each block when its
read operation is completed. As a result, there is a large idle
interval of the SSD, as shown in Figure 3(a).

Metadata Update. F2FS can maintain the consistency of
the file system by rolling data back to the most recent check-
point state when a sudden crash occurs. The file system writes
several modified metadata blocks and node blocks to the stor-
age to reflect the change in the data locations and then writes
a checkpoint block (¯). The metadata must be modified per-
sistently to reclaim the storage space that was occupied by
the valid blocks of the victim segment prior to segment com-
paction. Otherwise, data loss can occur when new data are
overwritten in the reclaimed space.

IZC-based Segment Compaction. Figure 3(b) presents
the compaction process under our IZC scheme. The data copy
task of the normal segment compaction is replaced by the copy

Table 1: Comparison between ZNS and ZNS+
ZNS ZNS+

Copy consecutive dest. range dest. LBAs
Command (simple copy) (zone_compaction)

Write dense seq. write spare seq. overwrite
Constraint can reuse only after reset (TL_open)
Mapping invisible visible chunk mapping

Transparency (identify_mapping)

offloading (¸), which sends zone_compaction commands
to transfer the block copy information (i.e., the source and
destination LBAs). Because the target data are not loaded into
the host page cache, the corresponding page cache allocation
is not required. The SSD-internal controller can schedule sev-
eral read and write operations efficiently while maximizing
flash chip utilization. Therefore, the segment compaction la-
tency can be significantly reduced. In addition, the in-storage
block copy can utilize copyback operations.

3.2 LFS-aware ZNS+ Interface
Table 1 compares the original ZNS and the proposed
ZNS+ interface. The ZNS+ supports three new commands,
zone_compaction, TL_open, and identify_mapping.
zone_compaction is used to request an IZC operation.
For comparison, the simple copy command of the current
ZNS standard delivers a single consecutive destination
LBA range. Under our ZNS+ interface, the destination
range can be non-contiguous; thus, our zone_compaction
command is designed to specify the destination LBAs rather
than a consecutive block range. TL_open is used to open
zones for threaded logging. The TL_opened zones can be
overwritten without reset, and the overwrite requests can be
sparse sequential. The host can use the identify_mapping
command to know the address bit fields which determine the
mapped flash chip of each chunk.

3.2.1 Internal Zone Compaction
The process of segment compaction in the ZNS+ storage
system is as follows.

(1) Cached Page Handling. The first step is to check
whether the corresponding page is being cached on the host
DRAM for each valid block in the victim segment. If the
cached page is dirty, it must be written to the destination seg-
ment and must be excluded from IZC operations. If the cached
page is clean, it can either be written via a write request or
internally copied via zone_compaction. If it is transferred
from the host via a write request, the corresponding flash read
operation can be skipped. Because it is already cached, page
allocation is also not needed. Instead, data transfer and write
request handling overheads are involved. By comparing the
flash read cost and data transfer cost, we can choose a proper
scheme to relocate the cached block. In general, high-density
flash memories based on TLC or QLC technologies have a
relatively higher access latency than the host-to-storage data
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transfer cost. However, the recent ZNAND [11] has an ex-
tremely short read latency; thus, it may be better to use the
in-storage copy for the cached blocks in the ZNAND SSD.

(2) Copy Offloading. Second, to offload the data copy
operations to the ZNS+ SSD, zone_compaction(source
LBAs, destination LBAs) commands are generated. The
data in the i-th source LBA is copied into the i-th destination
LBA by the ZNS+ SSD. When threaded logging is enabled
at F2FS, the segment compaction can select a TL_opened
segment as destination, similarly to the hole-plugging [25,31].
Then, the destination LBAs can be non-contiguous.

(3) Processing IZC. Finally, ZNS+ SSD processes
zone_compaction commands. It identifies copybackable
chunks that can be copied with copyback operations by check-
ing the mapped flash chips of their source and destination
LBAs. A chunk is copybackable only when all the blocks in
it must be copied. The SSD firmware issues flash read and
write operations for non-copybackable chunks.

Async Interface and Request Scheduling. The handling
of zone_compaction command is asynchronous. The com-
paction command issued by the host will be enqueued into the
command queue, and the host will not wait for the completion
of the command. Therefore, the following IO requests can be
immediately issued by the host before the completion of the
pre-issued zone compaction. The asynchronous handling can
improve the performance by eliminating the waiting time of
the following requests. Owing to the checkpoint scheme of
LFS, the asynchronous command handling does not harm the
file system consistency.

Under the asynchronous interface, there will be multiple
pending normal requests while handling zone compaction.
ZNS+ SSD can reorder normal requests to avoid the convoy
effect by the long latency of zone compaction. If the target
zone of a normal request is irrelevant to the zone compaction
request arrived in advance, it can be processed before the
completion of zone compaction. Even for a read request to
the destination zone of an on-going zone compaction, the
read request can be handled if the WP of the zone has passed
through the target block address of the read request.

3.2.2 Sparse Sequential Overwrite
Internal Plugging. To support threaded logging, ZNS+ sup-
ports sparse sequential overwrite. Although the write pattern
of threaded logging is incompatible with ZNS, there is one
consolation; threaded logging accesses the free space of a
dirty segment in an increasing order of block address because
it consumes the lower address of blocks first. Therefore, its
access pattern is sparse sequential (i.e., the WP of a zone will
not be decremented). While threaded logging overwrites a
segment, if the SSD firmware reads the skipped blocks be-
tween requests and merges them to the host-sent data blocks,
it can make dense sequential write requests to the target zone;
this technique is referred to as internal plugging. Because the
plugging operation is SSD-internal, the latency is shorter than
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Figure 4: Skipped block plugging for threaded logging

the host-level copy latency. In addition, the SSD can schedule
plugging operations efficiently across parallel flash chips to
hide their latency.

