
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

Zeph: Cryptographic Enforcement
of End-to-End Data Privacy

Lukas Burkhalter, Nicolas Küchler, Alexander Viand, Hossein Shafagh,
and Anwar Hithnawi, ETH Zürich

https://www.usenix.org/conference/osdi21/presentation/burkhalter

Zeph: Cryptographic Enforcement of End-to-End Data Privacy

Lukas Burkhalter∗, Nicolas Küchler∗, Alexander Viand, Hossein Shafagh, Anwar Hithnawi

ETH Zürich

Abstract

As increasingly more sensitive data is being collected to
gain valuable insights, the need to natively integrate privacy
controls in data analytics frameworks is growing in impor-
tance. Today, privacy controls are enforced by data curators
with full access to data in the clear. However, a plethora of
recent data breaches show that even widely trusted service
providers can be compromised. Additionally, there is no as-
surance that data processing and handling comply with the
claimed privacy policies. This motivates the need for a new
approach to data privacy that can provide strong assurance
and control to users. This paper presents Zeph, a system that
enables users to set privacy preferences on how their data can
be shared and processed. Zeph enforces privacy policies cryp-
tographically and ensures that data available to third-party
applications complies with users’ privacy policies. Zeph exe-
cutes privacy-adhering data transformations in real-time and
scales to thousands of data sources, allowing it to support
large-scale low-latency data stream analytics. We introduce
a hybrid cryptographic protocol for privacy-adhering trans-
formations of encrypted data. We develop a prototype of
Zeph on Apache Kafka to demonstrate that Zeph can perform
large-scale privacy transformations with low overhead.

1 Introduction

The availability of rich data and the advancement of tools and
algorithms to process data at scale has enabled tremendous
innovations in various fields ranging from health and retail to
agriculture and industrial automation [68, 79, 81]. However,
the accumulation of sensitive data has made service providers
hosting data lakes a desirable target for attacks. In addition, a
surge of incidents of unauthorized data monetization, instru-
mentation, and sharing has raised societal concerns [50, 85].
This has pushed regulatory bodies to enact data privacy regula-
tions to prevent misuse of private data and ensure the privacy

∗These authors contributed equally to this work.

of personal data [2, 3]. Today, the most integral parts of ex-
isting data protection systems are security controls such as
authentication, authorization, and encryption which protect
data by guarding it and limiting unnecessary exposure. Secu-
rity controls alone, however, are not sufficient. We ultimately
need to ensure that user’s privacy is respected even by entities
authorized to use the data. Thus, privacy solutions that control
the extent of what can be inferred [15] from data and protect
individuals’ privacy [45] are crucial if we are to continue to
extract utility from data safely.

Today’s Data Privacy Landscape: The advent of new data
privacy regulations such as GDPR and CCPA, coupled with
the increasing importance of data, has led to a growing de-
mand for privacy solutions that protect sensitive data while
retaining its value. Despite recent advancements in pri-
vacy enhancing technologies [41, 78, 84], privacy frame-
works [26, 43, 44, 61, 76, 82] remain shaped by regulatory
requirements that predominately focus on the notion of notice
and consent [5,11,59]. Though an essential step towards trans-
parency and user control, it is important to emphasize that
user consent is not the answer to data privacy. Bad practices
in data use and sharing remain pervasive in consent-based
systems [48, 57, 67], and often consent does not adequately
express the complexities of real-world privacy preferences.
The status quo has three shortcomings that we aim to ad-
dress with this work: (i) Trusted data curators: In the current
model, privacy controls are implemented and enforced by
data curators who have full access to data in the clear. Fre-
quent data breaches [25, 38, 66] have shown that even trusted
providers can be compromised or fall prone to data misuse
temptations. Additionally, there are no assurances that data
processing actually complies with the stated privacy policies.
Consequently, there is a need for built-in data privacy mecha-
nisms that do not require data curators to access data in the
clear. (ii) Lack of user control: Though privacy regulations
mandate services to grant users more control over their data,
the materialization of this has been disappointing in practice.
Services have been drafting privacy policies that unilaterally
dictate how users’ data will be used. Users have no option

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 387

to exert their data privacy preferences except to give blanket
consent if they choose to use the service [49, 59]. (iii) End-
to-end privacy: Privacy solutions today are mostly ad hoc
efforts [14] rather than an integral part of the data process-
ing ecosystem. We need a cohesive end-to-end approach to
data privacy that follows data from source to downstream.
Such solutions should integrate with existing data processing
and analytics frameworks and coexist with data protection
mechanisms already in place.
Zeph: In this work, we propose Zeph, a new data pri-
vacy platform that provides the means to safely extract value
from encrypted data while ensuring data confidentiality and
privacy by serving only privacy-compliant data. Zeph ad-
dresses the above shortcomings with two key ideas: (i) a
user-centric privacy model that enables users to express their
privacy preferences. In Zeph, a user can authorize services
to access raw data or privacy-compliant data securely. This
aligns with data sharing practices claimed in privacy poli-
cies today: e.g., "we share or disclose your personal data
with your consent" or "we only provide aggregated statis-
tics and insights" [6, 13]. In addition to this commonly ref-
erenced aggregation policy, Zeph supports more advanced
privacy-compliant data transformations. For example, trans-
formations that restrict what can be inferred from the data
(e.g, generalization techniques [24, 72, 78]) or ensure dif-
ferential privacy – a mathematically rigorous definition of
privacy. (ii) Zeph cryptographically enforces privacy com-
pliance and executes privacy transformations on-the-fly over
encrypted data, ensuring that the generated transformed views
conform to users’ privacy policies.

The design concepts underpinning Zeph are generic and
could be adapted to other systems. In this work, we specif-
ically target data stream analytics/processing pipelines and
build on the typical structure of such systems. Hence, we fo-
cus on cryptographic building blocks that optimize efficiency
for this type of data. Streaming compute tasks are increasingly
relevant in various privacy-sensitive sectors [17, 35, 47, 55].
The online nature of stream processing makes low latency and
high throughput critical requirements for privacy-preserving
stream processing solutions.
Cryptographically Enforced Privacy Transformations.
There are three key challenges in designing a data platform
that enables privacy-compliant data transformations on en-
crypted data. First, we need to ensure compatibility with the
data flow of existing data processing pipelines (e.g., storage
and compute) and meet their strict performance requirements.
Second, the platform must enable a wide range of existing
privacy transformations and allow for different transforma-
tions to be applied to the same underlying data. Finally, in
addition to single-source privacy transformations, we need
to support transformations that require combining data from
multiple users (e.g., aggregate private data releases).

Existing practical encrypted data processing systems gen-
erally use partially homomorphic encryption schemes that

already support the single-source privacy transformations re-
quired in our system [33, 39, 54, 69, 70, 80]. However, ho-
momorphic evaluation alone is insufficient to support ag-
gregations across data from different users. Supporting
these functions is typically achieved via multi-party com-
putation protocols that are optimized for aggregation opera-
tions [16, 39, 63, 73]. These protocols ensure that user inputs
remain private and only the aggregation result is revealed
to the server. However, these protocols are either limited to
specific functions (e.g., updating sketches) or require the data
producers to take an active part in the computation.

We address these challenges in Zeph using two ideas: (i) a
new approach for encryption that decouples data encryption
from privacy transformations. This logical separation of the
data and privacy plane allows us to remain compatible with
data flows in existing systems. Data producers remain obliv-
ious to the transformations and do not need to encrypt data
towards a fixed privacy policy. (ii) we introduce the concept
of cryptographic privacy transformation tokens to realize flex-
ible data transformations. These tokens are, in essence, the
necessary cryptographic keying material that enables the re-
spective transformation on encrypted data. Zeph creates these
tokens via a hybrid construction of secure multi-party compu-
tation (MPC) and a partially homomorphic encryption scheme.
Outputs of privacy transformations over encrypted data at the
server-side are then released by combining the encrypted data
with corresponding cryptographic transformation tokens.

We have built a prototype of Zeph1that is interfaced with
Apache Kafka [21]. Our evaluation results show that Zeph
can serve real-time privately transformed streams in different
applications with a 2x to 5x latency overhead compared to
plaintext. We optimize the interactive part of the underlying
MPC protocol with ideas from graph theory to achieve the
scalability requirements of Zeph. Our optimization improves
performance up to 55x compared to the baseline.

2 Overview

In this section, we discuss end-to-end privacy and its require-
ments, give an overview of Zeph, and describe our security
and privacy model.

2.1 End-to-End Privacy

In this work, we investigate a new cohesive end-to-end design
for data privacy. Despite being heavily intertwined with users’
data, data systems have evolved with design objectives cen-
tered around availability, performance, and scalability, while
privacy is essentially overlooked. As privacy becomes a more
urgent concern, we need system designs that retrofit privacy
into existing established data framework designs. Embedding

1Zeph’s code available at: https://github.com/pps-lab/zeph-
artifact

388 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/pps-lab/zeph-artifact
https://github.com/pps-lab/zeph-artifact

Name Zeph Description
DATA MASKING

Field Redaction [7, 9, 11] Reveal some attributes and hide others
Predicate Redaction [7] G# Only reveal data that satisfy a predicate
Det. Pseudonym. [12] # Replace value with a deterministic pseudonym
Rand. Pseudonym. [12] Replace value with a random pseudonym
Shifting [4] Shift actual values by a fixed offset
Perturbation [41] Perturb data by adding random noise

i.e., additive differential privacy mechanism

DATA GENERALIZATION
Bucketing [4, 11] G# Map values to a coarse space
Time Resolution [33] Aggregate data across time
Population [28, 37, 39, 73] Aggregate data across a population

Table 1: Overview of existing privacy transformations: Data
Masking techniques (top), Data Generalization techniques
(bottom). We use (full support), G# (partial support), and
(no support) to indicate which of these techniques are
currently supported in Zeph.

privacy in the current complex, data-rich systems while en-
suring the desired level of utility is, however, challenging.
What is considered an appropriate privacy/utility balance in
one context might not be a proper trade-off for another con-
text. Therefore, end-to-end system designs for privacy need
to account for various privacy solutions and accommodate
heterogeneous privacy preferences. Next, we discuss some
key design aspects for realizing end-to-end data privacy.
User-Centric Privacy. Users’ perception of privacy varies
widely across individuals, cultures, and contexts. Therefore,
the system needs to provide the means for users to set their
privacy preferences and define how their data can be accessed,
processed, and shared. In practice, user preferences can also
vary with respect to the trade-offs between increased privacy
and utility. Their preferences can vary based on the data
involved and the target consumer. While we want to offer
users the option of strong privacy guarantees, we also need
to provide options for more relaxed privacy guarantees when
incentives to do so exist. For example, users might voluntar-
ily share their off-platform shopping activities with a service
provider in return for financial incentives [71]. Therefore, a
practical system needs to support a range of privacy prefer-
ences and be able to build privacy-compliant views across
data covered by heterogeneous policies.
Retrofit into Existing Data Pipelines. A practical privacy
solution should augment existing data pipelines while ensur-
ing the privacy of the underlying data. Additionally, privacy
transformations need to respect/adhere to traditional data pro-
tection mechanisms already in place (i.e., end-to-end encryp-
tion). Therefore, the design needs to offer composability to
support a variety of privacy solutions and ensure that privacy
solutions can work with encrypted data. We want to leave the
flow of data in end-to-end encrypted systems intact.
Privacy Transformations. Privacy solutions for data analyt-
ics focus on allowing the use of data or computation on data
subject to privacy restrictions specified by users (e.g., restrict

