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Abstract
Intrusion Detection and Prevention Systems (IDS/IPS) are

among the most demanding stateful network functions. To-
day’s network operators are faced with securing 100Gbps
networks with 100K+ concurrent connections by deploying
IDS/IPSes to search for 10K+ rules concurrently. In this pa-
per we set an ambitious goal: Can we do all of the above in
a single server? Through the Pigasus IDS/IPS, we show that
this goal is achievable, perhaps for the first time, by building
on recent advances in FPGA-capable SmartNICs. Pigasus’
design takes an FPGA-first approach, where the majority of
processing, and all state and control flow are managed on
the FPGA. However, doing so requires careful design of algo-
rithms and data structures to ensure fast common-case perfor-
mance while densely utilizing system memory resources. Our
experiments with a variety of traces show that Pigasus can
support 100Gbps using an average of 5 cores and 1 FPGA,
using 38× less power than a CPU-only approach.

1 Introduction
Intrusion Detection and Prevention Systems (IDS/IPS) are

a critical part of any operational security deployment [39, 40].
Such systems scan packet headers and payloads to check if
they match a given set of signatures containing a series of
strings and regular expressions. Signature rulesets are ob-
tained through offline techniques (e.g., crafted by experts or
obtained from proprietary vendor algorithms) [6].

A recurring theme in IDS/IPS literature is the gap between
the workloads they need to handle and the capabilities of exist-
ing hardware/software implementations. Today, we are faced
with the need to build IDS/IPSes that can support line rates on
the order of 100Gbps [14] with hundreds of thousands [11] of
concurrent flows and capable of matching packets against tens
of thousands of rules [6]. This paper answers this challenge
with the Pigasus FPGA-based IDS/IPS which meets the above
goal within the footprint of a single server.

An important technology push that enables our effort is the
emergence of server SmartNICs [29, 31]. Here, FPGA capa-
bilities have become embedded in commodity server NICs.
Of the various classes of high-performance accelerators (e.g.,
GPUs), SmartNIC FPGAs are an especially promising alter-
native in terms of cost-performance-power tradeoffs, if they
can be harnessed appropriately. Indeed, recent efforts have
demonstrated the promise of FPGAs for low power, low costs
and high performance for some simpler network functions
such as software switching in Microsoft’s AccelNet [21].

While many before us have integrated FPGAs with ID-

S/IPS processing [10, 16, 18, 19, 22, 34, 41–43, 46, 48, 49],
for the most part these have focused on offloading only a
specific functionality (e.g., regular expression matching) to
the FPGA. Unfortunately, traditional offloading cannot close
the order-of-magnitude performance gap to offer 100Gbps
IDS/IPS processing within the footprint of a single server.
Even if regular expression search were infinitely fast, Snort
3.0 would still on average operate at 400 Mbps/core, requiring
250 cores to keep up with line rates! For orders of magnitude
improvements, an accelerator has to improve performance for
a majority of processing tasks, not just a small subset.

Hence in designing Pigasus, we argue for an FPGA-first ar-
chitecture in IDS/IPS processing. Here, the majority of packet
processing for IDS/IPS is performed via a highly-parallel
datapath on-board the 100Gbps SmartNIC FPGA. Pigasus
FPGA performs TCP reassembly directly on the FPGA so that
it can immediately apply exact string matching algorithms
over payload data to determine which “suspicious” packets
need to enter a “full match” mode requiring additional string
matches and regular expression matching. Inverted from the
classic FPGA offload paradigm, Pigasus FPGA leaves to the
CPU only the final match stage to check a small number
of signatures on excerpts of the bytestream (on average, 1.1
signatures/packet and 5% of packets are sent to the CPU).
By processing most benign traffic on the FPGA, the Pigasus
FPGA-first architecture can reach 100Gbps and 3µs latency
in the common case.

A natural consequence of Pigasus’ FPGA-first approach
is that we are now faced with supporting stateful packet pro-
cessing on FPGA. The challenge includes not only multi-
string pattern matching for payload matching but also TCP
bytestream reassembly to be both performed at 100Gbps line
rate. (Out-of-order TCP packets must be reassembled so de-
tection is made even when a rule’s pattern match across TCP
packet boundaries.) Existing NF-specific programming frame-
works for FPGAs [30, 36] do not provide the necessary ab-
stractions for searching bytestreams, nor do they scale to the
necessary scale and efficiency to meet our goals. A practical
system needs to be able to track at least 100K flows and check
at least 10K patterns at 100Gbps line rates, all the while stay-
ing within the available processing and memory resources
of modern SmartNIC FPGAs. To meet these objectives, our
design makes two key contributions:

Hierarchical Pattern Matching: Traditional streaming string
search algorithms use NFA-based (state machine) algorithms.
While these algorithms are very fast with small rulesets, we
measured that supporting the Snort Registered Ruleset [6]
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would require 23MB of Block RAM (BRAM), more than
the entire capacity of our FPGA (16 MB). We instead take
inspiration from Hyperscan [47], designed for x86 processors,
which uses hash table lookups instead of a traditional state
machine approach for exact-match string search. The (soft-
ware) pattern matcher in Snort 3.0, which uses Hyperscan,
offers a better starting point for our hardware design: it can
support all 10K rules using 785KB of memory at a rate of
3.2Gbps on our FPGA. Scaling this to 100Gbps, however,
requires replicating the state 32 times over (once again over-
flowing memory); Pigasus uses a set of hierarchical filters to
reduce the overall amount of memory required per pipeline
replica, enabling search over 32 indices in parallel while con-
suming only about 2MB of BRAM. Because Pigasus’ pattern
matcher is so memory-efficient, Pigasus additionally checks
for extra strings in the pattern matcher that Snort would push
to the ‘full match’ stage (implemented in Pigasus on the
CPU). At the additional cost of 1.3MB of memory, scanning
for extra strings results in 2× fewer packets (and 4× fewer
rules/packet) reaching the full matcher than Snort.

Fast Common-Case Reassembly: Conventional approaches to
TCP reassembly use fixed-length, statically allocated buffers.
This prevents highly out-of-order flows from hindering perfor-
mance (since insertion is constant time) and from consuming
too much memory (since buffer sizes are fixed). However,
fixed buffers are very memory inefficient; the strategy pro-
posed in [49] would require 6.4GB of memory to support
100K flows. A linked list would be more memory dense,
but more vulnerable to out-of-order flows stalling pipeline
parallelism or exhausting buffer space. Pigasus adopts the
memory-dense linked list approach, but only on an out-of-
order slow path which runs in parallel to the primary fast path;
if the memory buffer approaches capacity, large flows are pref-
erentially reset to prevent overload. On the fast path, packets
access a simple table storing the next byte expected and incre-
ment it accordingly, thus, in-order flows are performance-wise
isolated from out-of-order flows. This allows Pigasus to be
memory-efficient (requiring on average 5KB per out-of-order
flow) while isolating well-behaved traffic from performance
degradation when the IDS is inundated with misbehaving,
out-of-order packet data.

Together, the above design choices allow us to do the
majority of processing on a highly-parallelized FPGA fast-
path while fitting memory within the available resources.
As a result, for the empirical traces, Pigasus can process
100Gbps using an average of 5 cores and 1 FPGA, requir-
ing an average of 85 Watts. In contrast, Snort 3.0 [5] – which
uses Hyperscan [47] for string matching – would require
364 cores and 3,278 Watts. Pigasus is publicly available at
https://github.com/cmu-snap/pigasus.

2 Background & Motivation
We now introduce software IDS/IPS systems (§2.1) and

FPGAs (§2.2). We then analyze IDS/IPS performance and
bound the throughput gains achievable via offloading using
measurements of Snort 3.0 (§2.3).

2.1 IDS/IPS Functionality
The key goal of a signature-based1 IDS/IPS system is to

identify when a network flow triggers any of up to tens of
thousands of signatures, also known as rules.

A given signature may specify one or several patterns and
the entire signature is typically triggered when all patterns are
found. Patterns come in the following three categories:
• Header match: a filter over the flow 5-tuple (e.g., ‘all traffic

on port 80’, ‘traffic from 145.24.78.0/24’);
• String match: an exact match string to detect within the

TCP bytestream or within a single UDP packet;
• Regular expression: a regular expression to detect within

the TCP bytestream or within a single UDP packet.
Signatures are detected at the granularity of a ‘Protocol

Data Unit’ (PDU) – that is, a signature is only triggered if all
matches are found within the same PDU (not over the course
of the entire flow). By default, a PDU consists of one packet,
but it is possible to define other protocol-specific PDUs span-
ning multiple packets (e.g., one HTTP GET request).

When an IDS/IPS operates in detection mode, a triggered
signature results in an alert or an event recorded to a log.
When an IDS/IPS operates in prevention mode, a triggered
signature may raise alerts, record events, or block traffic from
the offending flow or source. IPSes hence must operate inline
over traffic and are latency sensitive – a packet may not be
released to the network until after the IPS has completed scan-
ning it. IDSes, on the other hand, may operate asynchronously
and are often deployed over a secondary traffic ‘tap’ which
provides copies of the active traffic.