Figure 4 illustrates an example of internal plugging. Seg-
ment 1 is now mapped to Zone 1 in the file system, and FBG 6
is allocated to Zone 1, as shown in the zone-to-FBG mapping.
An FBG is composed of four flash blocks, each of which is in
different flash chips. The host file system allocates Segment
1 for threaded logging, and sends write requests to invalid
blocks to reclaim them while skipping valid blocks. For ex-
ample, the blocks of A and B in chunk 0 are skipped blocks.

Opening Zone for Threaded Logging. For internal plug-
ging, the SSD must perceive the skipped blocks in the target
segment of threaded logging. Owing to the in-order request
delivery of ZNS IO stack, the SSD can identify the skipped
blocks by comparing the start LBA of an incoming write
request with the current WP of the corresponding zone. How-
ever, only after a write request arrives, the preceding skipped
blocks can be recognized. Therefore, the plugging operation
will delay the handling of the write request. To solve this
problem, we added a special command, called TL_open(open
zones, valid bitmap), that delivers the valid bitmap of
the target zones selected for threaded logging (¬). Once an
allocated segment is informed via TL_open, the threaded log-
ging reclaims only the invalid blocks marked at the trans-
ferred bitmap. Therefore, the SSD can identify the blocks to
be skipped by threaded logging in advance and perform the
plugging before the following write request arrives.

LogFBG Allocation. Because a TL_opened zone will be
overwritten, the ZNS+ SSD resets the WP of the zone and
allocates a new FBG, called LogFBG, where new data to the
zone are written. For example, in Figure 4, the SSD allocates
a LogFBG, FBG 15, for Zone 1 (¶). For the TL_opened zone,
the data blocks of the zone are distributed into two FBGs,
i.e., the original FBG (FBG 6) and the LogFBG (FBG 15).
Therefore, both of them must be maintained as mapped FBGs
for the zone. To handle a read request, the SSD identifies
the block location of up-to-date data by comparing the target
LBA with the WP. If the target LBA is behind the WP (target
LBA < WP), the LogFBG is accessed. Otherwise, the original
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FBG is accessed for the read request. While the invalid blocks
of a TL_opened zone are overwritten by threaded logging,
all the valid blocks are copied into the LogFBG. Under a
static zone mapping policy, each logical chunk of a zone is
always mapped to the same flash chip whenever a new FBG
is allocated to the zone. Therefore, fully valid chunks can be
copied from the original FBG to the LogFBG via copyback
during internal plugging. The number of allocated LogFBGs
is determined by the number of TL_opened segments, which
is six at maximum in F2FS. Therefore, the space overhead
due to LogFBGs is negligible. When the TL_opened zone is
finally closed, the LogFBG replaces the original FBG, which
is deallocated for future reuse.

LBA-ordered Plugging. When the SSD receives two write
requests to chunk 0 in Figure 4 (), it reads the skipped blocks
of A and B from FBG 6, merges them with the host-sent
blocks of P and Q, and writes a full chunk at the LogFBG (·).
After handling the write requests to chunk 0, the SSD can
perceive that chunk 1 will be skipped by checking the valid
bitmap of the zone. To prepare the WP in advance for the
write request to chunk 2, the skipped chunk must be copied
to the LogFBG. Therefore, after processing a write request,
if the following logical chunks are marked as valid in the
valid bitmap, the ZNS+ SSD copies them to the LogFBG
while adjusting the WP (·-P, ¸-P, and ¹-P). This type of
plugging is called LBA-ordered plugging (LP), where each
plugging is performed at the current WP of the zone to follow
the LBA-ordered write constraint.

PPA-ordered Plugging. Although incoming data must be
written at the WP of zone, there is no need to perform the
internal plugging operation only at the WP. The internal plug-
ging can be done in advance at the block addresses in ahead
of the WP. We only need to consider that the flash pages in a
flash block must be programmed sequentially. Therefore, the
plugging operation of a fully valid chunk can be scheduled
in advance even when the current WP is behind the location
where the chunk must be copied to. A fully valid chunk can
be copied to a physical page address (PPA) if all the flash
pages at lower PPAs within the target flash block have been
programmed. For the example in Figure 4, chunk 3 can be
copied before the write requests to chunk 0 and chunk 2 arrive
because they use different flash chips. If chunk 1 has been
copied, chunk 5 can be copied even when the write requests
to chunk 2 and chunk 4 have not yet arrived. We call this
technique PPA-ordered plugging (PP), which considers only
the PPA-ordered write constraint. Whenever a flash page is
programmed at a LogFBG, the PPA-ordered plugging checks
the validity of the chunks mapped to the following flash pages
in the corresponding flash block and issues all possible plug-
ging operations for the flash block in advance. However, if
excessive plugging operations are issued, they may interfere
with the user IO request handling. To resolve this problem, the
plugging operations are processed in the background when
the target flash chip is idle. If there is no sufficient idle time,
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Figure 5: Copyback-aware block allocation

they are handled when the WP of the zone must pass the
skipped block locations.

