
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Persistent State Machines for Recoverable
In-memory Storage Systems with NVRam

Wen Zhang, UC Berkeley; Scott Shenker, UC Berkeley/ICSI;
Irene Zhang, Microsoft Research/University of Washington
https://www.usenix.org/conference/osdi20/presentation/zhang-wen

Persistent State Machines for Recoverable In-memory Storage Systems
with NVRam

Wen Zhang
UC Berkeley

Scott Shenker
UC Berkeley/ICSI

Irene Zhang
Microsoft Research/University of Washington

Abstract
Distributed in-memory storage systems are crucial for meet-
ing the low latency requirements of modern datacenter ser-
vices. However, they lose all state on failure, so recovery is ex-
pensive and data loss is always a risk. Persistent memory (PM)
offers the possibility of building fast, persistent in-memory
storage; however, existing PM systems are built from scratch
or require heavy modification of existing systems. To rectify
these problems, this paper presents Persimmon, a PM-based
system that converts existing distributed in-memory storage
systems into persistent, crash-consistent versions with low
overhead and minimal code changes.

1 Introduction
In the past decade, distributed in-memory storage systems
have become ubiquitous. Facebook and Twitter have petabytes
of in-memory storage [2, 75], and in-memory replicated sys-
tems such as NOPaxos [58] and TAPIR [113] can process
transactions within microseconds while providing consistency
and fault-tolerance. As datacenter networks become faster and
kernel bypass removes OS bottlenecks, only in-memory stor-
age systems will be able to keep up with network speeds.

Unfortunately, in-memory storage systems have a crucial
drawback: their lack of durability means that failed nodes
must recover from a replica or another source (e.g., a persis-
tent back-end database), which can be extremely slow. For
example, a Facebook memcached cluster can take hours to
regain full capacity if repopulated from another “warm” clus-
ter, or days if repopulated from backend storage [75]. Even
worse, state can be permanently lost if all replicas crash such
as in a full datacenter failure. To reduce the impact of failures,
many popular in-memory systems (e.g., Redis [85], RAM-
Cloud [76]) support persistence, but it requires additional,
complex code and/or incurs high performance overhead.

Persistent memory (PM) offers a promising solution for
in-memory services. It is durable, offers performance close to
DRAM, and is increasingly available in large sizes. However,
PM systems require crash consistency [7, 57, 71, 79] (i.e., no
system invariants are violated on a crash), which is compli-

cated and expensive to enforce. Maintaining crash consistency
requires that operations are failure-atomic [45]; for example,
on crashes, an operation’s deallocations and pointer updates
must either atomically succeed or fail to avoid violating the
invariant that pointers do not point to deallocated memory.

To ensure failure atomicity, PM systems must carefully
flush volatile CPU state at specific times and possibly use
write-ahead logging or other techniques to correctly recover
from failures. These added flushes and writes impose signifi-
cant overhead. As a result, most existing PM storage systems
are carefully written from scratch for correctness and per-
formance; even then, none can achieve the performance of
today’s in-memory systems. Recent work, like RECIPE [57]
and MOD [39], aim to reduce application complexity by con-
verting existing data structures to persistence on PM; however,
because they exploit certain data structure properties (e.g.,
non-blocking synchronization), they are not suited to all in-
memory storage systems.

This paper aims to let existing in-memory storage systems
more easily reap the benefits of persistent memory. We make
the key observation that distributed systems are typically de-
signed as RPC-processing state machines. State machines
are an ideal abstraction for PM because: (1) they encapsulate
application state for recovery; (2) their operations offer clear
failure-atomic regions; and (3) their state can be recreated at
any time by re-executing operations.

Based on this insight, we present Persimmon, a PM-based
system that converts existing in-memory distributed storage
systems into durable, crash-consistent versions with low over-
head and minimal code changes. Persimmon offers a new
abstraction for building PM applications: persistent state ma-
chines (PSM). PSMs offer a simple guarantee: once an op-
eration on the PSM returns, its side-effects on the PSM will
never be lost. PSM operations are also failure-atomic: if the
operation did not return before a crash, either the entire oper-
ation will be applied after the crash or none of it. PSMs can
run arbitrary application code; however, like other state ma-
chines (e.g., replicated state machines), PSM operations must
not have external dependencies (e.g., they cannot open file

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1029

descriptors), must be deterministic, and are executed sequen-
tially. As a result, Persimmon does not support multi-threaded
applications that apply operations concurrently.

To minimize the performance overhead of accessing PM
on the request processing path, Persimmon keeps two state
machine copies, one in DRAM and one in PM. When the ap-
plication invokes a PSM operation, Persimmon first executes
the operation on the DRAM copy. If the operation is read-only,
Persimmon returns. If the operation is read-write, Persimmon
persistently logs the operation before returning. This design
limits the critical path to DRAM for read-only operations and
one sequential write to PM for read-write operations; how-
ever, it requires both a DRAM and a PM state machine copy,
which can be large for in-memory storage systems.

On failure, Persimmon can recover the PSM by replay-
ing the persistent log. However, to minimize recovery time,
Persimmon asynchronously keeps the persistent state ma-
chine snapshot in PM up-to-date. The state machine abstrac-
tion lets Persimmon update the PM snapshot with a crash-
consistent shadow execution of each PSM operation, which
is then removed from the log. This design is crucial for large
in-memory storage systems that might have terabytes of data.
To recover, Persimmon simply copies the PM snapshot to
DRAM, processes the remaining persistent log, and restarts
the application. Our design uses a background process, which
runs on another CPU, to perform the shadow execution, trad-
ing off the use of a CPU for faster recovery times.

From this description, it is clear that Persimmon minimizes
the overhead of persistence on the request processing path.
However, to achieve reasonable recovery times, the crash-
consistent shadow execution of the log must also be efficient,
so the log does not grow too large. Most of the difficult tech-
nical challenges lie in optimizing this shadow execution, and
we are not aware of similar work that addresses this particular
issue. Note that despite these technical challenges, using a per-
sistent log is preferable to checkpointing for large in-memory
storage systems that might have terabytes of data.

We use Persimmon to persist two in-memory distributed
systems: Redis and TAPIR [113]. We implement both systems
on Linux and with kernel-bypass networking. We evaluate
Persimmon on three servers with 3 TB of Intel® Optane™ DC
Persistent Memory and found:
• On a 90% read-heavy YCSB workload, Persimmon incurs

no discernible overhead to the latency and throughput of
standard Redis; and near-zero latency overhead and 5%
throughput overhead over kernel-bypass Redis.

• On the Retwis benchmark, Persimmon incurs no dis-
cernible latency overhead and 5%–8% throughput overhead
for both standard and kernel-bypass TAPIR.

Furthermore, on gigabyte datasets, both Redis and TAPIR can
recover within 15 s after a crash. Porting each application to
Persimmon required less than 150 lines of code changes.

Although this paper mainly focuses on porting existing in-
memory applications to PM, Persimmon also simplifies the

development of future PM application. Even with high-level
libraries, like Intel’s PMDK [80], it remains difficult to write
PM code that is both fast and correct. In contrast, our PSM ab-
straction lets programmers write state machine code targeting
regular memory, then Persimmon automatically provides per-
sistence while correctly maintaining crash consistency with
low overhead. Persimmon thus offers a solution for develop-
ing new, high-performance persistent applications as easily
as developing in-memory applications.

2 Persimmon Overview
This section gives an overview of Persimmon, including its
design goals and API, and defines the requirements and guar-
antees of the persistent state machine model. Persimmon is de-
signed for the x86-64 processor with Intel® Optane™ DC Per-
sistent Memory [46, 108]. We assume an underlying POSIX-
based OS due to Persimmon’s use of fork; however, the design
could be modified for other environments.

2.1 Design Goals

We identify three goals for Persimmon’s design.
Minimal Application Changes. Existing in-memory stor-
age systems are highly optimized for low latency in everything
from data structures to memory allocators. To maintain these
optimizations and reduce programmer effort, Persimmon’s
first goal is to minimize changes to existing application code.
Strong Guarantees. Reasoning about application state af-
ter a crash is difficult for PM applications [61,62]. To simplify
applications and ensure crash consistency, Persimmon’s sec-
ond goal is to provide strong and clear persistence guarantees.
Good Performance. In-memory storage systems must re-
spond to requests within microseconds, so they cannot afford
the high cost of existing persistence mechanisms (e.g., log-
ging to disk). To provide persistence with PM, Persimmon’s
last goal is to impose less than a microsecond of latency over-
head on in-memory systems with no persistence while also
providing fast recovery times on the order of seconds.

2.2 Persimmon Persistent State Machine Model

Persimmon targets distributed systems deployed within a sin-
gle datacenter that largely keep their state in memory and
offer high-performance RPC processing. We assume the ap-
plication state needed for recovery can be encapsulated in a
persistent state machine (PSM) with the following properties:
• Does not have external dependencies. The state machine

must contain no references to state outside the application
process’s address space; e.g., it cannot have file descriptors
or open sockets.

• Executes deterministically. Each operation executes iden-
tically every time with no dependence on external inputs
(e.g., the current time, random numbers) other than the
operation arguments.

• Has no external side-effects. State machine operations must
perform only computation and memory allocation and de-

1030 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Persimmon Interface
• psm_init()→ bool - Initialization function; returns true

if the application is in recovery.
• psm_invoke_rw(op) - Invoke read-write op with persis-

tence on the state machine.
• psm_invoke_ro(op) - Invoke read-only op without persis-

tence on the state machine.

Figure 1: Persistent state machine API implemented by Persimmon.

allocation (e.g., mmap and munmap). They must not invoke
code with side-effects outside the application process (e.g.,
syscalls other than memory allocation).

These properties are common to state machine abstractions,
and are required for correct shadow execution with Persim-
mon. Similar to replicated state machines (RSMs), persis-
tent state machines require that operations execute sequen-
tially for determinism. Due to the popularity of RSMs in the
datacenter, we believe this requirement to be reasonable for
many applications. For applications that require concurrency,
it may be possible to apply existing techniques developed for
RSMs [52, 72]; however, we defer the exploration of these
techniques to future work.

2.3 Persimmon Persistent State Machine API

Persimmon provides a minimal application programming in-
terface through its user-level library. The Persimmon library
presents three functions to applications (Figure 1) that: (1)
initialize the persistent state machine, (2) invoke a read-write
PSM operation and (3) invoke a read-only operation. We of-
fer the third function as an optimization for RPCs that only
inspect state but do not update it, since many in-memory ap-
plications have a read-heavy workload. Programmers use the
invocation functions to call existing application functions
(e.g., execution of Redis commands on Redis data structures).
Persimmon directly executes these functions on the PSM, so
they must follow the properties laid out above.

