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Abstract
Traditional deep learning frameworks such as TensorFlow

and PyTorch support training on a single deep neural network

(DNN) model, which involves computing the weights itera-

tively for the DNN model. Designing a DNN model for a task

remains an experimental science and is typically a practice

of deep learning model exploration, dovetailed with training

and validation, aiming to find the best model among a set that

yields the best result. Retrofitting such exploratory-training

into the training process of a single DNN model, as supported

by current deep learning frameworks, is unintuitive, cumber-

some, and inefficient, because of the fundamental mismatch

between exploring a set of models and training a single one.

Retiarii is the first framework to support deep learning

exploratory-training. In particular, Retiarii (i) provides a new

programming interface to specify a DNN model space for

exploration, as well as an interface to describe the exploration

strategy that decides which order to instantiate and train mod-

els in, how to prioritize model training, and when to terminate

training of certain models; (ii) offers a Just-In-Time (JIT)

engine that instantiates models, manages the training of the in-

stantiated models, gathers the information for the exploration

strategy to consume, and executes the decisions accordingly;

(iii) identifies the correlations between the instantiated models

and develops a set of cross-model optimizations to improve

the overall exploratory-training process. Retiarii does so by

introducing a key abstraction, Mutator, that connects the spec-

ifications of DNN model spaces and exploration strategies,

while exposing the correlations between models for optimiza-

tion. As a result, Retiarii’s clean separation of DNN model

space specification, exploration strategy, and cross-model op-

timizations, connected through the single mutator abstraction,

leads to ease of programming, reuse of components, and vastly

improved (up to 8.58x) overall exploratory-training efficiency.

1 Introduction
Deep neural networks (DNNs) have been successfully ap-

plied to a variety of perception-based tasks such as vision

and speech. For each such task, a DNN model architecture,

depicted as a graph of operators as vertices, connected with

weighted edges, is designed. The model is then trained to

populate the weights, before it can be used to perform the

task. Deep learning frameworks, such as TensorFlow [11] and

PyTorch [48], have been designed to describe an individual

DNN model and train the model as a (training) job to run

on target hardware, such as GPUs. Training a deep learning

model is often resource intensive and costly.

Devising a model for a particular task often involves an

iterative exploration process, where a developer would often

start with a model architecture that captures the main intu-

itions and tweak it repeatedly until a model with satisfactory

results is identified in a continuous training and validation

process. Alternatively, a model architecture could also evolve

from simple models following a simple set of evolution rules.

There are clear gaps between the needs to support this

exploratory-training process and the existing deep learning

frameworks. First, this exploratory-training process works

on a series of deep learning models, rather than a single one,

as supported by the existing deep learning frameworks. A

developer either has to specify each model individually in a

manual, tedious, and repetitive process, or encodes this series

of models as one “jumbo” model [13, 27, 50, 65] using ad-

vanced features such as dynamic graph and control flow. Such

a “jumbo” model pollutes the original model architecture and

makes it significantly harder to understand as changes are

scattered across the model description with complex dynamic,

control-flow structures. It is also more difficult to optimize

due to the use of those dynamic, control-flow structures.

Second, deep learning frameworks manage individual train-

ing jobs and cannot capture or leverage the correlation among

the set of training jobs in the same exploratory-training pro-

cess. A developer is again forced to code certain exploration

strategies in a “jumbo” model, together with ad hoc runtime

mechanisms to manipulate the priorities of jobs or stop not-

so-promising jobs early. Such implementations of exploration

strategies are hardly reusable as they are deeply coupled with

and embedded in a particular exploratory-training process.

And there is no easy way to expose the correlations among

those models, which tend to share many common structures,

for cross-model optimizations. Training a set of models often

incurs significant cost; any efficiency gains through optimiza-

tions would often allow an exploratory-training process to

find a better model under the same budget.

We therefore propose Retiarii, the first deep learning frame-

work specifically designed to support exploratory-training. To

address the gaps we have previously identified in the existing

deep learning frameworks, we address three core problems

of exploratory-training: (i) specifying a DNN model space

to explore, (ii) defining and realizing exploration strategies
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to decide when to instantiate a model in the space, which

ones to instantiate, how to prioritize the training of the in-

stantiated models, and when to terminate the jobs for training

those models, and (iii) exposing the correlations among the

instantiated models and optimizing training across models by

leveraging the correlation information.