Why Threaded Logging Improves Performance. We
can consider that the segment compaction cost restrained
by threaded logging is revived in the form of internal plug-
ging in the SSD. This is because the number of blocks to be
copied by internal plugging at threaded logging is equal to
the number of blocks to be copied at segment compaction for
the same segment. However, the metadata modifications to
reflect data relocation can be avoided by threaded logging. In
addition, the internal plugging cost can be hidden by utilizing
idle flash chips. Moreover, the plugging operations are dis-
tributed between normal write requests while minimizing the
average delay of write requests. On the contrary, the segment
compaction is a batch operation. No write requests can be
processed until the segment compaction is completely fin-
ished. Thus, ZNS+ system can show a better performance
when threaded logging is enabled. Because the host knows
the amount of skipped blocks within a segment, the internal
plugging does not harm the predictability of ZNS. Although
the internal plugging amplifies flash write operations, there
is no additional endurance degradation compared to segment
compaction, which also generates the same amount of flash
write operations to reclaim invalidated space.

3.3 ZNS+-aware LFS Optimization
3.3.1 Copyback-aware Block Allocation
Low Utilization of Copyback at LFS. For the valid blocks
to be relocated at segment compaction, new block locations
are sequentially allocated from a destination segment in the
order of their source LBAs in the original LFS. Therefore,
the scattered valid blocks in the victim segment are simply
compacted without holes between them at the destination
segment; in this type of scheme, most of the chunks will
not be copybacked. Figure 5(a) illustrates an example of
segment compaction under normal block allocation, in which
two logically consecutive chunks comprise a stripe over two
flash chips. Under normal block allocation, no chunks can be
copybacked in this example.

Chunk Mapping Identification. To maximize the usage
of copyback, we propose the copyback-aware block allocation.
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Figure 5(b) illustrates an example of segment compaction
under the copyback-aware block allocation. First, the file
system reserves contiguous free blocks at the destination seg-
ment as the number of valid blocks to be copied by segment
compaction. Second, the file system allocates the destination
chunk location from the reserved region for each fully valid
chunk in the source segment (e.g., chunk 1 and chunk 2 in the
example) such that both the source and destination chunks
are mapped to the same flash chip. Under a static chunk
mapping scheme, the host can easily calculate the mapped
flash chip number of a chunk if it knows which bit ranges
of logical chunk address determine the chip offset. For the
identify_mapping command, the ZNS+ SSD returns the
bit ranges of FCG ID and chip ID, shown in Figure 1. If two
chunk addresses have the same values of FCG ID and chip
ID, they are mapped to the same flash chip. The host queries
the chunk mapping information only while booting, and no
additional inquiry is required at run time. After handling all
the fully valid chunks, the destination block locations of the
remaining valid blocks are determined to fill all the free space
of the reserved region. For example, the new block locations
of A, B, K, and L in Figure 5(b) are allocated to the remaining
space and can be copied via flash read and write operations.

Maximizing Copyback Usage. If the fully valid chunks
in the source segment are not evenly distributed among mul-
tiple flash chips, some chunks cannot find the copyback-
able chunk locations from the reserved region and must be
copied to non-copybackable chunks. One solution is to al-
locate additional chunks in the destination segment to max-
imize the usage of copyback, while leaving some unused
blocks in the destination segment, which is possible because
the zone_compaction command can specify non-contiguous
destination ranges. Another issue is to use copyback for par-
tially invalid chunks (e.g., chunk 0 and chunk 3 in Figure 5).
By copying an entire chunk including invalid blocks via copy-
back, we can reduce the segment compaction time. Although
allocating more space in the destination segment can maxi-
mize the usage of copyback, the segment reclaiming efficiency
can be degraded. Considering this trade-off, a threshold for
the allowed additional space needs to be determined. A more
detailed consideration is beyond the scope of this study.

Extensions. The proposed copyback-aware block alloca-
tion can be extended for recent multi-core SSDs, where mul-
tiple embedded processors exist with each processor run-
ning an FTL instance to manage its own partitioned address
space and flash chips while utilizing the processor-level paral-
lelism [18, 35]. In the multi-core SSD, a zone can be mapped
across multiple partitions, and the inter-partition copy latency
will be longer than that of intra-partition copy because com-
munication overhead will be imposed for the inter-partition
operation. Therefore, a partition-aware block allocation will
be beneficial for the multi-partitioned ZNS+ SSDs.

Instead of the file system-level copyback-aware block al-
location, we can consider a device-level approach, where the

target block location is not specified by the host, and the SSD
determines the logical block locations to maximize the usage
of copyback and informs the file system of the allocated block
locations, similarly to the ideas of the nameless write [36]
and the zone append command defined in the standard ZNS
interface. This approach will enable copyback-aware block
allocation even when the host has no knowledge of the SSD-
internal chunk mapping.

3.3.2 Hybrid Segment Recycling
Although threaded logging can reduce the block reclamation
overhead, its reclaiming efficiency can be lower than that of
segment compaction in the ZNS+ owing to two reasons.

Reclaiming Cost Imbalance. First, threaded logging may
suffer from unbalanced reclaiming costs among different
types of segments. Whereas segment compaction selects a vic-
tim segment with the lowest compaction cost (i.e., the smallest
number of valid blocks) among all dirty segments, threaded
logging can select the target segment for a type of write re-
quest only from the same type of dirty segments to prevent
different types of data from being mixed in a segment. Even
when there are multiple segments whose blocks are mostly
invalidated, threaded logging cannot utilize them for a write
request if the types of those segments are different from the
data type of the write request. Instead, the same type of dirty
segment must be selected despite a high internal plugging
cost. In addition, unlike segment compaction, threaded log-
ging cannot move cold data into cold segments. The cold data
trapped in a segment must be copied by the internal plugging
each time the segment is opened for threaded logging.