An application starts by invoking the psm_init function,
which returns a flag indicating whether the application has
just recovered from a crash. If recovered, the persistent state
machine will be returned to its state after the last completed
operation. If not in recovery, the application should initialize
the state machine by invoking an initialization operation (e.g.,
creating an empty Redis hash table) with psm_invoke_rw. The
application can then begin RPC processing. On each RPC, we
expect the application to invoke psm_invoke_rw if the RPC
updates application state that is later needed for recovery.
For correct recovery, the application must invoke the PSM
operation before responding to the RPC. For RPCs that only
access application state and do not make updates that must
later be recovered (e.g., Redis GET operations), the application
can use psm_invoke_ro for lower overhead.

Application

Application Process

Persimmon Runtime

DRAM
State

Machine

invoke

execute
Persimmon Runtime

PM
State

Machine

shadow execute

RPC

Shadow Process

Shared
Memory

Persistent
Operation

Log

insert

Figure 2: Persimmon runtime.

2.4 Persimmon Persistent State Machine Guarantees

Persimmon ensures three guarantees for invoked PSM oper-
ations. The first applies to all invoked operations, while the
remaining two only apply to psm_invoke_rw operations.
• Linearizability. Persimmon guarantees that all state ma-

chine operations are run in a serial order and that serial
order reflects the order in which operations are submitted
to Persimmon [40].

• Durability. Persimmon guarantees that persistent, read-
write state machine operations are never lost once they re-
turn, regardless of machine failures. Operations will never
roll back and their state modifications are never lost.

• Failure Atomicity. Persimmon guarantees that state ma-
chine operations are failure-atomic. If the operation has not
returned before failure, then on recovery, the state machine
will reflect a state entirely before the operation has run or
entirely after.

While these guarantees are simple, they are sufficient to build
a crash consistent application in the face of failures. Because
each state machine operation is failure-atomic, applications
can easily maintain crash consistency by grouping updates
to related data structures into a single operation and ensuring
that no invariants are violated at the end of each operation.

3 Persimmon Runtime
Persimmon runs in two processes to support executing unmod-
ified state machine code in DRAM and, for shadow execution,
instrumented state machine code on PM. The application pro-
cess runs the application and the DRAM state machine copy,
while the shadow process runs the crash-consistent, shadow
execution of the PM state machine copy. Persimmon’s runtime
shares the application process’ address space with the rest
of the application and completely owns the shadow process.
Figure 2 summarizes Persimmon’s runtime organization.

3.1 Data Structures

To ensure fast recovery and failure atomicity for the persistent
state machine, Persimmon maintains two in-memory state
machine snapshots and the data structures listed in Table 1.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1031

Table 1: Data structures maintained by Persimmon.

Name Persistent? Data structure Purpose Elements Operations

Operation log Yes Fixed-size queue Records invoked operations Serialized operations push, pop
DRAM snapshot No — To execute state machine

operations on critical path
— —

PM snapshot Yes — Persists effects of operations — —
Region table Yes Resizable array Records memory used

by PM snapshot
〈addr,size, path〉 insert, remove

Undo log Yes Resizable stack Provides crash consistency
for PM snapshot

Data entry: 〈addr,size,data〉
Commit entry:〈new_tail〉

append, clear

We detail the snapshots and data structures below:
• Operation log. Persimmon records each invoked read-write

operation in the operation log. The application and shadow
processes use the operation log as a shared single producer,
single consumer queue.

• DRAM state machine snapshot. Persimmon uses this snap-
shot to execute state machine operations on the critical path.
It is always up-to-date and is used to serve all read-only
operations without persistence.

• PM state machine snapshot. Persimmon asynchronously
updates this snapshot using shadow execution. The snap-
shot is up-to-date up to the end of the log.

• Region table. Persimmon records memory allocated by
the PM state machine snapshot. The PM snapshot is man-
aged at the granularity of PM regions, each of which is a
contiguous chunk of PM backed by a file.

• Undo log. Persimmon uses write-ahead logging for crash-
consistent shadow execution. Persimmon instruments state
machine code and record every overwritten memory value
in the undo log to ensure that a partially executed state
machine operation can be rolled back on recovery.

As Persimmon processes state machine operations, it appends
them to the operation log while the shadow process digests
the log by re-executing each operation on the PM snapshot.
Operations in the log represent how far the PM snapshot lags
behind the DRAM snapshot. On recovery, operations in the
log must be re-executed on the PM snapshot before the appli-
cation can restart. We keep the log size below a fixed upper
bound to ensure that the PM snapshot does not lag the DRAM
snapshot by too much and require too much re-execution
on recovery. Persimmon implements the operation log as a
circular buffer with head and tail pointers, and assumes no
operation’s arguments are larger than the log size.

3.2 Initialization and Normal Execution

When the application calls psm_init, Persimmon initializes
its runtime in the following way:

1. Allocate the operation log.
2. Start the shadow process.
3. Initialize the DRAM and PM state machine snapshots.
4. Initialize the region table with PM region metadata (§ 3.4).
5. Allocate the undo log as a persistent array of entries (§ 4.2).

As the application runs, it invokes state machine operations

through Persimmon, which are recorded to the log and eventu-
ally applied to the PSM. For each operation invoked through
psm_invoke_rw, Persimmon performs the following:

1. Executes the operation on the DRAM snapshot.
2. Persists the operation as an entry in the operation log;
3. If the operation log is full, blocks until the shadow process

digests more operations, freeing up space in the log.
4. Asynchronously, the shadow process re-executes each oper-

ation in the log on the PM snapshot using crash-consistent
shadow execution (§ 4).

For operations invoked with psm_invoke_ro, Persimmon
skips Steps 2–4. Persimmon blocks the application if the
operation log is full. This design limits recovery time but
requires that the shadow execution not lag behind too much
as the application runs state machine operations. As a result,
if the application invokes too many read-write state machine
operations at a time, Persimmon will slow application per-
formance significantly. We explore this phenomenon in our
evaluation (§ 7.2.1).

3.3 Persimmon Shadow Process

Persimmon uses a separate process to perform shadow execu-
tion (the “shadow process”), where it switches to a dynami-
cally instrumented version of the application for running the
persistent state machine. Persimmon uses this instrumented
version to manage persistent memory and ensure failure atom-
icity, which we discuss in §§ 3.4 and 4.3, respectively.

During initialization, Persimmon creates the shadow pro-
cess by using fork to create a copy of the application process.
Immediately after forking, the shadow process checkpoints it-
self using an existing Linux process checkpointing tool. This
checkpoint conveniently stores essential process state that
is orthogonal to Persimmon’s main functionality (e.g., the
process ID), and serves as a “base image” on which Persim-
mon manages PM regions. This initialization must happen
before the application sets up external dependencies (e.g.,
opens sockets) to avoid causing process checkpointing to fail.

After taking the checkpoint, Persimmon replaces the
shadow process’s address space with persistent memory by
creating a PM region for each existing application memory
region. Specifically, Persimmon iterates through the existing
memory regions using Linux’s /proc/self/maps interface.
For each region, Persimmon writes its content to a new PM

1032 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

file, mmaps the file into the address space over the existing
region, and inserts an entry into the PM region table. We
skip over read-only regions, which we assume will never be-
come writable; the stack region, which we assume contains
no persistent state (§ 4.3); and the operation log.

Finally, the shadow process begins shadow-executing state
machine operations from the operation log. Although it exe-
cutes the same state machine code as the application process
does, the code is executed on the shadow process’ persis-
tent address space, and so any modifications to memory are
reflected in the PM state machine snapshot. However, Per-
simmon cannot directly execute unmodified application code
on PM because it is not failure atomic and allocates DRAM,
not PM. Instead, the shadow process turns on dynamic instru-
mentation to capture memory allocation and writes in order
to allocate PM and write to it in a failure-atomic manner.

3.4 Persistent Memory Management

To be able to recover the shadow process after a crash, Per-
simmon must manage its persistent memory and keep track
of its metadata persistently. Persimmon manages the shadow
process’s persistent memory at the granularity of PM regions,
each of which is contiguous range of persistent virtual mem-
ory. A PM region’s content is stored in a file in a direct-
access (DAX) file system [59] on persistent memory; the
file is mmap’ed into the shadow process’ address space, al-
lowing access to PM. Persimmon uses a persistent region
table to manage metadata for PM regions; each element in the
table has the form 〈addr,size, path〉, denoting a PM region
[addr,addr+ size) backed by a file located at path.

Persimmon keeps the region table in an immutable file in
PM. Whenever the region table changes, Persimmon writes
the entire updated table to a new file and removes the old.
Any PM region files that are “orphaned” after a region table
update are garbage-collected after the new region table is
written. This mechanism provides failure atomicity for region
table updates; although expensive, it is easy to implement and
invoked only rarely. Because the table is small, Persimmon
keeps a cached copy of it in DRAM.

Every time the shadow state machine allocates or frees
memory, Persimmon must translate the operation to allocate
or free PM regions instead. Persimmon uses dynamic instru-
mentation to intercept mmap and munmap system calls, which
are typically made by the application’s memory allocator.1

Persimmon’s PM management thus operates underneath the
memory allocator and does not constrain the application to
use one specific allocator.

Persimmon currently supports mmap calls that allocate
anonymous memory with no address requirement / hint or
backing file. For a mmap call of this type, Persimmon creates
a PM region of the allocated length and transparently maps
the PM region to the intended address. We currently don’t

1A third memory management system call is brk, which is not supported
by our current implementation but can be similarly supported.

distinguish among page protection bits and assume that all
allocated pages have all permissions. Persimmon supports
munmap calls that free a single PM region or a part thereof,
updating the region table before letting the calls through.

4 Crash-Consistent Shadow Execution
Persimmon’s shadow execution uses dynamic instrumenta-
tion and undo logging to provide failure atomicity for state
machine operations executing arbitrary application code. We
chose dynamic binary instrumentation over static compiler
instrumentation because application code often calls func-
tions from dynamically linked external libraries (e.g., string
functions in libc), which are only available in binary form
at runtime. However, dynamic instrumentation comes with
higher overhead than static, and a future direction is to im-
prove instrumentation performance by combining static and
dynamic instrumentation [96].