Software IDS/IPS Performance: One of the most widely-
known IDS/IPSes is Snort [38] and our work aims to be com-
patible with Snort rulesets. In our experiments, we primar-
ily work with the Snort Registered Ruleset, which contains
roughly 10,000 signatures [6]. This ruleset, combined with
conversations with system administrators, sets our goal of
supporting 10K rules. In addition, we target 100Gbps as the
state-of-the-art line rate [14] and we aim to support 100K
flows. To the best of our knowledge there exists no measure-
ment study detailing how many flows to expect at 100Gbps so
we derive our 100K flow goal by extrapolating a two-orders-
of-magnitude growth factor from a 2010 study [11].

In 2019, Intel published Hyperscan [47], an x86-optimized
library for performing both exact-match and regular-
expression string matching. Hyperscan is the key new element

1There exist other models of IDS/IPS which are ‘script based’ – execut-
ing arbitrary user code over scanned traffic – such as Zeek [7, 35]. These
IDS/IPSes are out of scope for this work.
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Figure 1: Single-core, zero loss through-
put for Snort 3.0 over empirical traces.
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Figure 2: Fraction of CPU time spent
performing each task in Snort 3.0.
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Figure 3: Projected speedup in software
given various single-task offloads.

in Snort 3.0, which is 8× faster than its predecessor. Nonethe-
less, we find that Snort 3.0 cannot meet our goal of supporting
100Gbps, 100K flows, and 10K rules on a single server.

We ran Snort 3.0 on a 3.6GHz server and measured the
single-core throughput over 7 publicly available network
traces (described more thoroughly in §6.1). We plot the results
in Figure 1. Generously assuming that Snort 3.0 is capable
of perfect multicore scalability, this would require 125-667
cores to support 100Gbps of throughput, or 4-21 servers.

2.2 FPGA Basics
Why look to FPGAs to improve IDS/IPSes? While there
are many platforms (‘accelerators’) that offer highly parallel
processing, we choose FPGAs because they are (a) energy-
efficient (using 4-5× fewer Watts than GPUs [12]) and (b)
because they are conveniently deployed on SmartNICs where
they are poised to operate on traffic without PCIe latency or
bandwidth overheads.

FPGA Compute: FPGAs allow programmers to specify
custom circuits using code. However, implemented naively,
FPGA-based designs can be much slower than their CPU
counterparts because FPGA clock rates operate 5-20× slower
than traditional processor clock rates. To achieve performance
speedups relative to CPUs, circuits must be designed with
a high degree of parallelism. FPGAs achieve parallelism ei-
ther through pipeline parallelism, in which different modules
operate simultaneously over different data, or through data
parallelism in which copies of the same module are cloned to
operate simultaneously over different data.

FPGA Memory: Today’s FPGAs offer programmers a col-
lection of memory options. Block RAM (BRAM) is the ‘king’
of FPGA memory because read requests receive a response
within one cycle. Furthermore, BRAM is very friendly to
parallelism. Divided into 20Kb blocks with two ports each,
it is possible to read from all BRAM blocks in parallel (and
each BRAM block twice) per cycle. When a developer wishes
to issue more than two parallel reads to a BRAM block per
cycle, they may choose to replicate the block to allow more
simultaneous read-only accesses to stored data. Our FPGA
offers 16MB of BRAM.

Our FPGA also offers 8GB of on-board DRAM (which

takes about 20 cycles between read request and response) and
10MB of eSRAM (which takes fixed 12 cycles between read
request and response). Because of the multi-cycle latency
for these two classes of memory, they are not suitable for
storing data that must be read/written every cycle. Further-
more, both are more bandwidth-limited than BRAM and offer
fewer lookups in parallel. However, as we will discuss in §4.2,
pushing what data is feasible into these classes of memory is
necessary to free up as much BRAM as possible to support
fast-path memory-intensive processing.

2.3 FPGAs and IDS/IPS Performance
We are not the first to integrate FPGAs into IDS/IPS pro-

cessing. However, prior work follows an ‘offload’ approach
to utilizing the FPGA, where the CPU is ‘primary’ and per-
forms the majority of processing, and the FPGA accelerates
a single task [10, 16, 18, 19, 22, 34, 41–43, 46, 48, 49]. Most
research in this space targets offloading regular expression
matching alone [22, 41, 48], although some target TCP re-
assembly [42, 49] or header matching [27] instead. Unfortu-
nately, a basic analysis based on Amdahl’s law reveals why
this approach fundamentally cannot bring IDS/IPS perfor-
mance onto a single server at 100Gbps.

In Figure 2 we illustrate the fraction of CPU time spent
on each task in Snort 3.0: MSPM (which, in Snort 3.0, im-
plements header and partial string matching), Full Matching
(which, in Snort, implements regular expressions and addi-
tional string matching), TCP Reassembly, and other tasks. As
we can see, no single task dominates CPU time – at most, the
MSPM consumes 46% of CPU time for one trace.

Using Amdahl’s Law, we can see that even if MSPM were
offloaded to an imaginary, infinitely-fast accelerator, through-
put would increase by only 85% to 600Mbps/core, still re-
quiring 166 cores to reach 100Gbps. In Figure 3, we show
the idealized ‘speedup factor’ from offloading any individ-
ual module (assuming an infinite accelerator) for each of our
traces; no module even reaches as much of a speedup as 2×.

The key lesson is simple: a much more drastic approach is
needed to achieve line-rate throughput on a single server.
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3 System Overview
We now present an overview of Pigasus. Recall that our tar-

get is to achieve 100Gbps, for 100K concurrent flows, and 10K
rules within the footprint of a single server. We first describe
our rationale behind Pigasus’ FPGA-first approach (§3.1) be-
fore presenting Pigasus’ packet processing datapath module
by module (§3.2) and discussing how Pigasus makes best use
of memory resources (§3.3). Finally, we lay out the threat
model that we consider (§3.4).

3.1 An FPGA-First Design
Following our analysis in §2.3, we argue for an FPGA-first

design for IDS/IPS processing. By FPGA-first, we mean that
the FPGA is the primary compute platform – performing the
majority of work – and that the CPU is secondary, operating
only as needed. Following our analysis in §2.3, any approach
to speed up IDS/IPSes by orders of magnitude must take on
parallelizing as much of the system as possible.

We can even consider an extreme design, running the entire
system on the FPGA, disposing the need for CPUs. However,
we avoid this approach and choose instead to leave regular
expressions and the ‘full match’ stage on traditional proces-
sors. The reason is simple – compared to the other packet
processing modules, implementing the Full Match stage en-
tirely on the FPGA provides lower performance benefits at
a higher cost in terms of memory. As we will see in §5, the
Full Match stage only interacts with ≈5% of packets in the
Pigasus design. Hence, it is not a performance bottleneck
for the majority of packets. Furthermore, regular expression
parsing is a very mature research and yet state-of-the-art hard-
ware algorithms do not reach our performance and memory
demands for Pigasus. We estimate that GRAPEFRUIT [37], a
state-of-the-art regular expression engine for FPGAs, would
require 8MB of BRAM to statically map all the regular ex-
pressions from our ruleset on the FPGA, and yet would still
only keep up with a few Gbps of traffic. Hence, we would
likely need multiple replicas of the GRAPEFRUIT design – at
least 24MB of BRAM – to keep up with the average of 5Gbps
of traffic that reach the full matcher. Therefore, offloading
regular expressions would exhaust our memory budget for
little gain, in that the majority of packets will never execute
the full matcher anyway.

3.2 Pigasus Datapath
Figure 4 depicts the major components of Pigasus’ archi-

tecture. Notice that the Parser, Reassembler, and Multi-String
Pattern Matcher (MSPM) are implemented in the FPGA while
the Full Matcher is offloaded to the CPU.

Initial packet processing: Each packet first goes through a
100Gbps Ethernet Core that translates electric signals into
raw Ethernet frames. These frames are temporarily stored in
the Packet Buffer; each frame’s header is separately sent to
the Parser – which extracts TCP/IP header fields as metadata
(e.g., sequence numbers, ports) for use by the Reassembler and
MSPM – and then forwards the header to the Reassembler.

Reassembler: The Reassembler sorts TCP packets in order
so that they can be searched contiguously (i.e., to identify
matches that span across multiple packets). The Reassembler
is able to record the last few bytes of the packet’s predeces-
sor in that flow in order to enable cross-packet search in the
MSPM. UDP packets are forwarded through the Reassembler
without processing. The key challenge in designing the Re-
assembler is doing so at line rate with state for 100K flows;
we discuss the design of the Reassembler in §4.

Data Mover: While the Parser and Reassembler operate
on headers and metadata alone, the MSPM operates on full
packet payloads. The Data Mover receives the (sorted) packet
metadata from Reassembler and issues requests to fetch raw
packets from the Packet Buffer so that they can be forwarded
to the MSPM.