Pre-Invalid Block Problem. Second, the reclaiming effi-
ciency of threaded logging will be further degraded if threaded
logging is used for a long period without checkpointing, which
is not mandatory for threaded logging. This is due to pre-
invalid blocks that are invalid but still referenced by in-storage
metadata and thus non-reclaimable. When a logical block is
invalidated by a file system operation but a new checkpoint is
still not recorded, the logical block becomes pre-invalid and
must not be overwritten because a crash recovery will need
to restore it. They must be copied by the internal plugging.
The pre-invalid blocks accumulate as threaded logging con-
tinues without checkpointing, whereas they can be reclaimed
by segment compaction because segment compaction accom-
panies checkpointing. The original F2FS prefers threaded
logging because the performance gain by avoiding segment
compaction is more significant than the drawback of reclaim-
ing inefficiency in threaded logging, which may be true in
legacy SSDs. However, the reclaiming inefficiency results in
a high internal plugging cost at the ZNS+ SSD.

Periodic Checkpointing. To solve the pre-invalid block
problem, we use the periodic checkpointing, which triggers
checkpointing whenever the number of accumulated pre-
invalid blocks exceeds θPI . For periodic checkpointing, the
file system must monitor the number of pre-invalid blocks. If
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checkpointing is invoked too frequently, the write traffic on
metadata blocks increases, and the flash endurance of SSD
will be harmed. Therefore, an appropriate value of θPI needs
to be determined considering the trade-off. From experiments
using several benchmarks, we identified that the overall perfor-
mance was maximized when θPI was around 128 MB. Thus,
θPI was configured to the value in the experiments in §4.

Reclaiming Cost Modeling. We propose the hybrid seg-
ment recycling (HSR) technique, which chooses a reclaiming
policy by comparing the reclaiming costs of threaded logging
and segment compaction. The reclaiming cost of a segment
under threaded logging, CT L, can be formulated as follows:

CT L = fplugging(Npre-inv +Nvalid) (1)

Npre-inv and Nvalid indicate the number of pre-invalid blocks
and the number of valid blocks, respectively. fplugging(N)
is the in-storage plugging cost for N blocks. Because the
plugging operation can be performed in the background,
fplugging(N) is less than on-demand internal copy cost. We set
fplugging(N) to be 90% of the on-demand copy cost based on
the experimental results on performance improvement by the
internal plugging.

Segment compaction only moves the valid blocks of the vic-
tim segment to the free segment. During segment compaction,
cold blocks are moved to cold segments, which will decrease
the future reclaiming cost of the target segment. However, it
must modify node blocks and metadata blocks to reflect the
change in block locations at the checkpointing. Therefore, the
reclaiming cost of segment compaction, CSC, can be expressed
as follows:

CSC = fcopy(Nvalid)+ fwrite(Nnode +Nmeta)−Bcold (2)

Nnode and Nmeta denote the numbers of the modified
node blocks and metadata blocks, respectively. fcopy(N) and
fwrite(N) are the copy cost and the write cost of N blocks, re-
spectively. Bcold represents the predicted future benefit from
cold block migration. When the victim segment of segment
compaction is a node segment, no additional node update
occurs; thus, Nnode is 0. To estimate fcopy(Nvalid), we can
assume that all the chunks are copied via in-storage copy
operations, and some portion of the copy operations can be
handled by copyback commands.

Using Approximate Cost. Whereas Npre-inv and Nvalid can
be easily calculated by examining the valid bitmap of each
segment, the calculations of Nnode and Nmeta are not simple.
They are determined by the number of node blocks associated
with the data blocks that are relocated at segment compaction.
It is highly expensive to precisely calculate each number dur-
ing the selection process of the reclaiming policy. Therefore,
we use approximate values for Nnode and Nmeta. Assuming
that they become larger in proportion to Nvalid , α×Nvalid can
be used instead of the real value of (Nnode +Nmeta). The value
of α depends on workloads, and thus, its average value can be
profiled at run time. For our target benchmarks, we observed
that α has an average value of 20%.

It is also difficult to predict the exact value of Bcold , and
thus, it is approximated to fplugging(β×Ncold), where Ncold is
the number of blocks unchanged across two consecutive TL-
based segment recyclings of the target segment, assuming that
β% of Ncold in the segment will be still valid when the segment
is TL_opened again next time. Therefore, fplugging(β×Ncold)
amount of internal plugging cost at the future threaded logging
can be avoided by moving the cold blocks at the current
segment recycling. The value of β also depends on workloads,
and its appropriate value can be profiled at run time.

By comparing CT L of the threaded logging and CSC of the
segment compaction, the HSR chooses one of the recycling
policies. Note that threaded logging and segment compaction
will select different victims because they examine different
candidates. When the reclaiming cost imbalance among dif-
ferent segment types is serious, segment compaction will be
chosen because it can find better victim segments.

