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Abstract
Deep learning training on a shared GPU cluster is becom-

ing a common practice. However, we observe severe sharing

anomaly in production multi-tenant clusters where jobs in

some tenants experience worse queuing delay than they would

have in a private cluster with their allocated shares of GPUs.

This is because tenants use quota, the number of GPUs, to

reserve resources, whereas deep learning jobs often use GPUs

with a desirable GPU affinity, which quota cannot guarantee.

HiveD is the first framework to share a GPU cluster safely,

so that such anomaly would never happen by design. In HiveD,

each tenant reserves resources through a Virtual Private Clus-

ter (VC), defined in terms of multi-level cell structures corre-

sponding to different levels of GPU affinity in a cluster. This

design allows HiveD to incorporate any existing schedulers

within each VC to achieve their respective design goals while

sharing the cluster safely.

HiveD develops an elegant buddy cell allocation algorithm

to ensure sharing safety by efficiently managing the dynamic

binding of cells from VCs to those in a physical cluster. A

straightforward extension of buddy cell allocation can fur-

ther support low-priority jobs to scavenge the unused GPU

resources to improve cluster utilization.

With a combination of real deployment and trace-driven

simulation, we show that: (i) sharing anomaly exists in three

state-of-the-art deep learning schedulers, incurring extra queu-

ing delay of up to 1,000 minutes; (ii) HiveD can incorporate

these schedulers and eliminate the sharing anomaly in all of

them, achieving separation of concerns that allows the sched-

ulers to focus on their own scheduling goals without violating

sharing safety.

1 Introduction

Deep learning training is becoming a major computing work-

load on a GPU cluster. It is a common practice for an organi-

zation to train deep learning models in a multi-tenant GPU

cluster, where each tenant reserves resources using a quota

that consists of the number of GPUs and other associated

resources such as CPU and memory [52].

Surprisingly, in a production multi-tenant GPU cluster, we

have observed unexpected anomalies where a tenant’s deep

learning training jobs wait significantly longer for GPUs than

∗Equal contribution.

they would do in a private cluster whose size equals to the

tenant’s quota. This is because the current resource reserva-

tion mechanism is based on quota, i.e., the number of GPUs.

Quota cannot capture the GPU affinity requirement of training

jobs: e.g., an 8-GPU job on one node usually runs signifi-

cantly faster than on eight nodes [41, 52, 86]. Quota cannot

guarantee a tenant’s GPU affinity like the tenant’s private

cluster does. As a result, multi-GPU jobs often have to wait

in a queue or run at a relaxed affinity, both resulting in worse

performance (longer queuing delay or slower training speed).

In this paper, we present HiveD, a resource reservation

framework to share a GPU cluster for deep learning training

that guarantees sharing safety by completely eliminating shar-

ing anomalies. Instead of using quota, HiveD presents each

tenant a virtual private cluster (abbreviated as VC) defined

by a new abstraction: cell. Cell uses a multi-level structure to

capture the different levels of affinity that a group of GPUs

could satisfy. Those cell structures naturally form a hierarchy

in a typical GPU cluster; e.g., from a single GPU, to GPUs at-

tached to a PCIe switch, to GPUs connected to a CPU socket,

to GPUs in a node, to GPUs in a rack, and so on.

With cell, HiveD virtualizes a physical GPU cluster as a VC

for each tenant, where the VC preserves the necessary affinity

structure in a physical cluster. This allows any state-of-the-art

deep learning scheduler to make scheduling decisions within

the boundary defined by the VC, without affecting the affinity

requirement from other VCs, hence ensuring sharing safety.

In this way, HiveD achieves the separation of concerns [47]:

It focuses on the resource reservation mechanism and leaves

other resource allocation goals to VC schedulers (e.g., cluster

utilization and job completion time).

HiveD develops an elegant and efficient buddy cell alloca-
tion algorithm to bind cells from a VC to a physical cluster.

Buddy cell allocation advocates dynamic cell binding over

static binding for flexibility. It dynamically creates and re-

leases the binding of cells in a VC to GPUs in the physical

cluster, while providing proven sharing safety despite unpre-

dictable workloads. Moreover, the algorithm can be naturally

extended to support preemptible low-priority jobs to scavenge

unused cells opportunistically to improve overall utilization.

Combined, HiveD achieves the best of both a private cluster

(for guaranteed availability of cells independent of other ten-

ants) and a shared cluster (for improved utilization and access

to more resources when other tenants are not using them).

We evaluate HiveD using experiments on a 96-GPU real
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cluster and trace-driven simulations. The evaluation shows

that (i) sharing anomaly exists in all the evaluated state-of-the-

art deep learning schedulers [41,52,86]; (ii) HiveD eliminates

all sharing anomalies, decreases excessive queuing delay from

1,000 minutes to zero, while preserving these schedulers’

design goals; (iii) HiveD guarantees sharing safety regardless

of cluster loads, whereas a quota-based cluster can result in

7× excessive queuing delay for a tenant under a high load.

We have open-sourced HiveD [17], and integrated it in

OpenPAI [20], a Kubernetes-based deep learning training

platform. It has been deployed in multiple GPU clusters serv-

ing research and production workloads at scale, including a

cluster of 800 GPUs where HiveD has been up and running

reliably for more than 12 months (as of Nov. 2020).

In summary, this paper makes the following contributions:

• We are the first to observe and identify sharing anomaly

in production multi-tenant GPU clusters for deep learn-

ing training.

• We define the notion of sharing safety against the

anomaly and propose a new resource abstraction, i.e.,

multi-level cells, to model virtual private clusters.

• We develop an elegant and efficient buddy cell allocation

algorithm to manage cells with proven sharing safety,

and to support low-priority jobs.

• We perform extensive evaluations both on a real cluster

and through simulation, driven by a production trace, to

show that HiveD achieves the design goals in terms of

sharing safety, queuing delay, and utilization.

2 Background and Motivation

The current approach of managing a multi-tenant GPU
cluster. In large corporations, a large-scale GPU cluster

is usually shared by multiple business teams, each being a

tenant contributing their resources (budget or hardware). The

tenants share the GPU cluster in a way similar to sharing

a CPU cluster [1, 52]: Each tenant is assigned a number of

tokens as its quota. Each token corresponds to the right to use

a GPU along with other types of resource. The quota denotes

an expectation that the tenant can access “at least” the share

of resources it contributes.

To improve training speed in the cluster, a user usually

specifies a GPU affinity requirement for a deep learning

job [52, 86]. For example, it is often desirable for a 64-GPU

job to run in the 8×8 affinity, i.e., to run the job on 8 nodes

each with 8 GPUs, instead of 64×1, i.e., 64 nodes each using

1 GPU. Given the affinity requirements, the resource manager

will satisfy them in a guaranteed (hard) or best-effort (soft)

manner. If there is no placement satisfying a job’s affinity

requirement, the job will wait in the queue if it has a hard

  

Figure 1: Sharing anomaly: a tenant suffers longer queuing

delay in a shared cluster than in its own private cluster.

affinity requirement or will be scheduled with relaxed affinity

if the requirement is soft (e.g., 64×1 as opposed to 8×8).

Sharing anomaly. In a production GPU cluster described

in [52], we observe an anomaly from user complaints: a tenant

is assigned a quota of 64 GPUs but reports that it cannot

run a single (and the only) 8×8 deep learning job. Such

anomaly arises because the tenant’s assigned affinity has been

fragmented, not by its own job(s) but by jobs from other

tenants. Even though the tenant has enough GPU quota, the

64-GPU job has to wait in a queue or execute with degraded

performance with relaxed affinity. The promise to the tenant

that it can access at least its share of resource is broken.

Sharing anomaly appears similar to external fragmentation

in memory management [54], if we liken a tenant to a program.

The important difference however is that, in a shared GPU

cluster, tenants expect their resource shares to be guaranteed.