Multi-String Pattern Matcher: The MSPM is responsible
for (a) checking every packet against the header match for all
10,000 rules, and (b) every index of every packet against all of
the string-match filters for all 10,000 rules. Pigasus’ MSPM
does more work than Snort 3.0’s equivalent module: Snort
3.0 searches for only one exact match string (called the fast
pattern) in the MSPM, and pushes detection of the remainder
of the strings to the ‘full match’ module. By searching for
all of the exact match strings in the MSPM, Pigasus reduces
the number of packets sent to the Full Match stage by more
than 2× relative to Snort 3.0, and also reduces the number of
suspected rules for the full matcher to check per packet by
4×. We describe the Pigasus MSPM design in §5.
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DMA Engine: For each packet, the MSPM outputs the set
of rule IDs that the packet partially matched. If the MSPM
outputs the empty set, the packet is released to the network;
otherwise it is forwarded to the DMA Engine which transfers
the packet to the CPU for Full Matching. To save CPU cycles,
the DMA Engine keeps a copy of the packets sent to the Full
Matcher; this allows the Full Matcher to reply with a (packet
ID, decision) tuple as a response rather than copying the entire
packet back over PCIe after processing. The DMA Engine
distributes tasks across cores in a round-robin fashion.

Full Matcher: On the software side, the Full Matcher polls
a ring buffer which is populated by the DMA Engine. Each
packet carries metadata including the rule IDs that the MSPM
determined to be a partial match. For each rule ID, the Full
Matcher retrieves the complete rule (including regular expres-
sions) and checks for a full match. It then writes its decision
(forward or drop) to a transmission ring buffer which is polled
by the DMA Engine on the FPGA side. If the decision is to
forward, the DMA Engine forwards the packet to the network;
otherwise the packet is simply erased from the DMA Engine’s
Check Packet Buffer.

3.3 Memory Resource Management
The core obstacle to realizing an FPGA-first design is fit-

ting all of the above functionality (except the full matcher)
within the limited memory on the FPGA. As discussed in
§2.2, BRAM is the ‘best’ of the available memory: it is the
only class of memory that can perform read operations in one
cycle, and it is also the most parallel. However, it is limited to
only 16MB even on our high-end Intel Stratix 10 MX FPGA.

Therefore, we reserve BRAM only for modules which read
or write to memory the most frequently, with multiple ac-
cesses per packet; namely the Reassembler and the Multi-
String Pattern Matcher. Specifically, the Reassembler per-
forms multiple accesses per packet as it needs to check for
out-of-orderness, manage the out-of-order packet buffer, and
check and release packet headers when an out-of-order ‘hole’
is filled. The MSPM too entails multiple memory accesses
per packet, as every index of every packet must be checked
against 10K exact-match string rules, and every packet header
must be checked against the header matches for 10K rules.

To save BRAM, we allocate the other stateful modules
such as the Packet Buffer and DMA Engine to less powerful
eSRAM and DRAM respectively.2 eSRAM and DRAM turn
out to be sufficient for these tasks because the Packet Buffer
and DMA Engine have much less stringent demands in terms
of bandwidth and latency. In the case of the packet buffer,
packet data is written and read only once and hence bandwidth
demand is low but still exceeds DRAM’s peak throughput; the

2FPGA manufacturers have been experimenting with varied classes of
memory on-board the FPGA over the past few years. From the manufacturers’
perspective, Pigasus can be seen as a success story for how varied memory
enables more diverse applications which tailor their memory usage to per-task
and data structure demands.

data mover prefetches each packets 12 cycles before pushing
it to the MSPM, keeping throughput high with a negligible
latency overhead. The DMA Engine uses DRAM – which
has the highest and variable latency and the lowest bandwidth
– for the Check Packet Buffer. Since on average only 5% of
packets require Full Matching functionality, this places little
stress on DRAM bandwidth; the latency overhead of DRAM,
while high when compared to BRAM, is still 10× faster than
the PCIe latency suffered by packets sent to the CPU for full
match.

Even though this leaves us with almost3 the full capac-
ity of BRAM for the Reassembler and Multi-String Pattern
Matcher, realizing these modules is challenging. For instance,
using traditional NFA-based search algorithms for the MSPM,
given our public ruleset, would require 23MB – more than
our 16MB BRAM capacity. Similarly, statically allocating
10KB of out-of-order buffer (i.e., 10 packets) per flow for even
10K flows easily exceeds 100MB. Thus, in §4 and §5, we
describe our design optimizations to ensure that the Reassem-
bler and MSPM both ‘fit’ on-board without compromising
performance.

3.4 Threat Model
Pigasus sits between an attacker and its intended target; an

attacker may attempt to target Pigasus itself in order to indi-
rectly damage the services Pigasus protects. We assume the
attacker does not have physical access to the server running
Pigasus, that the operating system and configuration tools for
Pigasus are secure, and that the attacker cannot modify Piga-
sus’ configuration. The attacker may inject arbitrary traffic
into the input stream which Pigasus processes. In this context,
we consider two classes of attacks. First, an attacker may at-
tempt to bypass Pigasus – that is, send traffic which matches
an IDS/IPS rule, but somehow ‘trick’ Pigasus into allowing it
through – e.g., by reording packets, sending duplicate packets,
etc. Snort 3.0 employs numerous approaches to address these
types of attacks (e.g., timeouts and memory limits) which are
straightforward for Pigasus to replicate. Second, an attacker
may attempt to slow down Pigasus – sending out-of-order or
very small packets to reduce Pigasus’ effective throughput
and hopefully stall or drop innocent traffic. These classes of
attacks can always be overcome by ‘scaling on demand’ –
i.e., running more instances – but we set an additional goal of
Pigasus being at least as robust as Snort 3.0.

4 Reassembly
Reassembly refers to the process of reconstructing a TCP

bytestream in the presence of packet fragmentation, loss, and
out-of-order delivery. Reassembly is necessary in Pigasus
because the MSPM and Full Matcher must detect patterns
(strings or regular expressions) that may span across more
than one packet (e.g., searching for the word ‘attack’ should

3We do use BRAM in some other places for internal buffers/queues.
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not fail just because ‘att’ appears at the end of packet n and
‘ack’ appears at the beginning of packet n+ 1). Note that
our goal is not a full TCP endpoint and hence we are not re-
sponsible, e.g., for producing ACKs; the IDS/IPS is a passive
observer of traffic between two existing endpoints, merely
re-ordering the packets it observes for analysis. The key ob-
jective of our Reassembler is to perform this re-ordering for
100K’s of flows, while operating at 100Gbps, within the mem-
ory limitations of our FPGA.

4.1 Design Space for TCP Reassembly
Hardware design often favors data structures that are fixed-

length, constant-time and generally deterministic, and most
TCP reassembly designs follow suit. For instance, [49] allo-
cates a fixed 64KB packet buffer in DRAM and uses 7 pairs
of pointers to track OOO state for each flow; similarly, [42]
maps a fixed-sized ‘segment array’ in DRAM to track per-flow
state. By using static buffers, these designs are guaranteed
constant-time insertion of out-of-order packets into memory;
furthermore, the memory consumed by any individual flow is
fixed so freeing space is also deterministic. In addition, each
flow is bounded in its resource consumption and so a highly
out-of-order flow cannot take over the available address space,
starving other flows.

The problem with these designs is that, by allocating a fixed
buffer, they both waste memory and limit out-of-order flows.
For example, allocating 64KB for each and every flow [42]
would require 6.4GB to support 100K flows – orders of mag-
nitude bigger than our BRAM capacity. Even worse, the vast
majority of flows don’t need the space most of the time be-
cause most packets arrive in order. On the other hand, flows
which do suffer a burst of out-of-order packets (perhaps due
to network loss) that exceeds the 64KB capacity cannot be
served, even if there is memory available.

For software developers, the obvious response to these chal-
lenges is to use a more memory-dense data-structure such
as a linked-list, where each arriving segment is allocated on-
demand and inserted into the list in order. Because memory is
allocated on demand, no memory is wasted, and those flows
which need more capacity are able to consume more as avail-
able. In our empirical traces, 0.3% of packets arrive out of
order, with ‘holes’ in the TCP bytestream typically filled in
after 3 packet arrivals from the same flow. In a linked-list
based design, this means that on average an out-of-order flow
consumes 5K bytes at most.

From a hardware perspective, however, a linked list is an
unorthodox choice: pipeline parallelism depends on each
stage of the pipeline taking a fixed amount of time. Since
linked lists have variable insertion times, depending upon how
far into the list a segment must be inserted, linked lists can
lead to pipeline stalls which result in non-work-conserving
behavior upstream from the slow pipeline stage, and hence
overall poor throughput. We find that by carefully designing
the reassembly pipeline as a combination of a fast path (only
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Figure 5: Reassembly Pipeline.

handling in-order flows) and a slow path (that handles the
remaining out-of-order flows), one can achieve the best of
both worlds.