4 Experiments
We evaluated the performance of ZNS+ SSD using an SSD
emulator, which was implemented based on FEMU [22]. In
the emulation environment, the host computer system used
the Linux 4.10 kernel and was equipped with an Intel Xeon
E5-2630 2.4 GHz CPU and 64 GB of DRAM. We allocated
four CPU cores, 2 GB of DRAM, 16 GB of NVMe SSD for
user workloads, and a 128 GB disk for the OS image to the
guest virtual machine. The emulated NVMe SSD consists of
16 parallel flash chips by default, which can be accessed in
parallel via eight channels and two ways per channel. The
type of flash chip was configured to either TLC, multi-level
cell (MLC), or ZNAND, as shown in Table 2. The default flash
medium was the MLC in our experiments. The data transmis-
sion link between the host and the SSD was configured to a
two-lane PCIe Gen2 with the maximum bandwidth of 600
MB/s per lane. The zone interleaving degree, Dzone, was set
to be the same as the maximum number of parallel flash chips
(i.e., Dzone = 16). Therefore, the default zone size of ZNS+
SSD is 32 MB, which is the total size of 16 flash blocks
distributed in 16 flash chips. When the number of parallel
flash chips was configured to a different value, the zone size
was also changed according to the size of the parallel FBG.
To determine the effect of copyback, we modified FEMU to
support the copyback operation. Table 2 shows the copyback
latency normalized by the latency of the copy operation using
the read-and-program commands. The copyback operation is
approximately 6–10% faster than the normal copy operation.

We modified F2FS version 4.10 to exploit the ZNS+ inter-
face. The complexity of F2FS was increased by 5.4% to imple-
ment ZNS+-aware F2FS (from 20,160 LoC to 21,239 LoC).
The F2FS segment size was configured to be equal to the zone
size; therefore, its default size is 32 MB. The copyback-aware
block allocation was applied, which was enabled by default
in the experiments. The filebench [4] (fileserver and varmail)
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Table 2: Flash memory configurations
TLC [24] MLC [23] ZNAND [11]

Flash page read latency 60 µs 35 µs 3 µs
Flash page program latency 700 µs 390 µs 100 µs

DMA from/to flash controller 24 µs 24 µs 3.4 µs
Normalized copyback latency 0.94 0.90 0.94
Flash page: 16 KB, Pages per flash block: 128, 16 flash chips (default)
Host interface: PCIe Gen2 2x lanes (max B/W: 1.2 GB/s)

Table 3: Benchmark configurations
fileserver 112,500 files, file size: 128KB, 14GB fileset, 50 threads
varmail 475,000 files, file size: 28KB, 12.7GB fileset, 16 threads

tpcc DB size: 12GB, 1GB buffer pool, 16 connections
YCSB DB size: 12GB, 1GB buffer pool, 32 connections

and OLTP benchmarks (tpcc [8] and YCSB [12] on MySQL)
were used for the evaluation. We set the file system size to
16 GB and determined the dataset size of each benchmark
such that the file system utilization was 90% by default. The
configuration of each benchmark is detailed in Table 3.

In the experiments, the following two different versions of
ZNS+ were used: IZC and ZNS+. While threaded logging is
disabled in IZC, it is enabled and the hybrid segment recy-
cling is used in ZNS+. The PPA-ordered plugging was used
by default in the experiments. The ZNS+ schemes were com-
pared with ZNS, which uses the original F2FS (ZNS patch ver-
sion) and ZNS SSD. ZNS uses the host-level copy to perform
segment compaction and does not utilize threaded logging.
Because each workload generates write requests without idle
intervals, no background compactions were invoked by F2FS.

4.1 Segment Compaction Performance
Figure 6 presents the average segment compaction latencies
of ZNS and IZC at various benchmarks. The SSD emulator was
used for the experiments. The compaction time is divided into
four phases (init, read, write, and checkpoint) and three phases
(init, IZC, and checkpoint) for ZNS and IZC, respectively. The
init phase reads several metadata blocks of all the files related
to the victim segment. Because these metadata are generally
being cached in the page cache, the init phase is short.
IZC reduced the zone compaction time by about 28.2–

51.7%, compared to ZNS, by removing the host-level copy
overhead and utilizing copyback operations. The ratios of the
copyback operations among all the in-storage copy operations
were 87%, 74%, 81%, 83%, and 83% during the workloads
of the fileserver, varmail, tpcc, YCSB-a, and YCSB-f, respec-
tively. Because the checkpoint phase must wait for the persis-
tent completion of the previous phases, the checkpoint latency
includes the waiting time for the completion of the write op-
erations or the IZC operations. Therefore, the checkpoint
latency was increased during the OLTP workloads by the IZC
technique. The segment compaction by host-level copy op-
erations can be disturbed by user IO requests. Whereas the
IO traffic of the filebench workloads is intensive, those of
the OLTP workloads are small. Therefore, the performance
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Table 4: The bandwidth (MB/s) at fileserver workload in dif-
ferent NAND flash media

TLC MLC ZNAND
ZNS 79.5 (1.00x) 84.5 (1.00x) 104.0 (1.00x)

IZC-H 113.4 (1.43x) 154.6 (1.83x) 218.9 (2.10x)
IZC-D 96.5 (1.12x) 148.0 (1.75x) 242.4 (2.33x)

improvement by IZC is more significant during filebench
workloads because the in-storage copy operations mitigate
the interference with user IO requests for using the host re-
source and the host-to-device DMA bus.

We also compared two different policies on fully cached
logical chunks, presented in §3.2.1, using different types of
NAND media in Table 2. Whereas the fully cached chunks
are directly written by the host in IZC-H, all the chunks are
copied by device in IZC-D. Exceptionally, if the latest version
of a block only exists in the host DRAM with a dirty flag, the
host directly writes the block to the storage.