Retiarii embraces a new Mutator abstraction as the basis for

specifying a DNN model space and for defining an exploration

strategy. Observing that the exploratory-training process tends

to introduce relatively minor modifications to existing models

or to compose simple models together following a set of

evolution rules, Retiarii allows developers to specify each

such modification or evolution as a mutator on a model graph.

A DNN model space for an exploratory-training process can

be defined as a set of base models (each specified as in the

original deep learning frameworks, with no “pollution”) and a

set of mutators. The DNN mode space is then the base models,

plus any subsequent models produced by applying mutators

to the current models, and so on. An exploration strategy can

then be partly defined to govern when to generate new models

by applying mutators, as well as which current models and

mutators to choose.

Retiarii further designs a Just-In-Time (JIT) engine for

the exploratory-training process, which essentially manages

the logical collection of all models and their corresponding

training jobs. The engine instantiates new models dynami-

cally, exposes the correlations of the instantiated models for

cross-model optimizations, schedules the optimized jobs for

execution, and manages the execution of the scheduled jobs,

governed by the specified exploration strategy.

Retiarii advocates a clean separation of concerns and strives

for simplicity and modularity. The mutator abstraction fo-

cuses on the changes to an existing model and exposes the

differences (and similarities) of models for cross-model op-

timizations. Each mutator is fine-grained, to capture a logi-

cal unit of modification, and intended to be composable and

reusable. The cross-model optimizations are also designed

and implemented as general capabilities, enabled by the muta-

tor abstraction, in Retiarii’s JIT engine. Exploration strategies

are decoupled from the specification of the model spaces

(through base models and mutators) to maximize reusability,

even though some exploration strategies might unavoidably

have dependencies on certain types of model spaces.

We have fully implemented and open sourced Retiarii 1.

So far, Retiarii implements 6 mutators to define 18 differ-

ent model spaces, 11 different exploration strategies, and 3

cross-model optimizations. These combinations have already

covered 27 NAS algorithms from the research community,

and benefit from vastly improved performance with cross-

model optimizations. Our evaluation shows that (1) Retiarii

reduces the exploration time of popular Neural Architecture

Search (NAS) algorithms by up to 2.57×, and (2) Retiarii im-

1Source code available at https://github.com/microsoft/nni/
tree/retiarii_artifact
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Figure 1: Three typical types of model space explorations.

proves the scalability of NAS algorithms using weight sharing

with a speed-up of 8.58×.

2 Background and Motivation

The many ways of creating candidate model variations.
Developing a model typically involves creating interesting

candidate model variations following some design intuitions;

for example, by 1) tweaking a substructure (e.g., a layer or

a cell) of a base model, 2) coming up with generalized cell

structure, 3) or evolving network structure gradually, as shown

in Figure 1.

The top set of examples in Figure 1 shows different ways

of modifying a base model. One could replace an operator

at a layer with some candidate operators (e.g., normal conv,

depthwise conv), or changing a layer’s input (e.g., adding

some skip connections). The modification can also be applied

to a cell containing several interconnected layers, but treated

as a one logical layer. More generally, a matching rule can

be defined to apply modifications on the entire model (e.g.,
adding BatchNorm after convolution layers or replacing all

ShuffleNet cells [42] with Inverted Residual cells [54]).

The middle example in Figure 1 shows how one could

generalize a cell structure in order to find a better one. For

example, an Inception cell [57] can be generalized to explore a

space with different numbers of paths and a different operator

on each path. Similarly, an LSTM structure can be generalized

to an RNN cell [69]. A generalized structure usually contains

a large number of different structures.

The bottom example in Figure 1 shows how the final net-

work gradually evolves from a simple network following

some rules. The rules could be adding a layer/edge or chang-

ing a layer’s operator in each evolution step [23].
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Figure 2: The jumbo model compared to a single model in

the model space. Colored circles are different operators.

