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Abstract

Graph Neural Networks (GNNs) have gained significant atten-
tion in the recent past, and become one of the fastest growing
subareas in deep learning. While several new GNN architec-
tures have been proposed, the scale of real-world graphs—in
many cases billions of nodes and edges—poses challenges
during model training. In this paper, we present P>, a sys-
tem that focuses on scaling GNN model training to large
real-world graphs in a distributed setting. We observe that
scalability challenges in training GNNs are fundamentally
different from that in training classical deep neural networks
and distributed graph processing; and that commonly used
techniques, such as intelligent partitioning of the graph do not
yield desired results. Based on this observation, P> proposes
a new approach for distributed GNN training. Our approach
effectively eliminates high communication and partitioning
overheads, and couples it with a new pipelined push-pull par-
allelism based execution strategy for fast model training. P3
exposes a simple API that captures many different classes
of GNN architectures for generality. When further combined
with a simple caching strategy, our evaluation shows that P3 is
able to outperform existing state-of-the-art distributed GNN
frameworks by up to 7 x.

1 Introduction

Deep learning, in the form of Deep Neural Networks (DNNs),
has become the de-facto tool for several challenging applica-
tions in diverse fields such as computer vision [27], speech
recognition [28] and natural language processing [18], where
they have produced results on par with human experts [9].
In the recent past, there has been a significant interest in
Graph Neural Networks (GNNs)—neural networks that op-
erate on graph structured data—which has made them one
of the fastest growing subareas in deep learning [25]. Due to
the expressiveness of graphs in capturing the rich relational
information between input elements, GNNs have enabled
breakthroughs in many important domains including recom-
mendation systems [51,66], knowledge graphs [53], and drug
discovery [46,58].

In a GNN, the nodes in the input graph are associated
with features and labels. Typical tasks in GNNs include node
classification (predicting the class label of a node) [41], link
prediction (predicting the possibility of a link between given
nodes) [70] and graph classification (predicting the class label
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of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure to learn representations—Ilow-
dimensional vector embeddings—of nodes. Thus, learning
such deep encodings is the key goal of GNNs. Several novel
GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17,41] and Graph
Attention Networks (GATSs) [59]. While each have their own
unique advantages, they fundamentally differ in zow the graph
structure is used to learn the embeddings and what neural net-
work transformations are used to aggregate neighborhood
information [64].

At a high level, GNNs learn embeddings by combining
iterative graph propagation and DNN operations (e.g., ma-
trix multiplication and convolution). The graph structure is
used to determine what to propagate and neural networks
direct how aggregations are done. Each node creates a k-hop
computation graph based on its neighborhood, and uses their
features to learn its embedding. One of the key differentiators
between training GNNs and DNNs is the presence of depen-
dencies among data samples: while traditional DNNs train
on samples that are independent of each other (e.g., images),
the connected structure of graph imposes dependencies. Fur-
ther, it is common to have a large number of dense features
associated with every node—ranging from 100s to several
1000s [29, 66, 68]—in the graph. Due to this, the k-hop com-
putation graphs created by each node can be prohibitively
large. Techniques such as neighborhood sampling [24] help
to some extend, but depending on the graph structure, even
a sampled computation graph and associated features may
not fit in the memory of a single GPU, making scalability a
fundamental issue in training GNNs [71]. With the prevalence
of large graphs, with billions of nodes and edges, in academia
and the industry [55], enabling GNN training in a distributed
fashion' is an important and challenging problem.

In this paper, we propose P>,” a system that enables ef-
ficient distributed training of GNNs on large input graphs.
P3 is motivated by three key observations. First, due to the
data dependency, we find that in distributed training of GNNZ,
a major fraction of time is spent in network communication
to generate the embedding computation graph with features.
Second, we notice that relying on distributed graph processing
techniques such as advanced partitioning schemes, while use-
ful in the context of graph processing, do not benefit GNNs

1Using more than one machine, each with 1 or more GPUs.
2for Pipelined Push-Pull.
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and in many cases could be detrimental. Finally, due to the
network communication issue, we observed that GPUs in dis-
tributed GNN training are underutilized, and spend as much
as 80% of the time blocked on communication (§2). Thus, P>
focuses on techniques that can reduce or even eliminate these
inefficiencies, thereby boosting performance.

P3 is not the first to address GNN scalability challenges.
While there are many available frameworks for GNN training,
a majority of them have focused on single machine multi-
GPU training and limited graph sizes [20, 45, 47]. Popular
open-source frameworks, such as the Deep Graph Library
(DGL) [1] have incorporated distributed training support. But
as we show in this paper, it faces many challenges and ex-
hibits poor performance due to high network communication.
ROC [36] is a recent system that shares the same goal as P3
but proposes a fundamentally different approach. ROC exten-
sively optimizes GNN training using a sophisticated online
partitioner, memory management techniques that leverage
CPU and GPU, and relies on hardware support such as high
speed interconnects (NVLink and InfiniBand). In contrast, p3
only assumes PCle links and Ethernet connection, and doesn’t
rely on any intelligent partitioning scheme. During training,
ROC requires movement of features across machines, while in
P3, features are never transmitted across the network. Finally,
our evaluation datasets are significantly larger than ROCs,
which helped us uncover several challenges that may have
been missed with smaller graphs.

To achieve its goal, P? leverages a key characteristic of
GNNs: unlike traditional DNNs where the data samples
(e.g., images) are small and model parameters are large (e.g., 8
billion for Megatron [56], 17 billion for TuringNLG [7]),
GNNSs have small model parameters but large data samples
due to the dense feature vectors associated with each node’s
sampled computation graph. As a result, movement of these
feature vectors account for the majority of network traffic
in existing GNN frameworks. In P3, we avoid movement of
features entirely, and propose distributing the graph structure
and the features across the machines independently. For this,
it only relies on a random hash partitioner that is fast, compu-
tationally simple and incurs minimal overhead. Additionally,
the hash based partitioning allows work balance and efficiency
when combined with other techniques P? incorporates (§3.1).

During embedding computation, P* takes a radically dif-
ferent approach. Instead of creating the computation graph
by pulling the neighborhood of a node and the associated
features, P> only pulls the graph structure, which is signifi-
cantly smaller. It then proposes push-pull parallelism, a novel
approach to executing the computation graph that combines
intra-layer model parallelism with data parallelism. P> never
moves features across the network, instead it pushes the com-
putation graph structure in the most compute intensive layer
(layer 1) to all the machines, and thereafter executes opera-
tions of layer 1 using intra-layer model parallelism. It then
pulls much smaller partial activations, accumulates them, and

—

Layer 2

Figure 1: A two-layer GNN that uses DNN at each layer along
with iterative graph propagation for learning.

proceeds to execute operations of the remaining k — 1 layers
using data parallelism (§3.2).

Due to the partitioning strategy and the push-pull paral-
lelism based execution, P3 is able to use a simple pipelining
technique that overlaps most of the computation and commu-
nication efficiently, thus effectively hiding (the already small)
communication latencies (§3.3). Further, the partitioning strat-
egy also enables P3 to propose a simple caching mechanism
that greedily caches graph and/or feature partitions on mul-
tiple machines if memory permits for further reduction in
network communication (§3.4). P*’s proposed techniques are
general and are applicable to several state-of-the-art GNN ar-
chitectures. P? also wraps all these optimizations in a simple
P-TAGS API (partition, transform, apply, gather, scatter
and sync) that developers can use to write new GNN architec-
tures that can benefit from its techniques (§3.5).