Privacy
Controller

Data
Producer

Privacy Compliant
Views

Encrypted Data
Storage/Processing

Federated Privacy
Control

D
at

a
Pl

an
e

Pr
iv

ac
y

Pl
an

e

Policy

Token

Policy Manager

Privacy Transformation

Figure 1: Overview of Zeph’s end-to-end approach to privacy.

what can be inferred from the data). They are designed to
enable extracting the utility from data while preserving indi-
vidual’s privacy preferences. This is often achieved through a
range of data modifications that we refer to as privacy transfor-
mations, i.e., functions applied to the data to limit and control
the extent of sensitive information revealed to authorized par-
ties. Solutions in this space can be grouped into three broad
classes (Table 1): (i) data masking techniques that obfuscate
sensitive parts of the data, (ii) generalization techniques that
reduce data fidelity, e.g., by aggregating data, (iii) combina-
tions of (i) and (ii) which can realize complex transformations
by chaining masking and generalization techniques. Privacy
transformations are the primary tools to safely release data,
achieving either a range of privacy guarantees common in
practice (e.g., as in aggregate statistics) or formal privacy def-
initions such as k-anonymity [78] or differential privacy [40].
A useful end-to-end system design for privacy therefore needs
to support a broad set of existing privacy transformations.

2.2 Zeph in a Nutshell

Zeph is a privacy platform that augments encrypted stream
processing pipelines with the means to enforce privacy con-
trols cryptographically. Figure 1 shows an overview of Zeph’s
design. We aim to enable authorized third-party services to
access and process data and to gain insights from it without vi-
olating the privacy preferences of the data owners. We design
Zeph to encapsulate state-of-the-art privacy solutions (e.g.,
generalization, differential privacy) while preserving the data
flow in existing streaming pipelines.
Privacy Plane. To illustrate a deployment of Zeph, we con-
sider a health monitoring provider that stores health-related
data from wearable devices such as heart rate and other met-
rics. We assume that the data streams are already end-to-end
encrypted, i.e., the wearables encrypt data before uploading,
while applications (e.g., health dashboard) query encrypted
data and locally decrypt the result [33]. We refer to this
data flow through a streaming platform as the data plane.
The privacy logic resides and is executed outside of the data
plane, allowing data sources to continue writing encrypted
data streams to a remote stream processing pipeline as before.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 389

Zeph exposes an API for data owners to set their privacy
preferences, which forms the base for users’ privacy poli-
cies. A Zeph deployment augments the data plane with a
privacy plane that enables the provider to extract information
from the encrypted data streams through privacy transformers.
Hence, the service gets access to privacy-compliant trans-
formed views of the underlying raw data streams. For exam-
ple, the service might collect the average heart-rate per day
for different age-groups (i.e., population aggregate transfor-
mations). To collect these statistics, Zeph allows the service
to express privacy options for data stream attributes through a
modified data schema (§4.1), which describes a set of possible
privacy transformations for attributes. Upon registering with
the services, data owners set their privacy preferences for each
stream based on these options, forming the base for users’
privacy policies. For example, they can indicate if the service
is allowed to include their heart rate stream in the specified
aggregate transformations. The additional logic for handling
privacy options and coordinating transformations is handled
by an additional server component, the policy manager. The
policy manager offers an API to handle privacy options per
data stream and coordinates privacy transformations as stream
processors in the streaming pipeline.

Privacy Controller. Policy enforcement in Zeph is handled
by the privacy controller. The privacy controller is respon-
sible for supplying the cryptographic privacy transformation
tokens that enable privacy transformations at the server. As
some privacy policies require data to be aggregated across
different users before being made available, generating tokens
specific to these types of transformations require interaction
between several privacy controllers in what we refer to as
federated privacy control. While the tokens generated by the
privacy controllers cryptographically enforce the data own-
ers’ privacy policies, the server is responsible for composing
and executing transformations efficiently. The privacy con-
troller does not require access to the data and can be hosted
in a location with higher availability guarantees. Zeph al-
lows users to choose a variety of deployment scenarios for
privacy controllers. Privacy controllers could be self-hosted,
hosted on-premise for corporations, or outsourced to a trusted
provider (e.g., OpenID identity providers).

Data Consumers. We distinguish between two types of data
consumers: (a) services that access the data to provide utility
to the user (i.e., personalization), and (b) third-party services,
e.g., to provide a utility that is beneficial to the public or
the service itself, but not directly to the user (e.g., allow your
health data records to contribute to a medical study). Enabling
direct access to the data for the first type of data consumers is
handled by cryptographic access control and is supported in
our design, but it is not the focus of this work. In Zeph, we
focus instead on the latter with the goal to continue enabling
the benefits of these services while respecting users’ privacy.

2.3 Threat Model

Zeph enforces users’ privacy preferences cryptographically,
i.e., users are guaranteed that the data is transformed with the
privacy transformation corresponding to their privacy prefer-
ence before it is released to applications. Meanwhile, their
original data remains end-to-end encrypted.
Setting. We assume an honest-but-curious [70] server, i.e.,
the server performs the computations correctly but will ana-
lyze all observed data to gain as much information as possible.
We also assume the existence of a public-key infrastructure
(PKI) for authentication of privacy controllers/data producers.
In this setting, Zeph ensures data confidentiality, more specif-
ically input privacy, guaranteeing that the adversary learns
nothing about the raw data streams except what can be learned
from the output of the transformation F (i.e., F̂-privacy [39])
with some modest leakage function due to encodings (§3).
Zeph also ensures that an adversary controlling the server and
at most a fraction α of privacy controllers is unable to violate
the privacy policies of other data owners.
Data Plane. In Zeph, data streams are encrypted at the source
with a semantically secure encryption scheme, while the meta-
data (e.g., timestamps) is sent in plaintext. Decryption keys
are never disclosed to the server; therefore, raw data confiden-
tiality is guaranteed even in the case of a server compromise.
If an adversary gains control over a data producer or the re-
sponsible privacy controller, only the data associated with
that producer/controller is revealed.
Privacy Plane. Zeph ensures input privacy for honest data
owners even if the stream processor executing a privacy trans-
formation or the policy manager coordinating it is compro-
mised by an adversary. For the case where F is an aggregation
function involving data from different privacy controllers (i.e.,
federated privacy control), we assume that at most a fraction
of α of the entities in the aggregation transformation are con-
trolled by the adversary. Note that this can also include the
server. The choice of α depends on the deployment scenario.
In (§3.4), we show how this choice affects performance. For
our evaluation, we use a pessimistic value of α = 0.5, but
real-world deployments might use significantly lower values.
Robustness. While Zeph can handle various failures in prac-
tice, formal robustness against misconfigured or malicious
privacy controllers or data producers is out of scope for this
design. A privacy controller sending corrupted tokens cannot
compromise privacy but could alter the output of a transfor-
mation or prevent a transformation from completing.

3 Encryption for Privacy Transformations

In this section, we describe our approach to enable privacy
transformations in end-to-end encrypted systems. Our de-
sign serves privacy-compliant transformed views of data
without affecting the data flow of an end- to-end encrypted
stream-processing system. To meet this goal, our design

390 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

logically decouples privacy transformations and policy en-
forcement from the generation and storage of data. Data
producers remain oblivious to the transformations and do
not need to encrypt data towards a fixed privacy policy. The
modifications needed for privacy transformations are instead
executed outside the data plane (i.e., conventional data flow),
working exclusively on encryption keys to generate what we
call cryptographic transformation tokens. These tokens are,
in essence, the necessary cryptographic keying material that
enables the respective transformation on encrypted data. Out-
puts of privacy transformations over encrypted data at the
server-side are then released by combining the encrypted data
with corresponding cryptographic transformation tokens. In-
troducing a logical separation between the data plane and
privacy plane allows for heterogeneous policies atop the same
data and leaves the conventional data flow unaffected. In
this realization of Zeph we focus on streaming data. Hence,
we focus on cryptographic building blocks that optimize ef-
ficiency for this type of data. The design concepts under-
pinning Zeph are generic and could be adapted to other sys-
tems using other cryptographic building blocks. These, how-
ever, can introduce their own trade-offs between computation
expressiveness and performance.

3.1 Decoupling Encryption from Privacy
Transformations

This design requires an encryption approach that supports
homomorphic evaluation in a variety of settings. Namely,
it needs to support: (i) evaluation on encrypted data, i.e.,
encrypted data processing, (ii) construction of cryptographic
transformation tokens, and (iii) combining the encrypted data
with the matching cryptographic transformation tokens for
selective release of privacy-compliant transformed data views.
Encrypted Data Processing. Existing encrypted data pro-
cessing systems utilize homomorphic encryption schemes
to enable server-side computation on encrypted data [33, 69,
70, 80]. To meet applications’ stringent performance require-
ments, systems typically combine efficient partially homomor-
phic encryption schemes [27, 33, 39, 54, 69] with specialized
client-side encodings to support a wider set of queries. How-
ever, standard homomorphic encryption schemes do not lend
themselves to support selective release of data (i.e., handing
out the decryption key allows to decrypt all data) or support
privacy transformations that require data evaluation across
different users (i.e., different trust domains). Supporting func-
tions across populations in the multi-client/single-server set-
ting is typically achieved via specialized multi-party com-
putation protocols [16, 39, 63, 73]. These existing protocols
ensure that the user inputs remain private and only the output
of the function evaluation is revealed to the server. However,
they require active participation by the data producers and are
often limited to specific functions. We want to remove the
need for – potentially resource-limited – data producers to
take part in or even be aware of privacy transformations.