4.1 Overview

During shadow execution, Persimmon uses an undo log in PM
to record the value at a persistent location before it is over-
written, similar to many prior systems [9, 16, 33, 81, 88, 99].
To support arbitrary application code in the PSM, Persimmon
uses memory-level physical logging so that it can roll back
an incomplete state machine operation at recovery time by
copying back the previous memory values. The undo log is a
sequence of entries, which come in two types:
• A data entry records the old value at a persistent location.
• A commit entry signifies that a state machine operation has

finished; it contains a sole field new_tail recording what
the operation log’s tail pointer should advance to after the
current operation is consumed.

The undo log supports append and clear operations. Each
operation blocks until it persists.

In the shadow process, Persimmon instruments every write
to a persistent location to append a data entry to the undo
log before letting the write through. When a state machine
operation completes, we commit the operation and remove it
from the operation log following these steps:

1. Flush all previous writes and wait for them to persist.
2. Compute the updated tail pointer for the operation log and

append a commit entry to the undo log.
3. Remove the operation from the log by advancing the tail

pointer as computed.
4. Clear the undo log.
The recovery procedure either finishes committing the opera-
tion in progress according to the commit entry if one exists,
or rolls it back (§ 5).

Undo logging dominates the shadow state machine’s per-
formance because (1) it could add additional work to every
memory write, and (2) an undo log append must wait for per-
sistence to PM, which is slow. Therefore, our design aims to
reduce the number of undo log appends and the amount of
extra code executed per application memory write.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1033

type Unused addr new_tail data
(1 B) (15 B) (8 B) (8 B) (32 B)

One cache line (64 B)

Figure 3: The layout of an undo log element (§ 4.2).

To achieve these goals, Persimmon logs at the granular-
ity of aligned 32 B data blocks. Writes that straddle blocks
will generate multiple undo log entries, and writes smaller
than 32 B will result in at least 32 B of data being logged. This
strategy is motivated by the observation that if a location has
been undo logged, then any subsequent writes to that location
need not be logged. By logging in larger blocks, Persimmon
takes advantage of spatial locality in memory writes to coa-
lesce logging for adjacent locations. Insisting that all blocks
be equal-sized and aligned ensures that blocks never overlap
and simplifies the detection of duplicate blocks (§ 4.3).

4.2 Undo Log Layout and Operations

The undo log consists of a persistent array A of fixed-size
64 B elements (which is the cache line size), and the undo log
size n, which is stored in DRAM only. Our implementation
fixes the array’s total size to 220 elements (32 MB), which
is large enough for our applications. The array A is cache
line-aligned, and so are its elements.

An array element either is valid, representing an undo log
entry (§ 4.1), or is invalid. We maintain the invariant that
A[0..n−1] contains valid elements and A[n..] contains invalid
elements, so that n can be inferred from A upon recovery.

Figure 3 shows the layout of an array element. Each ele-
ment is interpreted based on its type field:
• If type= 0, the element is invalid.
• If type= 1, the element is valid and represents a data entry

that records the original value of [addr,addr+32B). The
addr field must be a 32 B-aligned address.

• If type= 2, the element is valid and represents a commit
entry with new_tail (§ 4.1).
When appending an entry, we make sure that the type field,

which also indicates validity, persists no earlier than the other
fields. This does not require using an extra persist barrier—
since writes to the same cache line reach PM in program
order [19, 84], we simply need to write the type field last.

To clear the log, we set type to zero for elements A[0..n−
1] from left to right. If a crash occurs during the clearing, the
recovered process will see that A[0] is invalid and will then
clear the entire array again.

With this undo log organization, an append requires only
one persist barrier (at the end), and consecutive appends write
to PM sequentially and avoid repeatedly flushing a single
cache line (which is known to incur high latency on Optane
persistent memory [12, 92]). Although clearing the log at
commit time requires writing to all n entries, it is rare due to
the batch commit optimization (§ 4.3) and can be optimized
by, e.g., maintaining a persistent commit sequence number.

4.3 Dynamic Binary Instrumentation

Persimmon dynamically instruments memory writes for undo
logging. The bulk of the logging logic is implemented in
the function log_write(addr, sz), which rounds up the
range [addr,addr+sz) to aligned 32 B blocks and appends
an undo log entry for each block. Persimmon, in the shadow
process, inserts a call to log_write before each application
instruction that can write to memory. It translates repeat string
operations into regular loops to instrument each iteration sepa-
rately. For conditionally executed instructions, the instrumen-
tation is executed only when the instruction is.

To minimize overhead from dynamic instrumentation and
undo logging, Persimmon applies a number of optimizations:
Skipping the stack. Persimmon assumes that the applica-
tion holds no persistent data on the stack. It does not save
stack pages to PM, and as a result it does not need to instru-
ment stack operations. Persimmon assumes that any memory
operand that is an offset from the stack pointer %rsp points
to the stack, and can thus efficiently skip instrumentation for
a large number of instructions (notably, all pushes and pops).
This assumption about %rsp usage can be validated at run-
time by tracking all updates to the register [96], although we
have not implemented this validation. The log_write func-
tion also skips writes to locations above %rsp minus 128 B
(accounting for the red zone [63]), thereby filtering out any
stack operations that do not use an offset from %rsp.
De-duplicating undo log entries. To avoid logging dupli-
cate data, the log_write function maintains a hash set in
DRAM for the addr field of existing undo log entries, and
avoids appending entries whose addr already exists. This
hash set must support lookup, insert, and clear operations, and
fast lookup is key to making this optimization worthwhile.

Our hash set, closely modeled after the CPython dictio-
nary [23], is implemented as a flat array of addr’s and re-
solves collisions with open addressing. The array size is fixed
to 2m (where m = 14 in our implementation); we use the sim-
ple hash function h(addr) = addr/32 (since addr is aligned
to 32 B); and probing uses a linear recurrence with perturba-
tion [23]. A zero element denotes an empty slot, and the hash
set is cleared by zeroing out the entire array. Shadow execu-
tion commits once the hash set’s load factor reaches 50% (see
the batch commit optimization below); in case the hash set
becomes full, the de-duplication optimization is disabled.

With this hash set implementation, lookups that do not
encounter collision are extremely fast. This allows us to insert
a fast path de-duplication check, which we detail next.
Fast-path de-duplication check. Although de-duplication
in log_write avoids redundant logging, the function call
before every write is still costly as it requires saving and
restoring application registers. We therefore insert a “fast path”
check before the function call to filter out easy-to-identify
duplicates. For a memory write to address dest of size sz, the
call to log_write is skipped if both conditions hold:

1034 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Listing 1: Instrumentation inserted before a memory write of sz bytes.
%dest and %tmp are placeholders for any two distinct general-
purpose 64-bit registers. The .hash_array label refers to the base
address for the hash set array.

1 (Reserve registers %dest and %tmp)
2 (Compute destination of the write, store in %dest)
3 (Reserve arithmetic flags)
4
5 # First check: the write is contained in
6 # a single block (not generated if sz = 1).
7 leaq (sz−1)(%dest), %tmp
8 xorq %dest , %tmp
9 cmpq $31, %tmp
10 ja .slow_path
11
12 # Second check: look in the hash set.
13 movq %dest , %tmp
14 shrq $2, %tmp
15 andl $131064 , %tmp
16 movq .hash_array(%tmp), %tmp
17 xorq %dest , %tmp
18 cmpq $32, %tmp
19 jb .skip
20
21 .slow_path
22 (Save application registers)
23 (Call log_write)
24 (Restore application registers)
25
26 .skip
27 (Restore arithmetic flags)
28 (Restore registers %dest and %tmp)

• The write is contained in a single aligned 32 B block, i.e.,
bdest/32c= b(dest + sz−1)/32c.

• The block’s address is found in the hash set on first try
(without any probing), i.e., H[i] = addr where H is the
hash set array, i = bdest/32c mod 2m according to the hash
function, and addr = bdest/32c×32 is the block address.2

Any memory write filtered out by the check is guaranteed to
be a duplicate, and the check proves effective in our evaluation
(§§ 7.2.1 and 7.2.3). Furthermore, as the computation required
by the checks only require bit manipulations, the two checks
can be implemented in 11 instructions using only two extra
registers (one of which stores dest and is anyway required).
Listing 1 shows the code inserted before a memory write.
Batch commit. Persimmon shadow-executes multiple state
machine operations before committing, thus avoiding dupli-
cate logging across multiple operations. After executing each
operation, Persimmon checks to see if the de-duplication hash
set is more than 50% full and if so, commits. We defer more
intelligent batch sizing to future work.
Skipping newly allocated regions. Writes to a PM region
that is newly allocated (i.e., after the most recent commit)
do not need to be logged since, in case of a crash, the state
machine will be reverted to before the region was allocated.
The log_write function therefore maintains, in DRAM, a
list of address ranges for newly allocated regions and searches

2Note that if no element exists in the hash set with hash value h(addr), we
have H[i] = 0 and the check fails as expected (assuming that the application
never writes to the block starting at address zero).

through the list to skip logging such writes. This optimiza-
tion is critical for supporting calloc implementations that
manually zero out pages allocated with mmap.

5 Recovery
To minimize recovery times, recovery in Persimmon is rela-
tively simple. After a crash, the first step is to restore the PM
state machine snapshot to a consistent state:
• If the undo log contains a commit record, we set the opera-

tion log tail to new_tail. If an updated region table exists
in PM, we switch to it and garbage collect the old region
table. This completes the commit.

• If the undo log contains no commit record, we delete and
garbage collect the updated region table (if one exists) and
copy the old values from the undo log back to their respec-
tive locations. This rolls back the operation in progress at
the time of the crash.

As a last step, we clear the undo log in both cases.
Starting from the consistent PM snapshot, Persimmon di-

gests any remaining operations in the operation log so that
all previously invoked operations are reflected in the snap-
shot. Replaying the log ensures that Persimmon maintains
its guarantee that any invoked operation that returns will not
be lost. This up-to-date snapshot is then copied into DRAM
for the application process, and the application is restarted.
Assuming that the PSM has captured all persistent application
state, the application should be back in its pre-crashed state.

6 Implementation
We have implemented Persimmon in C++; it targets x86-64
Linux applications written in C or C++. We use CRIU [24]
(v3.12) for process checkpointing during background process
initialization (§ 3.3). For dynamic instrumentation (§ 4.3), we
use DynamoRIO [8], a runtime code manipulation system.
Persimmon’s DynamoRIO client is linked into the applica-
tion along with the DynamoRIO runtime. This setup allows
Persimmon to start the application uninstrumented and only
begin instrumentation in the background process once it is
forked off. To avoid interfering with the application, our in-
strumentation code takes care not to call into shared libraries
(e.g., libc), and instead uses DynamoRIO’s memory allocator
and our custom system call wrappers.3

7 Evaluation
Using our implementation, we demonstrate that Persimmon:
• Requires only a small amount of code modification for

distributed in-memory storage systems.
• Achieves low overhead on workloads compared with no

persistence for both Linux and kernel-bypass applications.
• Recovery quickly even for large memory sizes.