The combination of these techniques enable P3 to outper-
form DGL [1], a state-of-the-art distributed GNN framework,
by up to 7x. Further, P3 is able to support much larger graphs
and scale gracefully (§5).

We make the following contributions in this paper:

* We observe the shortcomings with applying distributed
graph processing techniques for scaling GNN model train-
ing (§2). Based on this, P? takes a radically new approach
of relying only on random hash partitioning of the graph
and features independently, thus effectively eliminating the
overheads with partitioning. (§3.1)

« P3 proposes a novel hybrid parallelism based execution
strategy that combines intra-layer model parallelism with
data parallelism that significantly reduces network com-
munication and allows many opportunities for pipelining
compute and communication. (§3.2)

+ We show that P? can scale to large graphs gracefully and
that it achieves significant performance benefits (up to 7x
compared to DGL [1] and up to 2x compared to ROC [36])
that increase with increase in input size. (§5)

2 Background & Challenges

We begin with a brief background on GNN, and then motivate
the challenges with distributed training of GNNs.
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Figure 2: Existing GNN frameworks combine distributed graph
processing and DNN techniques.

2.1 Graph Neural Networks

A GNN is a neural network that operates on graph structured
data as input. The input graphs contain nodes (entities), and
edges (relation between nodes) and features for all nodes. The
basic operation in GNNSs is to obtain the representations of
nodes in the graph. They map nodes to a d-dimensional em-
bedding space such that similar nodes (e.g., by proximity) in
the graph are embedded close to each other. To obtain these
embeddings, GNNs combine feature information associated
with the nodes and the graph structure using information prop-
agated and transformed from its neighborhood. In computing
the embedding, the graph structure indicates what is prop-
agated, and a neural network is used to determine how the
propagated information is transformed. The exact neighbor-
hood from which the embedding is derived is configurable,
and typically GNNs use k (usually 2 or more) hops from a
node [26]. The neural network which transforms informa-
tion at each hop is called a layer in the GNN, hence a 2-hop
(k-hop) neighborhood translates to a 2 (k) layer GNN (fig. 1).
Theoretically, the embedding z, of node v after k layers of
neighborhood aggregation can be obtained as /¥ [24], where:

() = AGGREGATE ™M ({h’;_l lue N(v)}) 1)

i = o (Wi COMBINE®) (=" 1)) @

Here, K is the representation of node v after i layers of
aggregation and W; is the trainable weight matrix that is
shared by all nodes for layer i (i > 1). hY is initialized us-
ing the node features. The choice of AGGREGATE®) (.) and
COMBINEWX(.) is crucial for how the layers are defined and
the embeddings are computed.

Layer 2

%@ {Qdij@%

Figure 3: Sampling a two-layer GNN computation graph by
restricting the neighborhood size to 2 (minibatch size: 1).

2.2 Distributed Training of GNNs

Existing frameworks for training GNNs, such as the Deep
Graph Library (DGL) [1], support distributed training by com-
bining distributed graph processing techniques with DNN
techniques, as shown in fig. 2. The input graph along with the
features is partitioned across machines in the cluster. Given a
batch size (o), the computation graph for each node, com-
monly referred to as a training sample, in the batch is gener-
ated by pulling the k-hop neighborhood of each node along
with the associated features (9). This requires communica-
tion with other machines in the cluster. Once the computation
graphs are constructed, standard DNN techniques such as data
parallelism is used to execute the computation—minibatches
are created and copied to the GPU memory (@), and then
the model computation is triggered (O).

2.3 Challenges in Distributed GNN Training

There are several challenges that need to be addressed to make
distributed GNN training efficient.

2.3.1 Challenge #1: Communication Bottlenecks Due to
Data Dependencies

Unlike traditional DNNs where the training data are inde-
pendent of each other (e.g., images), GNNs impose a de-
pendency between the training inputs in the form of graph
structure. Thus, even though provided batch size could be
small (e.g., 1000), the computation graph samples could be
exponentially larger due to the k-hop neighborhood and the as-
sociated features. A major reason for such large size is not the
graph structure in itself, but the features, whose sizes typically
range in 100s to several 1000s [29,41,66,68]. In real world
graphs consisting of billions of nodes and edges [15,55], the
2-hop neighborhoods could be up to an order of magnitude
larger than the 1-hop neighborhood [43]. When combined
with the features, the resulting computation graph may easily
exceed the memory of a single GPU or even main memory of
a server. A common technique used to address such neighbor-
hood explosion is sampling [24]. That is, instead of getting
all the neighbors of the node in each hop, we select only a
fixed number. An example is shown in fig. 3, where node 1’s
2-hop computation graph is generated by sampling two neigh-
bors at each hop. However, even with sampling, the size of
the computation graph could grow substantially, based on the
sampling used and the number of layers in the GNN. Since
these neighborhood nodes and their features must be obtained
through the network, distributed training of GNNSs spend a
major fraction of time in network communication.
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Scheme Time(s) Memory(GB) Epoch(s)
Hash [48] 2.87 58 9.833
METIS [38] 4264 63 5.295
RandomVertexCut [22]  36.95 185 5.494
GRID [23] 51.82 128 6.866
3D [69] 134 118 6.027

Table 1: Partitioning techniques are not effective in GNNs. All
schemes, except hash, reduce the epoch time, but at the cost of
significant partitioning time or memory overheads.

2.3.2 Challenge #2: Ineffectiveness of Partitioning

Partitioning is a common approach used to achieve scalability
in distributed graph processing, and existing GNN frame-
works leverage popular partitioning strategies to distribute the
graph and features across machines. However, there are two
shortcomings with this approach.

First, many partitioning scheme incur a cost in terms of
computation and/or memory overhead. In table I, we show the
partitioning time, memory consumption and the time to com-
plete one epoch of training on a representative GNN, Graph-
SAGE [24] for four different partitioning schemes: Hash [48],
which partitions nodes using random hashing, METIS [38], a
balanced min edge-cut partitioner, RandomVertexCut [22] and
GRID [23], are vertex-cut partitioners, and 3D [69], a recently
proposed scheme for machine learning workloads. We see
that the best performing partitioning schemes (e.g., edge-cut)
incur high computation overheads. Computationally faster
schemes incur either high memory overhead (due to replica-
tion, e.g., vertex-cut) or performance hit.

Second, the benefits of partitioning are severely limited as
the layers in the GNN increase. Recall that GNNs use k-hop
neighborhood to compute the embedding. While partitioning
schemes reduce communication, they only optimize commu-
nication at the first hop. Thus, when the number of layers
increase, all partitioning schemes fail.

2.3.3 Challenge #3: GPU Underutilization

Existing GNN frameworks utilize DNN techniques, such as
data parallelism to train GNN models. In data parallel exe-
cution, each machine operates on a different set of samples.
However, due to the data dependency induced communication
bottleneck described earlier, we observed that in distributed
GNN training using the popular framework DGL, GPUs are
only being utilized ~ 20% of the time. For a large fraction
(= 80%) of the time, GPUs are waiting on communication.
Recent work has reported data copy to be the major bottleneck
in training GNNSs in single machine multi-GPU setup [45],
but we found that data copy only accounts for 5% of the time
while training GNNs using distributed multi-GPU setup. We
note that the proposed techniques in [45] are orthogonal to our
work and can benefit if applied to P3. Thus, GPUs are heav-
ily underutilized in distributed GNN training due to network
communication. Alternative parallelism techniques, such as

model parallelism do not work for GNNs. This is because
for each layer, they would incur intra-layer communication
in-addition to data dependency induced communication and
thus perform even worse compared to data parallelism.