The pain of specifying and exploring a model space. Ex-

ploring a model space, as exemplified in Figure 1, is not

directly supported by the existing deep learning frameworks,

such as TensorFlow and PyTorch. A model developer often

has to program and train each model manually, or to code

up all the variations of models in a model space as a sin-

gle jumbo model in TensorFlow/PyTorch through complex

control-flow, such as using specified values on the condition

of control-flows to route to each model [27, 50, 62, 70]. Fig-

ure 2 shows a simple example, a layer has four candidate

operators (e.g., normal conv, depthwise conv, avgpool, and

maxpool), there should be a control-flow to pick one during

model construction. If a layer’s input is the output of one

of the previous layers (e.g., skip connection), there should

be a dynamic control-flow to route to the right path during

model forward (i.e., forward pass of data flow graph). Some

popular model spaces [50, 62] change operators and inputs

on as many as tens of layers, leading to excessive complexity,

making the code hard to understand, and going beyond the

limited capabilities of current frameworks to handle control-

flow. The control-flow in jumbo models also make them hard

to apply compiler optimization techniques, such as operator

fusion [15, 38] and memory planning [16]. Figure 3 shows

the performance gaps in terms of throughout for ResNet50, as

a single model vs. as one encoded as part of a jumbo model.

Automatic model exploration. A DNN model space can

be explored automatically with an exploration strategy. The

action scope of exploration strategy spans from model gener-

ation to model execution.

When exploring a huge model space, it is usually impossi-

ble and unnecessary to train all the models in the space. An

exploration strategy is responsible for deciding which models

to instantiate and train, in what priority, and when to terminate.

A typical strategy on which models to instantiate could be

brute force (e.g., random search [56] and grid search [60]),

heuristic-based (e.g., evolution [23,30] and annealing algo-

rithms [36]), or more advanced model-based (e.g., Bayesian

Figure 3: The throughput of ResNet50 built as a single model

and a jumbo model. The space contains 4 choices of convo-

lution operator at each layer. Both computation graphs are

optimized by TensorFlow XLA [38].

models [33, 67] and reinforcement learning [59, 69, 70]).

An exploration strategy further manages the executions of

training instantiated model; for example, to stop the execu-

tion of a bad-performing model early based on a performance

predictor [20], or to dynamically adjust the computation re-

source provided to each model depending on the model’s

performance [64], or to run several mini-batches only and

share the weights of overlapped layers among the models to

reduce each model’s execution time significantly [27, 50].

The pain of implementing exploration strategies. An ex-

ploration strategy naturally manages a set of models. Im-

plementing such a strategy with the existing deep learning

frameworks is unintuitive and cumbersome, as those frame-

works are designed for training individual models and have

no support for an exploration strategy.

Because an exploration strategy intensively involves in-

stantiating models from a model space, the implementation

often tightly couples an exploration strategy with a specific

model space, further increasing the complexity of already

complicated jumbo models. For example, an RNN-based RL

algorithm (a popular exploration strategy) uses each of its

time steps to control the condition value of each control-flow

in the jumbo model [50]. Further incorporating the logic of

controlling model training makes the jumbo model unman-

ageable. As a result, though most exploration strategies are

logically applicable to different model spaces, the implemen-

tations embedded in the jumbo models are hardly reusable by

other model spaces.

Encoding an exploration strategy in a jumbo model also

makes it hard to expose cross-model optimization opportuni-

ties as an exploratory-training usually produces many models.

The models explored tend to have strong correlations (e.g.,
common computation logic) among them, as the variations

produced tend to touch only a certain part of the model, while

keeping the rest unchanged. The training of those models

also share the same dataset and data preprocessing logic. To

adapt a model to different tasks, the large backbone network

(e.g., BERT) is often fixed: the exploration tends to focus

on varying the structure of several added layers. Significant

opportunities, therefore, exist in leveraging common computa-

tion across model training to speed up an exploratory-training

process as a whole. When encoding an exploration strategy in
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Figure 4: Base model and mutation: An example.

a jumbo model, it also becomes challenging to scale the train-

ing of this jumbo job to multiple GPUs and servers [27, 50];

in contrast, scaling to multiple GPUs is straightforward for a

set of individual jobs, each training a single model.

Insufficiency of existing AutoML systems. Previous Au-

toML systems (e.g., Google Vizier [24], Auto-WEKA [61],

Auto-Sklearn [22]) abstract the AutoML problem as hyper-

parameter tuning. Although a certain NAS problem can be

modeled as the tuning of specific hyper-parameters, it often

involves the definition of an ad-hoc set of hyper-parameters,

making it cumbersome to express different model spaces in

a general way. It is especially painful to hyper-parameterize

evolutionary NAS [13, 23, 51] where neural architectures can

randomly evolve. Moreover, the expressed architectures are

hardly understood by compilers, making optimizations almost

impossible. Some recently emerged AutoML systems (e.g.,
AutoKeras [32]) provide more support to NAS. They can au-

tomatically search neural architectures but with specifically

implemented model spaces and exploration strategies, where

system optimizations are hardly applicable.