In the above real-world example, the fragmentation is due to

other tenants, and the suffering tenant can hardly do anything

except to complain to the cluster operator. Sharing anomaly

can easily happen when jobs with lower affinity requirement

(e.g., single-GPU jobs) from a tenant add to the fragmentation

of global resources (due to varying job arrival and completion

times), making jobs with higher affinity requirement (e.g.,

8×8-GPU jobs) from other tenant(s) not able to run, even

with sufficient quota. Apparently, quota can reserve only the

quantity of resources, but not the affinity of resources. Hence

it cannot automatically get around the external fragmentation

across tenants. We call this phenomenon “sharing anomaly”

because the sharing of a tenant’s resource impacts the tenant

negatively. Therefore, in the above case, rather than sharing

with others, the wised up tenant would prefer to run a private

cluster with eight 8-GPU nodes to adhere to its 8× 8 GPU

affinity with zero queuing delay.

A multi-tenant cluster is said to suffer from sharing
anomaly if a tenant’s sequence of GPU requests (possibly

with affinity requirement) cannot be satisfied in this shared

cluster; whereas it can be satisfied in a private cluster whose

size equals to the tenant’s quota. Figure 1 highlights how

severe sharing anomaly could become, selected from a trace-

driven simulation in a setup similar to [52] (more details in

§5). The figure shows the job queuing anomaly of one tenant

in a shared cluster when jobs have hard affinity requirement.

In the 10-day submission window (denoted as X-axis), the
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tenant’s average job queuing delay (denoted as Y-axis) in

the shared cluster is significantly higher than that in its own

private cluster.1 In particular, the jobs submitted around Day

1 have to stay in the queue for more than 8,000 minutes (5

days) while they have zero queuing delay in the private clus-

ter! Moreover, tenants having reserved large resources tend to

suffer the most. Consequently, we have witnessed important

corporate users reverting to private clusters, after experiencing

high queuing delay brought by severe sharing anomalies.

One approach to reducing sharing anomaly is to devise

a scheduling policy to minimize global resource fragmen-

tation. This makes the design of a deep learning scheduler

even more complex, which already has to manage sophisti-

cated multi-objective optimizations. For example, minimizing

global fragmentation may decrease job performance due to

increased inter-job interference [86]. Therefore, we propose

to separate the concern of sharing anomaly from other re-

source allocation objectives [47]. Instead of developing a

complicated scheduler that achieves all possible goals, we de-

sign HiveD, a resource reservation framework that focuses on

eliminating sharing anomaly, and provides a clean interface

to incorporate any state-of-the-art deep learning schedulers to

address concerns like cluster utilization [86], job completion

time [41, 66], and fairness [29, 60].

3 HiveD Design

3.1 System Overview
HiveD proposes to guarantee sharing safety (i.e., eliminating

sharing anomaly as described in §2) as a prerequisite of shar-

ing a GPU cluster. Specifically, if a sequence of GPU requests

with affinity requirements can be satisfied in a private clus-

ter, it should be satisfied in the corresponding virtual private

cluster and the shared physical cluster.

Figure 2: System architecture: a two-layer design.

Figure 2 illustrates the overall system architecture. HiveD’s

abstraction of GPU resources is divided into two layers, i.e.,

the layer of Virtual Private Clusters (VCs) and the layer of

physical cluster. HiveD presents each tenant a VC. Each VC

is pre-assigned a set of cells, a novel resource abstraction that

1The anomaly is dominated by queuing delay in the job completion time

when the affinity requirement is hard. Details discussed in §5.1.

captures not only quota, but also the affinity structure of GPUs

(the number inside each cell in the figure shows the number of

affinitized GPUs of the cell). The cells assigned to a VC form

a VC view with the GPU affinity structure identical to that of

the corresponding private cluster. Any third-party scheduler

can be incorporated to work on the VC view to achieve a

certain goal of resource allocation [41, 52, 60, 86]. Moreover,

HiveD ensures that any scheduling decision is constrained

within the boundary defined by the VC view, as if happening

on its private cluster, thus guaranteeing sharing safety.

Cells in a VC are logical. When a job uses a GPU in a

logical cell, e.g., one GPU in the 4-GPU cell in the VC view

of Tenant A in Figure 2, the logical cell will be bound to a

physical cell allocated from the physical cluster, denoted at

the bottom of Figure 2. If none of the GPUs is in use, the

logical cell will be unbound from the physical cluster. To im-

prove utilization, preemptible low-priority jobs can scavenge

idle GPUs opportunistically. Such dynamic binding is more

flexible than static binding: a dynamic binding can avoid a

physical cell whose hardware is failing; it can avoid cells used

by low-priority jobs to reduce preemptions; it can also pack

the cells to minimize the fragmentation of GPU affinity.

To achieve this, HiveD adopts buddy cell allocation, an

efficient and elegant algorithm, to handle the dynamic bind-

ing. A key challenge of dynamic binding is to guarantee the

safety property in response to dynamic workloads, that is,

jobs arrive unpredictably and request varying levels of cells.

Buddy cell allocation algorithm is proven to ensure sharing

safety: any legitimate cell request within a VC is guaranteed

to be satisfied. The algorithm can also support low-priority

jobs. Figure 2 shows a possible cell allocation, where cells in

a physical cluster are bound to those defined in two VCs, and

also to a low-priority job.

In §3.2, we explain the details of cells and show how a VC

can be defined by cells. And in §3.3, we introduce the buddy

cell allocation algorithm, prove its sharing safety guarantee,

and extend it to support low-priority jobs.

3.2 Virtual Private Cluster with Cells

To model a (private) GPU cluster, HiveD defines a hierarchy
of multi-level cell structures. A cell at a certain level is the

corresponding collection of affinitized GPUs with their inter-

connection topology. Each virtual private cluster (VC) is then

defined as number of cells at each level, modeled after the

corresponding private cluster.

Figure 3 shows an example, where there are 4 levels of cell

structures: at the GPU (level-1), PCIe switch (level-2), CPU

socket (level-3), and node levels (level-4), respectively. The

cluster has one rack that consists of four 8-GPU nodes, shared

by three tenants, A, B, and C. The cell assignment for each

tenant’s VC is summarized in the table in Figure 3. Tenants A
and B’s VCs both reserve one level-3 cell (4 GPUs under the

same CPU socket), one level-2 cell (2 GPUs under the same
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Tenant B

Rack

8-GPU
Node

8-GPU
Node

8-GPU
Node

Cell Level A B C
L4 cell (8-GPU) 0 0 2
L3 cell (4-GPU) 1 1 0
L2 cell (2-GPU) 1 1 1
L1 cell (1-GPU) 1 1 0

PCIe Switch

GPU

Network Tenant ATenant A

Tenant C

1 2 3 4 5 6 7 8

CPUCPU

2

8-GPU
Node1 2 43

1

1 2 3 4 5 6 7 8

CPUCPU2

1 2 3 4 5 6 7 8

CPU

8-
GP

U 
No

de
8-

GP
U 

No
de

QPI

5 6 7 8

CPU

QPI

8-GPU
Node

8-GPU
Node

Figure 3: Multi-level cell assignment for a rack: an example.

PCIe switch), and one level-1 cell (single GPU). Tenant C is

a larger tenant, which reserves two level-4 cells (node level)

and one level-2 cell. Given the VC views defined in Figure 3,

HiveD can adopt a third-party scheduler [41, 52, 60, 86] to

work on the views. From the third-party scheduler’s point

of view, the VC view is no different from a private cluster

consisting of nodes with different sizes (i.e., different level

of cells). For example, the scheduler can treat tenant C as a

private cluster with two 8-GPU nodes and one 2-GPU node,

despite the fact that the 2-GPU node is actually a level-2 cell.