3 P3:Pipelined Push-Pull

P3 proposes a new approach to distributed GNN training that
reduces the overhead with computation graph generation and
execution to the minimum. To achieve this, P> incorporates
several techniques, which we describe in detail in this section.

3.1 Independent Hash Partitioning Graph & Features

As we show in §2, partitioning of the input graph in an intelli-
gent manner doesn’t benefit GNN architectures significantly
due to the characteristics of GNNs. Hence, in P?, we use the
simplest partitioning scheme and advocate for independently
partitioning the graph and its features.

The nodes in the input graph are partitioned using a ran-
dom hash partitioner, and the edges are co-located with their
incoming nodes. This is equivalent to the commonly used
1D partitioning scheme available in many distributed graph
processing frameworks [22,67], and is computationally sim-
ple. Unlike other schemes (e.g., 2D partitioning), this scheme
doesn’t require any preprocessing steps (e.g., creating local
ids) or maintaining a separate routing table to find the parti-
tion where a node is present, it can simply be computed on the
fly. Note that this partitioning of the graph is only to ensure
that P3 can support large graphs. In several cases, the graph
structure (nodes and edges without the features) of real-world
graphs can be held in the main memory of modern server
class machines. In these cases, P> can simply replicate the
entire graph structure in every machine which can further
reduce the communication requirements.

While the graph structure may fit in memory, the same can-
not be said for input features. Typical GNNs work on input
graphs where the feature vector sizes range in 100s to several
1000s [29,41, 66, 68]. P3 partitions the input features along
the feature dimension. That is, if the dimension of features
is F, then P3 assigns F/N features of every node to each of
the machines in a N machine cluster. This is in contrast to ex-
isting partitioning schemes tuned for machine learning tasks,
including the recently proposed 3D partitioning scheme [69].
Figure 4 shows how P3 partitions a simple graph in compari-
son with existing popular partitioning schemes.

As we shall see, this independent, simple partitioning of
the graph and features enable many of P*’s techniques. Break-
ing up the input along the feature dimension is crucial, as it
enables P> to achieve work balance when computing embed-
dings; as the hash based partitioner ensures that the nodes and
features in the layers farther from the node whose embedding
is computed to be spread across the cluster evenly. The sim-
plicity of independently partitioning the structure and features
also lets P3 cache structure and features independently in its
caching mechanism (§3.4).
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Figure 4: P3 independently partitions the graph structure and the associated features (shown in fig. 3) using simple random hash
partitioning in contrast to more intelligent schemes. This allows P> to achieve work balance, and enables many of its techniques.

3.2 Push-Pull Parallelism

With the input graph and features partitioned, P> adopts the
common, minibatch centric computation for GNNs, similar
to existing GNN frameworks, where it first generates the
computation graph for a node and then executes it. We use
fig. 5 to explain this in detail.

3.2.1 Computation Graph Generation

At the beginning of every minibatch, each node whose embed-
ding is being computed generates its computation graph. To
do so P3 pulls * the k-hop neighborhood for the node. If the
GNN architecture supports a sampling based embedding com-
putation, P pulls the sampled k-hop neighborhood, otherwise
it pulls the full k-hop neighborhood. Note that unlike exist-
ing GNN frameworks, the features are not pulled in either
case. This significantly reduces the network communication
necessary for creating the computation graph. If the entire
graph structure is available in every machine, this is a local
operation, otherwise it results in minimal network commu-
nication as the graph structure is very light weight. At the
end of this process, P> ends up with the k-layer computation
graph of each node in the minibatch at the machine which
owns the node (e.g., the four samples in fig. 5 correspond
to computation graphs of four nodes in the minibatch). Note
that existing GNN frameworks pulls features in addition to
the structure, so in these frameworks, the machine owning
the node ends up with both the computation graph and all the
features necessary for embedding computation.

In the case of existing GNNs, each machine can now in-
dependently execute the complete computation graph with
features it obtained in a data parallel fashion, starting at layer
1 and invoking global gradient synchronization at each layer
boundary as shown in fig. 5a in the backward pass. How-
ever, since P> does not move features, the computation graphs
cannot be executed in a data parallelism fashion. Here, P3
proposes a hybrid parallelism approach that combines model
parallelism and data parallelism, which we term push-pull
parallelism. While model parallelism is rarely used in tra-
ditional DNNs due to the underutilization of resources and
difficulty in determining how to partition the model [49], P3

3 Pulling refers to copying, possibly over the network if not local.

uses it to its advantage. Due to the nature of GNNs, the model
(embedding computation graphs) is easy to partition cleanly
since the boundaries (hops) are clear. Further, due to P3’s
partitioning strategy, model parallelism doesn’t suffer from
underutilization of resources in our context.

3.2.2 Computation Graph Execution

To start the execution, P3 first pushes the computation graph
for layer 1 to all the machines, as shown in 0 in fig. 5b. Note
that layer 1 is the most compute intensive, as it requires input
features from layer O (having most fan-out) which are evenly
spread in P? due to our partitioning scheme. Each machine,
once it obtains the computational graph, can start the forward
pass for layer 1 in a model parallel fashion (layer 1,s). Here,
each machine computes partial activations for layer 137 using
the partition of input features it owns (9). Since all GPUs
in the cluster collectively execute the layer which requires
input from the most fan-out, this avoids underutilization of
GPUs. We observed that GPUs in existing GNN frameworks
(e.g., DGL) spend ~ 80% of the time blocked on network
compared to ~ 15% for P>. Once the partial activations are
computed, the machine assigned to each node in our hash
partitioning scheme pulls them from all other machines. The
node receiving the partial activations aggregates them using
a reduce operation (9). At this point, P3 switches to data
parallelism mode (layer 1p). The aggregated partial activa-
tions are then passes through the rest of layer 1p operations
(if any, e.g., non-linear operations that cannot be partially
computed) to obtain the final activations for layer 1 (9). The
computation proceeds in a data-parallel fashion to obtain the
embedding at which point the forward pass ends (9).

The backward pass proceeds similar to existing GNN
frameworks in a data parallel fashion, invoking global gra-
dient synchronizations until layer 1p (@). At layer 1p, P
pushes the error gradient to all machines in the cluster (@)
and switches to model parallelism. Each machine now has
the error gradients to apply the backward pass for layer 1y,
locally (9) and the backward pass phase ends.

While the partial activation computation in a model par-
allel fashion seemingly works in the general sense, they
are restricted to transformations that can be aggregated
from partial results. However, in certain GNN architectures
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Figure 5: How existing GNN frameworks generate and execute computation graphs (left) and how P3 does it (right) (§3.2).

(e.g., GAT [59]), layer 1)y in itself may introduce non-linear
transformations. P relies on developer input to determine the
tensors that require global synchronizations during the model
parallel execution to ensure correctness (§3.5).