Homomorphic Secret Sharing. To decouple encryption
from privacy transformations, we draw on ideas from the
Homomorphic Secret Sharing (HSS) [31, 32] literature. In
essence, HSS allows computing a function F on secret shared
messages by combining the outputs of a function F̂ applied
on the individual secret shares. HSS could be used to split
stream events into two shares: one for the data plane (server)
and one for the privacy plane. The privacy plane could au-
thorize a transformation F by computing the same function
F̂ as the server on their local input shares, and releasing the
output. Here, F̂ supports all of the required core functions, as
secret shares can also be aggregated across different data own-
ers. Applying standard HSS in our setting raises two issues:
(i) general-purpose HSS incurs non-negligible overhead [31],
and (ii) with this approach privacy controllers remain depen-
dent on data producers as they continue to receive a secret
share for each new stream event.

To address the first issue, we employ additively homo-
morphic secret sharing. This is considerably more efficient
than general-purpose HSS, allowing our system to sustain the
high throughput needed for streaming data workloads. Used
naively, additively homomorphic secret sharing can signifi-
cantly limit expressiveness. However, as we show in the next
section, using carefully selected data encodings allows us to
support a wide set of privacy transformations.

To break the dependency between privacy controllers and
data producers, we enable the privacy controller to indepen-
dently derive the tokens (i.e., its shares) based only on meta-
data about the stream. Given a shared common master secret,
the data producer and privacy controller never have to com-
municate or even be online at the same time. We introduce
our scheme in more detail in §3.3. Our tailored scheme offers
both the required efficiency and the flexibility necessary to
decouple the data plane from the privacy plane. The data
producer and the responsible privacy controller need to only
agree on a shared master secret. Then, the privacy plane
can authorize a transformation F by deriving the involved
shares and executing F̂ on them, which results in a transfor-
mation token. This token allows the server to compute and
reveal the output of F by performing F̂ on the ciphertexts
and combining the result with the transformation token. If
the transformation F spans multiple trust domains, i.e., the
privacy plane consists of multiple privacy controllers, the pri-
vacy controllers run an MPC protocol to compute the final
transformation token. Note that this does not require the data
producers to participate or even be online. Next, we show
how we can support a broad set of privacy transformations
with this scheme.

3.2 Privacy Transformation Functions

Broadly, privacy transformations (§2.1) generally involve
computation/perturbation of individual user’s data, computa-
tions across different users’ data, or combinations of the two.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 391

Based on this insight, Zeph exposes three core functions for
developers that allow for privacy transformations in the en-
crypted setting: (i) ΣS, which enable ciphertext aggregation
operations within the same user’s data streams. (ii) ΣM , which
enables ciphertext aggregation across streams from a popula-
tion of users, (iii) ΣDP, which supports perturbation via noise
addition to streams aggregated across multiple users.

Privacy Transformations in Zeph. A privacy transforma-
tion F in Zeph is realized by combining a chain of core func-
tions and/or withholding certain shares when creating a token.
(i) Data Masking. Data masking techniques such as field-
redaction and randomized pseudonymization are directly sup-
ported by the secrecy properties of our scheme. The privacy
controller redacts or pseudonymizes a field by withholding the
corresponding shares from the transformation token. Shifting
and perturbation are realized with ΣS by adding a constant or
calibrated random offset to the transformation token. Zeph
supports a subset of predicate redactions using client-side
encodings that represent a value as a vector of elements. A
privacy controller can then construct a transformation token
that only reveals a subset of elements in the vector or a certain
sum of the elements (ΣS). For example, to enable predicate
redaction based on a threshold, the client would encode the
value as a vector of two elements. If the value is above the
threshold, the client stores the value as the first element in
the vector or else as the second element. To only reveal the
values above the threshold, the privacy controller can disclose
the first elements of the vectors with the tokens.

(ii) Data Generalization. Bucketing similarly builds on
client-side encodings that map a value to a one-hot vector
representing the whole domain. Instead of releasing a token
for all elements, the privacy controller uses ΣS to release a
sum of shares for elements mapping to the same bucket. For
values with a large domain, we can approximate the frequency
count with a histogram using a larger bin width. Zeph sup-
ports data generalization over time with ΣS and population
with ΣM . Moreover, Zeph provides ΣDP to release a differ-
entially private aggregate across a population. To extend
the supported aggregation functions, we leverage existing
encoding techniques [27, 33, 39, 54, 69, 83]. In essence, these
encodings map a value to a vector with different statistics
that allows the computing platform to execute functions by
performing element-wise addition. The aggregate functions
sum and count are inherently additions. With a vector of
sum and count, a party can obtain the mean by dividing the
sum by the count. By adding the square of a value to the
encoding vector, a party can calculate the variance using that
Var(x) = E(x2)−E(x)2. Moreover, with the one-hot encod-
ing, constructing a histogram corresponds to the element-wise
sum of a set of one-hot vectors. Given a histogram, a party can
compute the median or other percentiles, min, max, mode,
range, or topk. Prior work [39] presents further encoding
techniques for other functions that we support in Zeph.

3.3 Transformation Tokens
In Zeph, we build upon a symmetric homomorphic encryp-
tion scheme [33] explicitly designed for streaming workloads.
We use this scheme to realize efficient additively homomor-
phic secret sharing for our setting. The scheme efficiently
derives a unique sub-key for each message from a master se-
cret and encryption is performed via modular addition of the
key and the message. Here, the encrypted message and the
(message-specific) sub-key can be seen as additive shares of
the message. Since encryption and decryption are linear oper-
ations, the scheme supports linear aggregation by computing
the function on both the sub-keys and the encrypted messages
independently. Transformation tokens, which authorize the
release of privacy transformation results, are derived from
the sub-keys via aggregations. We now describe how these
are constructed in our system. We start with a description
of a simplified version of Zeph that assumes a single privacy
controller and extend our description to consider multiple
privacy controllers in §3.4.
Symmetric Homomorphic Stream Encryption. First, we
give a brief summary of the symmetric homomorphic stream
encryption scheme [33] we build upon. Let a data stream be a
continuous stream of events {e0,e1, ...,ei,ei+1, ...} for events
ei := (ti,mi) consisting of a message and a timestamp. Each
message mi is an integer modulo M and is annotated with a
discrete timestamp ti ∈ I. We assume events are ordered by
their timestamps and created in-order.

In the setup phase, a master secret k is generated, the group
size M is defined (e.g., 264), and a keyed pseudo-random
function (PRF) fk : I→ [0,M−1] that outputs a fresh pseudo-
random key ki for timestamp ti is selected. To encrypt an
event ei, the data producer uses the event timestamp from the
last encrypted message ti−1 and computes:

Enc(k, ti−1,ei) = (ti, ti−1,mi + ki− ki−1 mod M) (1)

where ki = fk(ti), ki−1 = fk(ti−1). This scheme is additively
homomorphic: ciphertexts can be aggregated via modular
additions. Keys can be aggregated the same way, but for a
time-window [ti, t j], the client can decrypt more efficiently by
deriving only the two outer keys ki = fk(ti) and k j = fk(t j)
because the inner keys cancel out. This encryption scheme
hides the inputs from the server and allows the server to
perform aggregations among the streams without accessing
the plaintext data.
Authorizing Transformations. The intuition in Zeph is that
the encryption scheme essentially splits a message mi into two
additive secret shares: the key −ki + ki−1 and the ciphertext
ci, with mi = ci +(−ki +ki−1) mod M. Therefore, any trans-
formation F consisting of the three core aggregate operations
can be performed independently on both the ciphertexts and
the keys using modular additions. The latter produces a trans-
formation token τF , which the server can use to reveal the out-
put oF of a transformation F by computing oF + τF mod M.

392 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hence, a privacy controller that is in possession of the master
keys of the streams can authorize a transformation F by deriv-
ing the necessary keys and performing the transformation on
top of them to produce a matching transformation token τF .
In the following, we assume that all additions are performed
modulo the parameter M.
Single-Stream Transformation Tokens. We now describe
how a privacy controller can create transformation tokens
for ΣS transformations, e.g., only reveal the approximate lo-
cations aggregated over a month. We start with a window
aggregation to reduce the time resolution. The server adds
values within the specified time window ti to ti+w , where
w is the window size. As long as data producers submit
a value on each window border, the resulting ciphertext of
the window aggregation on the server shares has the form
cw = maggr +ki+w−ki−1. The privacy controller can compute
the transformation token for this window τ = −ki+w + ki−1
by deriving only the two outer keys ki = fk(ti) and k j = fk(t j)
as the inner-keys cancel each other out [33, 69]. With this
token, the server can decrypt the window aggregation if and
only if the correct windows were aggregated, as the keys
directly encode the window range. For aggregations within
events, the privacy controller uses modular addition to add
the respective sub-keys to create the transformation token.
The privacy controller can construct transformation tokens
for values with encodings (§3.2) by selectively releasing the
sub-keys of certain elements in the encoding vector or by
aggregating sub-keys of elements in the vector.
Multi-Stream Transformation Tokens. Multi-stream trans-
formation tokens reveal the output of ΣM transformations,
which aggregate data over multiple streams, e.g., only reveal
the approximate location aggregated among multiple users. In
multi-stream aggregation, the server sums a fixed window ti
to ti+w across different streams. Let S be the set of streams in
the aggregation. For each stream j ∈ S we have a window ag-
gregated share c(j)

w = m(j)
aggr +k(j)

aggr where k(j)
aggr = k(j)

i+w−k(j)
i−1.

The aggregation over all streams in S results in the sum of
all window aggregates and the sum of all window share keys.
Hence, a privacy controller can compute the transformation
token by aggregating the window keys τ(j) =−∑ j∈S k(j)

aggr.
Differentially-Private Transformations. Differential Pri-
vacy [40] provides formal bounds on the leakage of an in-
dividual’s private information in aggregate statistics. The
most common technique to achieve a differentially private
release of information is to add carefully calibrated noise.
Zeph supports noisy transformations (i.e., ΣDP) on multi-
stream window transformations, but could be extended to
the single-stream setting. The privacy controllers add care-
fully calibrated noise to the keys (i.e., submit noisy keys):
τ̃ j = τ j +η j where η j is the noise. Zeph therefore supports
all additive noise mechanisms from the Differential Privacy
literature [41] with noise drawn from a divisible distribution.
However, mechanisms like the Sparse Vector Technique [42]
that require access to the underlying data cannot be applied

this way. In previous work, noise is added to plaintexts prior to
encryption, whereas in Zeph noise is added to the decryption
keys. The two approaches are cryptographically equivalent.
However, previous work requires deciding on the noise to add
at encryption time. Our approach has the advantage of allow-
ing noise to be added to data that was previously encrypted
without consideration for noise. This also means, that the
same data is reusable for encrypted storage and to facilitate
one or multiple differentially private privacy transformations.