Table 4 compares the bandwidths of different copy schemes
in different flash media. The performance gain by IZC is more
significant for a faster flash media because the host IO stack
contributes a larger portion of the IO latency for faster flash
media. IZC-H and IZC-D offloaded 89.6% and 99.4% of block
copy operations to the ZNS+ SSD, respectively. This indi-
cates that about 10.4% of the total chunks to be copied were
cached in the host DRAM (clean: 9.8%, dirty: 0.6%). When
the TLC flash memory was used, IZC-H outperformed IZC-D
because the TLC flash read latency is longer than the host-
level write request handling overhead. However, the perfor-
mance difference between IZC-H and IZC-D is reduced when
the MLC flash is used. If the flash access time is further re-
duced by using ZNAND, IZC-D delivers a better performance
(i.e., offloading all copy requests to the storage, regardless of
whether the target blocks have been cached, achieves better
performance). In the following experiments using MLC flash
memory, we used IZC-H by default.

4.2 Threaded Logging Performance
We compared the overall performances of the benchmarks
under ZNS, IZC, and ZNS+ to evaluate the effects of in-storage
zone compaction and threaded logging support, as shown in
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Figure 7: Effect of the threaded logging support

Table 5: Ratios of threaded logging (TL) and background
plugging (BP) at ZNS+ (%)

Fileserver Varmail TPCC YCSB-a YCSB-f
TL 94.8 92.1 85.8 89.8 89.7
BP 11.3 31.7 24.7 34.1 35.1

Figure 7(a). The copyback-disabled versions of IZC and ZNS+,
IZC(w/o cpbk) and ZNS+(w/o cpbk), were also examined.
Figure 7(b) presents the file system metadata overhead, which
indicates the write traffic on the node blocks and the file
system metadata blocks. The overhead values are normal-
ized to the user data traffic. IZC presents about 1.21–1.77
times higher throughputs than that of ZNS because IZC can
significantly reduce segment compaction time. ZNS and IZC
present similar metadata overheads because they only use
segment compaction for invalidated space reclamation. In the
OLTP workloads, the segment compaction cost occupies a
smaller portion of the total IO latency compared to filebench
workloads. Therefore, the overall performance improvements
at the OLTP workloads are less than those of the filebench
workloads.

ZNS+ outperforms both ZNS and IZC for all benchmarks.
ZNS+ presents approximately 1.33–2.91 times higher through-
puts than that of ZNS. As shown in Figure 7(b), ZNS+ modifies
fewer node blocks and metadata blocks because threaded
logging does not invoke checkpointing. ZNS+ reduced the
node and metadata write traffic by about 48%, compared to
IZC, for the varmail workload. Table 5 presents the ratio of
the segments reclaimed by threaded logging in ZNS+. In all
the workloads, more than 85.8% of the reclaimed segments
are handled by threaded logging in ZNS+, because our pe-
riodic checkpoint scheme limits the number of pre-invalid
blocks. For the fileserver and varmail workloads, which up-
date file system metadata frequently, ZNS+ presents significant
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Figure 8: Performance at various file system utilizations (file-
server workload)

improvements over IZC because threaded logging achieved a
high reclaiming efficiency during node segment reclaiming.
Table 5 also shows the ratio of the blocks copied in the back-
ground by the PPA-ordered plugging among all the copied
blocks. The ratio of background plugging is high at the fsync-
intensive workloads (varmail, tpcc, and YCSB) because the
small-sized fsync requests cause frequent idle intervals of the
flash chips. Since the average background plugging ratio is
about 27%, a significant portion of internal plugging overhead
was hidden in the ZNS+ SSD.

We also compared the performances of ZNS schemes while
varying the file system utilization. By changing the file-set
size of the target workload, we controlled the file system uti-
lization. Figure 8 presents the workload throughput and the
write amplification factor (WAF) for each technique for the
fileserver workload. The WAF is the total write traffic invoked
by the file system (including data block writes, node block
writes, metadata updates, segment compaction, and internal
plugging) divided by the write traffic generated by the user
workload. The WAF values of IZC and ZNS are similar. As
the file system utilization increases, the WAF increases be-
cause segment compaction must copy a larger number of valid
blocks, and segment compaction is invoked more frequently.
Because threaded logging reduces the number of node and
metadata updates, ZNS+ shows lower WAF values than those
of IZC. The performance gain by IZC or ZNS+ over ZNS in-
creases as the file system utilization increases because the
segment recycling cost is more significant at a higher file
system utilization.

4.3 SSD-internal Chip Utilization
We measured the effects of the proposed techniques on flash
chip utilization, as shown in Figure 9. The IZC technique
can increase the chip utilization by reducing the idle intervals
invoked during the host-level copy operations, as shown in
Figure 3. A higher flash chip utilization generally results in
a higher IO performance. To measure the effect of the PPA-
ordered plugging technique, which utilizes idle flash chips,
we observed chip utilization for the following two different
plugging schemes of ZNS+: LBA-ordered plugging (LP) and
PPA-ordered plugging (PP). Whereas LP copies the following
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Figure 9: Flash chip utilization in different ZNS schemes

skipped blocks just after handling a write request, PP pro-
cesses all the possible plugging operations whenever each
flash chip is idle.

In Figure 9, IZC and ZNS+ present higher chip utilizations
than that of ZNS for all workloads. Whereas ZNS+(LP) can
utilize the idle interval between two consecutive write re-
quests, ZNS+(PP) can overlap the plugging operations with
normal write request handling by utilizing idle flash chips.
Therefore, ZNS+(PP) showed higher chip utilizations com-
pared to ZNS+(LP). The performance improvements achieved
by the different plugging techniques were similar to the chip
utilization improvements by them.