3Because our DynamoRIO client is linked into the application, it is not
loaded by DynamoRIO’s private loader, which would have created a separate
copy of each library used by the client.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1035

Table 2: Rough lines of code changed to port Redis and TAPIR.

Lines added / changed

Redis TAPIR

Initialize Persimmon 7 10
Factor out state machine init. 36 34

Serialize state machine operation 26 12
Deserialize & execute operation 45 25
Check for read-only operations 1 1
Refactor for better performance — 57

Total 115 139

We ported Redis, a popular key-value store, and TAPIR [113],
a distributed transactional data store, to use Persimmon. We
first describe the code changes required to port these applica-
tions (§ 7.1), followed by performance comparisons (§§ 7.2.1
and 7.2.2). Finally, we use microbenchmarks to evaluate the
effectiveness of Persimmon’s optimizations (§ 7.2.3).

7.1 Programming Experience

Although the Persimmon API is simple (Figure 1), porting
real applications can require a few extra steps as real-world
code bases are not always well-organized into a state machine
abstraction, even if the application is processing RPCs. The
programmer typically needs to:

1. Add a call to psm_init(), passing configuration argu-
ments like the PM file system location.

2. Factor out the state machine initialization code into a sin-
gle function, separating it from other initialization (e.g.,
network I/O), so that it can be skipped on recovery.

3. Write a function that serializes a state machine operation
for operation logging. One can reuse the application’s ex-
isting RPC serialization, but, for better performance, we
found it valuable to use a custom format that is cheaper to
parse in the shadow process.

4. Write a function that deserializes and executes an opera-
tion, to be invoked under instrumentation in Persimmon’s
shadow process. This function typically only needs to call
the application’s RPC handler using the deserialized opera-
tion, but may need to suppress any I/O by the handler (e.g.,
sending a reply over the network).

5. Insert checks to distinguish read-write operations from
read-only ones; such checks likely already exist for ap-
plications that support state machine replication. Invoke
Persimmon for read-write operations.

We performed all of these steps for Redis because it was
not well-organized into a state machine, especially because
it is written in C, which is not an object-oriented language.
TAPIR, on the other hand, was is already designed as a state
machine to work with its replication mechanism. Table 2
summarizes the code changes required to port Redis and
TAPIR. We discuss each application in detail next.

7.1.1 Porting Redis

To port Redis, we treat each Redis command as a state ma-
chine operation and invoke it through Persimmon. To summa-
rize, the changes made were:

1. Persimmon initialization took 6 lines of code (LoC).
2. To factor out the state machine initialization code, we sepa-

rated out three blocks of code (7+7+22 lines) responsible
for network and domain socket initialization, etc.

3. Redis operation serialization for the state machine took
26 lines of code. The serialization consists of the address
of the Redis command’s handler function4 as well as the
command’s arguments.

4. Redis operation deserialization, parsing, and dispatch took
24 lines of code. Since executing Redis commands requires
a “client”, we reuse the fake client code from Redis AOF
(21 lines), which also suppresses replies.

5. To determine whether an operation is read-only, we reused
existing code from Redis’ state machine replication.

In all, Persimmon allowed us to achieve persistence for Redis
with roughly 100 lines of code changes. In contrast, Redis’
own persistence implementation (AOF and RDB) consists of
roughly 3000 lines of code, including complex logic such as
request processing while log compaction is in progress. As an-
other point of comparison, Pmem-Redis [82], a version of Re-
dis that uses persistent memory, contains roughly 30000 new
lines of C code over Redis 4.0.0, although we note that Pmem-
Redis contains features that are orthogonal to Persimmon
(e.g., defragmentation). Xu et al. report that manually porting
Redis to persistent memory using PMDK [80] “is not straight-
forward and requires large engineering effort” [104, § 3.3].
They list five difficulties, which include supporting the many
different Redis objects with different encodings, carefully or-
dering writes to maintain crash consistency, etc. None of the
difficulties arose when we ported Redis using Persimmon.

Despite minimal changes, our port is the most feature-
complete PM Redis port that we know of. For example,
Persimmon-Redis supports complex Redis data structures
like sets and hashes while the persistent Redis from WHIS-
PER [73,98] only supports simple key-value pairs, and Pmem-
Redis lacks support for optimized encodings like intset and
zipmap. We also support hash table resizing, which is not
supported by P-Redis due to its complexity [104]. Persimmon-
Redis supports these features “out of the box”, without requir-
ing additional code for each feature. In addition, Persimmon
lets Redis retain jemalloc [47] as its memory allocator, which
was carefully chosen by the Redis developers [86].

7.1.2 Porting TAPIR

The TAPIR transactional data store is built on top of the in-
consistent replication (IR) protocol. We treat each IR RPC
as a state machine operation. In the application, these RPCs

4As the shadow process is forked from the application process (§ 3.3), the
application’s code segment is mapped at the same location in both processes.

1036 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are serialized using Protocol Buffers [83], and a naive Persim-
mon port uses the same serialization for operation logging.
Although easy to implement, this strategy causes significant
performance degradation as Persimmon has to execute Proto-
col Buffer parsing under shadow execution, which is slow.

To improve performance, we refactored TAPIR’s IR RPC
handlers to take individual RPC fields as arguments, so that
they can be called from the shadow process without first con-
structing protobuf objects. This refactoring involved roughly
50 LoC changes, which were mostly mechanical, and enabled
operation logging using a simple custom format (like for
Redis). In addition to this refectoring, we did the following:

1. Persimmon initialization took 11 lines of code.
2. To factor out state machine initialization, we moved two

code blocks (10+4 lines) and modified ~20 LoC to allow
creating a RPC handler without a network connection.

3. Operation serialization took 12 lines of code.
4. Operation deserialization and invocation took 17 lines of

code, plus an extra 8 lines to suppress replies.
5. We reused application code to detect read-only operations.
The overall code change amounts to roughly 140 lines in total.

To recover from replica failures, TAPIR uses a complex in-
memory recovery protocol, inspired by VR, which has been
proven to be incorrect [69]—under certain failure conditions,
TAPIR can lose operations when recovering, causing it to miss
updates. Persimmon-TAPIR fixes this problem transparently
and lets replicas correctly recover their state on failures.

One of the benefits of TAPIR is that replicas can recover
and immediately begin processing transactions. However,
without the most up-to-date state, these recovered replicas
will degrade performance by serving stale reads and unneces-
sarily aborting writes. TAPIR particularly suffers from this
performance degradation because it needs 3

2 f +1 to use the
single-round trip fast path. For a 3-machine replica group,
this number includes all of the participants. As a result, while
the recovering replica is able to participate in transactions im-
mediately, without the most up-to-date state, it is only hurting
performance. However, Persimmon-TAPIR can significantly
reduce this performance degradation by limiting the amount
of state that the replica needs to recover.

7.2 Performance Evaluation

We evaluate Persimmon on three 52-core, dual-socket Intel
Xeon Platinum 8272 2.6 GHz servers, each with 3 TB of
Intel® Optane™ DC Persistent Memory in app direct mode
and 768 GB of DRAM. We mount an ext4 file system in
DAX mode [59] on the PM. Persimmon’s application and
background processes run on two physical cores on a single
NUMA socket and use only DRAM, PM, and the NIC on
that socket. To supply the client workload, we use a server
with a 20-core dual-socket Xeon Silver 4114 2.2 GHz CPU,
connected with with Mellanox CX-5 100 Gbps NICs and an
Arista 7060CX 100 Gbps top-of-rack switch.

Table 3: Summary of Redis performance on YCSB (Zipfian con-
stant = 0.75, 10% update, median of five runs). The persistence
options are volatile (“Vol”), persistent through Persimmon (“PSM”),
and persistent through append-only file (“AOF”), with our perfor-
mance in bold. Shown are median latency at low load and peak
throughput. Persimmon incurs, for Linux, negligible latency and
throughput overhead and, for kernel bypass, negligible latency over-
head and ~5% throughput overhead. Figure 4a shows the full latency
vs throughput graph.

Latency (µs) Throughput (Kops)

Redis Setup Vol PSM AOF Vol PSM AOF

Linux 17.8 17.5 18.6 227 227 107
Bypass 10.4 11.2 12.0 452 429 130

7.2.1 Redis Performance

We use Persimmon to add persistence to two versions of
Redis—regular Redis (v4.0.9), which processes requests over
TCP using the POSIX API, and a high-performance, kernel-
bypass version of Redis that uses the Demikernel’s DPDK
library OS [26, 112]. We compare both Persimmon-Redis
versions to Redis’s existing persistence mechanisms.

While Redis is an in-memory storage system, persisting
Redis is popular enough for it to integrate two mechanisms
for saving its state [85]: RDB, a snapshotting mechanism,
and AOF, an append-only operation log. Using RDB requires
pausing operation processing for a short period while Redis
spawns a background process to checkpoint its database.

AOF logs every write operation received by the server to
a file, similar to Persimmon’s operation logging. However,
Redis typically recommends only fsync’ing those logged
operations periodically to avoid performance overhead [85],
so operations can be lost on a crash. AOF must also avoid
the operation log growing unboundedly, so it periodically
creates an RDB snapshot, letting it truncate the log. This
process further degrades performance, so the Redis developers
recommend only snapshotting once or twice an hour [85].

In some sense, these mechanisms are orthogonal to Persim-
mon. They have features that Persimmon does not provide
(e.g., compact and platform-independent serialization), but do
not provide cheap, general-purpose persistence to in-memory
storage systems. Their implementation is specific to Redis, re-
quires significant implementation effort, and, as shown below,
can cause large performance degradation.
Experiment setup. We evaluate Redis performance using
the YCSB benchmark [21]. We implemented a custom multi-
threaded YCSB client, using Shenango [78], which supports
both TCP and Demikernel’s UDP-based protocol. Following
the official YCSB implementation [111], our client is closed-
loop and does not use Redis pipelining, each YCSB record is
represented with a Redis hash, and fields are accessed using
Redis’ HSET/HGET commands. We load 13 million records; as
is YCSB default, each record has 10 fields (i.e., 130 million
items in total), and each field has a 100 B value. Our client is-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1037

Persistence mechanism: none PSM AOF Redis setup: Linux Kernel bypass

0

20

40

0 100 200 300 400

Throughput (Kops)

M
e

d
ia

n
 L

a
te

n
c
y
 (
μ

s
)

(a) Latency vs throughput for a 10%-update workload. Persimmon
incurs negligible overhead over the Linux baseline, and a roughly 5%
overhead to the peak throughput over the kernel-bypass baseline.