3.4 Transformations Across Different
Trust Domains

Until now we assumed a single privacy controller that is in
control of all streams. We now discuss how Zeph enables
multiple privacy controllers that are each responsible for a
distinct subset of streams. While we assume that data owners
trust their own privacy controller, different data owners might
not want to trust the same controller. In such multi-trust set-
ting, the server needs to interact with all privacy controllers
involved in a transformation. Hence, when aggregating across
streams the server needs to request a transformation token
from each privacy controller. In a naïve approach, the pri-
vacy controllers might simply send a combined token for
the aggregation of the streams under their control. However,
this leaks the intermediate result from each controller to the
server. Instead, we need the individual tokens to reveal no
additional information while still enabling correct decryption
of the transformation output. We enable this in Zeph using
secure aggregation [16, 28], a specialized secure MPC proto-
col. For our system, we require a secure aggregation protocol
that is (i) lightweight in terms of computation for privacy
controllers and (ii) can be efficiently executed multiple times
with similar participants. Based on these requirements, Zeph
builds on the secure aggregation protocol from Ács et al. [16]
to create transformation tokens over multiple parties. The pro-
tocol goes hand in hand with the design of the transformation
tokens, as it also relies on additive masking. In the following,
we outline the core protocol and then describe our optimiza-
tions that reduce the computation cost for privacy controllers.

Core Protocol. We consider a set P consisting of N pri-
vacy controllers and a server that aggregates the inputs.
Each privacy controller p ∈ P owns a token τp that is con-
structed by aggregating the tokens for the corresponding
ΣS transformation for each stream under their control. The
goal of the protocol is to compute τ = −∑p∈P τp without
revealing the individual inputs τp to the server or to the
other privacy controllers. Each privacy controller masks
its input τp with a nonce kp, i.e., it computes τp + kp
mod M. The nonces are constructed such that the sum over
all nonces results in ∑p∈P kp = 0. As a consequence, the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 393

sum over all encrypted inputs results in the sum of inputs:

∑
p∈P

τp + ∑
p∈P

kp mod M = ∑
p∈P

τp mod M (2)

To construct the canceling nonce, each privacy controller
establishes N−1 pairwise shared secrets k′p,q with all other
privacy controllers which are aggregated to form the nonce
kp. In particular, if p > q, then the controller p adds −k′p,q
else k′p,q.

kp = ∑
p>q
−k′p,q + ∑

p<q
k′p,q mod M (3)

Hence, the pairwise secrets cancel each other out when the
masks are combined in the aggregation. For conciseness, we
refer to Ács et al. [16] for a description of dropout handling.
Constructing Canceling Nonces. In Zeph, the secure ag-
gregation protocol is run repeatedly for multiple rounds due
to the continuous nature of streaming queries. Thus, pri-
vacy controllers require an efficient method to establish many
pairwise shared secrets. The standard protocol achieves this
with a setup phase where the parties create pairwise shared
secrets kp,q using a Diffie-Hellman key exchange. These
pairwise secrets then serve as seeds (or keys) for a PRF to
establish nonces for each round r: kr

p,q = PRF(kp,q,r). Even
though PRF computations are significantly more efficient than
a Diffie-Hellman key exchange, this protocol still requires
each privacy controller to evaluate O(N) PRF’s and additions
to create the blinding nonce kp for a single transformation
token, which can be expensive for large N.

To improve this theoretical overhead, we view the complex-
ity of creating a shared blinding nonce as a graph G = (V,E)
with the set of vertices V representing the involved parties
(|V |= N), and the set of edges E denoting the pairwise can-
celing masks k′p,q. In the standard form described above,
the graph G forms a Clique because every privacy controller
includes a pairwise mask k′p,q with every other privacy con-
troller. To reduce the number of PRF evaluations in the on-
line phase for a privacy controller (i.e., reduce the number
of edges in the graph G), we propose an optimization that
leverages the fact that the protocol is repeated over a long
period of time with similar participants, i.e., the long-running
nature of streaming queries.
Online Phase Optimization. We reduce the communication
overhead during the online phase by choosing privacy con-
troller’s nonce as to only include a small random subset of
the pairwise-secrets in each round. In graph terms, this corre-
sponds to a small expected degree of each vertex. As long as
the graph remains connected2, confidentiality is guaranteed.
We divide the online phase into epochs consisting of t rounds.
At the beginning of each epoch, we use N− 1 evaluations
of the PRF to bootstrap the secure aggregation graphs for
the epoch. A privacy controller assigns each edge to a small

2More specifically, the subgraph of honest nodes must remain connected.

Stream Processing Platform

Streaming Jobs
Orchestrator

Policy
Manager

Privacy
Transformation
Streaming Job

Schema Registry

Data
Producer

Privacy
Controller

Data

orchestrate

Policies

Privacy
Compliant Data

SchemaSchema

Figure 2: Overview of Zeph’s architecture and integration
into existing data streaming pipelines. Zeph’s components
are highlighted in gray.

number of rounds, based on the output of a PRF evaluated on
the shared secrets. More specifically, we divide the output of
PRF(kp,q,r), where r is a public epoch-identifier, into b-bit
segments. Each segment assigns the edge ep,q to one of 2b

graphs using the number encoded in the b-bit segment.
Assuming a 128-bit output size of a PRF (e.g., AES), an

epoch consists of t = b128/bc ·2b rounds. In comparison, the
protocol of Ács et al. [16] uses the same N− 1 PRF evalu-
ations to create only a single secure aggregation graph (i.e.,
epoch size of one). Ideally, we want to create as many graphs
as possible, i.e., select a large b, since with increasing b, an
epoch consists of more rounds. However, with increasing
b, each of the associated graphs has fewer edges, which in-
creases the risk of a graph being disconnected. In the extended
version of this paper [34], we show how to select b so that
the probability of any honest subset of nodes being isolated
in any of the t generated graphs is bounded by δ, assuming a
fraction of at most α parties collude.

For example, for 10k privacy controllers, assuming that
up to half are colluding (α = 0.5), and bounding the failure
probability by δ = 1×10−9, allows for b = 7, which results
in an epoch consisting of 2304 rounds where each vertex has
a expected degree of 78. As a consequence, our optimiza-
tion requires 190k PRF evaluations and 180k additions for
constructing all 2304 blinding nonces of an epoch. In compar-
ison, the basic protocol requires 23 million PRF evaluations
and additions while the protocol from Ács et al. [16] requires
23.2 million PRF evaluations and 180k additions3.

4 Zeph System Design

Zeph is a privacy platform that cryptographically enforces
user-defined privacy preferences in streaming platforms by
sharing only transformed privacy-compliant views of the un-
derlying encrypted data. So far, we have described the crypto-
graphic building blocks that enable privacy transformations in
Zeph. Here, we describe how we overcome the system chal-
lenges that need to be addressed to allow practical deployment.

3All results assume that τp is at most 128-bit long and hence a single
evaluation of AES is sufficient for encryption.

394 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Zeph augments existing stream processing pipelines, similar
to existing frameworks operating on data in-the-clear [64]: (i)
On data producers, Zeph adds a proxy module for encoding
and encryption. (ii) On the server, Zeph adds a microservice
running in the existing stream processing platform. This mi-
croservice transforms the incoming encrypted streams into
privacy-compliant output streams (Figure 2), which can then
be consumed by existing stream processing queries for arbi-
trary post-processing.

4.1 User API and Privacy Policies

Before introducing the Zeph components in detail, we discuss
aspects related to users’ interaction with Zeph.
Privacy Preferences. Zeph provides the capabilities for
users to set their privacy preferences (i.e., user-centric pri-
vacy) and the means to cryptographically enforce various
privacy policies in a unified system. In this paper, we do not
consider the question of what this set of privacy preferences
should be. Nevertheless, we suggest and implement a sen-
sible set of options to demonstrate how Zeph can be used
in practice. In the current design, data owners can set their
preferences as follows: (i) do not share my data, (ii) share
my data without restrictions, (iii) share my data only when
aggregated with other users, and (iv) share only generalized
views of my data and/or mask sensitive data, i.e., share but
limit inference of sensitive information from my data. The
realization of these preferences in practice is application- and
data-dependent (i.e., generalization and data minimization
techniques can differ depending on the data type, e.g., image,
location, heart rate).
Data Stream Schema. In Zeph, developers can translate
user preferences to an application-specific set of transfor-
mations by mapping them in a schema language. Zeph’s
schema language builds on the Avro [20] schema language
(Figure 3). Using our extended schema language, developers
can translate users’ privacy options to configurations, encod-
ings, and transformations for their application. In addition,
the schema contains meta-information about the stream and
the contents of events within a stream. This enables seam-
less integration into existing streaming services employing
schema registries to store structural information about the
events flowing through the system. A Zeph stream schema
contains: (i) Metadata attributes describing static fields that
remain constant for an extended period of time and are public
information. Zeph’s microservice uses these metadata tags to
group and filter streams for transformations over different pop-
ulations (§4.3). For example, the region where a data stream
originates from (Figure 3). (ii) Stream attributes describe the
private contents of an event message and are annotated with
all possible supported queries. These explicit annotations are
required to derive the necessary encodings to execute queries
using the three core functions (§3). For example, a heart rate
sensor might have two stream attributes such as heart-rate and

id: 235632224234
ownerID: 2474b75564b
serviceID: app.com
validFrom: 2020-04-20
validTo: 2021-04-20
stream:

type: MedicalSensor
metadataAttributes:
ageGroup: middle-aged
region : California

privacyPolicy:
- heartrate:

option: aggr
clients: medium
window: 1hr

- hrv:
option: priv

name: MedicalSensor
metadataAttributes:

- name: ageGroup
type: [enum, optional]
symbols: [young, middle-

aged, senior]
- name: region
type: string

streamAttributes:
- name: heart-rate
type: integer
aggregations: [var]

- name: hrv
type: integer

streamPolicyOptions:
- name: aggr
option: aggregate
clients: [medium, large]
window: [1hr]

- name: priv
option: private

Figure 3: An example privacy policy schema of a medical
sensor (left) and a stream annotation for this schema (right).
(YAML format for display)

heart-rate variability (Figure 3). The heart-rate is annotated to
support aggregates with variance statistics. (iii) The privacy
options for stream attributes. A privacy option describes the
set of transformations that the service can perform to reveal an
output. The options stream-aggregate (ΣS), aggregate (ΣM),
and dp-aggregate (ΣDP) directly correspond to the three core
functions defined in §3. In addition, private does not allow
any transformations on the stream while public allows access
to the raw data. For each transformation set, one can add
further constraints, e.g., defining a minimum population size,
specifying a lower temporal resolution by aggregating over
time or providing a privacy budget for the transformation.
Annotating Streams. The Zeph schema for a particular ap-
plication can be accessed by all privacy controllers. A user’s
privacy selection in the application triggers the responsible
privacy controller to create a matching stream annotation and
share it with the server. A stream annotation contains the
selected privacy option along with values of the metadata
attributes and additional information about the stream (Fig-
ure 3). This information later allows Zeph’s server to identify
suitable streams to include in privacy transformations. Stream
annotations contain an identifier of the data owner (e.g., the
hash of their public key) that maps to the data owner’s public
key in the PKI.