At a first glance, the additional steps in P*, namely the need
to push graph structure in layer 1, aggregation of partial acti-
vations during the forward pass and the additional movement
of gradients in the backward pass may seem like overheads
that may lead to inefficiencies compared to simply pulling the
features along with the graph structure and executing every-
thing locally as in existing GNN frameworks. However, P3’s
approach results in significant savings in network communica-
tion. First, P3 doesn’t pull features at all which tremendously
reduces network traffic—typically the 2-hop neighborhood in
the GNN computation graphs is an order of magnitude more
than the 1-hop neighborhood. Second, regardless of the num-
ber of layers in the GNN, only layer 1 needs to be partially
computed and aggregated. Finally, the size of the activations
and gradients are small in GNNs (due to the smaller number
of hidden dimensions), thus transferring them incurs much
less overhead compared to transferring features.

To illustrate this, we use a simple experiment where we
run a representative GNN, a 2-layer GraphSAGE [24] on the
open-source OGB-Product [29] dataset on 4 machines. We
pick 1000 labeled nodes to compute the embeddings and use
neighborhood sampling (fan-out:25,10). The nodes are associ-
ated with feature vectors of size 100, and there are 16 hidden
dimensions. At layer 0 (2-hops), there are 188339 nodes and
at layer 1 (1-hop) there are 24703 nodes. Pulling features
along with graph structure would incur 71.84 MB of network
traffic. On the other hand, the activation matrix is of size input
x hidden dimension. P only needs to transfer the partial
activations from 3 other machines, thus incurring just 5 MB
(3 x 24703 x 16). Hence, by distributing the activation com-
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Figure 6: We employ a simple pipelining mechanism in P3, in-
spired by the work in PipeDream [49]. This allows P> to effec-
tively hide communication latencies by overlapping communica-
tion with computation.

putation of the layer that holds the largest number of features,
P3 is able to drastically reduce network communication.

3.3 Pipelining

Although P?’s push-pull parallelism based GNN computation
graph creation and execution incurs less network communica-
tion compared to existing GNN frameworks, it needs to com-
municate more times: P> needs to push the graph structure of
layer 1, pull partial activations in the forward pass and finally
push the gradients in the backward pass. Further, since P> fo-
cuses on distributed settings, data copy is necessary between
CPU and GPU. As a result, the computation is stalled during
communication unless they are overlapped using pipelining
techniques. Note that current GNN frameworks (e.g., DGL)
already overlap computation and communication—while the
CPU is busy creating the computation graph, the GPU is used
to execute an already prepared mini batch.

In P?, we employ a simple pipelining mechanism, inspired
by PipeDream’s pipeline parallelism [49]. Due to the ap-
proach we take in P? to enable push-pull parallelism, namely
switching between model and data parallelism at layer 1, P3
needs to execute four phases per minibatch: a model parallel
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API Description

partition(graph, feat,
topo_part_fn, ft_part_fn)
scatter(graph, feat, udf) — msg
gather(msg, udf) — a_ft
transform(v_ft, a_ft) — t_ft
sync(t_ft, op='sum') — sync_ft
apply(v_ft, sync_ft) — ft

respectively.

Partition graph and input features independently using topo_part_fn and ft_part_fn

Generates message msg by combining src_ft, edge_ft, and dst_ft.

Computes aggregated neighbourhood representation from incoming messages.
Computes partial output representation from partial input representation; requires sync.
Accumulates partial representations using user-defined arithmetic operation.

Computes output representation from input representation.

Table 2: The simple P-TAGS API exposed by P3. Developers can use this API to scale up new GNN architectures.

phase in the forward pass, a data parallel phase in the forward
pass, a data parallel phase in the backward pass and finally
a model parallel phase in the backward pass. This provides
us the opportunity to schedule 3 minibatches of computation
before a data dependency is created between phases. Thus,
we overlap computations between these, as shown in fig. 6.
As shown, in the forward pass, the data parallel phase of mini-
batch 3 (denoted as 3p) has a data dependency on the model
parallel phase (3)7) in the forward pass. Hence, when phase
3 starts communication, we schedule two forward and two
backward passes from other minibatches. This 2 forward, 2
backward static scheduling strategy allows us to avoid stalls.
We currently use static pipeline scheduling—while a profil-
ing based methodology to identify a pipeline schedule may
provide benefits, we defer it to a future work.

Bounded Staleness The main challenge with using pipelin-
ing as described above is the introduction of staleness which
can be characterized by pipeline delay: the number of opti-
mizer steps that have passed between when a weight is read
for computing gradient and when that computed gradient is
used for updating the weight. This delay is bound by the num-
ber of minibatches in the pipeline at any time and also exists
in prior work [49, 52]. For P3, this delay is fixed and bound
to three, resulting in weight updates of the form:

Wip1 =w; — 0 Vf(w_3) 3)

where, w; is weight values after ¢t optimizer steps, V f is the
gradient function, a is learning rate and w,_3 the weight used
in forward and backward passes. While unbounded stale gra-
dient updates can negatively affect the statistical efficiency of
the network, preventing convergence and producing models
with lower accuracy, bounded delay enables P? reach target
accuracy in the same number of epochs as data parallelism.

Memory Overhead While P*’s peak memory footprint is
relatively on par to data parallelism, stashed weights can re-
sult in additional memory overhead. Presently, GNN models
typically contain only a couple of layers of small DNN mod-
els, and therefore even with weight stashing the overhead is
relatively small. This however may change in future as GNN
models become larger and complex. P>’s memory overhead
can be further reduced by leveraging prior work aimed at de-
creasing memory footprint of training DNN models [33,34].

34 Caching

The use of independent partitioning for the graph structure
and features allows P3 to employ a simple caching scheme
that can reduce the already minimal communication overhead.
This is based on the observation that depending on the graph
and the size of the features, either the graph or the features
may be accommodated in less machines than what is avail-
able. By default, the features and the graph are partitioned
without duplication across all available machines. However,
when host memory is available, P3 uses a simple greedy ap-
proach to utilize all the available free memory by caching the
partitions of the graph and/or features on multiple machines
using a user-defined setting. In its current state, we do simply
caching, where we try to fit the input in the minimum number
of machines, and create copies (caches) of partitions on other
machines. We assume homogeneous machines, which is typ-
ically the standard in DNN/GNN training [35]. We believe
that there are opportunities to design a better caching scheme,
and plan to explore it in the future.

35 P3API

P3 wraps its independent partitioning strategy, pipelined push-
pull parallelism and caching in a simple API, which devel-
opers can use to speed up new GNN architectures. The API,
shown in table 2, consists of the following six functions :

* partition is a user-provided composite function which
independently partitions graph topology and input features
across machines. This step is essential to balance load and
reduce communication.

* scatter uses a user-provided message function defined on
each edge to generate a message by combining the edge
representation with the representations of source and desti-
nation vertices.

* gather uses a user-provided commutative and associative
function (e.g. sum, mean) defined on each vertex to compute
the neighborhood representation by aggregating incoming
messages.

* transform is a user-provided composite function defined
on each vertex to generate partial representation by apply-
ing zero or more element-wise NN operations* (e.g. add),

4Element-wise NN operation operates on elements occupying the same
index position within respective tensors.
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class GraphSAGE(nn.module):
def __init__(in_ft, out_ft):
fc_self = fc_neigh = Linear(in_ft, out_ft)

def scatter_udf(s_ft, e_ft, d_ft): return s_ft
def gather_udf(msg): return mean(msg)

def transform(v_ft, a_ft):
return fc_self(v_ft) + fc_neigh(a_ft)

def apply(v_ft, t_ft):
return ReLU(t_ft)

def forward(graph, feat):
graph['m'] = scatter(graph, feat, scatter_udf)
graph['n_p'] = gather(graph['m'], gather_udf)
graph['n_p'] = transform(feat, graph['n_p'])
return apply(feat,sync(graph['n_p'],op="sum'))

Listing 1: Using P3’s P-TAGS API to implement GraphSAGE.

followed by at most one non-element-wise NN operation
(e.g. convolution) on vertex features and the aggregated
neighborhood representation.