Note that a third-party scheduler can use any GPUs in the

assigned cells. For example, it can schedule two 2-GPU jobs

to a 4-GPU (level-3) cell: a cell is the granularity of resource

reservation in VCs and the physical cluster, but not necesarily

the job scheduling granularity of a third-party scheduler.

In the cell hierarchy, a level-k cell c consists of a set S of

level-(k−1) cells. The cells in S are called buddy cells; buddy

cells can be merged into a cell at the next higher level. We

assume cell demonstrates hierarchical uniform composability:

(i) all level-k cells are equivalent in terms of satisfying a tenant

request for a level-k cell, and (ii) all level-k cells can be split

into the same number of level-(k−1) cells.

Heterogeneity. A heterogeneous cluster can be divided into

multiple homogeneous ones satisfying hierarchical uniform

composability. This is logical in practice because a production

cluster typically consists of sufficiently large homogeneous

sub-clusters (each often a result of adding a new GPU model

and/or interconnect) [52]. Users typically use homogeneous

GPUs for a job for better performance and specify the desired

GPU/topology type (e.g., V100 vs. K80).

Initial cell assignment. A cluster provider must figure out

the number of cells at each level to be assigned to each tenant’s

VC. A VC assignment is feasible in a physical cluster if it

can accommodate all cells assigned to all VCs; that is, there

exists a one-to-one mapping from the logical cells in each

VC to the physical cells in the physical cluster. The initial cell

Algorithm 1 Buddy Cell Allocation Algorithm

1: // Initial state of free_cells: only top level has cells

2: procedure ALLOCATECELL(cell_level)

3: if free_cells[cell_level].size() == 0 then
4: c = AllocateCell(cell_level+1)

5: cells = Split(c) � Split cells are buddies

6: free_cells[cell_level].extend(cells)

7: Return free_cells[cell_level].pop()

8:

9: procedure RELEASECELL(cell)

10: if cell.buddies ⊆ free_cells[cell.level] then
11: higher_cell = Merge(cell, cell.buddies)

12: free_cells[cell.level].remove(cell.buddies)

13: ReleaseCell(higher_cell)

14: else
15: free_cells[cell.level].add(cell)

assignment for VCs depends on factors like budget, business

priority, and workload, thus it is handled outside of HiveD (§6

for further discussion). A cluster might spare more physical

resources than the assigned cells to handle hardware failures.

Note that dashed lines in Figure 3 illustrate only one possi-

ble cell binding. HiveD advocates dynamic cell binding for

flexibility, which reduces job preemption and fragmentation

of GPU affinity. §5.3 confirms its benefits over static binding.

3.3 Buddy Cell Allocation Algorithm
HiveD manages the dynamic binding between the logical

cells in VCs and the physical cells in the physical cluster, and

handles requests to allocate and release cells. This is done by

the buddy cell allocation algorithm. The algorithm maintains

for each VC the information of (i) the corresponding physical

cell for each allocated logical cell (i.e., the binding); (ii) a

global free list at each cell level k to track all unallocated phys-

ical cells at that level. The algorithm always keeps available

cells at the highest possible level: for example, if all the buddy

cells at level-(k− 1) are available for a cell at level-k, only

the cell at level-k is recorded. And the algorithm aims to keep

as many higher-level cells available as possible. Algorithm 1

shows the pseudo-code of the algorithm.

To allocate a level-k cell in a VC, the algorithm starts at

level-k and goes up the levels if needed: it first checks whether

a free level-k cell is available and allocates one if available.

If not, the algorithm will move up level-by-level, until a free

level-l cell is available, where l > k. The algorithm will then

split a free level-l cell recursively into multiple lower-level

cells, until a level-k cell is available. Each splitting produces a

set of buddy cells at the next lower level, which will be added

to the free list at that lower level. One of those new low-level

cells is again split until free level-k cells are produced.

The cell release process also works in a bottom-up manner.

When a level-k cell c is released, the algorithm adds c into
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the free list of level-k cells and checks the status of c’s buddy

cells. If all of c’s buddy cells are free, the algorithm will

merge c and its buddy cells into a level-(k + 1) cell. The

merge process continues recursively while going up the levels,

until no cells can be merged. In this way, the buddy cell

allocation algorithm reduces GPU fragmentation and creates

opportunities to schedule jobs that require higher-level cells.

Before processing an allocation request, the algorithm en-

sures the request is legal in that it is within the assigned quota

for the VC at this cell level. HiveD stores the cell assignment

in a table r, where a tenant t’s preassigned number for level-k
cells is stored in rt,k. The buddy cell allocation algorithm

guarantees to satisfy all legal cell requests under a feasible

initial VC assignment, which is formally stated in Theorem 1.

Theorem 1. Buddy cell allocation algorithm satisfies any
legal cell allocation, under the condition of hierarchical uni-
form composability, if the original VC assignment is feasible.

Proof. Denote as rt,k the number of level-k cells reserved

by tenant t, i.e., cell assignment for t. Denote as rk the num-

ber of reserved level-k cells for all tenants, i.e. rk = ∑t rt,k.

Denote as at,k the number of level-k cells that have already

been allocated to t by the buddy cell allocation algorithm.

Cell allocations that maintain at,k ≤ rt,k are legal. Denote as

ak the number of allocated level-k cells for all tenants (i.e.,

ak = ∑t at,k), and fk the number of free level-k cells in the

physical cluster, and hk the number of level-(k− 1) buddy

cells that a level-k cell can be split into (hierarchical uniform

composability). Define Fk as the number of level-k cells that

can be obtained by splitting the higher level cells while still

satisfying the safety check for the cell assignment. Fk can be

calculated by Eqn. (1).

Fk =

{
( fk+1 +Fk+1 − (rk+1 −ak+1))hk+1 k < k̂;

0 k = k̂,
(1)

where k̂ is the highest level.

To prove the theorem, we prove the following invariant:

rk −ak ≤ fk +Fk ∀k = 1,2, ..., k̂. (2)

The L.H.S. is the number of level-k cells all tenants have yet

to allocate, and the R.H.S. is the number of available level-k
cells the cluster can provide.

We prove by induction on discrete time slots. Denote as w
the sequence number of time slots. A change of the cluster

state will increase w by 1. When w = 0, ak = 0, the invariant

(2) holds as long as the original VC assignment is feasible.

Assuming the invariant holds at time w = i, we shall prove the

invariant still holds at time w = i+1 after a tenant allocates a

legal level-k cell.

Because the allocation is legal, ak < rk should hold at time

i+ 1. In order to satisfy the invariant (2), either fk > 0 or

fk = 0.

When fk > 0, according to Algorithm 1, ak = ak +1 and

fk = fk −1 after an allocation of level-k cell at time i+1. The

gap of both sides in the invariant remains constant, thus it still

holds.

When fk = 0, i.e., no free cell at level-k, the algorithm will

split a level-k′ cell by finding the smallest k′ where k′ > k and

fk′ > 0. In this case, the invariant remains true as in the fk > 0

case, while the gap of the invariant at level-k′ will decrease by

1. If the invariant at the level-k′ breaks after cell splitting, it

would mean rk′ −ak′ = fk′ +Fk′ at time w = i. By definition,

Fk should be 0 at time w = i. But since ak < rk (because the

allocation request is legal), thus the invariant (2) cannot hold

true at level k. This leads to a contradiction. Therefore, the

invariant must hold at level k′ after splitting a level-k′ cell.

Following the same step, we can prove the invariant holds at

level k′′ when the algorithm recursively splitting a level-k′′
cell, where k′′ ∈ [k+1,k′ −1]. Hence the invariant holds on

all levels when fk = 0.

Merging the buddy cells can only either increase or keep

the gap of the invariant and thus it still holds. Q.E.D.

The buddy cell allocation algorithm has the time complex-

ity of O(k̂), where k̂ is the number of levels, and can therefore

scale to a large GPU cluster efficiently: k̂ is usually 5, from

the level of racks to the level of GPUs.