4.2 Pigasus TCP Reassembler
Pigasus takes the linked list approach, targeting a more

memory efficient design. However, to avoid pipeline stalls
due to variable-time packet insertions, Pigasus uses three ex-
ecution engines to manage reassembly state, each of which
handles a different class of incoming packet headers. The
Fast Path processes in-order packets for established flows; the
Insertion Engine handles SYN packets for new flows; and the
OOO Engine handles out-of-order packets for existing flows.
Because Pigasus is implemented in hardware, these engines
can all run simultaneously (on different packet headers) with-
out stalling each other, but must be careful not to conflict in
accessing shared state in the Reassembly Flow Table. The
flowchart in Figure 5 describes the sequence of steps that
occur when a packet header arrives at the Reassembler.

The Flow Table, in representation, is a hash table mapping
the classic flow 5-tuple identifier to a table containing (a) the
next expected sequence number for an in-order packet, and
(b) the head node for a linked list containing the headers of
out-of-order packets waiting for a ‘hole’ in the TCP sequence
number space to be filled. We discuss how the Flow Table is
implemented in §4.3.

Fast Path: Upon arrival from the parser, each packet header
is picked up by the Fast Path which looks up the flow’s entry
in the Flow Table. If no entry exists for that flow, the Fast Path
pushes the packet header on to a queue for the Insertion En-
gine and moves on to the next packet. If there exists an entry
for that flow, but (a) the packet header does not match the next
expected sequence number in the Flow Table, or (b) the head
node in the flow table is not null, the Fast Path pushes the
packet header on to a queue for the OOO Engine. Finally, if
the packet header does match the next expected sequence num-
ber in the flow, the Fast Path updates the expected sequence
number in the Flow Table to the sequence number for the
subsequent packet in the flow and pushes the current packet
out towards the MSPM. Every task on the Fast Path runs in
constant time, and so throughput is guaranteed through this
engine to be 25 Million packets-per-second, which amounts
to at least 100Gbps so long the average packet size is greater
than 500B (Internet traces typically have an average packet
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size of more than 800B [15]).

OOO Engine: The OOO Engine does not run in constant
time, instead dequeueing packets provided for it from the
Fast Path as it finishes operating over the previous packet.4

For each dequeued packet, the OOO engine allocates a new
node representing the packet’s starting and ending sequence
numbers, traverses the linked list for that flow, and inserts the
newly-allocated node at the appropriate location. If the packet
fills the first sequence number ‘hole’ in the linked list, then
the OOO Engine removes the now-in-order packet headers
from the list, releases them to the MSPM, and also updates
the Flow Table entry with the new linked list head and next
expected sequence number. If the OOO Engine detects that
BRAM capacity for OOO flows exceeds 90% of its maximum
capacity, it drops the flow with the longest linked list.

Insertion Engine: The Insertion Engine inserts new flow
entries into the Flow Table; like the OOO Engine this path
too can take variable time. We discuss the insertion engine in
more detail in the next subsection.

Overall, allocating memory on-demand avoids memory
wastage, and enables Pigasus to better serve OOO flows that
do have a higher memory requirement. Additionally, bifurcat-
ing the reassembly pipeline into fast and slow paths prevents
out-of-order flows – which require non-deterministic amounts
of time to be served in our design – from impacting the perfor-
mance of in-order flows, which represent the common case.

4.3 Implementing the Flow Table
While the Fast Path, Insertion Engine, and OOO Engine all

operate simultaneously, they must synchronize over shared
flow state (for instance, to keep the next expected sequence
number for each flow consistent). We briefly discuss the im-
plementation of our Flow Table that provides fast and safe
concurrent access to these three engines.

The flow table design borrows a key data-structure from
FlowBlaze [36]: an FPGA-based hash table that employs
deamortized cuckoo hashing [8, 28]. We illustrate this data
structure in Figure 6. The design provides high memory

4Experimentally, we actually observe that this slow path is mostly idle
when running over our traces, as most packets arrive in order or mostly in-
order. We artificially stress this path to overload in our evaluation, but doing
so requires an extreme rate of packet loss.

density (up to 97% occupancy using 4 or more sub-tables
[8, 28, 36]), and worst-case constant-time reads, writes, and
deletions for existing entries. It also guarantees that, for an
Insertion Queue whose size is logarithmic in the number of
flow table entries (in practice, a small value), the queue will
not overflow [8]. We implement the hash table using dual-port
BRAM, and the Insertion Queue using a parallel shift-register
(capable of storing 8 elements).

The key to maintaining the hash table’s deamortization
property is the Insertion Engine, which is responsible for
inserting: (a) new flows, and (b) flows that were previously
evicted from the hash table during a ‘cuckoo’ step. Effectively,
the Insertion Engine dequeues an element from the front of
the Insertion Queue, and attempts to insert it into the hash
table. If at least one of the 4 corresponding hash table entries
is unoccupied, it simply updates the flow table and proceeds
to the next queued element; otherwise, it evicts one of the 4
flow table entries at random, pushes the evicted entry onto the
queue, and inserts the deqeued element in its place.

To guarantee conflict-free flow table access, we have the
following prioritization of operations to the table. First, note
that the Fast Path and OOO Engine never conflict over the
same entry – the flow is either in order or not. The Insertion
Engine can conflict with both the Fast Path and OOO Engine,
as it may try to ‘cuckoo’ entries. Hence, we enforce the fol-
lowing priorities: (1) Fast Path > Insertion Engine (to ensure
deterministic performance on the Fast Path), and (2) Insertion
Engine > OOO Engine (to ensure that the queue drains and
since, empirically, the OOO path is underutilized). Since our
BRAM is dual-ported, we allow the Fast Path direct access
to the Flow Table, while accesses originating from the OOO
Engine or Insertion Engine are managed by an arbiter that
enforces the aforementioned priority scheme.

4.4 Worst-Case Performance
Since Pigasus serves on the front-lines of network de-

fenses, it is a prime target for Denial-of-Service (DoS) attacks.
Most of Pigasus’ underlying components are, by design, fully
pipelined, enabling packet data to ‘stream through’ without
ever stalling the system. However, this is not the case for the
OOO path in the TCP reassembler. While all in-order packets
are guaranteed full throughput, an attacker could potentially
slow down the OOO path by injecting out-of-order flows into
the system.

The key question is how this out of order traffic will im-
pact ‘normal’ or ‘innocent’ TCP connections. We observe in
our traces that 0.3% of packet arrivals from innocent connec-
tions arrive out of order, hence 99.7% of innocent traffic will
‘stream through’ the fast path, unimpacted by slowdowns on
the OOO path. But, worst-case slowdowns on the OOO path
can stall innocent traffic behind lengthy linked-list traversals
due to a malicious sender.

Using mathematical models (elided for space), we quantify
the performance of our system in terms of the goodput, or the
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packet rate (in Gbps) corresponding to ‘innocent’ traffic that
the system can sustain in steady state. Then, the attacker’s
objective is to inject adversarial traffic on the ingress link so
as to minimize the achieved goodput.

Starting with a 100Gbps ingress link, we characterize the
adversarial scenario using two parameters: the fraction of
input traffic that is adversarial, a, and the fraction of non-
adversarial input traffic that is in-order, t. Table 1 depicts the
expected goodput for different values of a and t (using an
average packet size of 500B for innocent traffic) according
to the model. Ideally, all innocent traffic would traverse the
system unhindered, but we see that slowdowns on the OOO
path can make Pigasus fall short of this goal – especially at
high rates of attack traffic injection – but that the OOO path
is not entirely stalled and out of order packets do, eventually,
make it through the system.

In-order Traffic% (ttt)
99.7% 99.0% 90% Ideal

Attack
Traffic
Rate (a)

10Mbps 99.7 99.1 91.5 99.99
100Mbps 99.6 98.9 90.1 99.9
1Gbps 98.7 98.0 89.1 99
10Gbps 89.7 89.1 81.0 90

Table 1: Total Goodput (in Gbps) for various combinations of
the attack traffic rate and fraction of in-order traffic. In-order
traffic is isolated from slowdown, even when an adversary
introduces substantial out-of-order flows.

5 Multi-String Pattern Matching
Checking tens of thousands of string patterns against a

100 Gbps bytestream makes the multi-string pattern matcher
(MSPM) module by far the most operation-intensive and per-
formance critical component in Pigasus.

Role of MSPM in IDS/IPS: As explained in Section 2, a
Snort signature/rule comprises three classes of patterns: a
header match, a set of exact match strings, and a set of regular
expressions. A packet triggers the rule iff all patterns are
identified.

To avoid checking every single pattern for every index and
every packet, rulesets are designed for a two-step matching
process. In Snort, the MSPM is responsible for checking
header matches and one, highly-selective exact match string,
called the fast pattern. Only packets which both match the
header match and the fast pattern are forwarded to the full
matcher which checks regular expressions and any secondary
exact match strings (referred to as non-fast pattern strings).
Pigasus’ MSPM checks for fast patterns, headers, and non-fast
patterns, reducing the load on the CPU-side full matcher.