Figure 10 presents the change in chip utilization for the
fileserver workload. We started to measure the utilization
after the file system enters a steady state, where segment re-
claiming occurs consistently. While a black dot represents the
average utilization of a 100-ms interval, the red line indicates
the change in the average utilization of a 5-s moving interval.
Under the ZNS technique, many low utilization intervals were
observed at less than 20% owing to host-level copy operations
during segment compaction. IZC eliminated most of the low
utilization intervals via in-storage copy operations. ZNS+ in-
creased chip utilization significantly owing to the background
plugging operation. A few low utilization intervals at ZNS+
were generated when segment compaction was chosen by the
hybrid segment recycling, or the checkpoint was recorded by
the periodic checkpointing. However, the periodic checkpoint-
ing is indispensable for improving reclaiming efficiency by
controlling the maximum number of pre-invalid blocks.

4.4 Copyback-aware Block Allocation
Figure 11 compares the performances under the copyback-
aware block allocation (CAB) and the copyback-unaware
block allocation (CUB) for the fileserver workload while vary-
ing the number of parallel flash chips in the SSD. Generally,
the IO performance is improved as the number of flash chips
increases because of the increased IO parallelism. In our ex-
periments, the number of flash chips determined the zone
size, and the file system segment size was configured to be
equal to the zone size. Therefore, as the number of flash chips
increased, the segment size also increased.

Figure 11(a) presents the bandwidth of each technique.
When there are only a few parallel flash chips, the perfor-
mance difference between ZNS and our techniques is insignif-

icant because the maximum internal bandwidth of SSD is
extremely low, causing ZNS to fully utilize the parallel flash
chips using the host-level copy. In contrast, as the number of
flash chips increases, the proposed ZNS+ techniques signifi-
cantly outperform ZNS.

As a larger segment is used, it takes a longer time to reclaim
a segment because it will have more valid blocks. The cost of
checkpoint operations also increases with a large segment con-
figuration. Therefore, ZNS and IZC present slow increase rates
in bandwidth as the chip-level parallelism increases; in con-
trast, ZNS+ shows a faster increase rate in bandwidth because
the increased block copy operations for large segments can be
performed in the background by the PPA-ordered plugging.
In addition, because threaded logging invokes fewer metadata
updates compared to segment compaction, the checkpoint
overhead does not increase significantly when the segment
size is large. Consequently, the performance gap between IZC
and ZNS+ increases as the number of flash chips increases.

Figure 11(b) presents the distribution of two different SSD-
internal copy operations — copyback (cpbk) and read-and-
program (R/P) — used to copy valid blocks during segment
recycling. As the number of flash chips increases, the ratio of
cpbk decreases linearly under CUB, because chunks are dis-
tributed into a larger number of chips. However, CAB causes
more than 80% of the copy requests to be processed by copy-
back operations. Therefore, the performance of IZC-CAB is
about 1.13 times better than that of IZC-CUB when the number
of flash chips is 32. In the experiments, the copyback opera-
tion was configured to reduce the latency of copy operation
by about 10% compared to the read-and-program operation,
as shown in Table 2. Thus, a 13% performance improvement
by CAB is reasonable.

As shown in Figure 11(b), the copyback ratio of ZNS+ is
high despite CAB being disabled, and the number of flash
chips is significant. This is because ZNS+ processes approxi-
mately 95% of the reclaimed segments with threaded logging.
The fully valid chunks to be copied in the internal plugging
can be copied using flash copyback operations, as shown
in Figure 4. Therefore, the performance difference between
ZNS+-CUB and ZNS+-CAB is insignificant.

4.5 Performance at High H/W Parallelism
Figure 12(a) shows the performance change while varying the
parallelism of host-to-device PCIe communication and flash
chips. The PCIe communication parallelism was adjusted by
changing the number of lanes, each of which was assumed
to provide 600 MB/s of bandwidth. As the IO bandwidth
increased, the number of flash chips was also configured to a
larger value, because the total flash chip bandwidth must be
high enough to utilize the increased IO bandwidth. The zone
interleaving degree was configured to the total number of flash
chips. Therefore, the zone size and the segment size increased
as the number of flash chips increased. Although the data
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Figure 10: Flash chip utilization for fileserver workload
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Figure 11: Performance comparison for varying chip-level
parallelisms (fileserver workload)

transfer time between the host and the SSD can be reduced at
a higher PCIe bandwidth, the performance of ZNS shows little
improvements by the increased parallelism. This is due to the
low chip utilization at a high chip parallelism, as shown in
Figure 12(b), which is caused by idle intervals in SSD during
segment compaction. Consequently, the performance gain by
IZC or ZNS+ increases as the H/W parallelism increases.

4.6 Real SSD Performance
We also implemented a prototype of the ZNS+ SSD by modi-
fying the firmware of the OpenSSD Cosmos+ platform [29]
to evaluate the effects of the proposed techniques on a real
system. The prototype ZNS+ SSD has two limitations com-
pared to the SSD implemented in the FEMU emulator. First,
the flash memory controller on Cosmos+ OpenSSD does not
support the flash memory copyback operation; therefore, the
ZNS+ SSD firmware cannot utilize it. Second, the flash mem-
ory controller does not support the partial page read operation;
the entire 16 KB of the flash page must be read. Thus, SSD
must use several memcopy operations to copy partially valid
logical chunks, causing significant performance degradation,
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Figure 12: Performance at different communication and flash
chip parallelisms (fileserver workload)
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Figure 13: Performance result at a real SSD device.

which can be easily fixed if a new flash controller is designed
to support the internal copy. However, because we cannot
modify the flash controller of the Cosmos+ platform, the copy
requests of only fully valid logical chunks were offloaded
to the SSD, and the copyback operations were replaced by
the read-and-program operations in the experiments. To im-
plement ZNS+ SSD, the number of firmware code lines was
increased only by 6.3% (from 17,242 LoC to 18,334 LoC)
compared to the ZNS implementation.