Hierarchical uniform composability ensures the algorithm’s

correctness and efficiency: it does not have to check explicitly

after each split whether or not the subsequent legal alloca-

tion requests are satisfiable. Instead, it just needs to check

whether every allocation request is legal. For the case where

cells are heterogeneous (e.g., due to different GPU models

or different inter-GPU connectivities), HiveD partitions the

cluster into several pools within which cells at the same level

are homogeneous, and applies Algorithm 1 in each pool.

The algorithm resembles buddy memory allocation [56],

hence the name. Beyond reducing fragmentation effi-

ciently [35], our key contribution here is making the non-

obvious observation: GPU affinity can be modeled as cells,

thus making buddy allocation applicable. Moreover, we prove

that buddy cell allocation satisfies sharing safety, while tra-

ditional buddy allocation does not have such safety concern

and hence does not provide this guarantee. Our algorithm

also reveals the different characteristics of GPU hierarchy

vs. memory regions; for example, the hierarchical uniform

composability condition captures GPU hierarchy and is a

generalization of the artificially-created power-of-2 rule in

buddy memory allocation. Our algorithm also supports prior-

ity (elaborated next).

Allocating low-priority cells. The buddy cell allocation

algorithm can be naturally extended to support low-priority

jobs (a.k.a. opportunistic jobs), whose allocated cells can

be preempted by high-priority jobs. Supporting such low-

priority jobs helps improve overall GPU utilization, without

compromising the sharing safety guarantees provided to the
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VCs. HiveD maintains two cell views, one for allocating high-

priority (guaranteed) cells, and the other for allocating the low-

priority cells. Both views manage the same set of cells in the

physical cluster using the same cell allocation algorithm (i.e.,

Algorithm 1). Similar to YARN [83] and Omega [73], HiveD

enforces strict priority where high-priority bindings can pre-

empt low-priority cells. Note that preempting a low-priority

job could lead to loss of training progress if its checkpoint

is stale. When allocating low-priority cells, HiveD chooses

the cells farthest away from those occupied by high-priority

jobs (e.g., a non-buddy cell of a high-priority cell) in order

to minimize the chance of being preempted. Likewise, when

allocating high-priority cells, HiveD chooses the free cells

with the fewest GPUs used by low-priority jobs to reduce the

chances of unnecessary preemptions. With a similar approach,

we can extend HiveD to support multiple levels of priority.

HiveD adopts weighted max-min fairness [37,49] to decide

the numbers of low-priority cells allocated to tenants. One

could incorporate other state-of-the-art fairness metrics [60]

to decide the fair share among tenants.

4 Implementation

HiveD has been integrated in OpenPAI, an open-source deep

learning training platform [20] based on Kubernetes [28].

It has been deployed to multiple GPU clusters, managing

various types of GPUs from NVIDIA Volta [19] to AMD

MI50 [14]. This includes a cloud cluster with 800 heteroge-

neous GPUs (200 Azure GPU VMs) where HiveD has been

running reliably for 12+ months (as of Nov. 2020). HiveD has

served research and production workloads at scale, ranging

from long-lasting training of large NLP models (e.g., BERT

large [34]) to AutoML experiments that consist of hundreds

of short-lived 1-GPU jobs. Next we share our experience in

implementing and operating HiveD.

HiveD is implemented in 7,700+ lines of Go codes. In addi-

tion, it has a few more thousands of lines of JavaScript, Shell

scripts, and YAML specifications to integrate with the train-

ing platform. It is implemented as a scheduler extender [9], a

standalone process that works in tandem with the Kubernetes

default scheduler (kube-scheduler [7]). This way, HiveD is

able to reuse kube-scheduler’s basic scheduling logic.

Cell specification. HiveD relies on a cell specification to

understand the cell hierarchies in a cluster and the cell as-

signments for VCs. Figure 4 presents an example specifi-

cation for a heterogeneous GPU cluster with two racks of

NVIDIA V100 GPUs and one rack of NVIDIA P100 GPUs.

cellHierarchy describes the two types of multi-level cell

structures. physicalCluster specifies the cell layout in a

physical cluster: two V100 racks and one P100 rack, and their

IP addresses. With physicalCluster and cellHierarchy,

vcAssignment specifies the cell assignment for a VC: the

only P100 rack and 4 V100 nodes are assigned to the VC vc1.

cellHierarchy:
- name: V100 -RACK # cell hierarchy for V100 rack

hierarchy:
- cellType: V100 -GPU # level-1 cell
- cellType: V100 -PCIe -SWITCH

splitFactor: 2 # split to 2 level-1 cells
- cellType: V100 -CPU-SOCKET

splitFactor: 2
- cellType: V100 -NODE

splitFactor: 2
- cellType: V100 -RACK # level-5 (top-level)cell

splitFactor: 8
- name: P100 -RACK # cell hierarchy for P100 rack

hierarchy:
- cellType: P100 -RACK # omit lower-level cells

splitFactor: 8

physicalCluster: vcAssignment:
- topLevelCellType: V100 -RACK - vc: vc1 #omit other VCs

topLevelCellAddresses: cells:
- 10.0.1.0~7 - subCluster: P100 -RACK
- 10.0.2.0~8 - cellType: P100 -RACK

- topLevelCellType: P100 -RACK cellNumber: 1
topLevelCellAddresses: - subCluster: V100 -RACK
- 10.0.3.0~7 - cellType: V100 -NODE

cellNumber: 4

Figure 4: A simplified cell specification (in .yaml format).

A third-party scheduler can leverage the VC view of vc1 to

make scheduling decisions, as if vc1 is a physical cluster. Our

release of HiveD comes with a tool to automatically detect

infeasible VC assignments in the specification.

Handling faulty hardware. When multiple free cells are

available, the buddy cell allocation algorithm allows HiveD

to avoid using faulty hardware. It prefers binding to a healthy

cell when possible. When a VC has no other choice, HiveD

will proactively bind to a faulty physical cell so that the third-

party scheduler in the VC can see the faulty hardware and

avoid using GPUs in the cell.

Fault tolerance. The HiveD process itself is also fault-

tolerant. It is deployed as a Kubernetes StatefulSet [10] to

ensure a single running instance. HiveD maintains several

centralized in-memory data structures to keep all the run-time

information used for cell allocation (e.g., the free cell list, and

the cell allocation list). To reduce overheads, these data struc-

tures are not persistent. HiveD partitions and stores the cell

binding decision for each pod in its “pod annotation”, which

is kept reliably by Kubernetes. If a job has multiple pods, the

annotation in each pod stores the cell binding decisions for

all the pods of the job. When recovering from a crash, HiveD

reconstructs all the in-memory data structures like the cell

allocation list and the free cell list from the pod annotation

in all the running pods. Moreover, with the cell binding deci-

sions stored in pod annotation, HiveD could detect whether

or not there are unscheduled pods and resume the scheduling

for the unscheduled ones. In case none of the pods of a job

gets scheduled when HiveD crashes, the job manager, another

single instance StatefulSet, will receive a timeout and resub-

mit the job. The fault tolerance of the third-party scheduler is

handled by the scheduler itself.

Reconfiguration. We observe that a cluster operator may
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occasionally change the cell specification on-the-fly to recon-

figure a cluster: adding, removing, or upgrading hardware;

adjusting cell assignment for a VC. HiveD treats reconfig-

uration similar to crash recovery. The difference is during

a reconfiguration HiveD will check if there is any inconsis-

tency between the old cell bindings in the pod annotations

and the new cell specification. For example, the total bound

cells from a VC may exceed the new cell assignment. In this

case, HiveD will downgrade the jobs with the inconsistent

pods to low-priority jobs and preempt them when necessary.