4.2 Writing Encrypted Data Streams

Data producers submit streams of events to the pipeline where
each event conforms to a data schema in the schema reg-
istry, as in standard streaming pipelines. However, Zeph
augments data producers with a proxy module to handle
encoding and encryption.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 395

Setup. To initialize a new data stream matching a Zeph
schema, the data producer generates a master secret and shares
both the schema and the master secret with the associated
privacy controller. After the initial setup phase, the data
producer can start sending encrypted data to the server without
any further coordination with the privacy controller.
Encrypting Data Streams. The proxy module encrypts
each record with a symmetric homomorphic encryption
scheme (§3), using the master secret from the setup phase.
In order to allow the privacy controller to derive a transforma-
tion token without observing the data (§3), the data producer
sends a neutral value at regular intervals (e.g., every minute)
to terminate the window. This does not affect the result of
computations but is required for efficient ΣS transformations
across time. Additionally, these messages allow Zeph’s mi-
croservice to detect and handle dropout of data producers
(e.g., due to network interruptions).

4.3 Matching Queries with Privacy Policies

Zeph’s microservice contains a policy manager that maintains
a global view of the system and coordinates active streams,
privacy controllers, and transformations in the streaming
pipeline. It provides a query interface for launching new
transformations and matches queries with available streams
by considering their chosen privacy options. Privacy trans-
formations are constructed from chains of the core opera-
tions (§3.2) and are executed as stream processing queries
running continuously on a set of encrypted streams.

Zeph’s policy manager includes a query planner that lever-
ages the fact that privacy transformation queries follow the
same structure, which we discuss in more detail below. The
policy manager needs to ensure that queries comply with all
the stream’s selected policy options. Otherwise, it will not
receive the required transformation tokens from the privacy
controllers.
Query Language. The query language of Zeph builds on
ksql [51], an SQL-like query language for expressing con-
tinuous queries on data streams. Any authorized service can
express privacy transformations that follow the pattern ex-
plained above. Figure 4 shows an example query, which
creates a transformed stream for the hourly average heart rate
of seniors in California, including at most 1k streams.
Query Planner. The query planner executes queries from
authorized services in three steps: (i) streams are filtered
by their metadata attributes (e.g., all medical sensor streams
in California). (ii) an ΣS operation using a time-window is
performed on certain attributes of each selected stream (e.g.,
average heart rate over 1 hour). The query planner checks for
each selected stream that the transformation complies with
the annotated privacy options for the attributes used, else
the stream is excluded. (iii) If more than one stream is se-
lected, an ΣM or ΣDP operation is performed on the results
of the previous step. The query planner checks for each re-

CREATE STREAM HearthRateCalifornia
(heartrate) AS

SELECT AVG(heartrate)

WINDOW TUMBLING (SIZE 1 HOUR)

FROM MedicalSensor BETWEEN 1 AND 1000

WHERE region = California AND age >= 60

Partici

Query: AGGREGATE, 1hr

Participants: {
113b0266760d154e4024ab71196af346,
755ed828adfe899e69b5b6bf642fd41d,
…
188f62206ff7d37475742b8dbc424784
}

transformation planprivacy transformation

MinParticipants: 100

Figure 4: The query planner converts privacy transformations
into transformation plans with complying data streams.

maining stream that the transformation complies with the
privacy option and checks that the population constraints are
met (e.g., minimum population size), or otherwise excludes
the stream. These compliance checks are necessary, as privacy
controllers would not provide the required tokens for a stream
where the privacy options do not allow the query. To prevent
an attacker from combining outputs of different transforma-
tions to violate privacy policies, any stream attribute can be
matched to only one transformation, and is removed from the
set of queriable streams for this attribute as long as the stream
is part of the running transformation. The privacy controller
generally only supplies a single transformation token for each
window in a given stream, preventing differencing or re-use
attacks. For DP aggregations, a stream value can contribute
to multiple transformations if allowed by its current privacy
budget. The privacy controller maintains the privacy budget
and suppresses transformation tokens if the privacy budget
is used up. After processing the query, the query planner
outputs a transformation plan that encodes the list of streams
in the transformation, fault tolerance details (i.e., number of
participants dropout the system can handle), and the sequence
of operations the system need to perform (Figure 4).

4.4 Coordinating Privacy Transformations

Once the query planner outputs a transformation plan, Zeph
executes the privacy transformation in the streaming pipeline.
Zeph provides a customized stream processor that handles
the required coordination between the transformation job
running in the streaming pipeline and the privacy controllers.
In addition to handling data, it consumes event messages (i.e.,
tokens) from privacy controllers and writes events about the
state of the transformation back to the privacy controllers.
Transformation Setup. Zeph introduces a coordinator com-
ponent that initiates the setup based on transformation plans
provided by the query planner. In order to initialize a new
job, the coordinator first determines the involved privacy con-
trollers and distributes the transformation plan to them. This
step enables the privacy controllers to verify the compliance
of the transformation against the user-defined privacy option.
The verification involves checking the privacy policy based
on the included attributes, window size, aggregation size,
and/or noise configurations. If the transformation plan in-
cludes multiple data owners, each privacy controller needs

396 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to verify the identities involved in the transformation plan
by fetching their certificates from the PKI. Afterwards, each
privacy controller initiates the setup phase of the secure aggre-
gation protocol (§3.4) among the involved privacy controllers.
Once all privacy controllers agree, the coordinator initiates
the transformation job in the streaming pipeline.
Transformation Execution. The stream processor continu-
ously aggregates incoming encrypted events into windows
and applies the transformation tokens received from the pri-
vacy controllers. Zeph runs an interactive protocol with the
privacy controllers once per window, to robustly adjust to
failures of both data producers and privacy controllers. At
the end of each window, the stream requests a heartbeat from
all privacy controllers in the transformation. Note that data
producer dropouts can be detected by the absence of their
events. After a specified timeout, the data transformer com-
putes the intersection of available data producers and privacy
controllers and broadcasts a membership delta in comparison
to the previous window to all involved privacy controllers.

After receiving an update, the privacy controllers verify
that the transformation still complies with the selected privacy
options and update the tokens they send to match the new
transformation. Upon the arrival of all transformation tokens,
Zeph can complete the transformation and output the result.

5 Implementation

Our prototype of Zeph is implemented on top of Apache
Kafka [21], consisting of roughly 4500 SLOC for Zeph and
and additional 5500 SLOC for benchmarks. We provide a
data producer proxy library written in Java that relies on
the Bouncy Castle library [58] for cryptographic operations,
and Avro [20] for serialization. The privacy controller is
implemented in Java but, via the Java native interface (JNI),
calls native code in Rust for the secure aggregation protocol.
For the PRF, we rely on CPU-based AES-NI using the AES
Rust crate [74], and for the ECDH key exchanges we use
the secp256r1 elliptic curve from Bouncy Castle [58]. We
use the Apache Kafka Streams [22] to implement the stream
processor for the privacy transformations. We emulate the
policy manager with a configurable Ansible [19] playbook.

6 Evaluation

Meeting the performance requirements of data stream process-
ing is a key goal of Zeph’s design. Therefore our experimental
evaluation is designed to validate this and more concretely
answer the following two questions: (i) what is the cost of
enforcing privacy policies with encryption in Zeph?, and (ii)
can Zeph provide the means to support practical privacy for
various applications in an acceptable overhead?

sum avg var reg hist
0.0

0.4

0.8

1.2

1.6

C
om

pu
ta

tio
n

[μ
s]

Encode
Encrypt

(a) EC2 instance

sum avg var reg hist
0

20
40
60
80

100

C
om

pu
ta

tio
n

[μ
s]

Encode
Encrypt

(b) Raspberry Pi

Figure 5: The computation cost at the data producer for en-
cryption and different stream encodings: sum, average, vari-
ance, linear regression, histogramm. The encoding for the
histogramm has ten buckets.

6.1 Experimental Setup

The experimental evaluation consists of two parts. First, we
quantify the overhead of Zeph components with microbench-
marks. We start by quantifying the performance of our pro-
posed secure aggregation optimization compared to a Straw-
man with no optimizations (§3.4) and the optimized protocol
by Ács et al. Dream [16]. The second part of the evaluation
aims to quantify the end-to-end performance of Zeph as we in-
tegrate it into three applications with different privacy options.
Moreover, we show how various data-dependent privacy logic
can be realized in Zeph. In these experiments, we consider a
setting where each data producer has a separate privacy con-
troller; this represents the worst-case scenario – the number
of privacy controller involved in the MPC protocol is equal to
the number of data streams.
Compute. We run the microbenchmarks on Amazon EC2
machines (m5.xlarge, 4 vCPU, 16 GiB, Ubuntu Server 18.04
LTS). Additionally, we run the data producer microbench-
marks on a Raspberry Pi 3 B to analyze the performance on
more resource-constrained edge devices. For the end-to-end
evaluation, we employ Amazon MSK [18], which provides
a Kafka cluster as a fully managed service. The Kafka clus-
ter contains two broker nodes (m5.xlarge) spread over two
availability zones in Frankfurt. The stream processor appli-
cation spreads over a set of two EC2 machines (m5.2xlarge)
using Kafka streams. Data producers and privacy controllers
are grouped into partitions of up to 100 entities. A single
producer- or controller-partition runs on one EC2 machine
(m5.large). We run the partitions in three different regions
London, Paris, and Stockholm, to simulate federation.
Configuration. In the microbenchmarks, Zeph uses an event
with a single stream attribute x encoded as~x = [x,x2,1] while
for the end-to-end setup, we use application-specific encod-
ings. Throughout the evaluation, Zeph’s optimized secure
aggregation assumes that up to half the participants are col-
luding (i.e., α = 0.5), and that the failure probability is below
δ = 1e−7. For the end-to-end evaluation the data producer
uses a Poisson process with a mean of 0.5 to time inserts (i.e.,
an average of 2 inserts/s).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 397

Privacy Controllers 100 1k 10k 100k
Bandwidth 9.0 KB 91 KB 910 KB 9.1 MB
Bandwidth Total 901 KB 91 MB 9.1 GB 910 GB
Shared Keys 3.2 KB 32 KB 0.3 MB 3.2 MB
ECDH 25 ms 249 ms 2.5 sec 25 sec
ECDH Total 2.5 sec 4 min 7 h 693 h

Table 2: The computation and bandwidth costs for the pri-
vacy controller in the setup phase of a multi-stream trans-
formation. The total amount consists of the sum of all cost
involved over all privacy controllers of the transformation,
versus the costs for a single privacy controller. The Elliptic-
curve Diffie–Hellman (ECDH) key exchange dominates the
computation and bandwidth costs.