MSPM Design Landscape: To the best of our knowledge,
there are other no hardware or software projects reporting
multi-string matching of tens thousands of strings at 100
Gbps. Classically implemented with parallel NFAs, the best
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length
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Figure 7: MSPM in Snort 3.0. Every String Matcher selected
by the Port Group Module is evaluated sequentially.

hardware-based string matcher that we know of [16] would
require 23MB of BRAM to represent the exact match search
strings alone (ignoring the additional header matches).

To attain a more efficient design, we instead look to soft-
ware and Intel’s Hyperscan algorithm for string matching,
which is AVX parallelizable and provided an 8× speedup
compared to state-machine based string matchers in soft-
ware [47]. Although naïvely re-implementing Hyperscan on
the FPGA is in fact more memory intensive than the NFA ap-
proach (requiring 25MB to sustain 100Gbps), we find that by
re-architecting Hyperscan’s hash table-based design, we can
reduce this memory footprint to only 2MB, leaving memory
to spare and expand on the Hyperscan approach to search for
all strings (rather than a fast-pattern only) for a total memory
budget of 3.3MB. The key idea is to arrange hash table filters
hierarchically, with low memory filters placed early in the
pipeline with a high replication factor; this filters out a major-
ity of traffic early. Subsequent stages of the MSPM may be
more memory-intensive, per-module, but each stage handles
less and less traffic and hence requires less replication.

In what follows, we first describe Hyperscan’s two-stage
MSPM, which checks for header matches and fast patterns.
We then describe Pigasus’ three-stage MSPM, which checks
for fast patterns, header matches, and non-fast pattern strings
using highly parallel, hierarchical filters to improve memory
density.

5.1 MSPM in Software
Snort 3.0 + Hyperscan: In Snort 3.0, the MSPM is imple-
mented using Intel’s Hyperscan, illustrated in Figure 7.

Packets are first checked for their header match. Across all
10K rules, there are only ≈400 unique header match values.
Rules which share the same header match fields are said
to belong to the same port group. The port group module
outputs a set of port group IDs which the packet matches; this
output set is never empty because some rules wildcard their
header match and hence match all packets. An average packet
matches 2 port groups.

Packets are then checked for their fast pattern string match.
For each port group, there exists a string matcher which
checks fast patterns for all rules within that port group. Snort
must check every string matcher for each port group the packet
matches.

Within the string matcher, Snort must iterate over every in-
dex of the payload checking whether it matches any of the fast
patterns in the port group. Rather than using a state machine
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to do this, Hyperscan uses a collection of hash tables. For
each possible fast pattern length5 a hash table is instantiated
containing the fast patterns of that length. Hyperscan then
performs an exact-match lookup for all substrings at each
index, looking up whether or not the substring is in the hash
table – potentially (8× l) lookups for a packet of length l.

To reduce the number of expensive sequential lookups, each
string matcher contains a SIMD-optimized shift-or filter [9]
prior to the hash table; this filter outputs either a ‘0’ or ‘1’
for every byte index of the packet, indicating whether or not
that index matches any fast pattern in the hash tables; indices
which result in a ‘0’ output from the shift-or stage need not
be checked.

The string matcher – combining shift-or and hash tables –
then outputs a set of rules which the packet matched both in
terms of header and fast pattern; together, the packet and the
potential rule matches are passed to the full matcher. However,
for 89% of packets, this stage outputs the empty set and the
packet bypasses the full match stage entirely.

5.2 MSPM in Pigasus
A straightforward port of the Snort 3.0 MSPM engines and

data structures onto the FPGA consumes 785KB of memory
and forwards at a rate of 3.2Gbps. Taking advantage of the
high degree of parallelism offered by the FPGA, one could, in
theory, scale to 100Gbps via data parallelism, i.e., replicating
this 32 times. Unfortunately, doing so would require 25MB of
BRAM. We now describe how Pigasus re-architects the Hy-
perscan algorithm to achieve this high degree of parallelism
within available resources. Since this results in leftover mem-
ory, we can then extend Pigasus’ MSPM to scan for non-fast
pattern strings as well.

As shown in Figure 8, Pigasus flips the order of Hyper-
scan’s MSPM, starting with string matching before moving
on to header matching and port grouping.

Fast Pattern String Matching (FPSM): To perform string
matching, Pigasus (like Hyperscan) also has a filtering stage
in which packets traverse two parallel filters: a shift-or (bor-
rowed from Hyperscan) and a set of per-fast-pattern-length
hash tables. We check the shift-or and (32×8) hash tables in
parallel. Hash tables only store 1-bit values indicating whether
a given (index, length) tuple results in a match – but it does
not store the 16-bit rule ID. The output from the filters is
ANDed together, reducing false positives from either filter
alone by 5×.

The shift-or and 1-bit hash table6 consume only 65KB and
25KB respectively, thus they are relatively cheap to replicate
32× over in order to scale to 100Gbps. In theory, these fil-
ters can generate (32×8) matches per cycle (i.e., 8 matches
per filter); however, in the common case, most packets and

5Up to 8 bytes – longer fast patterns are truncated.
6Subtly, this is not a true Bloom filter [13] because we only perform one

hash per input; implementing multiple hashes increases resource utilization
and complexity, we find, with little gain.

most indices do not match any rules, and therefore require
no further processing.7 This gives us the opportunity to make
subsequent pipeline stages narrower. We design a ‘Rule Re-
duction’ module that selects non-zero rule matches from the
filter’s 256-bit wide vector output and narrows it down to 8
values.

Applying this filter first allows us to use fewer replicas
of subsequent data structures (which are larger and more
expensive), since most bytestream indices have already been
filtered out by the string matcher. This enables high (effective)
parallelism with a lower memory overhead.

Header Matching: In this stage, we use the packet header
data to determine whether the matches produced by the previ-
ous (FPSM) stage are consistent with the corresponding rule’s
Port Group. At this point, we only need to create 8 replicas
of the 17KB Rule Table and 68KB Port Grouping modules to
check 8 rules simultaneously.

Using the (index, length) tuple that resulted in a match in
the FPSM stage, we look up the corresponding rule ID in
the Rule Table. Next, using this rule ID, we look up the Port
Group that this rule maps to; this could be a single port, a list
or range of ports, or a wildcard (indicating a match on any
port). If this packet’s port number is a subset of this rule’s
Port Group, the rule is considered a match; otherwise, the rule
is ignored.

Our initial design of the MSPM stopped here (at the Traffic
Manager 1 stage in Figure 8), aiming merely to reproduce
Snort’s functionality, which only scans for fast patterns and
headers. Packets which matched the fast pattern and header
on at least one rule were sent to the CPU for processing.
While packets which did not produce any matches at either
the FPSM or Header Matching stage were simply streamed
to the output interface.

This resulted in a design that sent 11% of packets to the
CPU for processing, with an average of 4.4 rules searched per
packet – and required only 2MB of memory! Given that this
amounted to a fraction of our resource budget for the MSPM,
we asked ourselves: can we do more?

Non-Fast Pattern String Matching (NFPSM): Pigasus fur-
ther filters down the packets and rules destined for the CPU to
only 5% of packets, with just 1.1 rules/packet (on average), by
additionally searching for all string matches within a rule on
the board. Note that, on average, only 11% of packets reach
the Non-Fast Pattern Matcher, and, by this point, we know
which rules (on average 4.4 of them) the packet might match
on. Naïvely, one might iteratively search for each string in the
≈ 4.4 rules, but because each packet has a variable number of
rules and each rule has a variable number of strings (between
1 and 32), this approach would likely lead to low throughput
and/or pipeline stalls.

Instead, Pigasus once again uses a set of hash tables (like
in the FPSM) to search for all strings simultaneously. It then

7Note that our filters never produce false negatives.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    1091



...

Fast Pattern 
String Matcher 1

Shift-OR
Matching

Hash Tables

length 1

length 2

length 8

...

bucket
bitmap

payload[i, i+8]

Fast Pattern
String Matcher 32

Shift-OR
Matching

Hash Tables

length 1

length 2

length 8
...

payload[i+31, i+31+8]

...

bucket
bitmap

256-to-8
Rule

Reduction

...

...

Rule 
 Table 1

Rule
Table 8

Port
Group 1

Port
Group 8

...

Data Mover

no-check pkt

check
pkt

Non-fast-pattern
String Matcher 1

Non-fast-pattern
String Matcher 16

...

Packet 
Fingerprint
Calculation

Rule 
Fingerprint

Table

Set ?

check
pkt

check
rules

8-to-2
Rule Reduction

check pkt/rules when Non-Fast-Pattern Matcher is busy
raw pkt

Ethernet

Fast Pattern String Matching Header Matching Non-Fast-Pattern String Matching

rule
IDs

Traffic
Manager

2

no-check pkt

Ethernet

Traffic
Manager

1

D
M

A
 E

ng
in

e

Figure 8: Pigasus’ MSPM, which requires a total of 3.3MB of BRAM.

creates a compact, bloom-filter-like representation (‘finger-
print’) of the matched strings. To compute the fingerprint,
we first represent the set of (index, length) tuples generated
by the 8 NFPSM hash tables as a 16-bit vector by setting
bit[index (mod 16)] to ‘1’ for each length bucket. Next, for
each bucket, all of the 16-bit vectors generated for a given
packet are ORed together to create a 16-bit ‘sub-fingerprint’
for that bucket. Finally, these sub-fingerprints are concate-
nated into a 128-bit fingerprint representing the entire packet.
The fingerprinting process is illustrated below:
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Figure 9: Rule matching fingerprints in the NFPSM.