The failure handling and reconfiguration capabilities of

HiveD have been tested and verfied on all the deployed Open-

PAI clusters. There are occasional hardware issues that require

human intervention, e.g., power failures, GPU hardware fail-

ures. HiveD handles the decommission and recommission of

hardware smoothly. To fully validate its failure handling ca-

pability, we run HiveD on an 800-GPU cluster on 200 Azure

low-priority VMs [78]. The 200 Azure VMs consist of 125

NC24 [15] (NVIDIA Tesla K80) and 75 NV24 [16] (NVIDIA

Tesla M60) series VMs, which could get preempted anytime.

HiveD treats a preempted VM as a faulty cell. When a pre-

empted VM resumes, HiveD will re-include it in the cluster

just as a faulty cell turning normal. We observe up to 75%

of the preemption rate (150 out of 200 VMs) in the cluster.

And HiveD handles the preemptions well. When a VM gets

preempted, the deep learning job running atop will migrate

to other available GPUs or wait in a queue when GPUs are

unavailable. The waiting job will get scheduled within one

minute when a desired VM resumes from preemption.

5 Evaluation

We evaluate HiveD using experiments on a 96-GPU cluster on

a public cloud and trace-driven simulations on a production

workload. Overall, our key findings include:

• HiveD eliminates all the sharing anomalies found in

all the tested schedulers. Excessive job queuing delay

decreases from 1,000 minutes to zero.

• HiveD can incorporate the state-of-the-art deep learning

schedulers and complement them with sharing safety,

while maintaining their scheduling goals and preserving

sharing benefits with low-priority jobs.

• HiveD guarantees sharing safety under various cluster

load. In contrast, high cluster load in quota-based scheme

can result in 7× excessive queuing delay.

• HiveD’s buddy cell allocation algorithm reduces job

preemption by 55% with dynamic binding and fragmen-

tation of GPU affinity by up to 20%.

Experimental setup. We collect a 2-month trace from a

production cluster of 279 8-GPU nodes (2,232 GPUs). The

Tenant 1-GPU 2-GPU 4-GPU 8-GPU ≥16-GPU Total Quota

res-a 429 14 260 625 40 1,368 0.37%
res-b 18,319 1,593 931 148 238 21,229 0.73%
res-c 3,285 161 716 185 0 4,347 0.73%
res-d 1,754 0 0 0 0 1,754 1.47%
res-e 2,682 110 3,005 0 0 5,797 1.83%
res-f 8,181 88 618 1,337 559 10,783 28.57%
prod-a 227 54 23 1,132 138 1,574 8.79%
prod-b 16,446 67 605 1,344 22 18,484 10.62%
prod-c 4,692 301 1,905 4,415 1,206 12,519 11.36%
prod-d 781 6 545 650 95 2,077 15.75%
prod-e 58,407 532 2,118 959 2 62,018 19.78%

Total 115,203 2,926 10,726 10,795 2,300 141,950 100%

Table 1: Number of jobs with different GPU demands and

quota assignment of tenants.

trace contains 141,950 deep learning training jobs, each spec-

ifying its submission time, training time, number of GPUs

with the affinity requirement, and the associated tenant. The

cluster is shared by 11 tenants. Table 1 shows each tenant’s

quota assignment in the real deployment and the distribution

of a job’s GPU number. Please refer to [52] for more details

of the trace and its collection and analysis methodology. We

run experiments in a 96-GPU cluster deployed on Azure. The

cluster consists of 24 virtual machines (NC24 [15]), each with

4 NVIDIA K80 GPUs.

5.1 Sharing Safety: Cluster Experiments

In this section, we examine sharing safety in traditional quota-

based scheme and HiveD on the deployed cluster.

Methodology. We collect a 10-day trace from the original

2-month production trace. To approximate the load of the

2,232-GPU cluster on a 96-GPU one, we scale down the

number of jobs by randomly sampling from the 10-day trace

proportionally (96 out of 2,232). Due to security reasons, we

do not have access to the code and data of the jobs. Therefore,

we replace the jobs with 11 popular deep learning models

in domains of Natural Language Processing (NLP), Speech,

and Computer Vision (CV) from GitHub (summarized in

Table 2). We mix these models following a distribution of

NLP:Speech:CV = 6:3:1, as reported in [86].

We test three state-of-the-art deep learning schedulers:

YARN-CS [52], Gandiva [86], and Tiresias [41]. We obtained

the source code of Gandiva and Tiresias [11], and use the same

implementation in our experiments. YARN-CS is a modified

YARN Capacity Scheduler. It packs jobs as close as possible

to spare good GPU affinity, similar to [52]. We further refine

the preemption policy of YARN-CS: instead of preempting

the latest jobs, it preempts low-priority jobs based on the de-

sired GPU affinity requirement. Otherwise, the baseline of

YARN-CS will be much worse. To enforce quota in Tiresias,

jobs exceeding the quota will get scheduled in a low-priority

queue, which is also sorted by Tiresias. For each scheduler,

we compare: (i) each tenant running its jobs in a private clus-

ter with the capacity set to its quota; (ii) tenants sharing the
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Type Model Dataset

NLP

Bi-Att-Flow [74] SQuAD [68]

Language Model [90] PTB [61]

GNMT [85] WMT16 [13]

Transformer [82] WMT16

Speech
WaveNet [81] VCTK [12]

DeepSpeech [45] CommonVoice [5]

CV

InceptionV3 [79] ImageNet [33]

ResNet-50 [46] ImageNet

AlexNet [57] ImageNet

VGG16 [77] ImageNet

VGG19 ImageNet

Table 2: Deep learning models used in the experiments [86].

cluster using quota; and (iii) tenants sharing the cluster us-

ing the scheduler with HiveD enabled. In a shared cluster,

all schedulers will schedule jobs as high-priority ones if the

tenant has sufficient resources in its quota or VC, otherwise

the job will be scheduled as a low-priority one.

In HiveD’s experiments, we use a cell hierarchy with four

levels: node (8-GPU), CPU socket (4-GPU), PCIe switch (2-

GPU), and GPU. We assign each tenant a set of node-level

cells with a total number of GPUs equal to its quota. To

model the cell hierarchy after the production cluster, we treat

every two contiguous 4-GPU VMs as one logical 8-GPU

node (i.e., one 8-GPU node level cell). Similar to [86], to

speed up replaying the 10-day trace, we “fast-forward” the

experiment by instructing running jobs to skip a number of

iterations whenever there are no scheduling events, including

job arrival, completion, preemption, migration, etc. The time

skipped is calculated by measuring job training performance

in a stable state. To enable the skipping, HiveD bypasses the

kube-scheduler and talks to job pods directly.

The trace shows that the GPU affinity requirements of most

jobs are hard, showing that users are not willing to sacrifice

training performance. In this case, queuing delay is the major

source of sharing anomaly in the overall job completion time

(JCT). Note that JCT consists of queuing delay and actual

training time, and job training time is highly deterministic as

long as GPU affinity is the same [86]. Therefore, we show the

queuing delay to illustrate the sharing anomaly when job’s

GPU affinity requirement is hard. We also evaluate the JCT

when job’s affinity requirement is soft.

Results. Figure 5(a) shows the queuing delay of jobs from

tenant prod-a using the three schedulers. The X-axis denotes

the job submission time. The Y-axis denotes the queuing delay

averaged in a 12-hour moving window. Figure 5(a) shows that

all the three schedulers demonstrate sharing anomaly without

HiveD. For YARN-CS, from Day 8 to Day 10, jobs in prod-a
suffer 1,000 minutes longer queuing delay in a quota-based

cluster than in its private cluster. Although YARN-CS packs

jobs as compactly as possible, a large number of 1-GPU jobs

from other tenants with varying durations make the available

GPUs affinity highly fragmented. As a result, multi-GPU jobs

have to wait a long time for the desired affinity. Since the

(a) Average queuing delay of Tenant prod-a

(b) Average job completion time across all tenants

Figure 5: The experiments for the three schedulers in a 96-

GPU cluster, with and without HiveD.

majority of jobs in prod-a use multiple GPUs (Table 1), the

tenant suffers more from sharing anomaly.