6.2 Data Producer

We now discuss Zeph’s overhead at the data producers.
Computation. The encryption cost for a single record with
Enc is 0.19µs on EC2 and 16µs on a Raspberry Pi, the cost
is low because the encryption scheme relies on symmetric
primitives (i.e., efficient AES). Figure 5 shows the encryption
latency for different encodings. A data producer can encrypt
events at a rate in the range of 5.3m to 524k records per second
(rps), depending on the encoding. Even on a Raspberry Pi,
the computation cost is moderate, and a throughput of 7.7k to
76.6k rps can be observed. To accommodate for window bor-
ders, the data producer has to additionally submit a ciphertext
per-window, which increases the cost at a fixed rate.
Bandwidth. Compared to plaintext, Zeph’s aggregation-
based encodings and timestamp introduce a ciphertext expan-
sion which manifests itself in increased bandwidth require-
ments. The expansion varies from 24 bytes (1.5x) with one
encoding to 96 bytes (6x) with 10 encodings, i.e., grows by 8
bytes per encoding. Besides this, the window border cipher-
texts increase bandwidth with an additional constant factor.

6.3 Privacy Controllers

The cost of the privacy controller depends on the executed
transformations on the service side. Single-stream window
transformations are efficient both in computation and band-
width because no MPC is involved. The privacy controller
computes the transformation tokens on a per-window basis
from the master secret with a computation cost of around
0.2µs and bandwidth cost of 8 bytes per token.

For the multi-stream case, the privacy controller engages in
the secure aggregation protocol (§3.4). We quantify the over-
head by running the secure aggregation protocol for different
numbers of privacy controllers and compare it against the
strawman approach. As a first step, all these protocols require
a setup phase to establish pairwise shared secrets with all in-
volved parties. Afterward, the privacy transformation phase

0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

Zeph Dream Strawman

100 1k 2k 5k 10k
Parties

0.0

0.5

1.0

1.5

2.0

C
om

pu
ta

tio
n

[m
s]

(a) Average per round

8 16 64 128 512
Rounds

0.00

0.05

0.10

0.15

0.20

C
om

pu
ta

tio
n

[m
s]

(b) Varied rounds for 1k parties

Figure 6: Computation costs for privacy controllers in the
privacy transformation phase to execute multi-stream queries.
A round corresponds to a transformation of a single time
window.

starts, during which the privacy controllers create the required
transformation tokens at the end of each window.
Setup Phase. The setup phase overhead increases quadrat-
ically with the number of privacy controllers, i.e., O(N2).
However, we assume that realistic deployments will feature
at most a few thousand privacy controllers in a single ag-
gregation. Beyond this point, further scalability should be
realized through hierarchical transformations. In our evalu-
ation, we explore aggregations with up to 10k privacy con-
trollers, which is the current limit of feasibility without resort-
ing to hierarchies. Table 2 shows a quadratic increase of the
bandwidth and computation costs for running the setup phase
with the ECDH key exchanges. However, the overall amount
is reasonable even for 10k participants, setting with 910 KB
bandwidth and 2.5 sec computation cost per privacy controller.
Note that the setup phase has to be performed only when a
new transformation query is created. In terms of memory,
the privacy controllers need to store their private-key (i.e.,
150 bytes) and the established shared secrets of the current
privacy transformation. Each shared key requires 32 bytes,
e.g., 3.2MB for 100k shared keys.
Privacy Transformation Phase (Optimization). Zeph op-
timizes the cost of the secure aggregation protocol per round
by computing the shares in random sub-groups (§3.4). In the
initial phase, the controllers have to invest more resources to
compute the random subgroup for the upcoming rounds (i.e.,
epoch). After a few rounds, the additional work performed
at the beginning of an epoch is amortized and, therefore, the
overall cost of the computation reduces significantly in the
long run, as depicted in Figure 6. With 1k participants, the
computation costs for the first window is 1 ms for a privacy
controller, while in the following windows Zeph reduces the
computation cost by 2.6x. Already for 8 and 16 windows for
10k and 1k participants, respectively, the Zeph optimization
is more efficient on average and the amortized performance
improvement increase linearly with the number of rounds the
transformation runs, as shown in Figure 6a. For 10k privacy
controllers, an individual participant requires less than 2 MB

398 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0k 2k 4k 6k 8k 10k
Number of Data Streams

0

2

4

6

8

T
ra

ff
ic

 [K
B

] pΔ = 0
pΔ = 0.05
pΔ = 0.1

(a) Bandwidth for transforma-
tion phase depending on delta
probability p∆.

0k 2k 4k 6k 8k 10k
Parties

0
500

1000
1500
2000
2500

St
or

ag
e

[K
B

] Shared Keys + Graphs
Shared Keys

(b) Memory costs for a privacy con-
troller during the privacy transfor-
mation phase.

Figure 7: Bandwidth and memory costs for privacy controllers
in the privacy transformation phase.

0 100 200 300 400
Parties [Δ]

0.0

0.2

0.4

0.6

C
om

pu
ta

tio
n

[m
s] Dropped

Returned
Combined

Figure 8: Computation cost
for a privacy controller to
adapt to ∆ dropping or joining
parties. In the combined case,
∆ members dropped out and ∆

other members returned.

to store the shared keys and the secure aggregation graphs
of the epoch (Figure 7b). As a result, even though the over-
head increases in the number of privacy controllers, the total
memory remains acceptable. In case memory is scarce (e.g.,
because a privacy controller is in charge of large number of
data streams), a privacy controller can resort to storing a frac-
tion of the secure aggregation graphs and recalculate the next
batch of graphs at the required time.
Dropout. In Zeph, privacy controllers can dynamically join
or leave in the transformation phase, which increases both
the computational cost and the required bandwidth due to the
additional communication, as depicted in Figure 8. The com-
putation and bandwidth costs for adapting the transformation
token are linear in the number of returning participants as
well as dropout participants. These costs are modest, even
for the extreme fraction of dropping and joining users (i.e.,
400 each), the induced cost remains below 0.5 ms. In terms
of bandwidth, a privacy controller observes less than 10KB
bandwidth, even under the assumption of a 10% fluctuation
of dropout participants (Figure 7a).

6.4 End-to-End Application Scenarios

This section evaluates the end-to-end overhead of Zeph and its
effectiveness in supporting a variety of privacy policies rele-
vant to real-world applications. We develop three applications
with Zeph that represent different complexities of privacy
transformations. We evaluate each application with 300 and
1200 active data producers, each producing two events per
second with a window size of 10 seconds. Each data producer
has its own privacy controller and we set α = 0.5 as usual.

300 1200
0.0

0.5

1.0

1.5

2.0

La
te

nc
y

[s
ec

]

300 1200
Data Producers / Privacy Controllers

300 1200

Plaintext
Zeph

Fitness App Web Analytics Car Sensors

Figure 9: Computation cost for Plaintext (no encryption) and
Zeph for different Applications. The latency measures the
time after the grace period (5s) of a window is over until the
result of the transformation is available.

Fitness Application. We consider the Polar App [10] which
collects data during users’ sports activities. Recorded data
includes heart-rate, altitude and weather information, among
others. We consider a privacy policy that limits the resolutions
of sensor data temporally and/or spatially. In our evaluation,
we gather statistics about the average heart-rate of a popu-
lation organized into per-altitude buckets with a maximum
resolution of 5 meters. Each exercise event consists of 18
attributes that are encoded in 683 values in Zeph.
Web Analytics. We implement Zeph on a subset of statistics
from the Matamo [8] web analytics platform for gathering
website statistics such as page views, user flows, and click
maps. Here we evaluate aggregation queries using a privacy
policy that translates to only differentially private (i.e., noised)
information aggregated over all users being made available to
a third-party service. To enable this functionality in Zeph, we
encode the 24 attributes into 956 values.
Car Predictive Maintenance. We consider a car metric data
platform that contains a predictive maintenance service [1].
We consider a setting where users allow a third-party service
to observe sensor readings only if they are out of the ordinary
or differ too much from long-term aggregates across different
cars. Therefore we compute both the long-term aggregates
across many users and individual histograms for each user.
The application records 23 different attributes from car sen-
sors and encodes them into 169 values.
Performance. Figure 9 shows the observed stream trans-
formation latencies for the different applications compared
against plaintext. The latency overhead varies between 2x and
5x for the different applications. Zeph completes processing
the current window before the next one needs to be processed.
With this, we show that Zeph is capable of performing real-
time privacy transformations atop encrypted streams for a
variety of application scenarios.

7 Related Work

Privacy Policy Enforcement. Enforcing privacy policies au-
tomatically in real-world data processing systems is often

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 399

achieved by resorting to Information Flow Control (IFC) to
check and constrain how information flows through the sys-
tem [26, 43, 44, 61, 76, 82]. These systems feature different
variations on how IFC rules can be expressed and who en-
forces these rules in application code. In contrast to Zeph,
these approaches rely on a trusted service or trusted hard-
ware for privacy enforcement. Riverbed [82] is a practical
IFC system that enforces user-defined privacy policies with
information flow techniques by grouping users with similar
policies into separately running containers (i.e., universes).
Ancile [23] introduces a trusted data processing library that
automatically enforces user-defined privacy preferences on
passively generated data by only releasing policy comply-
ing transformations of data to applications. In a multiverse
database [60, 75], global privacy policies are enforced by
only exposing materialized views of the database to each user
in an application. A multiverse database is fully trusted to
enforce privacy policies correctly. Qapla [62] allows a policy
compliance team to associate a set of policies to database
schemas, which a trusted reference monitor then enforces.
Private Aggregate Statistics. Secure aggregation protocols
have been used in a variety of private system designs, largely
to enable services to collect statistics over users’ data with-
out accessing individual data [16, 28, 36, 39, 56, 63, 73, 77].
Compared to Zeph, these systems require data producers to
actively participate in the aggregation protocol, keep data
local, and do not support a wide range of privacy transforma-
tions. While we utilize a secure aggregation protocol [16, 28]
to construct privacy transformation tokens that require inputs
from multiple trust domains, this does not impact data produc-
ers in Zeph design. Several systems [16, 63, 73, 77] combine
differential privacy techniques [40, 42] (i.e., by adding noise
to inputs) with secure aggregation in a way that minimizes
the amount of added noise. This line of work is orthogonal to
this work, and some can be integrated with Zeph.
Private Outsourced Computation. A different line of work
investigates how to protect the confidentiality of data while
allowing a server to compute on encrypted data either with
homomorphic encryption [33,69,70,80] or secret sharing [52,
53]. This line of work is orthogonal to Zeph, and the goal
of Zeph is to augment these systems with the capability to
selectively release encrypted data following an evaluation
of a privacy transformation. Encrypted processing systems
can be adapted to perform privacy transformations but then
require clients first to decrypt the outputs. Zeph supports both
direct release of privacy-compliant views of data and privacy
transformations to a targeted authorized party.
Functional Encryption. Another closely related line of work
is functional encryption [29, 30, 46] (FE). Functional encryp-
tion allows a data owner to issue restricted secret keys that
enable the key holder to learn only the output of a specific
function. Existing constructions are currently not yet efficient
enough for practical systems. Additionally, some of the pri-
vacy transformations in Zeph require functions on multiple

inputs from multiple trust domains, which requires techniques
that are even more complex than standard FE [65].