Retiarii is designed to address the abovementioned pains.

It provides great expressiveness to support various model

spaces and strategies in a systematic and programmable way.

It clearly decouples model space from exploration strategy

and enables system optimizations to speed up exploration

process.

3 Mutator as the Core Abstraction

Exploratory-training is all about exploring a model space. Mu-

tator is the core abstraction that connects the specification and

exploration of a model space, while exposing the correlations

between models for further optimizations.

Base models. Retiarii follows the standard practice of char-

acterizing a DNN model as a data-flow graph (DFG), where

each node represents an operator (or a subgraph) with one or

multiple input and output tensors and an edge connects an

output tensor of a node to an input tensor of another node.

Retiarii introduces the notion of base models as the start-

ing points of an exploratory-training and preserves the way

a single DNN model is specified for base models. In fact,

1 create_node(name:str,op:Op,params:dict={})
2 delete_node(node:Node)
3 connect(src:NodeOutput ,dst:NodeInput)
4 del_connect(src:NodeOutput ,dst:NodeInput)
5 update_node(node:Node ,op:Op=None ,params:dict={},
6 inputs:list=None)
7 choose(candidates:list ,n_chosen:int=1,
8 type:str="choice",ctx:dict=None)

Figure 5: Mutation primitives and the choose primitive.

Retiarii can simply import base models defined in an existing

deep learning framework such as TensorFlow. Figure 4 illus-

trates an example base model with a chain of 4 operators (a

convolutional neural network).

Mutator. Exploratory-training is typically a process of ap-

plying modifications (e.g., as depicted in Figure 1) to existing

models, starting from base models. Rather than encoding mod-

ifications in a complex jumbo model, Retiarii cleanly sepa-

rates modifications from the original target models and encode

each as a Mutator, an abstraction designed to be expressive,

modular, reusable, and composable. The model space to be

explored by an exploratory-training process is then the base

models, plus all the resulting models from applying mutators

to the base models and to any subsequently generated models.

Graph matching and manipulation in Mutator. Each

mutator specifies matching criteria to identify subgraphs of

a target model’s DFG to operate on, followed by a series of

graph construction operations to modify the matched sub-

graphs to create a new model. The mutator abstraction can

also use the choose primitive to describe different options to

choose from in a mutator, so that the mutator can produce a

number of models without duplicating the mutator code to

create a new mutator for each option.

Retiarii’s current graph matching is based on node type or

node name, which is simple, but sufficient for all the use cases

we have implemented. But it can be extended easily to more

expressive graph matching if necessary.

Retiarii introduces general mutation primitives like

create_node for a mutator to manipulate the node and edge

in a model. The primitives are summarized in Figure 5. Note

that a node in Retiarii can also represent a subgraph. Thus the

primitives can also be applied to a subgraph (e.g., a layer or a

cell) of a model.

For each model instantiation, Retiarii records all the muta-

tion primitives called in a mutator. Hence Retiarii can easily

identify model correlations across instantiated models. For

example, between two instantiations of the same base model,

the nodes not modified by the mutator are considered iden-

tical. Retiarii can leverage such information to optimize the

multi-model training (details in §5).

Mutator: an example. Figure 4 depicts a model space in

which the third node (“model/maxpool”) of the base model

922    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



1 # define the graph mutation behavior
2 class InceptionMutator(BaseMutator):
3 def __init__(self , paths_range , candidate_ops):
4 self.paths_range = paths_range # [2, 3, 4, 5]
5 self.ops = candidate_ops # {conv , dconv , ...}
6 def mutate(self , targets):
7 if not three_node_chain(targets):
8 return err
9 n = choose(candidates=self.paths_range)

10 delete_node(targets[1])
11 for i in range(n): # create n paths
12 op = choose(candidates=self.ops)
13 nd = create_node(name=’way_’+str(i), op=op)
14 connect(src=targets[0].output , dst=nd.input)
15 connect(src=nd.output , dst=targets[2].input)
16

17 # mutation applied to the graph
18 apply_mutator(targets=["model/relu", "model/

maxpool", "model/dense"],
19 mutator=InceptionMutator(
20 [2, 3, 4, 5], [conv , dconv , pool]))

Figure 6: A mutator that constructs an Inception-like cell.

can be mutated with a multi-path cell. The cell could have

2 to 5 paths, each of which chooses an operator from Conv,

DepthwiseConv and Maxpool. Figure 6 shows the code of

the mutator, i.e., InceptionMutator, which implements the

model space illustrated in Figure 4.