Similarly, in Gandiva, jobs in prod-a suffer up to 400 min-

utes longer queuing delay in the shared cluster on Day 2 and

Day 8. The excessive queuing delay is shorter than that in

YARN-CS because Gandiva can mitigate the fragmentation of

GPU affinity by job migration. However, unaware of cells in

a VC, Gandiva’s greedy algorithm may accidentally migrate

jobs to improve the job performance in a tenant at the ex-

pense of other tenant’s GPU affinity, thus violating safety. For

example, Gandiva may greedily migrate away an interfering

job in a VC while increasing the fragmentation and violating

the sharing safety of other VCs. In contrast, HiveD achieves

separation of concerns, allowing Gandiva to migrate jobs for

its own goal without worrying about sharing safety. We will

discuss job migration more in §6.

In Tiresias, Tenant prod-a shows sharing anomaly on Day 2

and Day 8. With quota enforcement, Tiresias suffers over 330

minutes longer queuing delay than that in its private cluster.

To reduce job completion time (JCT), Tiresias prefers running
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(a) 279 nodes (b) 200 nodes

Figure 6: The average job queuing delay of Tenant prod-a and prod-e vs. the level of fragmentation of GPU affinity.

shorter and smaller jobs first. We do observe shorter queuing

delay (and JCT) in Tiresias, compared to the other two sched-

ulers. However, without HiveD, the global advantage of small

jobs in a tenant might increase the fragmentation of GPU

affinity in other tenants, thus resulting in sharing anomaly.

The experiment suggests that the evaluated schedulers are

effective in their design objectives but they do not consider

sharing safety, a factor that could severely impact user experi-

ence. HiveD complements the three schedulers with sharing

safety by reserving the GPU affinity in each tenant’s VC. With

HiveD, prod-a (and all the other tenants) never experiences an

excessive queuing delay in the shared cluster, using each of

the three schedulers. Even during Days 8∼10, the multi-GPU

jobs are scheduled immediately as the tenant has enough 8-

GPU cells in its VC (hence the reserved cells in the physical

cluster). HiveD also allows jobs to have a significantly shorter

queuing delay in the shared cluster when a tenant runs out of

its own capacity in the private cluster (Days 1, 3, and 6), by

giving it chances to run low-priority jobs.

With sharing safety, HiveD can still preserve the scheduling

efficiency. Figure 5(b) shows that HiveD exhibits similar job

completion time compared to those without HiveD: at most

3% worse (for YARN-CS) and 12% better (for Gandiva).

We also evaluate the job completion time (JCT) when job’s

GPU affinity requirement is soft. Without HiveD, some jobs

experience worse training speed due to a relaxed affinity re-

quirement and thus result in higher JCT in a shared cluster

than in a private cluster (i.e., sharing anomaly). Again, HiveD

eliminates all sharing anomalies in this case. Overall we ob-

serve a trend similar to the result when the affinity requirement

is hard, hence the details are omitted in this paper.

5.2 Sharing Safety: Full Trace Simulation
We further use simulations to reveal the factors that influ-

ence sharing safety. The simulations use YARN-CS as the

scheduler in the rest of this section. To validate simulation

accuracy, the simulator replays the experiments in §5.1 and

we compare the obtained job queuing delay to that in §5.1.

The largest difference across all the experiments is within 7%.

In the simulations we also observe similar sharing anomalies

shown in the real experiments, so we believe the variations

do not affect our main conclusion.

Queuing delay in a cluster with the original size. The

top two figures in Figure 6(a) show the queuing delay for

jobs from two representative tenants, prod-a and prod-e, sub-

mitted in 20 days. The jobs run in a cluster of the same size

as the original production cluster (279 8-GPU nodes). The

result is averaged in a 12-hour sliding window over job sub-

mission time. In the bottom figure of Figure 6(a) we also

show the level of fragmentation of GPU affinity to observe

its correlation with queuing delay. At any time, the level of

fragmentation is defined as the proportion of 8-GPU nodes

that cannot provide 8-GPU affinity for a high-priority job.

Among the three solutions, HiveD achieves the shortest

queuing delay in both tenants. Tenant prod-a suffers a longer

queuing delay in its private cluster in several time slots (e.g.,

the first 5 days) when the resource demands exceed its capac-

ity. Both the quota-based scheme and HiveD reduce the queu-

ing delay significantly by running low-priority jobs. However,

from Day 11 to Day 12, prod-a experiences a longer queuing

delay (200 minutes) in the quota-based cluster than that in the

private cluster. In this period, the fact that no queuing delay
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Figure 7: Average queuing delay of each tenant, normalized to that in its private cluster (200 nodes).

observed in its private cluster suggests prod-a has enough

GPU quota. But the fragmentation level in the cluster reaches

100%, suggesting the quota-based scheme cannot find even

one node to run an 8-GPU job for prod-a. In comparison, prod-
a in HiveD has zero queuing delay since it has enough 8-GPU

cells available. Overall, the fragmentation level in HiveD is

lower than that in the quota-based scheme, because HiveD

reserves cells for each tenant, preventing the fragmentation

of reserved GPU affinity.

Queuing delay in a higher-load cluster. When a cluster

is under-utilized, sharing anomaly is less likely to happen

due to sufficient GPU affinity. To further understand the im-

pact of cluster load on sharing safety, we keep the workload

unchanged but reduce the cluster size to 200 8-GPU nodes

(1,600 GPUs) and rerun the simulation. In this setup, around

90% of the GPUs are used by high-priority jobs. The results

are shown in Figure 6(b). In the quota-based scheme, prod-a
experiences more severe sharing anomaly when the cluster

load is higher. The anomaly lasts from Day 9 to Day 19: the

queuing delay can be 8,000 minutes longer than that in the

private cluster. The higher cluster load incurs a higher level of

GPU affinity fragmentation: the fragmentation level stays at

100% for most of the time, which delays the multi-GPU jobs.

For tenant prod-e, the queuing delays for both Quota and

HiveD are always shorter in a shared cluster than in the pri-

vate cluster. This is because its workload is dominated by a

large number of 1-GPU jobs (refer to Table 1), which are im-

mune to the fragmentation of GPU affinity. HiveD can further

reduce prod-e’s queuing delay by guaranteeing its multi-GPU

affinities for its multi-GPU jobs.

We also compare the average queuing delay in the three

schemes for each tenant and show the result in Figure 7. The

bars marked “Private” and “Quota” show that prod-a’s queu-

ing delay in Quota is nearly 7× that in its private cluster. In

contrast, the bars marked “HiveD” show that every single ten-

ant has a shorter queuing delay in HiveD than in the private

cluster. Compared to Quota, HiveD reduces the queuing delay

in 9 out of the 11 tenants (accounting for over 98% quota)

due to lower fragmentation level. This reduction is up to 94%

(for tenant prod-a), and on average 9% for all the 11 tenants.

In all the previous experiments, the cluster utilization in

HiveD is similar to or slightly better than that in quota-based

scheme. At some time instances, HiveD improve the utiliza-

tion over quota-based scheme by up to 20% in the 200-node

case and 14% in the 279-node case, as a result of reduced

queuing delay. In fact, cluster utilization may depend on the

“shape” of jobs (i.e., number of GPUs per job). For example,

with a sufficient number of 1-GPU jobs, one can easily sat-

urate the whole cluster. Therefore, our evaluation does not

focus on cluster utilization.