0.0

0.1

0.2

0.3

0.4

0 25 50 75 100

YCSB Update Percentage (%)

P
e

a
k
 T

h
ro

u
g

h
p

u
t

(M
o

p
s
)

(b) Peak throughput vs update percentage. Persimmon throughput
stays within 9% of the kernel bypass baseline for up to 40%-update,
and within 4% of the Linux baseline for up to 75%-update.

Figure 4: Redis performance on the YCSB benchmark (median of five runs, Zipfian constant = 0.75).

sues reads and updates according to a fixed ratio, and chooses
which records to access according to a Zipfian distribution.

On the server side, the regular Redis server uses jemalloc
(as is recommended for Linux) and our kernel-bypass Redis
uses the Hoard memory allocator [3] (following the Demiker-
nel implementation [26]). Where Redis AOF is enabled, we
place the AOF log file on the PM file system, disable AOF
rewriting, and configure it to always fsync before sending
replies, providing the same level of durability as Persimmon.

End-to-end performance. We start with the end-to-end
performance for a typical YCSB workload with 10% updates
and a Zipfian constant of 0.75. We measure the latency and
throughput for unmodified Redis, Persimmon Redis, and Re-
dis AOF. Table 3 reports performance both on Linux and with
kernel-bypass enabled through the Demikernel and shows:

• On Linux, Persimmon provides persistence while incurring
negligible latency or throughput overhead.

• With kernel bypass, Persimmon incurs negligible latency
overhead at low load, and a 5% degradation to peak through-
put. Kernel bypass makes Redis significantly more efficient,
so Persimmon has slightly more impact on performance.

• On Linux, AOF incurs < 1µs latency cost but a 2× through-
put penalty, a much higher overhead than Persimmon.

• With kernel bypass, AOF again incurs a small latency over-
head but a 3.5× throughput loss.

Some of the overhead of AOF is likely due to inefficiencies in
accessing PM through ext4 and could be reduced using a spe-
cialized PM file system like NOVA [104,105] or SplitFS [48].
Overall, Persimmon offers persistence at a much lower cost
than Redis’s own custom persistence mechanism both on
Linux and for future kernel-bypass deployments.

Figure 4a shows the full latency vs throughput plot for this
workload with varied numbers of closed-loop clients. (Lower
and to the right is better. The knee where latency goes up
shows the peak throughput.)

Table 4: Redis recovery time and storage size for the three persistence
mechanisms (median of three runs). Persimmon recovers 4.6×–6×
faster than AOF and RDB. The discrepancy between the Linux and
kernel bypass implementations is likely due to memory allocators
differences (jemalloc vs Hoard).

Recovery Time (s) Storage Size (GB)

Redis Setup PSM AOF RDB PSM AOF RDB

Linux 14.6 87.4 87.8 23 16 2.8
Bypass 20.4 93.3 93.5 33 16 2.8

Peak throughput vs update ratio. Since Persimmon only
logs and shadow-executes write operations, its overhead de-
pends on the workload’s update-to-read ratio. Figure 4b shows
peak Redis throughput as we vary the workload’s update per-
centage. Persimmon’s throughput remains within 4% of the
baseline for up to 75%-update on Linux (represented by the
red and green “×” lines in the middle of the graph), and within
9% of the baseline for up to 40%-update for kernel bypass
(represented by the red and green “◦” lines at the top). After
these points, the shadow state machine becomes saturated and
the throughput drops precipitously. Both versions can easily
handle read-heavy workloads, which are common in practice.
Recovery speed and storage size. Table 4 shows Redis’
recovery speed and storage usage under different persistence
mechanisms if we kill Redis after loading our YCSB dataset.5

Because Persimmon persists application data in its in-memory
format, the bulk of its recovery is physically copying PM re-
gions back into DRAM, while AOF and RDB require reload-
ing the database. Consequently, Persimmon recovery is faster
by 4.6× (on Linux) to 6.0× (for kernel bypass) and, we be-
lieve, can be further optimized by copying PM regions in
parallel using multiple cores. However, Persimmon’s space

5The Persimmon recovery measurements do not include operation replay
because it would take negligible time—since the operation log is only 32 MB,
replaying even a full log would only take roughly one second for YCSB.

1038 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0

0.1

0.2

0.3

0.4

0 25 50 75 100

YCSB Update Percentage (%)

P
e

a
k
 T

h
ro

u
g

h
p

u
t

(M
o

p
s
)

All optimizations
W/o skip stack
W/o fast-path dedup
W/o batch commit
W/o de-duplication

Figure 5: Disabling each optimization degrades Redis throughput
on YCSB (Zipf = 0.75, kernel bypass, median of five runs). Note
that disabling de-duplication also disables the fast-path check.

usage tracks the application’s RAM usage while AOF and
RDB can use more compact serialization formats. The dis-
crepancy between Linux and kernel-bypass Redis is most
likely because they use different memory allocators (jemal-
loc vs Hoard), which lead to differing amounts of memory
consumption and exhibit different allocation performance.
Effectiveness of optimizations. To evaluate Persimmon’s
optimizations (§ 4.3), we measure Redis performance un-
der Persimmon after disabling each optimization separately
(note that disabling undo log de-duplication also disables
the fast-path de-duplication check).6 Figure 5 shows that no
optimization can be removed without degrading performance.

7.2.2 TAPIR Performance

As with Redis, we use Persimmon to add persistence to two
versions of TAPIR—regular TAPIR, which processes requests
over UDP using the POSIX API, and kernel-bypass TAPIR,
which uses the Demikernel’s DPDK library OS. We compare
each version to the original, non-persistent application.

We evaluate TAPIR performance using the Retwis bench-
mark [113], a Twitter-like transactional workload, with 10 mil-
lion keys (where keys and values are 64 B) and a Zipf coeffi-
cient of 0.75. On the server side, we configure one shard with
three replicas running on separate machines equipped with
PM. For clients, we use a multi-process closed-loop load gen-
erator that processes RPCs over UDP using the POSIX API;
it supports both the regular TAPIR and Demikernel protocols.

Table 5 reports the mean latency and peak throughput for
Retwis transactions. Persimmon incurs negligible latency
overhead for both the Linux and the kernel-bypass setups. For
peak transaction throughput, Persimmon incurs a 5.4% degra-
dation on Linux and a 7.3% degradation for kernel bypass.
Note that the TAPIR transaction latency is much higher than
the Redis latency from § 7.2.1 because each transaction in-

6We excluded the optimization that skips newly allocated regions because
no new regions are allocated during these experiments (since our workload
only overwrites existing keys). However, this optimization helps tremen-
dously when loading the initial YCSB database.

Table 5: Summary of TAPIR performance on Retwis (Zipf = 0.75,
three replicas). The persistence options are volatile and Persimmon
(“PSM”), with our performance in bold. Shown are the mean trans-
action latency at low load (measured using five clients) and peak
throughput (with at most 20 clients). Persimmon incurs negligible
latency overhead and a 5%–8% throughput overhead. Figure 6 shows
the full latency vs throughput graph.

Latency (µs) Throughput (txn/s)

TAPIR Server Volatile PSM Volatile PSM

Linux 342 338 37 K 35 K
Bypass 310 309 41 K 38 K

0

200

400

600

0 10000 20000 30000 40000

Throughput (transactions/sec)

M
e

a
n

 L
a

te
n

c
y
 (
μ

s
)

Server Networking

Linux
Kernel bypass

Persistence

Persimmon
None

Figure 6: Latency vs throughput for TAPIR on the Retwis benchmark
(10 million keys, Zipf = 0.75, median of five runs). Throughput starts
decreasing as more clients are added due to congestion collapse.

volves multiple RPCs sent to three replicas; and kernel bypass
provides less benefit for TAPIR than for Redis because TAPIR
performs more work per RPC and its code base is less heavily
optimized. Figure 6 shows the full throughput vs latency plot
for this workload (lower and to the right is better). After a
crash, Persimmon can recover a replica within 7 s; we were
not able to compare to a recovery baseline as TAPIR has not
implemented recovery from another replica.

7.2.3 Optimization Microbenchmarks

We use microbenchmarks to demonstrate the effectiveness
of Persimmon’s optimizations for crash-consistent shadow
execution (§ 4.3). Each microbenchmark repeatedly invokes
operations using psm_invoke_rw. Each operation performs
1024 memory accesses, where each access reads a 32 B block
of memory into a %ymm register, performs an AVX-2 vector
addition on it, and writes it back to the same memory location.
We picked the access size of 32 B to match the undo logging
granularity (§ 4.2). For clarity, we turn off batch commit
unless otherwise specified. In each benchmark, we disable
certain optimization(s) and use a memory access location
pattern that demonstrates the effect of the optimization(s).

In Figure 7a, we disable undo log de-duplication and
its fast-path check and vary the access frequency of each
block—ranging from each operation accessing 1024 different

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1039

0

50

100

150

0 25 50 75 100

Block access frequency (%)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

De-dup + fast check

De-duplicate

No de-duplication

(a) Undo log de-duplication is most effective
when few locations are accessed repeatedly.

10

20

30

0 25 50 75 100

Percentage of stack writes (%)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

Skip stack

No skip stack

(b) Skipping stack operations is most effective
with a large percentage of stack accesses.

0

10

20

30

0 25 50 75 100

Overlap between consecutive ops (%)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

Batch commit (8 ops)

Batch commit (4 ops)

No batching

(c) Batch commit is most effective when oper-
ations access a lot of overlapping memory.

Figure 7: Effectiveness of Persimmon’s optimizations (median of five runs).

blocks sequentially to accessing a single block 1024 times.
When memory accesses are concentrated on few locations,
de-duplication can deliver up to 13× throughput increase, and
the fast-path check, an additional 5×. These optimizations
incur no discernible overhead when there is no duplication.

In Figure 7b, we disable the optimization that skips stack
accesses and direct a percentage of memory accesses to an
array allocated on the stack. As expected, this optimization
is most effective when state machine operations frequently
access the stack, which we assume to be not persistent.

In Figure 7c, we enable the batch commit optimization with
fixed batch sizes of 4 or 8 operations, and vary the percentage
of overlap between blocks accessed by consecutive operations.
Batch commit is most effective when it can group together
many operations that access common memory locations.