All the mutation logic is encapsulated in the mutate func-

tion (lines 6-15). The entry point of the mutator is given

by targets in the mutate function (line 6 of Figure 6), to

match nodes/subgraphs in the given model. The targets of

InceptionMutator is a chain of 3 nodes. This shows that a

mutator can be applied to a subgraph with a specific pattern,

which improves the reusability of a mutator. In the example

code, the mutator first ensures that the matching is a chain of

3 nodes (lines 7-8). It will then call choose (line 9) to select

an integer n to create n paths subsequently. On creating each

path, the mutator will call choose (line 12) again to select

an operator for the node in the path. Note that the code for a

mutator can contain arbitrary complex control flow in a muta-

tor (e.g., the control loop in lines 11-15 of Figure 6), without

polluting the instantiated models, unlike in the case of jumbo

models with control flows. Finally, a call to apply_mutator
will create a mutator instance (line 18), which matches a chain

of relu, maxpool, and dense.

4 Retiarii Just-In-Time Engine

A key design decision for Retiarii to support exploratory-

training is to instantiate models to explore on the fly and

manage the training of instantiated models dynamically. This

is accomplished by Retiarii’s just-in-time (JIT) engine (Fig-

ure 7), which takes as input one or more base models, a set of

mutators, and a policy describing the exploration strategy.

The end-to-end exploratory-training process is driven by

JIT Engine

Apply 
Mutators

Target Model

Base Model

MutatorMutatorMutator

Cross-Model 
Optimization

Model Space

Raw DFGsRaw DFGsRaw DFGsRaw DFGs

Optimized DFGsOptimized DFGs

Model Training

Exploration 
Engine

Instantiation 
Control

Choice Suggestion

Feedbacks

Start/Stop

Training Control

Model Exploration 
Strategy

Input to Exploratory-Training

Figure 7: The architecture of Retiarii.

the policy described as a Model Exploration Strategy. The JIT

engine maintains a set of target models, initialized with the set

of base models, and consults the model exploration strategy

to decide which target model(s) and mutator(s) to choose (i.e.,
Instantiation Control), as well as which choices to make for

each choose within those mutators (i.e., Choice Suggestion),

to instantiate new models. The decision can be guided by a

context-free strategy (e.g., making a random choice upon each

choose) or by a history-based strategy, generating choices

based on which models have been previously instantiated [60].

The choose interface in Mutator enables the customization

of the choices.

Once new models are instantiated (i.e., Apply Mutators)

as Raw DFGs, the JIT engine transparently performs Cross-
Model Optimization (§5). Because the JIT engine records

the mutation history, the Cross-Model Optimization module

can easily detect identical nodes across models to produce

optimized DFGs by applying common sub-expression elimi-

nation [44], cross-model operator batching [15, 41], and NAS

optimizations (§5). The optimized DFGs are then converted

to the standard model format for the existing deep learning

frameworks to perform single-model optimizations before

training. In Training Control, the JIT engine launches train-

ing on new models, monitors the training of instantiated and

optimized models, collects training feedbacks (e.g., model

accuracy), adjusts training priorities and resource allocation,

and terminates training of less promising models, all guided

by a model exploration strategy.

Retiarii’s Mutator abstraction and JIT engine offers an ele-

gant architecture to support exploratory-training, following

the principles of separating policy from mechanisms and

separation of concerns, and maximizing modularity, reusabil-
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ity, and opportunities for optimizations. In addition to the

common functionalities (e.g., Cross-Model Optimization) in

the overall infrastructure, mutators and policies encoding the

model exploration strategies might also be reused. This is in

sharp contrast to the current practice of encoding everything

in a jumbo code, which is hardly understandable or reusable

due to tight coupling.

5 Cross-Model Optimization

The DNN models instantiated by Retiarii in an exploratory-

training process tend to have significant similarities as their

DFGs share common subgraphs, thereby offering huge op-

portunities for Retiarii to optimize the training of multiple

models. With mutators that identify and record all modifica-

tions to a model’s DFG, Retiarii can easily find the common

subgraphs of multiple DFGs, circumventing the generally

NP-hard and APX-hard problem of identifying maximum

common subgraphs [34].