8 Conclusion

The practice of massive data collection is not likely to dimin-
ish anytime soon. Corporations across all sectors consider
data as a valuable asset that has enormous value to their busi-
ness. However, as we accumulate more and more sensitive
data, protecting individuals’ privacy is gaining critical ur-
gency. Today’s privacy landscape presents a unique set of
challenges and opportunities that make this an auspicious
time to reshape our data ecosystems for privacy. Adequately
addressing privacy in the current complex computing land-
scape is an acute challenge and is vital to avoid the pitfalls
of big data. The path for achieving this necessitates develop-
ing privacy tools that can easily be implemented in existing
data pipelines. In this paper, we propose a new end-to-end
design for privacy. A design that empowers users with more
control with a user-centric model to privacy and that ensures
strong data protection and compliance assurance with a cryp-
tographic enforcement approach to privacy policies.

Acknowledgments

We thank our shepherd Amit Levy, the anonymous review-
ers, Hidde Lycklama, and Emanuel Opel for their valuable
feedback. This work was supported in part by the SNSF
Ambizione Grant No. 186050 and an ETH Grant.

References

[1] Bosch Predictive Maintenance. Online:
https://www.bosch-mobility-solutions.
com/en/products-and-services/mobility-
services/predictive-diagnostics/. Accessed:
09-12-2020.

[2] California Consumer Privacy Act (CCPA). CCPA,
Online: https://oag.ca.gov/privacy/ccpa. Ac-
cessed: 09-12-2020.

[3] General Data Protection Regulation: GDPR. GDPR,
Online: https://gdpr-info.eu/. Accessed: 09-12-
2020.

[4] Google Cloud De-identification. Online: https:
//cloud.google.com/dlp/docs/classification-
redaction. Accessed: 09-12-2020.

[5] Immuta Platform. Online: https://www.immuta.
com/. Accessed: 09-12-2020.

400 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.bosch-mobility-solutions.com/en/products-and-services/mobility-services/predictive-diagnostics/
https://www.bosch-mobility-solutions.com/en/products-and-services/mobility-services/predictive-diagnostics/
https://www.bosch-mobility-solutions.com/en/products-and-services/mobility-services/predictive-diagnostics/
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/
https://cloud.google.com/dlp/docs/classification-redaction
https://cloud.google.com/dlp/docs/classification-redaction
https://cloud.google.com/dlp/docs/classification-redaction
https://www.immuta.com/
https://www.immuta.com/

[6] Instagram Data Policy. Online: https://help.
instagram.com/519522125107875. Accessed: 09-
12-2020.

[7] IRI Total Data Management Redaction. Online:
https://www.iri.com/blog/data-protection/
redaction-options-for-data-privacy/. Ac-
cessed: 09-12-2020.

[8] Matomo Web Analytics. Online: https://matomo.
org/. Accessed: 09-12-2020.

[9] Oracle Responsys Data Redaction. Online:
https://docs.oracle.com/en/cloud/saas/
marketing/responsys-user/DataRedaction.htm.
Accessed: 09-12-2020.

[10] Polar Platform. Online: https://www.polar.com/
accesslink-api/#detailed-sport-info-values-
in-exercise-entity. Accessed: 09-12-2020.

[11] Privitar Privacy Platform. Online: https://www.
privitar.com/. Accessed: 09-12-2020.

[12] Pseudonymisation techniques and best prac-
tices. Online: https://www.enisa.europa.eu/
publications/pseudonymisation-techniques-
and-best-practices/. Accessed: 09-12-2020.

[13] Twitter Privacy Policy. Online: https://twitter.
com/en/privacy. Accessed: 09-12-2020.

[14] Gartner Says Just Four in 10 Privacy Executives
Are Confident About Adapting to New Regula-
tions. Gartner, Online: https://www.gartner.
com/en/newsroom/press-releases/2019-04-
23-gartner-says-just-four-in-10-privacy-
executives-are-confident-about-adapting-
to-new-regulations, April 2019.

[15] John M. Abowd. The U.S. Census Bureau Adopts
Differential Privacy. In ACM SIGKDD, 2018.

[16] Gergely Ács and Claude Castelluccia. I Have a
DREAM! (DiffeRentially privatE smArt Metering).
In International Workshop on Information Hiding.
Springer, 2011.

[17] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
Wheel: Fault-Tolerant Stream Processing at Internet
Scale. VLDB, 6(11):1033–1044, 2013.

[18] Amazone MSK. Online: https://aws.amazon.com/
de/msk/. Accessed: 09-12-2020.

[19] Ansible. Online: https://www.ansible.com/. Ac-
cessed: 09-12-2020.

[20] Apache Avro. Online: https://avro.apache.org/.
Accessed: 09-12-2020.

[21] Apache Kafka. Online: https://kafka.apache.
org/. Accessed: 09-12-2020.

[22] Apache Kafka Streams. Online: https://kafka.
apache.org/documentation/streams/. Accessed:
09-12-2020.

[23] Eugene Bagdasaryan, Griffin Berlstein, Jason Water-
man, Eleanor Birrell, Nate Foster, Fred B. Schneider,
and Deborah Estrin. Ancile: Enhancing Privacy for
Ubiquitous Computing with Use-Based Privacy. In
ACM WPES, 2019.

[24] E. Balsa, C. Troncoso, and C. Diaz. OB-PWS:
Obfuscation-Based Private Web Search. In IEEE Sym-
posium on Security and Privacy, 2012.

[25] John Biggs. It’s time to build our own Equifax with
blackjack and crypto. Online. http://tcrn.ch/
2wNCgXu, September 2017.

[26] Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse,
Håvard Johansen, Dag Johansen, and Fred B. Schneider.
SGX Enforcement of Use-Based Privacy. In ACM
WPES, 2018.

[27] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and
Shafi Goldwasser. Secure large-scale genome-wide
association studies using homomorphic encryption.
Proceedings of the National Academy of Sciences,
117(21):11608–11613, 2020.

[28] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical Secure
Aggregation for Privacy-Preserving Machine Learning.
In ACM CCS, 2017.

[29] Dan Boneh, Amit Sahai, and Brent Waters. Func-
tional Encryption: Definitions and Challenges. In TCC.
Springer, 2011.

[30] Elette Boyle, Kai-Min Chung, and Rafael Pass. On
extractability obfuscation. In TCC. Springer, 2014.

[31] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
and Michele Orrù. Homomorphic secret sharing: opti-
mizations and applications. In ACM CCS, 2017.

[32] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and
Stefano Tessaro. Foundations of homomorphic secret
sharing. In ITCS, 2018.

[33] Lukas Burkhalter, Anwar Hithnawi, Alexander Viand,
Hossein Shafagh, and Sylvia Ratnasamy. TimeCrypt:
Encrypted Data Stream Processing at Scale with Cryp-
tographic Access Control. In USENIX NSDI, 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 401

https://help.instagram.com/519522125107875
https://help.instagram.com/519522125107875
https://www.iri.com/blog/data-protection/redaction-options-for-data-privacy/
https://www.iri.com/blog/data-protection/redaction-options-for-data-privacy/
https://matomo.org/
https://matomo.org/
https://docs.oracle.com/en/cloud/saas/marketing/responsys-user/DataRedaction.htm
https://docs.oracle.com/en/cloud/saas/marketing/responsys-user/DataRedaction.htm
https://www.polar.com/accesslink-api/#detailed-sport-info-values-in-exercise-entity
https://www.polar.com/accesslink-api/#detailed-sport-info-values-in-exercise-entity
https://www.polar.com/accesslink-api/#detailed-sport-info-values-in-exercise-entity
https://www.privitar.com/
https://www.privitar.com/
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/
https://twitter.com/en/privacy
https://twitter.com/en/privacy
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://aws.amazon.com/de/msk/
https://aws.amazon.com/de/msk/
https://www.ansible.com/
https://avro.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
http://tcrn.ch/2wNCgXu
http://tcrn.ch/2wNCgXu

[34] Lukas Burkhalter, Nicolas Küchler, Alexander Viand,
Hossein Shafagh, and Anwar Hithnawi. [Extended
Version] Zeph: Cryptographic Enforcement of End-to-
End Data Privacy. In arXiv, 2021.

[35] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink: Stream and Batch Processing in a Single Engine.
IEEE Data Engineering, 36(4), 2015.

[36] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient
Aggregation of Encrypted Data in Wireless Sensor Net-
works. In ACM MobiQuitous, July 2005.

[37] Claude Castelluccia, Aldar CF Chan, Einar Mykletun,
and Gene Tsudik. Efficient and Provably Secure Aggre-
gation of Encrypted Data in Wireless Sensor Networks.
ACM TOSN, 2009.

[38] Long Cheng, Fang Liu, and Danfeng Daphne Yao. En-
terprise Data Breach: Causes, Challenges, Prevention,
and future Directions. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 7(5), 2017.

[39] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
Robust, and Scalable Computation of Aggregate Statis-
tics. In USENIX NSDI, 2017.

[40] Cynthia Dwork. Differential Privacy. In ICALP, Lec-
ture Notes in Computer Science, 2006.

[41] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In TCC. Springer, 2006.

[42] Cynthia Dwork and Aaron Roth. The Algorithmic
Foundations of Differential Privacy. Found. Trends
Theor. Comput. Sci., 2014.

[43] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-
Oberwagner, Deepak Garg, and Peter Druschel. Thoth:
Comprehensive Policy Compliance in Data Retrieval
Systems. In USENIX Security, 2016.

[44] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In USENIX OSDI, 2010.

[45] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
Rappor: Randomized Aggregatable Privacy-Preserving
Ordinal Response. In ACM CCS, 2014.

[46] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana
Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryp-
tion for all circuits. In IEEE FOCS, 2013.

[47] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M. Frans
Kaashoek, and Robert Morris. Noria: dynamic,
partially-stateful data-flow for high-performance web
applications. In USENIX OSDI, 2018.

[48] Eloise Gratton. Beyond Consent-based Privacy
Protection. Online: https://www.eloisegratton.
com/files/sites/4/2016/07/Gratton_Beyond-
Consent-based-Privacy-Protection_-
July2016.pdf, July 2016.