Sharing anomalies leading to diminishing benefits of
sharing. Figure 7 shows prod-a suffers from severe shar-

ing anomaly (7× queuing delay). It is no longer beneficial

for prod-a to contribute its GPUs to the shared cluster. We

then run the experiment again to evaluate the effect of decom-

missioning prod-a (removing its GPUs and workload) from

the cluster. The result is shown in the bars marked “Quota

(w/o prod-a)” in Figure 7. This time, res-f becomes the vic-

tim of sharing anomalies, suffering over 1.7× longer queuing

delay. As the largest tenant, res-f previously benefits less (9%

shorter queuing delay in Quota than its private cluster) from

contributing GPUs to the cluster, compared to the smaller ten-

ants. Because prod-a contains mostly multi-GPU jobs, after

decommissioning prod-a, the fragmentation of GPU affinity

in the whole cluster becomes worse, leading to longer queu-

ing delay of res-f’s multi-GPU jobs and hence the sharing

anomaly. This experiment shows the importance of ensur-

ing sharing safety for large tenants. They already benefit less

from the shared cluster. They will prefer not contributing their

resource to the cluster if experiencing sharing anomaly.

We further decommission res-f from the cluster and re-

run the experiment. The result is shown in the bars marked

“Quota (w/o prod-a and res-f)” in Figure 7. This time, we

do not discover further sharing anomaly. However, the de-

commissioning of the two tenants greatly reduces the sharing

benefits of other tenants. prod-a and res-f contribute 37% of

the GPUs in the original cluster. The queuing delay of other

tenants in the smaller cluster is clearly longer than that in the

larger clusters (before removing prod-a and res-f).

In contrast, with HiveD, not a single tenant suffers from
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Figure 8: Queuing delay of res-f normalized by private cluster

vs. workload fragmentation level (200 nodes).

sharing anomaly in all the settings. And HiveD’s queuing

delay is consistently shorter than those without HiveD, across

all settings. This highlights the necessity of sharing safety.

GPU affinity requirement vs. Sharing safety. We find

that the distribution of the GPU affinity requirement for jobs

across tenants affects sharing safety. Large number of 1-GPU

jobs from other tenants may interfere (or fragment) the GPU

affinity of a tenant, leading to sharing anomaly. To show

this, we “reshape” the GPU affinity requirement of jobs and

observe the queuing delay. In the experiment, we divide the 11

tenants into two groups: jobs in one group are reshaped to the

GPU affinity of 1×8 (8-GPU), and those in the other group

are changed to 1×1 (1-GPU). The reshaping does not change

the total number of GPUs used in each tenant: the number

of jobs N is defined by the total number of GPUs divided by

the GPU number of a job (8 and 1 in this case). And the job

submission time is set by randomly sampling N jobs from the

original trace. We further define workload fragmentation as

the ratio of the total number of jobs to the total number of

GPUs. Jobs with higher affinity level have a lower workload

fragmentation. The metric will be 1 if all jobs use 1 GPU.

Initially, only res-f is in the 8-GPU group, while the rest ten-

ants go to the 1-GPU group. Figure 8 shows the queuing delay

of res-f (normalized by that in its private cluster) and the work-

load fragmentation, when tenants prod-e, prod-d, and prod-c
are moved to the 8-GPU group one by one. When only res-f is

in the 8-GPU group, the workload is highly fragmented (0.91).

This leads to severe sharing anomaly in Quota-based system:

132× of the queuing delay in the private cluster. When more

tenants are moved to the 8-GPU group, the workload fragmen-

tation level goes down. This correspondingly reduces sharing

anomaly. res-f experiences shorter queuing delay after the

other three tenants are added (4.3×, 1.9×, 0.9×, respectively,

as shown in Figure 8). In contrast, HiveD guarantees sharing

safety even under the highest fragmentation and consistently

provides shorter queuing delay. Similar trends are observed

in other tenants, we hence omit the detailed results here.

Soft affinity requirement. We also study the impact on

sharing safety when the GPU affinity requirement of some

jobs is soft, i.e., relax the affinity if it cannot be satisfied.

Figure 9: Sharing anomaly still happens when some jobs’

GPU affinity requirement is soft.

According to [86], not all training jobs will suffer from perfor-

mance degradation with relaxed affinity. Hence in the study,

we make the most optimistic assumption on the performance

degradation: jobs with soft affinity requirement will not sacri-

fice the training speed. Surprisingly, sharing anomaly could

still happen in this case for a quota-based scheme. Figure 9

shows the average queuing delay of tenant prod-a when some

multi-GPU jobs in the trace are randomly selected to relax its

GPU affinity. We use the 200-node setting in the experiments.

Figure 9 shows that prod-a still has sharing anomaly when

50% of the multi-GPU jobs are allowed to relax their affinity.

The average queuing delay in the quota-based scheme is 1.3×
of that in its private cluster. Although no obvious anomaly

found in the average queuing delay when the job ratio set to

25% and 75%, we still observe sharing anomalies in certain

time instances. This is similar to the behaviors in Figures 5(a)

and 6. We omit the details due to space limit. On the other

hand, HiveD eliminates all the sharing anomalies and always

has the shortest queuing delay. Note that Figure 9 shows the

best case scenario for relaxed affinity. In reality, jobs with

relaxed affinity could perform much worse than the same

jobs with the desired affinity [86]. Thus sharing anomaly may

happen more likely than it is described in Figure 9.

Although relaxing affinity may reduce the queuing delay

for jobs with soft affinity requirement, the behavior may in-

crease the fragmentation of GPU affinity in the cluster. This in

turn will increase the queuing delay for jobs with hard affinity

requirement. It becomes a complex tradeoff among queuing

delay, fragmentation of GPU affinity, training performance,

and cluster utilization. HiveD reserves cells to achieve sharing

safety and avoids the complex tradeoff altogether.

5.3 Buddy Cell Allocation
In this section, we evaluate the buddy cell allocation algo-

rithm through trace-driven simulations, to understand its ef-

fectiveness in reducing preemption and fragmentation of GPU

affinity, and its algorithm efficiency.

Reducing preemption with dynamic binding. In the

buddy cell allocation algorithm, cells are bound to those in the

physical cluster dynamically. This reduces unnecessary pre-

emption of low-priority jobs when there are idle cells. Figure

10 shows the numbers of job preemption when using dynamic
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Figure 10: Preemption in dynamic and static bindings.

binding and static binding, respectively. This experiment uses

the same setup as the 279-node experiment in §5.2. In total,

dynamic binding reduces the number of preempted GPUs

by 55%. We also measure the correlation between preemp-

tion and the proportion of bound cells in the time dimension

(on a 12-hour window). When there are more cells being

bound to the physical cluster (e.g., Day 10, Day 20 in dy-

namic binding), there are also more GPUs being preempted.

This is because we have fewer choices of physical cells to

bind, hence fewer opportunities to reduce preemption. This

observation is also consistent with the fact that static bind-

ing, where this proportion is always 100%, incurs many more

unnecessary preemptions.

Reducing fragmentation of GPU affinity with multi-level
cells. Multi-level cells allow the buddy cell allocation al-

gorithm to pack the cells at the same level across tenants to

reduce the fragmentation of GPU affinity. For example, if two

tenants both have a level-1 (1-GPU) cell, the algorithm prefers

selecting two cells from the same physical node, i.e., buddy

cells, to run a 1-GPU job. Instead, if both tenants only reserve

level-4 cells (8-GPU, node level), the two tenants have to use

a level-4 cell to run its 1-GPU job. Hence the two 1-GPU jobs

will be placed on two different nodes, which increases the

fragmentation of GPU affinity at node level.

To demonstrate this, instead of only assigning level-4 cells,

we assign cells from level-1 to level-4 while keeping the

total number of GPUs assigned to each tenant the same as

in the above 279-node simulation. Each tenant’s assignment

matches the distribution of its demands on each level of the

cells. Figure 11 shows the fragmentation level of GPU affinity

over time when using multi-level and single-level (level-4)

cells, respectively. The fragmentation level is always lower

with multi-level cells. The gap is more than 10% (up to 20%)

for most of the time, which means we can spare roughly 30

more level-4 cells. HiveD therefore recommends that tenants

model their job’s affinity requirements more precisely, in order

for a cluster to perform more efficient cross-VC packing.