5.1 Cross-Model Optimization Opportunities
Three different cross-model optimization opportunities are

identified, depending on the inputs, weights, and trainability2

of operators in the common subgraphs.

Common Sub-expression Elimination (CSE). CSE is a

common compiler optimization to eliminate identical opera-

tions of a program by only computing them once. CSE can

be applied to the non-trainable operators in the common sub-

graphs with common inputs and outputs, but cannot be ap-

plied to trainable operators as their weights will change dur-

ing training, rendering their computation different after the

first iteration. In practice, we find CSE particularly useful

for merging prefix nodes of a DFG, because they are often

non-trainable operators for data loading and preprocessing, as

neural architecture search often uses the same dataset, batch

size, and preprocessing procedures. When running multiple

data-flow graphs concurrently on a single server, CSE can also

avoid contention on shared storage and CPUs to maximize

utilization of expensive GPUs.

Operator Batching. Common operators with different in-

puts and weights can potentially be batched together and com-

puted in a single operator kernel. This optimization is useful

for model exploration in multi-domain deep learning and

transfer learning [28,52,53]. In this scenario, a model is mod-

ified to a new task with only minor changes, thus those modi-

fied models usually share a common skeleton. Adapter-based

transfer learning is a one such example: networks have the

same architecture from a pre-trained network, with adapters

2Similar to most popular deep learning frameworks, Retiarii allows

model developers to specify whether the weights associated with an operator

are trainable, whose weights will be applied with gradients during back-

propagation.

Figure 8: Operator batching: An example.

inserted at different locations. Only the inserted layers are

fine-tuned [28, 52, 53]. Figure 8 illustrates an example that

two graphs share multiple layers with the same weights. After

merging the two graphs, the input of the common operators

are batched along the batch dimension, and the output of the

batched operators are split before adapters. Common opera-

tions with different weights (e.g., trainable weights) can also

be batched by leveraging special kernels (e.g., grouped con-

volution [37], batch_matmul) that can parallelly compute on

slices of an input tensor. This allows Retiarii to enable more

fine-grained sharing of GPUs by increasing SIMD utilization

with less GPU memory.

Super-Graph for Weight Sharing. Weight sharing is a

machine-learning optimization shown to deliver improved

empirical performance for certain model training: instead of

training a graph’s weights from scratch, shared weights are

inherited from other graphs to continue the training in this

graph [27, 50]. Retiarii naturally supports this training opti-

mization by allowing model developers to annotate operator

weights they want to share. Retiarii will automatically identify

the weight sharing-enabled operators in common subgraphs.

The DFGs with shared weights will be merged to build a

super-graph. By training the super-graph together in one DFG,

Retiarii can avoid overhead of checkpointing shared weights,

because with weight sharing each graph has short training

time (e.g., several mini-batches). To accelerate the training

of the merged super-graph, we further introduce a new type

of parallelism when constructing executable graphs (§5.2) by

increasing its scalability on distributed GPU clusters. Note

that super-graphs are generated and used for optimizations

only, and not exposed to developers.

5.2 Executable Graph Construction

To exploit these cross-model opportunities, Retiarii needs to

construct executable graphs from the raw DFGs. The construc-

tion involves decisions of model merging, device placement

of operators, and training parallelism, constrained by physical

environment (e.g., server configuration). Retiarii adopts a pol-

icy similar to Gandiva [64] that introspectively selects graphs

to merge. Moreover, Retiarii specifically optimizes device

placement of CSE-optimized graphs and training parallelism
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(a) CPU-based embedding (b) GPU-based embedding

Figure 9: Device placement for CPU/GPU-based pre-trained

embedding when constructing executable graphs.

of weight sharing.

Device Placement of CSE-Optimized Graphs For DFGs

sharing the same dataset and preprocessing, these common

operators can be merged by common sub-expression elimi-

nation. The most efficient execution plan of merged graphs

depends on the types of merged operators and configuration of

GPU servers. Figure 9 shows two different execution plans of

CSE-optimized graphs. Both examples use a pre-trained em-

bedding before the trainable layers. The difference is that the

embedding in 9(a) is CPU-based (e.g., word2vec [43]) while

the embedding in 9(b) is GPU-based (e.g., BERT [10, 19]).

When BERT-embedding is the bottleneck of model computa-

tion and consumes most of GPU memory, dedicating one GPU

for it can improve the pipeline and reduce memory consump-

tion. Thus, we may pack more graphs on the rest of GPUs

to improve the training throughput. Retiarii currently uses a

whitelist to identify operators that require dedicated GPUs.