8 Related Work
PM frameworks. Because PM’s low level interface (load,
store, flush) can be hard to use, prior works have proposed PM
frameworks that provide higher-level APIs [9,16,18,22,31–33,
41,42,45,60,65,67,81,88,95,99,102,114]. Such a framework
typically requires the programmer to (1) explicitly declare
persistent data (e.g., by using a special malloc), (2) delineate
failure-atomic regions using begin/end annotations, and (3) an-
notate operations that modify persistent data. The framework
can then provide durability and failure atomicity by executing
extra logic for each persistent operation, e.g., to log the op-
eration and flush any modified persistent locations. Some of
these frameworks reduce the programming burden by, e.g., in-
ferring failure-atomic regions from existing synchronization
points [9, 33, 41, 45, 60, 102], and by automatically interpos-
ing on persistent operations using language features [22, 95],
static compiler instrumentation [9, 32, 33, 42, 102], or runtime
methods [41, 88, 102].

Using these frameworks comes with two difficulties. First,
despite their high-level APIs, porting an application using
these frameworks can still be labor-intensive [66, 104] and
bug-prone [61, 62]; we elaborate on the porting experience
later in this section. Second, PM accesses and failure atom-

icity mechanisms on the critical path can impose significant
performance overhead, especially for frameworks that im-
plement automatic interposition. For example, microbench-
marks by Hsu et al. [41, § 5.6] show a 5×–25× slowdown
for NVthreads and a 70×–200× slowdown for Mnemosyne
and Atlas on memory accesses. While such overhead might
be acceptable for I/O-bound applications, it can significantly
slow down high-performance data stores with fast I/O.

Persimmon alleviates both difficulties. On the program-
ming effort side, Persimmon does not require manually an-
notating of every persistent allocation; it simply persists all
state encapsulated by the state machine. We are not aware of
any other framework of its kind that provides this feature.7

Furthermore, by taking a full-process approach to persisting
the shadow process machine, Persimmon rules out referential
integrity bugs [16] (e.g., arising from PM-to-DRAM pointers)
and relocation issues (where a persistent region is mapped to
a different address after recovery).

For performance, Persimmon keeps the critical path execu-
tion as close to the original application as possible. As far as
we know, Persimmon is the only system that can transparently
retain the application’s memory allocator (rather than swap in
a special PM allocator), thus preserving its memory layout.8

It also pushes all PM accesses (besides operation logging) and
instrumentation into the background; this requires an extra
CPU core, but minimizes overhead on the critical path.

Finally, Persimmon is the first system to use dynamic bi-
nary instrumentation to provide failure atomicity on PM. This
allows application code to call into libraries that are dynami-
cally linked or whose source is not available (§ 4).

Porting data structures to PM. Despite the high-level
APIs provided by the PM frameworks, porting existing

7Except AutoPersist [88], a Java PM framework that only requires mark-
ing a “durable root” object from which all persistent state can be reached.
However, it exploits properties of Java / the JVM and cannot be easily ex-
tended to support C/C++ applications.

8Romulus [22] can be used with any memory allocator but requires man-
ual modification to the allocator code.

1040 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

data structures to PM remains challenging.9 For example,
Marathe et al. called their experience porting memcached
“surprisingly non-trivial” [66], and Xu et al. reported five
difficulties in porting Redis’ hash table using PMDK, e.g.,
supporting Redis’ many object encodings and having to order
persistent writes carefully [104, §3.3]. With the high manual
effort, bugs are likely to appear in PM code even when using
high-level PM frameworks [61, 62]. In contrast, Persimmon
requires minimal code changes to port an application (§ 7.1);
in particular, we encountered none of the five difficulties iden-
tified by Xu et al. as we ported Redis using Persimmon.

Other works have noted that certain classes of data struc-
tures are easier to convert to PM and proposed techniques
accordingly. For example, RECIPE [57] observes that concur-
rent indexes that implement helping and non-blocking reads
are “inherently crash-consistent”; MOD [39] notes that purely
functional data structures can be easily made failure-atomic
through copy-on-write; and Friedman et al. [30] automati-
cally transform a special class of lock-free data structures to
be persistent by exploiting the traversal phase in these data
structures’ operations. Persimmon makes no such assump-
tions on the application’s data structures.

Like Persimmon, Pronto [68] relies on state machine-like
assumptions on the data structure—that it is encapsulated and
has deterministic operations. This enables Pronto to imple-
ment persistence using semantic logging and periodic snap-
shotting. In contrast, Persimmon allows porting an entire
application, rather than a single data structure, and maintains
low latency even for large data sizes as it avoids the periodic
stalls from the synchronous phase of snapshotting.
PM data structures / stores. Many prior works have re-
designed in-memory data structures to be durable in PM.
These include both tree-based [1, 10, 11, 14, 17, 44, 53, 56, 93,
97, 109] and hash-based structures [13, 25, 74, 87, 116–118].
There have also been hybrid designs that combine PM with
DRAM [12,43,77,100,103,110] and/or with SSD [49,51,110].
To achieve high performance, these data structures often use
data layouts and operations specifically optimized for PM.

In contrast, Persimmon is not one data structure/store;
rather, it allows porting an in-memory storage system to be
persistent on PM. Although a Persimmon-transformed sys-
tem might not achieve resource utilization on par with hand-
crafted PM data stores, Persimmon is more general and can
deliver good performance on real-life workloads.

Persimmon’s design is similar to that of Bullet [43], a per-
sistent key-value store that serves requests from a “front-end
cache” in DRAM, records operations in persistent logs, and
uses background threads to apply logged operations to a per-
sistent hash table. While Bullet only supports a limited set
of operations, Persimmon generalizes the design to support
general application-level operations. A future direction is to

9Here we focus on the porting experience and thus do not include works
that replace an application’s data structure with a persistent one (e.g., swap-
ping out the hash table of Redis with a persistent B-tree [93]).

incorporate Bullet’s cross-referencing logs into Persimmon to
better support multi-core applications.
PM-aware file systems. A natural way of using PM is to
view it as a fast storage device and incorporate it into the stor-
age stack. Many file systems have been designed to effectively
exploit the high performance of PM [15, 20, 27–29, 48, 50, 55,
64, 94, 101, 105–107, 115]. These PM-aware file systems can
transparently speed up durable applications that perform I/O
using the file system interface, but do not directly apply to
in-memory applications that do not use the file system.
Logging for crash consistency. Logging has been used to
implement crash consistency in many contexts outside of PM,
e.g., in database management systems [4,5,34–37,54,70] and
journaling file systems [6, 38, 89–91]. Persimmon’s logging
mechanisms are conceptually similar, with a key difference
being that we perform undo logging on application-supplied
state machine operations (in x86-64) as opposed to SQL trans-
actions or file system operations.

9 Conclusion
Persistent memory (PM) offers a promising solution to provid-
ing crash recovery to in-memory storage systems. However,
manually porting applications to PM remains challenging.
Persimmon leverages PM to provide persistence to existing in-
memory storage systems while maintaining high performance
and requiring minimal code changes. We use Persimmon to
add persistence to Redis and TAPIR with ease while incurring
minimal performance overhead on common workloads.

Acknowledgments
We thank our shepherd Vijay Chidambaram and the anony-
mous reviewers for their helpful comments on the paper. We’d
also like to thank Aurojit Panda, David Culler, Vivian Fang,
Amy Ousterhout, and other members of the UC Berkeley Net-
Sys Lab, the RISELab, and the Microsoft Systems Research
Group for their feedback. This work was funded in part by
NSF Grants 1817115, 1817116, and 1704941, and by grants
from Intel, VMware, Ericsson, Futurewei, and Cisco.

References
[1] ARULRAJ, J., LEVANDOSKI, J., MINHAS, U. F., AND

LARSON, P.-A. BzTree: A high-performance latch-
free range index for non-volatile memory. Proc. VLDB
Endow. 11, 5 (Jan. 2018), 553–565.

[2] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG,
S., AND PALECZNY, M. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review (2012), ACM, pp. 53–64.

[3] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D.,
AND WILSON, P. R. Hoard: A scalable memory alloca-
tor for multithreaded applications. In Proc. of ASPLOS
(2000).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1041

[4] BERNSTEIN, P. A., GOODMAN, N., AND HADZILA-
COS, V. Recovery algorithms for database systems. In
Proceedings of the IFIP 9th World Computer Congress
(1983).

[5] BERNSTEIN, P. A., HADZILACOS, V., AND GOOD-
MAN, N. Concurrency control and recovery in
database systems, vol. 370. Addison-wesley Reading,
1987.

[6] BEST, S. JFS log: How the journaled file system per-
forms logging. In Annual Linux Showcase & Confer-
ence (2000).

[7] BORNHOLT, J., KAUFMANN, A., LI, J., KRISHNA-
MURTHY, A., TORLAK, E., AND WANG, X. Specify-
ing and checking file system crash-consistency models.
In Proc. of ASPLOS (2016), pp. 83–98.

[8] BRUENING, D., ZHAO, Q., AND AMARASINGHE, S.
Transparent dynamic instrumentation. In Proc. of VEE
(2012).

[9] CHAKRABARTI, D. R., BOEHM, H.-J., AND BHAN-
DARI, K. Atlas: Leveraging locks for non-volatile
memory consistency. In Proc. of OOPSLA (2014).

[10] CHEN, S., GIBBONS, P. B., AND NATH, S. Rethinking
database algorithms for phase change memory. In Proc.
of CIDR (2011).

[11] CHEN, S., AND JIN, Q. Persistent B+-trees in non-
volatile main memory. Proc. VLDB Endow. 8, 7 (Feb.
2015), 786–797.

[12] CHEN, Y., LU, Y., YANG, F., WANG, Q., WANG, Y.,
AND SHU, J. FlatStore: An efficient log-structured
key-value storage engine for persistent memory. In
Proc. of ASPLOS (2020).

[13] CHEN, Z., HUANG, Y., DING, B., AND ZUO, P. Lock-
free concurrent level hashing for persistent memory. In
Proc. of USENIX ATC (2020).

[14] CHI, P., LEE, W.-C., AND XIE, Y. Making B+-tree
efficient in PCM-based main memory. In Proc. of
ISLPED (2014).

[15] CHOI, J., HONG, J., KWON, Y., AND HAN, H. Libn-
vmmio: Reconstructing software IO path with failure-
atomic memory-mapped interface. In Proc. of USENIX
ATC (2020).

[16] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP,
L. M., GUPTA, R. K., JHALA, R., AND SWANSON,
S. NV-heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In Proc.
of ASPLOS (2011).

[17] COHEN, N., AKSUN, D. T., AVNI, H., AND LARUS,
J. R. Fine-grain checkpointing with in-cache-line log-
ging. In Proc. of ASPLOS (2019).