* sync accumulates partial representation (generated by the
transform API) over the network using the user-provided
arithmetic operation.

* apply is a user-provided composite function defined on
each vertex to generate representation by applying zero or
more element-wise and non-element-wise NN operations
on vertex features and input representation.

Listing | outlines how GraphSAGE [24] can be imple-
mented in P3. Using our API, the developer composes forward
function—function which generates output tensors from in-
put tensors. Generated computational graph (see §3.2.1) and
representation computed in the previous layer (or input vertex
features partitioned along feature dimension if the first layer
is being trained) are inputs to the forward function. For every
layer in the GNN model, each vertex first aggregates the repre-
sentation of its immediate neighborhood by applying element-
wise mean (see gather_udf) over the incoming source vertex
representation (see scatter_udf). Next, vertex’s current repre-
sentation and aggregated neighborhood representation are fed
through a fully connected layer, element-wise summed (see
transform) and passed through the non-linear function ReLU
(see apply), which generates the representation used by the
next layer. If this is the last layer, the generated representation
is used as the vertex embedding for downstream tasks.

While training the first layer, the input representation is
partitioned along the contracting (feature) dimension and
evenly spread across machines, which results in the output
representation generated by non-element-wise operators re-
quiring synchronization. Notably, element-wise operations
can still be applied without requiring synchronization. Since
transform feeds the partitioned input representation through a

fully connected layer, a non-element wise operator, its output
representation must be synchronized before applying other
downstream operators. sync accumulates partial representa-
tion over the network and produces the output representation
which can be consumed by apply. Input representation in all
layers except the first are partitioned along the batch dimen-
sion, and therefore the corresponding output representations
do not require synchronization; thus sync is a no-op for all
layers except the first.

4 Implementation

P3 is implemented on Deep Graph Library (DGL) [1], a popu-
lar open-source framework for training GNN models. P> uses
DGL as a graph propagation engine for sampling, neighbor-
hood aggregation using message passing primitives and other
graph related operations, and PyTorch as the neural network
execution runtime. We extended DGL in multiple ways to sup-
port P3’s pipelined push-pull based distributed GNN training.
First, we replaced the dependent graph partitioning strategy—
features co-located with vertices and edges—in DGL with
a strategy that supports partitioning graph structure and fea-
tures independently. We reuse DGL’s k-hop graph sampling
service: for each minibatch a sampling request is issued via
an Remote Procedure Call (RPC) to local and remote sam-
plers. These samplers access locally stored graph partitions
and return sampled graph—topology and features—to the
trainer. Unlike DGL, sampling service in P3 only returns the
sampled graph topology and does not require input features
to be transferred. Second, trainers in P? execute the GNN
model using pipelined data and model parallelism. Each mini-
batch is assigned a unique identifier, and placed in a work
queue. The trainer process picks minibatch samples and its
associated data from the front of the queue,minibatch and
applies neural network operations. P> schedules 3 concurrent
minibatches using 2 forward, 2 backward static scheduling
strategy (§3.3) to overlap communication with computation.
Before the training mode for a minibatch can be switched
from model to data parallelism, partial activations must be
synchronized. To do so, we extended DGL’s KVStore to store
partial activations computed by trainers. KVStore uses RPC
calls to orchestrate movement of partial activation across ma-
chines, and once synchronized, copies accumulated activation
to device memory and places a pointer to the associated buffer
in the work queue, shared with the trainer process. PyTorch’s
DistributedDataParallel module is used to synchronize
weights before being used for weight update.

5 Evaluation

We evaluate P> on several real-world graphs and compare it
to DGL and ROC, two state-of-the-art GNN frameworks that
support distributed training. Overall, our results show that:
* P3 is able to improve performance compared to DGL
by up to 7x and ROC by up to 2.2x; and its benefits
increase with graph size.

558 15th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



Graph Nodes Edges Features
OGB-Product [29] 2.4 million 123.7 million 100
OGB-Paper [29] 111 million 1.6 billion 128
UK-2006-05 [10,11]  77.7 million 2.9 billion 256
UK-Union [10, 11] 133.6 million 5.5 billion 256
Facebook [19] 30.7 million 10 billion 256

Table 3: Graph datasets used in evaluating P. Features column
shows the number of features per node.

* We find that P3 can achieve graceful scaling with number
of machines and that it matches the published accuracy
results for known training tasks.

* Our caching and pipelining techniques improve perfor-
mance by up to 1.7 x, with benefits increasing with more
caching opportunities.

Experimental Setup: All of our experiments were conducted
on a GPU cluster with 4 nodes, each of which has one 12-
core Intel Xeon E5-2690v4 CPU, 441 GB of RAM, and four
NVIDIA Tesla P100 16 GB GPUs. GPUs on the same node
are connected via a shared PCle interconnect, and nodes are
connected via a 10 Gbps Ethernet interface. All servers run
64-bit Ubuntu 16.04 with CUDA library v10.2, DGL v0.5,
and PyTorch v1.6.0.

Datasets & Comparison: We list the five graphs we use in
our experiments in table 3. The first two are the largest graphs
from the OGB repository [29]—OGB-Products [29], an Ama-
zon product co-purchasing network, and OGB-Papers [29], a
citation network between papers indexed by Microsoft Aca-
demic Graph [57]—where we can ensure correctness and val-
idate the accuracy of P on various tasks compared to the best
reported results [4]. The latter three—UK-2006-05 [10, 11],
a snapshot of . uk domains, UK-Union [10, 11], a 12-month
time-aware graph of the same and Facebook [19], a synthetic
graph which simulates the social network—are used to eval-
uate the scalability of P*>. We selected these due to the lack
of open-source datasets of such magnitude specifically for
GNN tasks. The two OGB graphs contain features. For the
remaining three, we generate random features ensuring that
the ratio of labeled nodes remain consistent with what we
observed in the OGB datasets. Together, these datasets rep-
resent some of the largest open-source graphs used in the
evaluation in recent GNN research’. We present comparisons
against DGL [1,61] and ROC [36], two of the best perform-
ing open-source GNN frameworks that support distributed
training—to the best of our knowledge—at the time of our
evaluation. However, due to the limitations imposed by ROC
at the time of writing, specifically its support for only full-
batch training and the availability of GCN implementation
only, we compare against ROC only when it is feasible to do
so and use DGL for the rest of the experiments. While DGL
uses the METIS partitioner as the default, we change it to
use hash partitioning in all the evaluations unless specified.

SLarger industry datasets have been reported (e.g., [65,68]) but they are
unavailable to the public.

This is due to two reasons. First, hash is the only partitioner
that can handle all the five graphs in our datasets without
running out of memory. Second, METIS incurs significant
computational overheads that often exceed the total training
time (see §2).