The NFPSM can now look up a corresponding fingerprint
– generated in the same way – for each of the ≈ 4.4 rules,
and now can do a parallel set comparison between the two
fingerprints. If, for every bit in the rule’s fingerprint, the cor-
responding bit in the packet’s fingerprint is also set, there
is high probability that all of the exact match strings for the
rule were matched. But, if any of the corresponding bits are
not set, we can be certain that at least one of the non-fast
pattern strings were not matched, thus eliminating the rule as
a potential match. The 5% of packets which match at least
one rule fingerprint are forwarded to the CPU; the remainder
are released as non-matching and therefore innocent packets.

It is worth noting that, as the last stage of our hierarchical fil-
tering, the non-fast pattern matcher has the lowest throughput
capacity. This saves on resources, but can make the NFPSM
vulnerable to overload. Where the fast pattern matcher is
designed to process up to 100Gbps of incoming data, the non-

fast pattern matcher tops out at a peak throughput of 50Gbps.
50Gbps is more than enough to handle the average rate of
11Gbps, but a spike of rule-matching malicious traffic can
at times overload the non-fast pattern matcher. In this case,
when the first traffic manager (between the header matcher
and the non-fast pattern matcher) detects backpressure from
the NFSM, it steers some packets directly to the CPU for
checking. Temporarily increasing the load on software, where
it is easier to ‘scale out’ and provision additional resources.

End-to-End: By hierarchically filtering out packets, the
MSPM reduces the amount of traffic traversing each subse-
quent stage of the MSPM. This means that the earliest stages
require high levels of replication, but the latter stages can,
on average expect lower throughput and hence require less
replication. Consequently, latter stages require lower mem-
ory consumption. End-to-end, the MSPM requires 3.3MB of
memory, fitting well within our BRAM bounds while doing
more filtering than what a naïve port of the Hyperscan algo-
rithm would be capable of. Nonetheless, the reduced capacity
of the MSPM in the latter phases of the MSPM does make
these components vulnerable to overload; in these cases Pi-
gasus temporarily shunts additional traffic to CPUs, where is
easier to provision on demand and as needed.

6 Evaluation
In this section, we evaluate Pigasus and show that:

• Pigasus is at least an order of magnitude more efficient than
state-of-art Snort running in software: using 23− 200×
fewer cores, and 18−62× less power;

• Pigasus’ performance gains are resilient to a variety of
factors such as small packets, out-of-order arrivals, and the
rule-match profile of the traffic;

• The Pigasus architecture actually has resource headroom,
suggesting a roadmap for handling even more complicated
workloads.
We start by describing the evaluation setup we use for the

rest of the section before the detailed results.
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Module ALM BRAM (MB) DSP eSRAM (MB)
Packet Buffer 507 (0.1%) 0 (0%) 0 (0%) 5.91 (50.0%)

String Matcher 119,562 (17.0%) 3.30 (19.7%) 1,600 (40.4%) 0 (0%)
Flow Reassembler 20,728 (2.9%) 2.61 (15.6%) 0 (0%) 0 (0%)

DMA Engine 2,000 (0.3%) 0.32 (1.9%) 0 (0%) 0 (0%)
Instrumentation 1,189 (0.2%) 0 (0%) 0 (0%) 0 (0%)

Vendor IPs 42,028 (6.0%) 1.22 (7.3%) 0 (0%) 0 (0%)
Miscellaneous 21,946 (3.1%) 0.60 (3.6%) 0 (0%) 0 (0%)

Full Design 207,960 (29.6%) 8.05 (48.1%) 1,600 (40.4%) 5.91 (50.0%)

Table 2: Resource breakdown. Percentages are relative to the
total amount of resources in a Stratix 10 MX FPGA.

6.1 Setup
Implementation and Resource Breakdown: We imple-
ment Pigasus using an Intel Stratix 10 MX FPGA Devel-
opment card [2] as the SmartNIC in a 16-core (Intel i9-9960X
@ 3.1 GHz) host machine. The Stratix 10 MX FPGA has
16MB of on-chip BRAM, 10MB of eSRAM, and 8GB of off-
chip DRAM. Table 2 shows the FPGA resources used by each
component of Pigasus when configuring it to support 100K
flows and 10K rules. To implement Pigasus’ CPU/software
components, we adapt Snort 3 to allow it to receive recon-
structed PDUs and rule IDs, coming from the FPGA directly
into its Full Matcher. We run Snort 3 software experiments in
an Intel i7-4790 CPU @ 3.60 GHz.

Traffic Generator: We installed both DPDK Pktgen [1] and
Moongen [20] on a separate 4-core (Intel i7-4790 @ 3.6 GHz)
machine with a 100Gbps Mellanox ConnectX-5 EN network
adapter. DPDK Pktgen achieves higher throughput when re-
playing PCAP traces – up to 90Gbps – and hence we use
the DPDK Packet Generator when running experiments with
recorded traces. Moongen is better at generating synthetic traf-
fic at runtime and can do so at up to the full 100Gbps offered
by the underlying network. We specify in each experiment
which traffic generator was used.

Traces and Ruleset: We test Snort and Pigasus both using
the publicly available Snort Registered Ruleset (snapshot-
29141) [6] and different traces from Stratosphere [44]: CTU-
Mixed-Capture-1–5, CTU-Normal-12, and CTU-Normal-7.
We refer to them as mix-1–5, norm-1, and norm-2, respec-
tively. For the mixed traces, we use the *before.infection
pcaps. We use Stratosphere traces because their packet cap-
tures contain the original payloads, which is essential when
evaluating IDSes.

Measuring Throughput and Latency: We measure
throughput in two ways: 1. The Zero Loss throughput is mea-
sured by gradually increasing the packet generator’s trans-
mission rate until the system (Snort or Pigasus) first starts
dropping packets; 2. The Average throughput is computed
as the ratio of the cumulative size of packets in the trace
(in bits) to the total time required to process the trace. We
measure latency (at low load) using DPDK Pktgen’s built-in
latency measurement routine. Unfortunately, DPDK embeds
timestamps in the packet body, which never triggers the CPU-
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Figure 10: Number of cores required to process each trace at
100Gbps using Pigasus (FPGA + CPUs) and Snort (traditional
CPUs alone). Pigasus numbers are based on implementation;
Snort numbers are extrapolated from its single-core through-
put and assume perfect linear scaling.

side Full Matching functionality. Instead, we measure the
end-to-end latency for Pigasus on an empirical trace using
FPGA-side counters, and then adding the baseline FPGA
loopback latency to it.

6.2 End-to-end performance and costs
In this section, we compare the performance, power, and

cost of Pigasus vs. legacy Snort.

Provisioning for 100Gbps throughput: Figure 10 reports
the number of server cores required to achieve 100Gbps for
the evaluated Stratosphere traces for different settings. The
top half is under the assumption of loss-free processing with-
out buffering, while the bottom reports the steady-state core
requirements based on the assumption that we could buffer
packets during the peak periods and defer the full matching
to allow the cores to catch up after the peak has passed.

The Pigasus results are based on experiments where the
system is tested at increasing number of cores at maximum
throughput, until we observe no packet loss. For the Snort
experiments we run Snort in both IDS and IPS mode (with
DPDK) on a single core and increase the throughput until it
begins to drop packets. Note that while we report the actual
number of cores required to run Pigasus, for Snort we extrap-
olate the single-core experiment to determine the number of
cores that we would need to keep up with 100Gbps. This con-
siders that Snort’s throughput scales linearly with the number
of cores and, therefore, represents an ideal lower bound to
the actual number of cores needed to run Snort. Overall, we
see that Snort in IDS mode requires 23−185× more cores
than Pigasus (65× on average), and in IPS mode requires
23−200× more cores (72× on average).

Latency: Of course, in a practical IPS we care not only about
throughput/provisioning but also per-packet latency. We plot
the distribution of per-packet latency in Figure 11. We find
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Figure 11: CDF of latency of Pigasus vs. Snort.

that Pigasus yields almost an order of magnitude improvement
in the median latency, and up to 3× improvement in the tail
latency. As a point of comparison, we also show the baseline
performance of a simple FPGA loopback measurement (i.e.,
without any processing) and the Pigasus fast-path for packets
that do not need further CPU processing. We find that the
Pigasus fast path is very efficient and almost comparable to
the baseline. We also find that Pigagus end-to-end latency only
deviates substantially from the fast path for the tail. While
we hypothesized some improvements in latency, we were
puzzled by the magnitude of the improvement. Investigating
why Snort was much slower revealed that on average, while
Pigasus reduced the latency for the Reassembly (by 6µs),
Parser (by 4µs), and the MSPM (by 3µs) as expected relative
to software, the additional reduction came from avoiding
Packet I/O overhead in software (around 5µs).