[18] COHEN, N., AKSUN, D. T., AND LARUS, J. R.
Object-oriented recovery for non-volatile memory.
Proc. ACM Program. Lang. 2, OOPSLA (Oct. 2018).

[19] COHEN, N., FRIEDMAN, M., AND LARUS, J. R. Ef-
ficient logging in non-volatile memory by exploiting
coherency protocols. Proc. ACM Program. Lang. 1,
OOPSLA (Oct. 2017).

[20] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK,
E., LEE, B., BURGER, D., AND COETZEE, D. Better
I/O through byte-addressable, persistent memory. In
Proc. of SOSP (2009).

[21] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
cloud serving systems with YCSB. In Proc. of SOCC
(2010).

[22] CORREIA, A., FELBER, P., AND RAMALHETE, P. Ro-
mulus: Efficient algorithms for persistent transactional
memory. In Proc. of SPAA (2018).

[23] cpython: 52f68c95e025 objects/dictobject.c.
https://hg.python.org/cpython/file/52f68c95e025/Objects/
dictobject.c#l33.

[24] CRIU. https://criu.org.

[25] DEBNATH, B., HAGHDOOST, A., KADAV, A.,
KHATIB, M. G., AND UNGUREANU, C. Revisiting
hash table design for phase change memory. In Proc.
of INFLOW (2015).

[26] demikernel/demikernel: Demikernel OS. https://github.
com/demikernel/demikernel.

[27] DONG, M., BU, H., YI, J., DONG, B., AND CHEN,
H. Performance and protection in the ZoFS user-space
NVM file system. In Proc. of SOSP (2019).

[28] DONG, M., AND CHEN, H. Soft updates made simple
and fast on non-volatile memory. In Proc. of USENIX
ATC (2017).

[29] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY,
A., LANTZ, P., REDDY, D., SANKARAN, R., AND
JACKSON, J. System software for persistent memory.
In Proc. of EuroSys (2014).

[30] FRIEDMAN, M., BEN-DAVID, N., WEI, Y., BLEL-
LOCH, G. E., AND PETRANK, E. NVTraverse: In
NVRAM data structures, the destination is more im-
portant than the journey. In Proc. of PLDI (2020).

1042 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://hg.python.org/cpython/file/52f68c95e025/Objects/dictobject.c#l33
https://hg.python.org/cpython/file/52f68c95e025/Objects/dictobject.c#l33
https://criu.org
https://github.com/demikernel/demikernel
https://github.com/demikernel/demikernel

[31] GENÇ, K., BOND, M. D., AND XU, G. H. Crafty:
Efficient, HTM-compatible persistent transactions. In
Proc. of PLDI (2020).

[32] GEORGE, J. S., VERMA, M., VENKATASUBRAMA-
NIAN, R., AND SUBRAHMANYAM, P. go-pmem: Na-
tive support for programming persistent memory in Go.
In Proc. of USENIX ATC (2020).

[33] GOGTE, V., DIESTELHORST, S., WANG, W.,
NARAYANASAMY, S., CHEN, P. M., AND WENISCH,
T. F. Persistency for synchronization-free regions. In
Proc. of PLDI (2018).

[34] GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B.,
LORIE, R., PRICE, T., PUTZOLU, F., AND TRAIGER,
I. The recovery manager of the System R database
manager. ACM Computing Surveys (CSUR) (1981).

[35] GRAY, J., AND REUTER, A. Transaction processing:
concepts and techniques. Elsevier, 1992.

[36] GRAY, J. N. Notes on data base operating systems. In
Operating Systems. Springer, 1978.

[37] HAERDER, T., AND REUTER, A. Principles of
transaction-oriented database recovery. ACM Comput.
Surv. 15, 4 (1983).

[38] HAGMANN, R. Reimplementing the Cedar file system
using logging and group commit. In Proc. of SOSP
(1987).

[39] HARIA, S., HILL, M. D., AND SWIFT, M. M. MOD:
Minimally ordered durable datastructures for persistent
memory. In Proc. of ASPLOS (2020).

[40] HERLIHY, M. P., AND WING, J. M. Linearizability:
A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

[41] HSU, T. C.-H., BRÜGNER, H., ROY, I., KEETON, K.,
AND EUGSTER, P. NVthreads: Practical persistence
for multi-threaded applications. In Proc. of EuroSys
(2017).

[42] HU, Q., REN, J., BADAM, A., SHU, J., AND MOSCI-
BRODA, T. Log-structured non-volatile main memory.
In Proc. of USENIX ATC (2017).

[43] HUANG, Y., PAVLOVIC, M., MARATHE, V. J.,
SELTZER, M., HARRIS, T., AND BYAN, S. Closing
the performance gap between volatile and persistent
key-value stores using cross-referencing logs. In Proc.
of USENIX ATC (2018).

[44] HWANG, D., KIM, W.-H., WON, Y., AND NAM, B.
Endurable transient inconsistency in byte-addressable
persistent B+-tree. In Proc. of FAST (2018).

[45] IZRAELEVITZ, J., KELLY, T., AND KOLLI, A. Failure-
atomic persistent memory updates via JUSTDO log-
ging. In Proc. of ASPLOS (2016).

[46] IZRAELEVITZ, J., YANG, J., ZHANG, L., KIM, J.,
LIU, X., MEMARIPOUR, A., SOH, Y. J., WANG, Z.,
XU, Y., DULLOOR, S. R., ZHAO, J., AND SWAN-
SON, S. Basic performance measurements of the In-
tel Optane DC Persistent Memory Module. CoRR
abs/1903.05714 (2019). http://arxiv.org/abs/1903.05714.

[47] jemalloc. http://jemalloc.net/.

[48] KADEKODI, R., LEE, S. K., KASHYAP, S., KIM, T.,
KOLLI, A., AND CHIDAMBARAM, V. SplitFS: Re-
ducing software overhead in file systems for persistent
memory. In Proc. of SOSP (2019).

[49] KAIYRAKHMET, O., LEE, S., NAM, B., NOH, S. H.,
AND CHOI, Y.-R. SLM-DB: Single-level key-value
store with persistent memory. In Proc. of FAST (2019).

[50] KANNAN, S., ARPACI-DUSSEAU, A. C., ARPACI-
DUSSEAU, R. H., WANG, Y., XU, J., AND PALANI,
G. Designing a true direct-access file system with
DevFS. In Proc. of FAST (2018).

[51] KANNAN, S., BHAT, N., GAVRILOVSKA, A., ARPACI-
DUSSEAU, A., AND ARPACI-DUSSEAU, R. Redesign-
ing LSMs for nonvolatile memory with NoveLSM. In
Proc. of USENIX ATC (2018).

[52] KAPRITSOS, M., WANG, Y., QUEMA, V., CLEMENT,
A., ALVISI, L., AND DAHLIN, M. All about Eve:
Execute-verify replication for multi-core servers. In
Proc. of OSDI (2012).

[53] KIM, W.-H., SEO, J., KIM, J., AND NAM, B. ClfB-
Tree: Cacheline friendly persistent B-tree for NVRAM.
ACM Trans. Storage 14, 1 (Feb. 2018).

[54] KUMAR, V., AND HSU, M. Recovery mechanisms in
database systems. Prentice Hall PTR, 1997.

[55] KWON, Y., FINGLER, H., HUNT, T., PETER, S.,
WITCHEL, E., AND ANDERSON, T. Strata: A cross
media file system. In Proc. of SOSP (2017).

[56] LEE, S. K., LIM, K. H., SONG, H., NAM, B., AND
NOH, S. H. WORT: Write optimal radix tree for per-
sistent memory storage systems. In Proc. of FAST
(2017).

[57] LEE, S. K., MOHAN, J., KASHYAP, S., KIM, T., AND
CHIDAMBARAM, V. Recipe: Converting concurrent
DRAM indexes to persistent-memory indexes. In Proc.
of SOSP (2019).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1043

http://arxiv.org/abs/1903.05714
http://jemalloc.net/

[58] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES,
A., AND PORTS, D. R. Just say NO to Paxos overhead:
Replacing consensus with network ordering. In Proc.
of OSDI (2016).

[59] LINUX KERNEL ORGANIZATION. Direct access
for files. https://www.kernel.org/doc/Documentation/
filesystems/dax.txt.

[60] LIU, Q., IZRAELEVITZ, J., LEE, S. K., SCOTT, M. L.,
NOH, S. H., AND JUNG, C. iDO: Compiler-directed
failure atomicity for nonvolatile memory. In Proc. of
MICRO (2018).

[61] LIU, S., SEEMAKHUPT, K., WEI, Y., WENISCH, T.,
KOLLI, A., AND KHAN, S. Cross-failure bug detection
in persistent memory programs. In Proc. of ASPLOS
(2020).

[62] LIU, S., WEI, Y., ZHAO, J., KOLLI, A., AND KHAN,
S. PMTest: A fast and flexible testing framework for
persistent memory programs. In Proc. of ASPLOS
(2019).

[63] LU, H. J., MATZ, M., GIRKAR, M., HUBIČKA, J.,
JAEGER, A., AND MITCHELL, M. System V appli-
cation binary interface AMD64 architecture proces-
sor supplement (with LP64 and ILP32 programming
models) version 1.0, 2018. https://github.com/hjl-tools/
x86-psABI/wiki/x86-64-psABI-1.0.pdf.

[64] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus:
An RDMA-enabled distributed persistent memory file
system. In Proc. of USENIX ATC (2017).

[65] MARATHE, V. J., MISHRA, A., TRIVEDI, A., HUANG,
Y., ZAGHLOUL, F., KASHYAP, S., SELTZER, M.,
HARRIS, T., BYAN, S., BRIDGE, B., AND DICE, D.
Persistent memory transactions. CoRR abs/1804.00701
(2018). http://arxiv.org/abs/1804.00701.

[66] MARATHE, V. J., SELTZER, M., BYAN, S., AND HAR-
RIS, T. Persistent memcached: Bringing legacy code
to byte-addressable persistent memory. In Proc. of
HotStorage (2017).

[67] MEMARIPOUR, A., BADAM, A., PHANISHAYEE, A.,
ZHOU, Y., ALAGAPPAN, R., STRAUSS, K., AND
SWANSON, S. Atomic in-place updates for non-
volatile main memories with Kamino-Tx. In Proc.
of EuroSys (2017).

[68] MEMARIPOUR, A., IZRAELEVITZ, J., AND SWAN-
SON, S. Pronto: Easy and fast persistence for volatile
data structures. In Proc. of ASPLOS (2020).