Models & Metrics: We use four different GNN models: S-
GCN [63], GCN [17,41], GraphSAGE [24] and GAT [59],
in the increasing order of model complexity. These models
represent the state-of-the-art architectures that can support
all GNN tasks (§2). Unless mentioned otherwise, we use a
standard 2-layer GNN model for all tasks. We enable sampling
(unless stated) for all GNN architectures because it represents
the best case for our comparison system and one of standard
approaches to scaling. The sampling approach we adopted,
based on recent literature [24], is a (25, 10) neighborhood
sampling where we pick a maximum of 25 neighbors for the
first hop of a node, and then a maximum of 10 neighbors for
each of those 25. Both GraphSAGE and GCN use a hidden-
size of 32. For the GAT model, we use 8 attention heads.
Minibatch size is set to 1000 in all our experiments. We use
a mix of node classification and link prediction tasks where
appropriate for the input. Graph classification tasks are usually
done on a set of small graphs, hence we do not include this
task. We report the average epoch time, which is the time taken
to perform one pass over the entire graph, unless otherwise
stated. We note that for training tasks to achieve reasonable
accuracy, several 100s or even 1000s of epochs are needed. In
the experiment evaluating the accuracy attained by the model,
we report the total time it takes to achieve the best reported
accuracy (where available). For experiments that evaluate the
impact of varying configurations (e.g., features), we pick a
middle of the pack dataset in terms of size (OGB-Paper) and
GNN in terms of complexity (GraphSAGE).

5.1 Overall Performance

We first present the overall results. Here, we compare DGL
and P in terms of per epoch time. For P3, we disable caching
(§3.4) so that it uses the same amount of memory as DGL for
a fair comparison. Note that enabling caching only benefits
P3, and we show the benefits of caching later in this section.
We train all the models on all the graphs, and report the mean
time per epoch. The results are shown in table 4.

We see that P3 outperforms DGL across the board, and
the speedups range from 2.08x to 5.43 x. The benefits in-
crease as the input graph size increases. To drill down on
why P3 achieve such superior performance, we break down
the epoch time into its constituents: embedding computation
graph creation time (indicated as DAG), data copy time and
the computation time which is the sum of the forward pass
time, backward pass time and update time (§2). Clearly, P3’s
independent partitioning strategy and the hybrid parallelism
significantly reduces the time it takes to create the computa-
tion graph, which dominates the epoch time. We see a slight
increase in data copy and compute times for P*> due to the
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DGL P3
Graph Model Epoch DAG Copy Compute | Epoch DAG Copy Compute Speedup
SGCN 4535 4.051 0.233 0.251 1.019 0.256 0.364 0.399 445
OGB-Product GCN 4578 3997 0.253 0.328 1.111  0.248 0.372 0.491 4.12
GraphSage | 4.727 4.056 0.258 0.413 1.233  0.245 0.361 0.627 3.83
GAT 5.067 4.164 0.271 0.632 1912 0.248 0.379 1.285 2.65
SGCN 9.059 7.862 0.436 0.761 2230 0.447 0.605 1.178 4.06
OGB-Paper GCN 9.575 8.117 0461 0.997 2.606 0457 0.619 1.530 3.67
GraphSage | 9.830 8.044 0.441 1.345 3.107 0451 0.597 2.059 3.16
GAT 10.662 8.094 0.462 2.106 5.138  0.462 0.652 4.024 2.08
SGCN 6.435 5.682 0.279 0.474 1.481 0259 0416 0.806 4.34
UK-2006-05 GCN 7.023  6.146  0.282 0.595 1.509 0.252 0.408 0.849 4.65
GraphSage | 7.085  6.005 0.272 0.808 1.880 0.259 0.395 1.226 3.77
GAT 8.084 6378 0.330 1.376 3379 0234 0472 2.673 2.39
SGCN 11.472 10.168 0.401 0.903 2379 0353 0.597 1.429 4.82
UK-Union GCN 12.523 10.815 0.444 1.264 2.864 0343 0.624 1.897 4.37
GraphSage | 12.481 10.452 0.435 1.594 3395 0368 0.619 2.408 3.68
GAT 13.597 10.693 0.480 2.424 5752 0371 0.652 4.729 2.36
SGCN 22264 19.765 0.627 1.872 4.102  0.509 0.907 2.686 5.43
Facebook GCN 24.356 20.673 0.760 2.923 5.624 0494 1.010 4.120 4.33
GraphSage | 23.936 19.756 0.755 3.425 6.298 0.554 1.027 4717 3.80
GAT 24.872 19472 0.758 4.642 8.439 0.623 0.953 6.863 2.95

Table 4: P> is able to gain up to 5.4 x improvement in epoch time over DGL. The gains increase with graph size. The table also provides
a split up of epoch time into its constituents: computation graph creation (DAG), data copy, and compute. The compute time is the sum

of the forward pass, backward pass and update.

need for pushing the graph structure, and the overheads as-
sociated with additional CUDA calls necessary to push the
activations (§3). We remind the reader that caching/replica-
tion for P is disabled for this experiment, and enabling it
would reduce the data copy time. However, P*’s aggressive
pipelining is able to keep the additional overheads in forward
pass to a minimum. We also notice that as the model complex-
ity increases, the dominance of computation graph creation
phase reduces in the overall epoch time as the forward and
backward passes become more intensive.

5.2 Impact of Sampling

In the last experiment, we enabled aggressive sampling, which
is a common strategy used by existing GNNs to achieve scal-
ability and load balancing. However, sampling affects the ac-
curacy of the task, and the number of epochs it is necessary to
achieve the best accuracy. Further, some GNN architectures
may not support sampling, or require more samples (com-
pared to the (25, 10) setting we used). To evaluate how p3
performs when the underlying task cannot support sampling,
we repeat the experiment by disabling sampling. Everything
else remains the same. Figure 7 shows the result.

Without sampling, we note that the largest graphs (UK-
Union and Facebook) cannot be trained in our cluster. This
is because the computation graphs exhaust the memory in
the case of DGL and the only way to solve it is to enable
sampling. Additionally, for the more complex model (GAT),
DGL struggles to train on all datasets. Thus, we do not report
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Figure 7: Without sampling, DGL struggles to train complex
models and larger graphs. P>’s benefits increase up to 7.69 x.

the results on these two large graphs and for GAT. Even
otherwise, we note that P>’s benefits increase compared to the
sampled case, with speed ups ranging from 6.45x to 7.69x.
This clearly indicates the benefits of pulling only the graph
structure across the network.

5.3 Impact of Partitioning Strategy

Here, we investigate how different partitioning strategies
affect the training time. DGL only supports edge-cut par-
titioning (using METIS [38]) by default, so we imple-
mented four different partitioning schemes: hash, which is
the same partitioner used by P3, Random VertexCut [22,23]
and GRID [12,22] which are vertex-cut partitioners, and 3D,
which is the 3-d partitioner proposed in [69]. We train one
model, GraphSAGE in DGL with different partitioning strate-
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gies, and compare against P> with its random hash partitioner.
We report the average epoch time in fig. 8a.