Figure 13 shows the performance improvement achieved
by ZNS+ over ZNS for our prototype ZNS+ SSD. Owing to
the limitations of Cosmos+ OpenSSD, the performance im-
provement in the real SSD is less significant compared to the
emulation-based experiments. Nevertheless, ZNS+ improves
the performance by about 13–87% compared to ZNS by mini-
mizing IO request handling overhead and increasing flash chip
utilization. The performance improvements by IZC are about
3–23%. If the flash controller is upgraded considering the
internal copy operation, we will achieve higher performance
improvements.
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5 Related Work

Currently, SSD-based storage systems use a black-box model,
where the host has no knowledge of the internal structure
and management of the SSD. Such a black box model can
decouple the host system and the SSD device while enabling
them to communicate with each other via a simple IO inter-
face; however, such a design causes several problems. First,
duplicate logging operations and GCs can be performed in
both the host and the SSD; this is called the log-on-log [34]
problem. Second, it is difficult for the host to predict the IO
latency owing to the complex internal operations of SSDs.

To overcome the limitations of the black box model, sev-
eral studies proposed white- or grey-box models for the
SSD, which expose essential knobs to control data place-
ment, IO predictability, and IO isolation. AMF [21] pro-
posed a new block interface that supports append-only IO
via read/write/trim commands and an LFS for the interface. It
solved the log-on-log problem by a direct mapping between
the file system’s segment and SSD’s parallel flash erase blocks.
Then, the SSD-internal GC becomes unnecessary because the
segment is written only via the append-only scheme. It can
also reduce the SSD-internal resource by using coarse-grained
mapping instead of 4KB-level fine-grained mapping.

The open-channel SSD (OC-SSD) [10] exposes its hard-
ware geometry to the host. Therefore, the host can manage
flash page allocation and logical-to-physical mapping. Be-
cause the host initiates GC to reclaim invalid flash pages, the
IO latency can be controlled by the host. Recently, the OC-
SSD 2.0 specification [7] defined the vector chunk copy
command, which is an interface for copying data inside the
SSD. Our zone_compaction command is similar to the vec-
tor chunk copy command of OC-SSD. However, we are tar-
geting the ZNS SSD, which maintains a zone-level address
mapping in the device, and we propose a new block allocation
technique to utilize the copyback operation of flash memory.

Multi-streamed SSDs (MS-SSDs) [17] can be considered
to use a grey-box model. The host can specify the stream
ID of each write request, and the MS-SSD guarantees that
different streams of data are written into different flash erase
blocks. If the stream ID of each write request is assigned
based on the lifetime of its data, each flash erase block will
have data with similar lifetimes, and thus, the GC cost can be
reduced. Whereas the MS-SSD is based on the legacy SSD
managed by a fine-grained address mapping, our ZNS+ SSD
uses a coarse-grained mapping, and it is GC-less owing to
the sequential write-only constraint of the ZNS. Instead, our
ZNS+-aware LFS writes different lifetimes of data at different
segments to reduce the host-level segment compaction cost.

The ZNS is an industry standardization for the open-
channel interface. The ZNS interface is beneficial for
flash memory-based SSDs or shingled magnetic recording
drives [14, 32] owing to the sequential write-only constraint
of the storage media. Compared to the open-channel interface,

the ZNS provides a higher level of abstraction. Instead of
directly managing the physical flash chips of an SSD, the host
accesses the sequential writable zones and uses special com-
mands to change the write pointer and the state of each zone.
F2FS [19] and btrfs [27] have been patched to support zoned
block devices in Linux kernel 4.10 and 4.14, respectively. In
the patched F2FS [3], the file system’s segment size is set to
be equal to the zone size. It also disables the in-place-update
and threaded logging features that can cause non-sequential
writes. The patched btrfs [2] modifies the block allocation
algorithm and creates a new IO path to ensure sequential ac-
cess within the zone. In ZoneFS [1], each zone is shown as
an append-only file. Thus, user applications can access the
zoned block device via a file interface. These ZNS-aware file
systems will require zone compaction operations in any form.
However, they do not have any optimization techniques to
reduce the host-level zone compaction overhead.

One of the recent popular research issues is in-storage com-
puting. By offloading the host-side operations to the SSD, we
can reduce the computing load of the host system. When a re-
duce operation, such as filtering and counting, is offloaded, the
data traffic between the host and the storage can be reduced
significantly [13, 16]. Recently, the SSD-internal bandwidth
has exceeded the host IO interface bandwidth as more flash
chips are embedded for a large SSD capacity. Therefore, data
traffic reduction by in-storage computing is highly beneficial
for recent SSDs. Our ZNS+ is also a solution that can reduce
data traffic of large-capacity SSDs.

6 Conclusion and Future Work
The current ZNS interface imposes a high storage reclaiming
overhead on the host to simplify SSDs. To optimize the overall
IO performance, it is important to place each storage man-
agement task in the most appropriate location and make the
host and the SSD cooperate. To offload block copy operations
to the SSD, we designed ZNS+, which supports in-storage
zone compaction and sparse sequential overwrite. To utilize
the new features of ZNS+, we also proposed ZNS+-aware file
system techniques, i.e., the copyback-aware block allocation
and the hybrid segment recycling. In future work, we plan to
optimize various ZNS-aware file systems and applications to
utilize the ZNS+. We will also study the in-storage copyback-
aware block allocation and the partition-aware block alloca-
tion for multi-core SSDs to minimize the number of block
copy operations between different partitions.
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