Algorithm efficiency. We profile the performance of our

Figure 11: Fragmentation with multi- and single-level cells.

implementation of buddy cell allocation in a setup of a 65,536-

GPU cluster with 8 racks, each consisting of 1024 8-GPU

nodes. We issued 10,000 cell allocation requests at random

levels. The average time to complete a request is 2.18ms. A

large part of the cost comes from ordering cells according

to low-priority jobs, which accounts for 88% of the time. As

the algorithm is clearly not the system bottleneck, we do not

perform further optimization (e.g., lock-free operations).

6 Discussion

VC assignment. The VC assignment to a tenant, in terms

of both the number of GPUs and their cell structures, has im-

pacts on the effective VC utilization and queuing delay across

tenants. The VC assignment is usually a business process, a

common practice in large production clusters, e.g., Borg [84].

Factors to consider in VC assignment include overall capacity,

tenant demands, composition of tenant workload, workload

variation over time, business priority, and budget constraints.

Therefore, HiveD leaves the choice of VC assignment to users.

In most cases, a tenant can just reserve several node-level cells

as a VC and adopt a deep learning scheduler for the VC. If a

tenant has more details about workloads, e.g., the GPU num-

ber distribution of the jobs, the tenant can reserve different

levels of cells to match the job requirement and enjoy less

fragmentation and preemption, as discussed in §5.3. VC as-

signment is a new kind of resource reservation based on cells,

and HiveD is a framework to enforce such a reservation.

Job migration. Migrating jobs between GPUs is a powerful

mechanism that has been shown effective [86] in improving

quality of GPU allocations. De-fragmentation via migration

can in theory be used to resolve potential sharing safety viola-

tions, but our experience has shown that there are significant

challenges in applying migration in production. Fully trans-

parent migration remains challenging in practice, due to imple-

mentation issues in different deep learning frameworks (e.g.,

inconsistent or limited use of certain programming APIs; chal-

lenges of multi-language, multi-framework, and multi-version

support [21, 30, 62, 65]). Moreover, the choice of which jobs

to migrate and where could be rather complex, with different

conflicting objectives to balance and a large search space. As

shown in §5.1, a greedy migration algorithm [86] can still

violate sharing safety. In contrast, HiveD’s cell abstraction

and buddy cell allocation algorithm enable separation of con-
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cerns. HiveD can also leverage migration, especially within

each tenant—it will be a search space constrained to within a

tenant under the sharing-safety guarantee.

HiveD in the cloud. Major cloud providers are offering

GPU VMs in the cloud. Our findings in HiveD are highly

relevant even in the cloud setting and can shed light on the

types of offering in the cloud. Our buddy cell allocation algo-

rithm can also be used by the cloud providers to manage their

reserved [2,6,27] and spot [4,8,78] GPU instances, as our VC

cells are essentially reserved instances and our low-priority

cells are essentially preemptible spot instances. HiveD’s im-

plementation already satisfies requirements of a typical cloud

provider, e.g., supports different GPU models, reserves pay-

as-you-go instances [70], and handles expansion in capacity.

For practical deployment, HiveD can use a hybrid strategy

to leverage the cloud as an extension of a multi-tenant GPU

cluster when the demand temporarily exceeds the capacity, or

can be deployed entirely on a cloud using reserved resources

at a lower price, with the options to (i) use spot instances, (ii)

buy pay-as-you-go instances when needed, and (iii) purchase

and sell reserved capacity in the marketplace [3, 23].

Extending HiveD to other affinity-aware resources. Al-

though this paper focuses on reserving affinitized GPUs,

HiveD’s design applies to other types of affinity-aware re-

sources as well. For example, the cell can be used to define

affinitized CPU cores within the same NUMA node, or even

multiple types of NUMA-aware resources like affinitized

GPUs and CPU cores under the same socket [18].

7 Related Work
Affinity-aware schedulers for deep learning training.
Affinity has been well considered something important when

scheduling deep learning jobs [22, 41, 51, 52, 59, 66, 72, 86]

as well as other (big-data) jobs [36, 38, 89]. HiveD comple-

ments these schedulers by applying them in virtualized cluster

views, thereby leveraging their efficiency while avoiding shar-

ing anomalies, as identified and shown in our experiments.

Fairness in shared clusters. Identifying the fair share of

resources in large clusters has been widely studied. Max-min

fairness [55] has been extended in a CPU cluster to address

fair allocation of multiple resource types (DRF [37]), job

scheduling with locality constraints [38, 39, 48, 89], and cor-

related and elastic demands (HUG [31]). There are recent

proposals to achieve fairness and efficiency for machine learn-

ing workloads [29, 60, 64].

In contrast, HiveD focuses on sharing safety with respect

to given resource shares (i.e., VC assignment). As we have

discussed in §6, determining the resource shares is usually

a business process. HiveD assumes a pre-agreed resource

partition among multiple tenants, and enforces it with the

sharing safety guarantee. This is driven by witnessing that

corporate users are annoyed by the uncertain availability of

GPU resources that are already assigned to them. In this

sense, HiveD is a framework to guarantee a type of resource

reservation [91], defined in terms of cells in VCs. HiveD

can address fairness by applying the fairness schemes (e.g.,

Themis [60]) to determine fine-grained fair-share for jobs

within a tenant (or across tenants for low-priority jobs), given

the coarse-grained VC assignment enforced by HiveD.

Performance isolation. Performance in a shared cluster

is sensitive to various sources of interference, including I/O,

network, and cache. There are research works on performance

isolation that include storage isolation [32, 42, 43, 80], appli-

ance isolation [24, 76], network isolation [44, 58, 67, 75, 87],

and GPU isolation [25, 26, 50, 53, 69, 88]. In HiveD, we iden-

tify a new source of interference: the fragmentation of GPU

affinity in a tenant may affect the GPU affinity in other ten-

ants in a shared GPU cluster. To eliminate such interference,

HiveD adopts the notion of VC to encapsulate the requirement

in multi-level cells and constrains the scheduling behavior

within each VC.

Reducing fragmentation. Reducing fragmentation is im-

portant to cluster utilization, which has been widely studied in

past decades. Tetris [40] is a multi-resource scheduler to pack

tasks to avoid resource fragmentation. Feitelson [35] also

proposed a buddy-based algorithm to reduce fragmentation

for gang-scheduled jobs in supercomputers. There are also

works using migration/preemption to reduce fragmentation

for gang-scheduled jobs [63,71,86]. HiveD’s buddy allocation

algorithm with affinity hierarchy can also effectively reduce

fragmentation. More importantly, HiveD takes a step further

to guarantee sharing safety, i.e., eliminate the external frag-

mentation across tenants. Ensuring sharing safety requires

not only minimizing fragmentation but also explicitly defin-

ing cells assigned to each VC, and enforcing this assignment

during physical resource allocation.

8 Conclusion
Motivated by observations from production clusters and vali-

dated through extensive evaluations, HiveD takes a new ap-

proach to meeting the challenge of sharing a multi-tenant

GPU cluster for deep learning by (i) defining a simple and

practical guarantee, sharing safety, that is easily appreciated

by tenants, (ii) proposing an affinity-aware resource abstrac-

tion, cell, to model virtual private clusters, (iii) developing an

elegant and efficient algorithm, buddy cell allocation, that is

proven to guarantee sharing safety and is naturally extended

to support low-priority jobs, and (iv) devising a flexible ar-

chitecture, to incorporate state-of-the-art schedulers for both

sharing safety and scheduling efficiency. All these combined,

HiveD strikes the right balance between multiple objectives

such as sharing safety and cluster utilization.
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