We notice that P3’s random hash partitioning outperforms
all schemes, even the best strategy in DGL (METIS), and the
speedups for P? ranges from 1.7 x (against METIS) to 3.85x
(against random hash). The RandomVertexCut, GRID and 3D
partitioners run out of memory for larger graphs. The only
partitioning scheme that works for the Facebook graph is the
random hash partitioner, so we omit it in this experiment. It
may be tempting to think that an intelligent partitioner (other
than hash partitioner) may benefit DGL. However, this is not
true due to two reasons. First, partitioners incur preprocessing
time as shown in fig. 8b. We see that METIS incurs the most
time, and the overhead is often more than the total training
time. It also cannot support large graphs. Other strategies may
seem reasonable, but fig. 8c proves otherwise. This figure
shows the memory used by various partitioning strategies.
It can be seen that vertex cut schemes (RandomVertexCut,
GRID, 3D) need to replicate data, and hence incur significant
memory overhead. In contrast, not only does P3’s independent
partitioning strategy outperform the best performing strategy
in DGL (METIS) in terms of memory and epoch time, but it
also incurs almost no preprocessing cost.

5.4 Impact of Layers

In this experiment, we evaluate the effect of the number of
layers in the GNN. To do so, we pick GraphSAGE and create
three different variants of the model, each having different
number of layers, from 2 to 4. We then train the model using
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Figure 10: P3’s benefits increase as feature sizes increase, depict-
ing the advantage of not moving features over the network.

DGL and P3. Sampling is enabled in this experiment, as DGL
is unable to train deeper models (more layers) even on small
graphs without it. The results are shown in fig. 9. We see that
P3’s benefits increase with increase in the number of layers,
outperforming DGL by up to 6.07 x. This is because as the
network becomes deeper, the computation graph also grows
larger. Further, we see that as the network becomes deeper,
the benefits of intelligent partitioning strategies (METIS) start
to diminish compared to random hash partitioning. This is
due to existing partitioning schemes being optimized for the
first hop neighborhood. P? is not impacted by either due to its
independent partitioning of graph and features and the hybrid
parallelism in executing the GNN.

5.5 Impact of Features

To evaluate the impact of feature size on training performance,
we vary the number of node features for OGB-Paper dataset
from 16 to 512. Since the dataset originally had 128 features,
we either prune or duplicate them to obtain the desired number
of features. We use GraphSAGE model with sampling for
training and report the average epoch time in fig. 10.

We clearly see the benefits of P3’s hybrid parallelism based
execution. DGL’s performance degrades with the increase in
the number of features. This is expected, because to create
the computation graph, DGL needs to pull the features, and
with more features it incurs more network traffic. In contrast,
since P only needs to use network to get the activations, its
performance incurs minimal degradation—the epoch time
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Table 5: By caching partitions of graph structure and features in-
dependently, P is able to achieve up to 1.7 x more performance.

only doubles when the number of features increase by a factor
of 32. Here, P> outperforms DGL by 4.77 x.

5.6 Microbenchmarks

Impact of Caching: In this experiment, we evaluate the bene-
fits of P3’s caching (§3.4). Like in table 4, we use GraphSAGE
for training on four graph datasets, but cache the partitions
of the graph and features on multiple machines as memory
permits. It is interesting to note that for some graphs, it is pos-
sible to replicate the structure on multiple machines (e.g., UK-
Union) but not features and vice-versa (e.g., Facebook). This
shows that independently partitioning the structure and fea-
tures makes it possible to do caching which was otherwise not
possible (i.e., DGL cannot leverage our caching mechanism).
Here, P is able to achieve up to 1.7 x better performance, and
the improvement increases with more caching opportunities.
Moreover, caching extends training speedup of P? over DGL
from 3.6 (in table 4) to 5.23 x (here).

Impact of Pipelining: Here we evaluate the benefits of
pipelining in P3 (§3.3). To do so, we use P3 to train Graph-
SAGE on four different datasets twice; first with pipelining en-
abled and then with it disabled. Figure 11 shows that pipelin-
ing effectively overlaps most of the communication with com-
putation, and that P3 is able to extract 30-50% more gains.
GPU Utilization: Figure 12 depicts the peak GPU utilization
while training GraphSAGE model on OGB-Product dataset
during a five second window for DGL and P?. Here, the
GPU utilization is measured every 50 milliseconds using
the nvidia-smi [3] utility. We observe that the peak GPU
utilization for both DGL and P3 are similar (= 28%). This is
due to the nature of GNN models, they perform sparse com-
putations that fail to leverage peak hardware efficiency across
all cores®. However, we see that during the duration of this
experiment, DGL is able to keep the GPU busy—keep at least
one of the many GPU cores active—for ~ 20% of the time
only. For the remaining ~ 80%, GPU resources are blocked
on the network and thus their utilization drops to zero. On the
other hand, P is able to keep the GPU busy for ~ 85% of the

SImproving peak utilization of accelerators such as GPUs by leveraging
the sparsity of the workloads is outside the scope of this work.
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Figure 11: Pipelining boosts P3’s performance by up to 50%.
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Figure 12: P is able to keep the GPU busy for significantly more
time (~ 85%) compared to DGL (= 20%).

time. As a result, it is able to complete 4 epochs of training in
the five second duration, compared to 1 in the case of DGL.

5.7 P%’s Scaling Characteristics

Here we evaluate the strong scaling properties of P3. We
again choose the OGB-Paper dataset and train GraphSAGE
model on it. To understand the scaling properties, we vary the
number of machines, there by varying the number of GPUs
used by P3 and DGL. We report the average throughput (the
number of samples processed per second) in fig. 13.

P3 exhibits near linear scaling characteristics; its through-
put doubles when the number of machines (and hence the
number of GPUs) are doubled. In contrast, DGL’s throughput
remains nearly the same as the number of machines increase.
This is mainly because GPU resources in DGL are constrained
by data movement over network, while P3 is able to effec-
tively eliminate this overhead using its proposed techniques.
As the number of machines continue to grow, we expect P>
to exhibit less optimal scaling. In P3, each machine needs
to pull activations from all other machines, and this grows
linearly with the number of machines resulting in increased
data movement that may adversely affect performance. This
is a fundamental problem in model parallelism, and hence
existing mitigation techniques are directly applicable to P3.

5.8 Accuracy

Here, we evaluate the correctness of our approach in P3. To do
so, we train GraphSAGE model with sampling, but this time
on the OBG-product graph (the smallest graph in our datasets).
The best accuracy reported on this graph is approximately
78.2% using about 50 epochs [4]. Due to the lack of published
accuracy results for larger graphs, we were unable to repeat
this experiment for large graphs in our dataset. We run both
DGL and P3 on this dataset until we obtain the same accuracy
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and near linear scaling. DGL, but much faster.
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Figure 16: P is able to outperform ROC by up to 2.2, and its
benefits increase with input graph size.

as reported. We show the results in fig. 14. We notice that
stock DGL and P? both achieve the same accuracy iteration
by iteration, and that they both achieve approximately 76.2%
accuracy at the end of 51 iterations. P> is able to complete this
training in 61.65 seconds, while DGL takes 236.37 seconds
when using random hash partitioning of the input, and 96.3
seconds when using METIS partitioner. However, METIS
takes 35.09 seconds to partition the graph, making the total
training time 126.39 seconds. This experiment shows that not
only is P3 able to replicate the same accuracy as DGL thus
ensuring its correctness, it is able to complete the training
much faster than DGL even for the smallest of the graphs.

5.9 Comparison with ROC

Next we present comparison against ROC. Since ROC does
not support sampling, we turn off sampling on all systems. At
the time of evaluation, ROC only supported full batch training,
and only had implementation for GCN available, so we use
that as defaults for this experiment. We run 50 epochs of a
2-layer GCN on OGB-Paper and UK-2006-05 graphs. ROC
uses an online partitioner that relies on moving parts of the
graphs during the execution of the GNN. Due to this, we
skip the first few epochs to allow ROC to complete its data
movement and measure the average epoch time after that. The
result of this experiment is shown in fig. 16.