Power footprint: Figure 12 depicts the estimated power con-
sumption required to achieve 100Gbps throughput for three
configurations: Snort in IDS mode, Snort in IPS mode, and
Pigasus in IPS mode. On the CPU side, we use Intel’s Run-
ning Average Power Limit (RAPL) interface [23] to measure
per-core power consumption in steady-state. To verify its
accuracy we also measured the power utilization using an
electricity usage monitor [4] and found consistent results. On
the FPGA side, we use the Board Test System [2] (part of
Intel’s FPGA Development Kit) to measure power dissipation
in the FPGA core and I/O shell. We observe that, across all
traces, Snort (in either mode) has a 13−59× higher power
consumption than Pigasus (34× on average). We further note
that the reported wattages for Pigasus represent a conservative
estimate; while the total power consumption on the FPGA
side is 40W, the core fabric accounts for just 13W, and the
remainder is used for I/O (including Ethernet). Conversely,
we only charge Snort for power consumed during compute
tasks, ignoring other overages (such as Network I/O).

Cost: To estimate the Total Cost of Ownership (TCO), we
consider both the capital investment and the power cost for
each configuration. To estimate the capital investment, we
use the per-core pricing data for the AMD EPYC 7452 CPU
($68.75 per core). For Pigasus, we also incorporate the mar-
ket price of an Stratix 10 MX FPGA [2] ($10K). Assuming
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Figure 12: Estimated wattage to achieve 100Gbps.

that the number of cores needed in practice is between the
Zero Loss and Average in Figure 10, we estimate that the
capital cost of the CPU-only solution is between $7,922 and
$25,045, while the capital cost of Pigasus is between $10,189
and $10,344. To estimate the power costs we assume a life-
time of 3 years and electricity cost at $0.1334/kWh (average
electricity rate in the US [3]). The power cost of the CPU-only
solution at 9W/core is between $3,636 and $11,494, while the
cost for Pigasus is between $227 and $298. Then, combining
the capital investment and the power cost, the TCO of the
CPU-only solution is between $11,558 and $36,539, while
the TCO of Pigasus is between $10,416 and $10,642, saving
between $1,142 and $25,897. We note that these estimates
consider retail prices and do not account for other operational
costs, such as cooling and rack space, which we expect to
favor Pigasus. Moreover, for 100K flows and 10K rules we
only use about half of a Stratix 10 MX; one may consider
adapting the design to a smaller FPGA, further reducing the
cost of Pigasus.

Recall that our original goal was to achieve 100Gbps sup-
porting hundreds of thousands of flows matching tens of thou-
sands of rules on a single server with a reasonable cost/re-
source footprint. The above results suggest that Pigasus in-
deed achieves this goal (with ample headroom).

6.3 Microbenchmarks and sensitivity analysis
In this section, we present Pigasus’ performance sensitiv-

ity to traffic characteristics. We probe deeper into Pigasus’
performance under differing levels of malicious traffic. We
further characterize the performance impact of packet size,
and out-of-order degree of flows.

Dependence on CPU Offload: We construct semi-synthetic
traffic traces by mixing malicious flows extracted from mix-1
trace with innocent trace norm-2 in different proportions.8

Figure 13 (a) depicts the dependence of zero-loss through-
put on the fraction of malicious flows (in terms of relative
packet count). We report results for Pigasus (using both 1 and

8Note that not every packet in a malicious flow triggers a match.
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Figure 13: Impact of the fraction of malicious traffic on
system throughput.

16 cores) and Snort IPS (with 1 core). We observe that, as
long as the fraction of malicious traffic is smaller than 15%,
Pigasus is able to process packets at line-rate using a single
CPU core. With 16 cores Pigasus can process packets at line
rate for up to 50% of malicious traffic. After the 50% mark,
performance begins to degrade gradually. We repeated the
same experiments disabling the software component of Pi-
gasus and observed that the througput matches the 16-core
experiment, suggesting that the hardware is the bottleneck.
More specifically, the MSPM’s rule reduction logic is stressed
by the large number of potential rule matches.

Figure 13 (b) depicts the number of cores required to
achieve 100Gbps as a function of the fraction of packets
from malicious flows for up to 50%. Results for Snort are
extrapolated from the single-core throughput. Despite the
performance degradation observed in (a), Pigasus scales con-
siderably better than Snort, requiring two orders of magnitude
fewer cores. We also note that, while the hardware only be-
comes the bottleneck at an extreme fraction of malicious
traffic, the design can be made even more robust using two
hardware pipelines (discussed further in §6.4).

Dependence on Packet Size: We first consider the impact
of packet size on Pigasus’ performance stemming from the
linked-list based TCP reassembler design. We configure the
Moongen packet-generator to generate fixed-sized synthetic
packets, and measure end-to-end, zero-loss throughput as we
vary the packet size. Figure 14 illustrates this dependence.
We observe that, for packets exceeding 500B (comparable to
average packet sizes on the Internet [15]), Pigasus is capable
of processing at line rate. (More generally, Pigasus by design
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Figure 14: Zero-loss throughput achieved by Pigasus for a
range of packet sizes.
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Figure 15: Zero-loss throughput achieved by Pigasus for a
range of Loss Probabilities (l p) and Recovery Distances (rd).

can sustain 100Gbps as long as the average packet size is
greater than 500B over a window of 87µs estimated base on
buffer size.)

Dependence on Out of Order Degree: We characterize
the OOO degree using randomly generated synthetic packet
traces controlled by two independent variables: the packet
loss probability (l p) [32] and the recovery distance (rd).9

Figure 15 depicts the impact of these parameters on Pigasus’
end-to-end, zero-loss throughput. We sweep the loss proba-
bility from 0.3% to 30%, and the recovery distance from 3 to
100. At typical values (l p = 0.3%, rd = 3), Pigasus achieves
a single-core throughput of 100Gbps, which degrades gradu-
ally with increasing packet loss and recovery distance. It is
worthwhile to note that, at typical packet loss rates, the Re-
assembler can handle around 50 OOO packet arrivals without
any degradation in end-to-end throughput.

6.4 Future outlook
Supporting 100Gbps with 100K flows and 10K rules re-

quires only about half of the resources in our FPGA. We now
explore what we can do with the additional capacity.

One option is to duplicate the existing processing pipeline
(which runs at 100Gbps/25Mpps) each to serve a different
subset of flows, increasing the throughput to 200Gbps, at the
cost of creating additional copies of all the MSPM engines.
Another option is to increase the number of supported flows

9Recovery distance is defined as the number of same-flow packets that
arrive before a hole created by a lost packet is filled. In Pigasus, this value
determines the amount of work (in cycles) that the OOO Engine must perform
for each packet that arrives out of order.
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or rules. Figure 16 depicts the three-way tradeoff between
the scalability of the number of rules, concurrent flows, and
replicated hardware pipelines. The design with two pipelines
benefit from better throughput but have fewer room for storing
rules or flows. There is plenty of scaling headroom in the
Pigasus FPGA frontend design for more rules and flows.

7 Related Work
We now review some of the most related work, some of

which served as inspiration for Pigasus.

Pattern matching: The design of the hash table filter in our
Multi-String Pattern Matcher is similar to the filters used by
DFC [17] and Hyperscan [47]. An important difference, how-
ever, is that instead of using a second hash table to associate
potential string patterns with their identifiers, we directly use
the matched index as a pattern identifier. This helps to reduce
the amount of resources required by the hardware implemen-
tation. We also employ fewer, but much larger filters, since
cache-friendliness is not a concern for FPGA design.

Using FPGAs to accelerate IDS/IPS: Many previous work
have also made a case for using FPGAs to implement net-
work functionality [21,30,33,36,45]. ClickNP [30] and Flow-
Blaze [36] present abstractions for making it easier to imple-
ment network functionality in FPGAs. However, they do not
provide the necessary abstractions for searching bytestream
nor they would be able to scale to meet our goals for through-
put and number of rules. Some propose using FPGAs to ac-
celerate IDS/IPS [10, 16, 18, 19, 34, 43, 46, 49]. However, all
of these works do not implement a complete IDS/IPS and fail
to meet our target for throughput or number of rules. Even
though, Snort Offloader [43] proposes using an FPGA to
implement an entire IDS/IPS, it only supports very simple
operations, not including components that are essential for
correct IPS operation, e.g., TCP reassembly.

Other accelerators: Other works have looked at using hard-
ware accelerators to improve some IDS/IPS components. Kar-
gus [25] uses GPUs to accelerate exact-pattern and regular-
expression matching. However, their use of GPUs contributes

to increasing both power and latency. PPS [26] uses PISA
switches to implement DFAs and accelerate arbitrary regular
expressions. But are limited to only UDP and can only support
a small number of string patterns. More important, however,
we note that by only accelerating the latest IDS/IPS stages,
these solutions are fundamentally limited in the throughput
improvements they can achieve.