[49] Stephanie Hare. These new rules were meant to protect
our privacy. They don?t work. The Guardian, Online:
https://www.theguardian.com/commentisfree/
2019/nov/10/these-new-rules-were-meant-
to-protect-our-privacy-they-dont-work,
November 2019.

[50] Amnesty International. The google-fitbit merger
must include human rights risks. Online.
https://www.amnesty.eu/wp-content/uploads/
2020/11/Google-Fitbit-merger-complaint-to-
the-EU-Commission-FINAL.pdf, November 2020.

[51] Hojjat Jafarpour and Rohan Desai. KSQL: Streaming
SQL Engine for Apache Kafka. In EDBT, 2019.

[52] Thomas P. Jakobsen, Jesper Buus Nielsen, and Clau-
dio Orlandi. A Framework for Outsourcing of Secure
Computation. In ACM CCSW, 2014.

[53] Seny Kamara, Payman Mohassel, and Mariana Raykova.
Outsourcing Multi-Party Computation. IACR Cryptol.
ePrint Arch. Report 2011/272, 2011.

[54] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and
Jerome P Reiter. Secure regression on distributed
databases. Journal of Computational and Graphical
Statistics, 14(2):263–279, 2005.

[55] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas
Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter Heron: Stream Processing at Scale. In ACM
SIGMOD, 2015.

[56] Klaus Kursawe, George Danezis, and Markulf
Kohlweiss. Privacy-Friendly Aggregation for the Smart-
Grid. In PoPETS, 2011.

[57] Crystal Lee and Jonathan Zong. Consent Is Not an
Ethical Rubber Stamp. Online: https://slate.
com/technology/2019/08/consent-facial-
recognition-data-privacy-technology.html,
August 2019.

402 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.theguardian.com/commentisfree/2019/nov/10/these-new-rules-were-meant-to-protect-our-privacy-they-dont-work
https://www.theguardian.com/commentisfree/2019/nov/10/these-new-rules-were-meant-to-protect-our-privacy-they-dont-work
https://www.theguardian.com/commentisfree/2019/nov/10/these-new-rules-were-meant-to-protect-our-privacy-they-dont-work
https://www.amnesty.eu/wp-content/uploads/2020/11/Google-Fitbit-merger-complaint-to-the-EU-Commission-FINAL.pdf
https://www.amnesty.eu/wp-content/uploads/2020/11/Google-Fitbit-merger-complaint-to-the-EU-Commission-FINAL.pdf
https://www.amnesty.eu/wp-content/uploads/2020/11/Google-Fitbit-merger-complaint-to-the-EU-Commission-FINAL.pdf
https://eprint.iacr.org/2011/272.pdf
https://slate.com/technology/2019/08/consent-facial-recognition-data-privacy-technology.html
https://slate.com/technology/2019/08/consent-facial-recognition-data-privacy-technology.html
https://slate.com/technology/2019/08/consent-facial-recognition-data-privacy-technology.html

[58] Java BouncyCastle Cryptograpy Library. Online:
https://www.bouncycastle.org/. Accessed: 28-
04-2020.

[59] Kevin Litman-Navarro. We Read 150 Privacy Policies.
They Were an Incomprehensible Disaster. nytimes,
Online: https://www.nytimes.com/interactive/
2019/06/12/opinion/facebook-google-privacy-
policies.html, June 2019.

[60] Alana Marzoev, Lara Timbó Araújo, Malte
Schwarzkopf, Samyukta Yagati, Eddie Kohler,
Robert Morris, M. Frans Kaashoek, and Sam Madden.
Towards Multiverse Databases. In ACM HotOS, 2019.

[61] Miti Mazmudar and Ian Goldberg. Mitigator: Privacy
Policy Compliance using Trusted Hardware. In PoPETS,
2020.

[62] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak
Garg, and Peter Druschel. Qapla: Policy Compliance
for Database-Backed Systems. In USENIX Security,
2017.

[63] Luca Melis, George Danezis, and Emiliano De Cristo-
faro. Efficient Private Statistics with Succinct Sketches.
In NDSS, 2016.

[64] David Millman. Blog: Data Privacy, Security,
and Compliance for Apache Kafka. Online:
https://www.confluent.io/blog/kafka-data-
privacy-security-and-compliance/. Accessed:
09-12-2020.

[65] Muhammad Naveed, Shashank Agrawal, Manoj Prab-
hakaran, XiaoFeng Wang, Erman Ayday, Jean-Pierre
Hubaux, and Carl Gunter. Controlled Functional En-
cryption. In ACM CCS, 2014.

[66] Lily Hay Newman. The Alleged Capital One
Hacker Didn’t Cover Her Tracks. WIRED,
Online: https://www.wired.com/story/capital-
one-hack-credit-card-application-data/, July
2019.

[67] Cristina Onose. 10 privacy issues and trends. On-
line: https://www.pwc.com/ca/en/services/
consulting/privacy/privacy-canadian-
business-hub/2020-and-beyond-10-privacy-
issues-and-trends-part-1.html, January 2020.

[68] Oracle. Innovation in Retail: Using Machine Learning
to Optimize Retail Performance. Online: http:
//www.oracle.com/us/industries/retail/data-
analytics-retail-perform-info-4124126.pdf.
Accessed: 09-12-2020.

[69] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth
Chandran, Ramachandran Ramjee, Andreas Haeberlen,
Harmeet Singh, Abhishek Modi, and Saikrishna Badri-
narayanan. Big Data Analytics over Encrypted Datasets
with Seabed. In USENIX OSDI, 2016.

[70] Raluca Ada Popa, Catherine Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. CryptDB: Protecting
Confidentiality with Encrypted Query Processing. In
ACM SOSP, 2011.

[71] PYMNTS. Amazon to pay consumers for their
shopping data. https://www.pymnts.com/amazon/
2020/amazon-to-pay-consumers-for-their-
shopping-data/, 21 October 2020.

[72] J. L. Raisaro, J. R. Troncoso-Pastoriza, M. Misbach,
J. S. Sousa, S. Pradervand, E. Missiaglia, O. Michielin,
B. Ford, and J. P. Hubaux. MedCo: Enabling Secure
and Privacy-Preserving Exploration of Distributed Clin-
ical and Genomic Data. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 16(4):1328–
1341, 2019.

[73] Edo Roth, Daniel Noble, Brett Hemenway Falk, and
Andreas Haeberlen. Honeycrisp: Large-Scale Differen-
tially Private Aggregation without a Trusted Core. In
ACM SOSP, 2019.

[74] Rust AES Crate. Online: https://docs.rs/aes/0.
3.2/aes/. Accessed: 09-12-2020.

[75] Malte Schwarzkopf, Eddie Kohler, M. Frans Kaashoek,
and Robert Tappan Morris. Position: GDPR Compli-
ance by Construction. In Heterogeneous Data Manage-
ment, Polystores, and Analytics for Healthcare - VLDB
2019 Workshops, pages 39–53, 2019.

[76] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K.
Rajamani, Janice Tsai, and Jeannette M. Wing. Boot-
strapping Privacy Compliance in Big Data Systems. In
IEEE Symposium on Security and Privacy, 2014.

[77] Elaine Shi, Richard Chow, T-H. Hubert Chan, Dawn
Song, and Eleanor Rieffel. Privacy-preserving Aggrega-
tion of Time-series Data. In NDSS, 2011.

[78] Latanya Sweeney. Achieving k-Anonymity Pri-
vacy Protection Using Generalization and Suppression.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):571–588, 2002.

[79] Jeroen Tas. Going virtual to combat COVID-
19. Online: https://www.philips.com/a-
w/about/news/archive/blogs/innovation-
matters/2020/20200403-going-virtual-to-
combat-covid-19.html, April 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 403

https://www.bouncycastle.org/
https://www.nytimes.com/interactive/2019/06/12/opinion/facebook-google-privacy-policies.html
https://www.nytimes.com/interactive/2019/06/12/opinion/facebook-google-privacy-policies.html
https://www.nytimes.com/interactive/2019/06/12/opinion/facebook-google-privacy-policies.html
https://www.confluent.io/blog/kafka-data-privacy-security-and-compliance/
https://www.confluent.io/blog/kafka-data-privacy-security-and-compliance/
https://www.wired.com/story/capital-one-hack-credit-card-application-data/
https://www.wired.com/story/capital-one-hack-credit-card-application-data/
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
http://www.oracle.com/us/industries/retail/data-analytics-retail-perform-info-4124126.pdf
http://www.oracle.com/us/industries/retail/data-analytics-retail-perform-info-4124126.pdf
http://www.oracle.com/us/industries/retail/data-analytics-retail-perform-info-4124126.pdf
https://www.pymnts.com/amazon/2020/amazon-to-pay-consumers-for-their-shopping-data/
https://www.pymnts.com/amazon/2020/amazon-to-pay-consumers-for-their-shopping-data/
https://www.pymnts.com/amazon/2020/amazon-to-pay-consumers-for-their-shopping-data/
https://docs.rs/aes/0.3.2/aes/
https://docs.rs/aes/0.3.2/aes/
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html

[80] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and
Nickolai Zeldovich. Processing Analytical Queries over
Encrypted Data. VLDB, 6(5):289–300, 2013.

[81] Iowa State University. Iowa State University sci-
entists propose a new strategy to accelerate plant
breeding by turbocharging gene banks. On-
line: https://www.news.iastate.edu/news/2016/
10/03/sorghumgenebanks, October 2016.

[82] Frank Wang, Ronny Ko, and James Mickens. Riverbed:
Enforcing User-defined Privacy Constraints in Dis-
tributed Web Services. In USENIX NSDI, 2019.

[83] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
Private Queries on Public Data. In USENIX NSDI, 2017.

[84] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Global-Scale Secure Multiparty Computation. In ACM
CCS, 2017.

[85] Shoshana Zuboff. The Age of Surveillance Capitalism.
Profile Books, 2019.

404 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.news.iastate.edu/news/2016/10/03/sorghumgenebanks
https://www.news.iastate.edu/news/2016/10/03/sorghumgenebanks

	Introduction
	Overview
	End-to-End Privacy
	Zeph in a Nutshell
	Threat Model

	Encryption for Privacy Transformations
	Decoupling Encryption from Privacy Transformations
	Privacy Transformation Functions
	Transformation Tokens
	Transformations Across Different Trust Domains

	Zeph System Design
	User API and Privacy Policies
	Writing Encrypted Data Streams
	Matching Queries with Privacy Policies
	Coordinating Privacy Transformations

	Implementation
	Evaluation
	Experimental Setup
	Data Producer
	Privacy Controllers
	End-to-End Application Scenarios

	Related Work
	Conclusion