ROC is able to process both the input graphs significantly
faster than DGL due to its highly optimized graph engine.
However, P is able to outperform ROC, completing epochs

Number of Epochs

Figure 14: P? achieves the same accuracy as

Number of Hidden Dimensions

Figure 15: As the number of hidden dimensions
increases, benefits of P> decreases.

up to 2.2 faster. We also notice that P3’s benefits increase
with the size of the input graph. This is due to the fundamental
differences in P? and ROC’s design. While ROC’s online par-
titioner is able to obtain superior partitions based on the access
patterns, it still relies on moving features while training the
GNN model. As the graph size increases, this results in more
features being transferred across the network. In contrast, P3s
design tries to spread the computation of the bottle-necked
layer across the cluster and avoids feature movement entirely.
Moreover, as the number of layers increase, ROC (and DGL)
would need to move exponentially more features, thereby
resulting in increased network overhead.

While perusing this result, we wish to remind the reader
about few caveats. Our evaluation uses 10 Gbps Ethernet in-
terconnect which favours techniques resulting in lesser data
movement. Hence, some of the observed network overheads
due to feature movement for ROC (and DGL) can be mini-
mized by using faster interconnects such as InfiniBand. Fur-
ther, unlike ROC, P and DGL require training data—the
graph topology, features, model parameters and activations—
to fit in device memory, and failure to do so results in out-of-
memory error during training. On the other hand, ROC only
requires training data to fit in DRAM, and leverages a cost-
based memory manager to selectively move tensors between
device memory and DRAM, which may affect performance.

5.10 P? Shortcomings

Finally, we present cases where P> does not provide bene-
fits. Recall that the fundamental assumption made by P is
that the hidden dimensions in GNNs are typically smaller
which results in the activations being significantly smaller
than features. As this assumption is violated, P* starts losing
its benefits, and may even incur performance penalties.

To illustrate this, we evaluate the impact of hidden dimen-
sions in this experiment. We train GraphSAGE on the OGB-
Product dataset, and fix the number of features to 100. For
varying number of hidden dimensions, we record the aver-
age epoch time for DGL and P3 with and without sampling
enabled. Figure 15 shows the result. As we expect, the ben-
efits of P3 decreases as we increase the number of hidden
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dimensions (thereby increasing the size of the activations),
and P? becomes strictly worser than DGL once the hidden
dimension size reach close to the feature size. We note that
P3 also incurs additional overhead due to model parallelism,
due to which the exact point of transition varies depending
on the characteristics of the graph. Dynamically determining
whether P> would provide benefits in a given scenario and
switching appropriately is part of our planned future work.

6 Related Work

Graph Processing Systems Several large-scale graph pro-
cessing systems that provide an iterative message passing
abstraction have been proposed in literature for efficiently
leveraging CPUs [12,21-23,31,32,48,50] and GPUs [39,62].
These systems have been shown to be capable of scaling to
huge graphs, in order of trillion edges [15]. However, these
are focused mainly on graph analysis and mining, and lack
support for functionalities that are crucial for GNN training,
such as auto differentiation and dataflow programming.
Deep Learning Frameworks like PyTorch [5], Tensor-
Flow [6], and MXNet [2] commonly use Data Paral-
lelism [44] and Model Parallelism [ 14, 16] to speedup par-
allel and distributed DNN training. To scale even further,
some recent works have proposed combining data and/or
model parallelism with pipelining, operator-level partitioning,
and activation compression [30,42, 49, 54]. GPipe [30] and
PipeDream [49] are aimed at alleviating low GPU-utilization
problem of model parallelism. Both permit partitioning model
across workers, allowing all workers to concurrently process
different inputs, ensuring better resource utilization. GPipe
maintains one weight version, but requires periodic pipeline
flushes to update weight consistently, thus limiting overall
throughput. PipeDream keeps multiple weight versions to en-
sure consistency, thereby avoiding periodic flushes at the cost
of additional memory overhead. Prior works [37, 60] have
even shown how to automatically find fast parallelization
strategy for a setting using guided randomized search.
GNN Frameworks Driven by emerging popularity in training
GNN models, several specialized frameworks [1,20,36,45,47,
65,68] and accelerators [40] have been proposed. They can be
categorized in two broad classes: systems [36,65,68] which
extend existing graph processing systems with NN operations,
and systems [1,20,45,47] which extend existing tensor-based
deep learning frameworks to support graph propagation op-
erations. Both use graph partitioning as a means of scaling
GNN training across multiple CPUs and/or GPUs either in a
single machine or over multiple machines. Some frameworks,
like AliGraph [65] and AGL [68], only support training us-
ing CPUs, while others [1,20,36,45,47] support performing
training on GPUs and use CPU memory for holding graph
partitions and exchanging data across GPUs.
PyTorch-Geometric [20] and DGL [1] wrap existing deep
learning frameworks with a message passing interface. They
focus on designing a graph oriented interface for improving

GNN programmability by borrowing optimization principles
for traditional graph processing systems and DNN frame-
works. However, as we show, they fail to effectively leverage
the unique context of GNNs workload and thereby yield poor
performance and resource underutilization.

ROC [36] is a recent distributed multi-gpu GNN train-
ing system that shares the same goal as P3, but proposes a
fundamentally different approach. It explores using a linear
regression model as a sophisticated online partitioner, which
is jointly-learned with GNN training workload. Unlike P3,
despite the sophisticated partitioner, ROC must still move
graph structure and features over network, which as we show
results in high overheads.

PaGraph [45] and NeuGraph [47] are single machine multi-
gpu frameworks for training GNNs. PaGraph reports data
copy to be a major bottleneck and focuses on reducing data
movement between CPU and GPU by caching features of
most frequently visited vertices. On the other hand, NeuGraph
uses partitioning and a stream scheduler to better overlap data
copy and computation. However, in distributed multi-gpu
setting, we observe that network communication is a major
bottleneck and accounts for a large fraction, up to 80%, of
training time while data copy time only accounts for 5%. We
note that the proposed techniques in PaGraph and NeuGraph
are orthogonal to our work and can only benefit P3, if applied.

Besides above mentioned system-side optimizations to alle-
viate scalability bottlenecks, node-wise [24], layer-wise [72],
and subgraph-based [13] sampling techniques have been
proposed. These are orthogonal to and compatible with P3.

7 Conclusion

In this paper, we looked at the problem of scalability issues in
distributed GNN training and their ability to handle large input
graphs. We found that network communication accounts for
a major fraction of training time and that GPUs are severely
underutilized due to this reason. We presented P>, a system
for distributed GNN training that overcomes the scalability
challenges by adopting a radically new approach. P practi-
cally eliminates the need for any intelligent partitioning of
the graph, and proposes independently partitioning the input
graph and features. It then completely avoids communicat-
ing (typically huge) features over the network by adopting a
novel pipelined push-pull execution strategy that combines
intra-layer model parallelism and data parallelism and further
reduces overheads using a simple caching mechanism. P>
exposes its optimizations in a simple API for the end user. In
our evaluation, P3 significantly outperforms existing state-of-
the-art GNN frameworks, by up to 7.
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