8 Conclusions
In many ways, IDS/IPS are one of the most stressful net-

work workloads for both traditional software and hardware.
As such, the gap between the workload demands and what
was achievable on a single server always seemed elusive. The
design of Pigasus is a singular proof point that a seemingly
unattainable goal (100Gbps line rates for 100K+ flows match-
ing 10K+ of complex rules) on a single server is well within
our grasp. Looking forward, we believe that we can further
unleash the potential benefits of FPGAs for this unique work-
load by further eliminating CPU bottlenecks and potentially
moving additional functionality onto the FPGA. Given the
future hardware roadmaps of FPGAs and SmartNICs, we be-
lieve that our insights and successes can more broadly inform
in-network acceleration beyond IDS/IPS as well.
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A Artifact Appendix
A.1 Abstract

Pigasus has a hardware component, that runs on an FPGA,
and a software component which is adapted from Snort 3.
The current version requires a host with a multi-core CPU
and an Intel Stratix 10 MX FPGA (with 100 Gb Ethernet) [2].
Pigasus’ artifacts are open source and publicly available.

We provide detailed instructions to reproduce Figure 10.
This figure supports our main claim that Pigasus requires two-
order of magnitude fewer cores than state-of-the-art Snort 3.
In addition to the steps in this appendix and on the repository
README, we also provide video archives that reproduce
Figure 10 for both the Snort 3 Baseline10 and the Pigasus11

experiments.

A.2 Artifact check-list
• Algorithm: Pigasus Multi-String Pattern Matcher.

• Program: Snort 3 [5] for baseline experiments; DPDK pkt-
gen [1] and Moongen [20] to generate packets.

• Compilation: Intel Quartus Prime [24].

• Data set: Stratosphere Laboratory Datasets [44].

• Run-time environment: System running Linux with
Snort 3 [5] software dependencies installed. Quartus 19.3 with
Stratix 10 device support is required to load the bitstream to
the FPGA.

• Hardware: Two servers, one with an Intel Stratix 10 MX
FPGA [2] and another with a DPDK-compatible 100 Gb NIC.
Power-measurement experiments require either a CPU with a
power measurement interface (e.g., RAPL [23]) or an external
electricity usage monitor.

• Execution: Disable power optimizations in the BIOS, isolate
cores from the Linux scheduler, and pin processes to cores.

• Experiments: Experiments are run manually with Pigasus on
one machine and a packet generator on another.

• Public link: https://github.com/cmu-snap/pigasus

• Code licenses: ‘BSD 3-Clause Clear License’ for the hard-
ware component and ‘GNU General Public License v2.0’ for
the software component. Check the repository for details.

A.3 Description
How to access

To access the artifact, clone the repository from GitHub:

$ git clone https://github.com/cmu-snap/pigasus.git

This repository also includes a README with the most
up-to-date instructions on how to install and extend Pigasus.

10https://figshare.com/articles/media/snort_baseline_mp4/
12922160

11https://figshare.com/articles/media/pigasus/12922178
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Hardware dependencies
Pigasus requires a host with an Intel Stratix 10 MX

FPGA [2]. This host should have PCIe Gen3 or greater and
a slot with 16 lanes for the FPGA. Experiments require an
extra host equipped with a DPDK-compatible 100 Gb NIC to
be used as a packet generator. For the experiments, the two
hosts are connected back to back. The power-measurement
experiments require either a CPU with a power measurement
interface (e.g., RAPL [23]) or the use of an external electricity
usage monitor.

Software dependencies
Pigasus’ software component is adapted from Snort 3 [5]

and inherits the same software dependencies. §A.4 provides
instructions on how to install those. The provided implementa-
tion works on Linux only and was tested on Ubuntu 16.04 and
18.04. Experiments require the installation of vanilla Snort 3,
for comparison, as well as DPDK pktgen and Moongen in the
packet generator host. To be able to load the bitstream on the
FPGA, an installation of Quartus 19.3 as well as the Stratix
10 device support are required.12

Data sets
To obtain the Stratosphere traces go to https://www.

stratosphereips.org/datasets-overview.

A.4 Installation
These instructions assume that you already have the bit-

stream to be loaded on the FPGA. For instructions on how to
synthesize the design, refer to the repository README.

Software Configuration
In a system running a fresh install of Ubuntu 18.04, with

the Pigasus repository cloned to the home directory, start by
setting the required environment variables and useful aliases
by adding the following to your .bashrc or equivalent:
export pigasus_rep_dir=$HOME/pigasus
export pigasus_inst=$HOME/pigasus_install
export LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}
export LUA_PATH="$pigasus_inst/include/snort/lua/?.lua;;"

alias pigasus="taskset --cpu-list 0 $pigasus_inst/bin/snort"
alias sudo=’sudo ’

Make sure you apply these changes:
$ source ~/.bashrc

Then install the dependencies using the provided script:
$ cd $pigasus_rep_dir
$ ./install_deps.sh

Once the dependencies are installed, build Pigasus as follows:
$ cd $pigasus_rep_dir/software
$ ./configure_cmake.sh --prefix=$pigasus_inst

--enable-pigasus --enable-tsc-clock
--builddir=build_pigasus

12Both can be obtained at: https://fpgasoftware.intel.com/19.3/.

$ cd build_pigasus
$ make -j $(nproc) install

Hardware Configuration
To load the bitstream make sure the Quartus tools are in

your path by setting the following environment variables in
your .bashrc or equivalent:
# quartus_dir should point to the Quartus installation dir.
export quartus_dir=
export INTELFPGAOCLSDKROOT="$quartus_dir/19.3/hld"
export QUARTUS_ROOTDIR="$quartus_dir/19.3/quartus"
export QSYS_ROOTDIR="$quartus_dir/19.3/qsys/bin"
export IP_ROOTDIR="$quartus_dir/19.3/ip/"
export PATH=$quartus_dir/19.3/quartus/bin:$PATH
export PATH=$quartus_dir/19.3/modelsim_ase/linuxaloem:$PATH
export PATH=$quartus_dir/19.3/quartus/sopc_builder/bin:$PATH

Make sure you apply these changes:
$ source ~/.bashrc

A.5 Evaluation and expected result
In what follows, we describe how to run the experiments

to reproduce Pigasus results from Figure 10. Before every
experiment we reload the bitstream on the FPGA and reboot
the server. This ensures that we always start from the same
FPGA state:
$ cd $pigasus_rep_dir/pigasus/hardware/hw_test/
$ ./load_bitstream.sh
$ sudo reboot

Once the machine is back, to run the software component,
first insert the kernel module:
$ cd $pigasus_rep_dir/software/src/pigasus/pcie/kernel/linux
$ sudo ./install

Then, run Pigasus, using the following command:
$ cd $pigasus_rep_dir/software/lua
$ sudo pigasus -c snort.lua --patterns ~/rule_list

The snort.lua uses the same syntax as in Snort 3, you
should modify it to include the Snort Registered Rule Set [6].
In our experiments, we modified the rules to remove some fea-
tures currently not supported by Pigasus, including services,
file_data and nocase. We also use the same modified rules
in the baseline experiment.

When Pigasus finishes the startup process it will stop print-
ing logs to the screen. Once this happens, you can invoke the
FPGA JTAG console to configure the FPGA internal state. To
do so, open another terminal and enter:
$ cd $pigasus_rep_dir/hardware/hw_test/
$ ./run_console
% source path.tcl

If the last command produces an error, exit the JTAG console
with Ctrl+C and rerun the last two commands. Once the last
command runs successfully type the following commands to
configure the buffer size, set the number of cores, and check
the FPGA internal state:
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% set_buf_size 262143
% set_core_num 1
% get_results

This last command should return all zeros as no packets have
been sent yet.

Now that Pigasus is running and properly configured, we
can start the packet generator on another machine. Here we
assume that DPDK pktgen is properly configured on the other
machine and has been started.

You can specify the rate to send packets, where 100 means
100% line rate. To ensure that DPDK pktgen will only send the
trace once, specify the number of packets to match the trace
size. The example pcap we are using is the norm-2.pcap,
which has 456,709 packets. After setting these parameters,
you can start sending packets.

Pktgen:/> set 0 count 456709
Pktgen:/> set 0 rate 100
Pktgen:/> str

Once the packet generator finishes sending packets, go back
to the JTAG console on the other host and type the following:

% get_results

This should return 456,709 received packets and 456,709
processing packets. This means that Pigasus processed all the
packets sent at max rate, without loss.

Now stop Pigasus by going back to the first terminal and
typing Ctrl+C. It will print rx_pkt, which should match the
dma_pkt reported by the FPGA in second terminal. This
means that all packets sent from the FPGA to the CPU for
full evaluation were processed.

A.6 Experiment customization
Experiments may be customized to use different rule

sets and different packet traces. Pigasus design can also be
changed to support a different number of concurrent flows or
rules.

A.7 Artifact Evaluation Methodology
Submission, reviewing and badging methodology:
https://www.usenix.org/conference/osdi20/call-
for-artifacts
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