[69] MICHAEL, E., PORTS, D. R., SHARMA, N. K., AND
SZEKERES, A. Recovering shared objects without
stable storage. In Proc. of DISC (2017).

[70] MOHAN, C., HADERLE, D., LINDSAY, B., PIRA-
HESH, H., AND SCHWARZ, P. ARIES: a transaction
recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM
Transactions on Database Systems (TODS) (1992).

[71] MOHAN, J., MARTINEZ, A., PONNAPALLI, S., RAJU,
P., AND CHIDAMBARAM, V. Finding crash-
consistency bugs with bounded black-box crash testing.
In Proc. of OSDI (2018).

[72] MORARU, I., ANDERSEN, D. G., AND KAMINSKY,
M. There is more consensus in egalitarian parliaments.
In Proc. of SOSP (2013).

[73] NALLI, S., HARIA, S., HILL, M. D., SWIFT, M. M.,
VOLOS, H., AND KEETON, K. An analysis of persis-
tent memory use with WHISPER. In Proc. of ASPLOS
(2017).

[74] NAM, M., CHA, H., CHOI, Y.-R., NOH, S. H., AND
NAM, B. Write-optimized dynamic hashing for persis-
tent memory. In Proc. of FAST (2019).

[75] NISHTALA, R., FUGAL, H., GRIMM, S.,
KWIATKOWSKI, M., LEE, H., LI, H. C., MCELROY,
R., PALECZNY, M., PEEK, D., SAAB, P., ET AL.
Scaling memcache at Facebook. In Proc. of NSDI
(2013).

[76] ONGARO, D., RUMBLE, S. M., STUTSMAN, R.,
OUSTERHOUT, J., AND ROSENBLUM, M. Fast crash
recovery in RAMCloud. In Proc. of SOSP (2011).

[77] OUKID, I., LASPERAS, J., NICA, A., WILLHALM, T.,
AND LEHNER, W. FPTree: A hybrid SCM-DRAM per-
sistent and concurrent B-tree for storage class memory.
In Proc. of SIGMOD (2016).

[78] OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY,
A., AND BALAKRISHNAN, H. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In Proc. of NSDI (2019).

[79] PILLAI, T. S., CHIDAMBARAM, V., ALAGAPPAN, R.,
AL-KISWANY, S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. All file systems are not
created equal: On the complexity of crafting crash-
consistent applications. In Proc. of OSDI (2014).

[80] Persistent memory development kit. https://pmem.io/
pmdk/.

[81] Persistent memory development kit—the libpmemobj
library. https://pmem.io/pmdk/libpmemobj/.

[82] pmem/pmem-redis: A version of redis that uses persis-
tent memory. https://github.com/pmem/pmem-redis.

1044 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
http://arxiv.org/abs/1804.00701
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://pmem.io/pmdk/libpmemobj/
https://github.com/pmem/pmem-redis

[83] Protocol Buffers | Google Developers. https://developers.
google.com/protocol-buffers/.

[84] RAAD, A., WICKERSON, J., NEIGER, G., AND
VAFEIADIS, V. Persistency semantics of the Intel-
X86 architecture. Proc. ACM Program. Lang. 4, POPL
(Dec. 2019).

[85] Redis persistence. https://redis.io/topics/persistence.

[86] redis/README.md at 4.0 • redis/redis. https://github.
com/redis/redis/blob/4.0/README.md.

[87] SCHWALB, D., DRESELER, M., UFLACKER, M., AND
PLATTNER, H. NVC-Hashmap: A persistent and con-
current hashmap for non-volatile memories. In Proc.
of IMDM (2015).

[88] SHULL, T., HUANG, J., AND TORRELLAS, J. AutoP-
ersist: An easy-to-use Java NVM framework based on
reachability. In Proc. of PLDI (2019).

[89] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON,
C., NISHIMOTO, M., AND PECK, G. Scalability in
the XFS file system. In Proc. of ATEC (1996).

[90] TWEEDIE, S. EXT3, journaling filesystem, 2000.
http://olstrans.sourceforge.net/release/OLS2000-ext3/
OLS2000-ext3.html.

[91] TWEEDIE, S. C., ET AL. Journaling the Linux ext2fs
filesystem. In The Fourth Annual Linux Expo (1998).

[92] VAN RENEN, A., VOGEL, L., LEIS, V., NEUMANN,
T., AND KEMPER, A. Persistent memory I/O primi-
tives. In Proc. of DaMoN (2019).

[93] VENKATARAMAN, S., TOLIA, N., RANGANATHAN,
P., AND CAMPBELL, R. H. Consistent and durable
data structures for non-volatile byte-addressable mem-
ory. In Proc. of FAST (2011).

[94] VOLOS, H., NALLI, S., PANNEERSELVAM, S.,
VARADARAJAN, V., SAXENA, P., AND SWIFT, M. M.
Aerie: Flexible file-system interfaces to storage-class
memory. In Proc. of EuroSys (2014).

[95] VOLOS, H., TACK, A. J., AND SWIFT, M. M.
Mnemosyne: Lightweight persistent memory. In Proc.
of ASPLOS (2011).

[96] WANG, C., YING, V., AND WU, Y. Supporting legacy
binary code in a software transaction compiler with
dynamic binary translation and optimization. In Proc.
of CC (2008).

[97] WANG, T., LEVANDOSKI, J., AND LARSON, P. Easy
lock-free indexing in non-volatile memory. In Proc. of
ICDE (2018).

[98] swapnilh/whisper: WHISPER is a comprehensive
benchmark suite for emerging persistent memory tech-
nologies. https://github.com/swapnilh/whisper.

[99] WU, M., ZHAO, Z., LI, H., LI, H., CHEN, H., ZANG,
B., AND GUAN, H. Espresso: Brewing Java for more
non-volatility with non-volatile memory. In Proc. of
ASPLOS (2018).

[100] WU, X., NI, F., ZHANG, L., WANG, Y., REN, Y.,
HACK, M., SHAO, Z., AND JIANG, S. NVMcached:
An NVM-based key-value cache. In Proc. of APSys
(2016).

[101] WU, X., QIU, S., AND NARASIMHA REDDY, A. L.
SCMFS: A file system for storage class memory and
its extensions. ACM Trans. Storage 9, 3 (Aug. 2013).

[102] WU, Z., LU, K., NISBET, A., ZHANG, W., AND LU-
JÁN, M. PMThreads: Persistent memory threads har-
nessing versioned shadow copies. In Proc. of PLDI
(2020).

[103] XIA, F., JIANG, D., XIONG, J., AND SUN, N. HiKV:
A hybrid index key-value store for DRAM-NVM mem-
ory systems. In Proc. of USENIX ATC (2017).

[104] XU, J., KIM, J., MEMARIPOUR, A., AND SWANSON,
S. Finding and fixing performance pathologies in per-
sistent memory software stacks. In Proc. of ASPLOS
(2019).

[105] XU, J., AND SWANSON, S. NOVA: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In Proc. of FAST (2016).

[106] XU, J., ZHANG, L., MEMARIPOUR, A., GANGAD-
HARAIAH, A., BORASE, A., DA SILVA, T. B., SWAN-
SON, S., AND RUDOFF, A. NOVA-Fortis: A fault-
tolerant non-volatile main memory file system. In
Proc. of SOSP (2017).

[107] YANG, J., IZRAELEVITZ, J., AND SWANSON, S.
Orion: A distributed file system for non-volatile main
memories and RDMA-capable networks. In Proc. of
FAST (2019).

[108] YANG, J., KIM, J., HOSEINZADEH, M., IZRAELE-
VITZ, J., AND SWANSON, S. An empirical guide to
the behavior and use of scalable persistent memory. In
Proc. of FAST (2020).

[109] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG,
K. L., AND HE, B. NV-Tree: Reducing consistency
cost for NVM-based single level systems. In Proc. of
FAST (2015).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1045

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://redis.io/topics/persistence
https://github.com/redis/redis/blob/4.0/README.md
https://github.com/redis/redis/blob/4.0/README.md
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
https://github.com/swapnilh/whisper

[110] YAO, T., ZHANG, Y., WAN, J., CUI, Q., TANG, L.,
JIANG, H., XIE, C., AND HE, X. MatrixKV: Reducing
write stalls and write amplification in LSM-tree based
KV stores with matrix container in NVM. In Proc. of
USENIX ATC (2020).

[111] brianfrankcooper/ycsb: Yahoo! cloud serving bench-
mark. https://github.com/brianfrankcooper/YCSB.

[112] ZHANG, I., LIU, J., AUSTIN, A., ROBERTS, M. L.,
AND BADAM, A. I’m not dead yet! The role of the
operating system in a kernel-bypass era. In Proc. of
HotOS (2019).

[113] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISH-
NAMURHTY, A., AND PORTS, D. R. K. Building
consistent transactions with inconsistent replication.
In Proc. of SOSP (2015).

[114] ZHANG, L., AND SWANSON, S. Pangolin: A fault-
tolerant persistent memory programming library. In
Proc. of USENIX ATC (2019).

[115] ZHENG, S., HOSEINZADEH, M., AND SWANSON, S.
Ziggurat: A tiered file system for non-volatile main
memories and disks. In Proc. of FAST (2019).

[116] ZUO, P., AND HUA, Y. A write-friendly and cache-
optimized hashing scheme for non-volatile memory
systems. IEEE Transactions on Parallel and Dis-
tributed Systems 29, 5 (2018).

[117] ZUO, P., HUA, Y., AND WU, J. Write-optimized and
high-performance hashing index scheme for persistent
memory. In Proc. of OSDI (2018).

[118] ZURIEL, Y., FRIEDMAN, M., SHEFFI, G., COHEN,
N., AND PETRANK, E. Efficient lock-free durable sets.
Proc. ACM Program. Lang. 3, OOPSLA (Oct. 2019).

1046 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brianfrankcooper/YCSB

	Introduction
	Persimmon Overview
	Design Goals
	Persimmon Persistent State Machine Model
	Persimmon Persistent State Machine API
	Persimmon Persistent State Machine Guarantees

	Persimmon Runtime
	Data Structures
	Initialization and Normal Execution
	Persimmon Shadow Process
	Persistent Memory Management

	Crash-Consistent Shadow Execution
	Overview
	Undo Log Layout and Operations
	Dynamic Binary Instrumentation

	Recovery
	Implementation
	Evaluation
	Programming Experience
	Porting Redis
	Porting TAPIR

	Performance Evaluation
	Redis Performance
	TAPIR Performance
	Optimization Microbenchmarks

	Related Work
	Conclusion