We leave the automatic graph partitioning and optimization

to future work.

In Retiarii, all cross-graph optimizations are applied within

every batch of models. We first profiled the iteration time,

peak GPU memory, and GPU utilization of each model by

independently running for a few iterations. Then the models

are sorted based on the iteration time. Retiarii greedily packs

as many models as possible into one GPU. If the excutable

graph’s total training throughput is lower than that before

optimization, the optimization will be reverted.

Mixed Parallelism for Weight Sharing. Weight sharing

suffers from the scalability issue. After an exploration strat-

egy instantiates a set of models, these models need to be

trained sequentially (in an interleaved way) with different

data to guarantee that every model can use the latest version

of shared weights without losing training accuracy. A single

model can hardly scale to a large number of GPUs using data

parallelism, because a large batch size would harm model

accuracy [25, 35]. Figure 10 shows an example of how Re-

tiarii trains weight-shared models on two GPUs. Retiarii can

Figure 10: Retiarii uses mixed parallelism to improve scala-

bility of weight sharing-based training.

improve the scalability by splitting the super-graph onto mul-

tiple GPUs, when the super-graph of all models is too large

to fit into one GPU. Retiarii spreads the instantiated models

into multiple super-graphs (each on a GPU) to be trained to-

gether. This can be regarded as model parallel training of the

super-graph of all models. Moreover, in each iteration, models

in different GPUs will be fed with different batches of data

(like data parallelism), following the requirement of weight-

shared training. The shared weights will be synchronously

updated using parameter servers by averaging their gradients.

Note that, it is difficult to apply Retiarii’s mixed parallelism

to a jumbo model, since a compiler can hardly understand

and partition the sophisticated jumbo model without know-

ing each individual model’s architecture. Our evaluation in

§7.4 shows Retiarii’s mixed parallelism yields better scala-

bility that reduces the training time by up to 8.58× without

affecting validation accuracy, compared with the traditional

approach that trains the jumbo model using data parallelism.

6 Implementation

We have implemented Retiarii in about 19,723 lines of code,

in which about 5,436 lines of code for the core Retiarii JIT

engine, 5,203 lines of code for model, state, data management

with failure recovery, and 9,084 for managing training with

interfaces to various training services, such as Kubeflow [2].

We also wrote an additional 6,157 lines of code to implement

11 exploration strategies, 6 mutator classes, and 27 model

spaces [4].

Building internal representations of base models and mu-
tators. Our implementation supports base models defined in

PyTorch and TensorFlow, which we convert to their graph rep-

resentations. The conversion is done through TorchScript [9]

for PyTorch. TensorFlow naturally supports a similar graph

representation and offers the utility to output in a protobuf for-

mat. We do not yet support dynamic graphs. The mutators are

extracted through Python Abstract Syntax Trees (AST) [1].
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1 class ExplorationStrategy:
2 # the APIs for instantiation control
3 def generate_graph(self , new_graph_id)
4 def on_ask_target_graph(self , graph_id)
5 def on_ask_choice(self ,graph_id ,type ,values ,ctx)
6 # the APIs for training control
7 def execute_graph(self , graph_id , load_ckpt)
8 def terminate_graph(self ,graph_id ,do_ckpt)
9 def on_ask_training_approach(self , graph_id)

10 # the APIs for getting provisioned information
11 def query_mutation_history(self , graph_id)
12 def on_receive_feedbacks(self ,graph_id ,feedback)

Figure 11: Some key APIs for an exploration strategy.

The base graph and mutators are then passed to the JIT engine.

Materializing the JIT engine. The JIT Engine drives the

whole exploratory-training process. It first starts an explo-

ration strategy which is an independent executable Python

script. The strategy uses the APIs listed in Figure 11 to inter-

act with the engine. Users are free to customize a new one

following the interface. For instantiating a model, the mu-

tators are applied one after another. On applying a mutator,

the JIT engine retrieves the subgraphs specified by targets,

and feeds them into the mutator. The instantiation is guided

by an exploration strategy through those callback functions

(i.e., “on_*”). The JIT Engine maintains all the instantiated

and trained models in a data store (i.e., SQLite in our imple-

mentation) and collects runtime information of those models,

such as model accuracy, execution time, which can by queried

by the exploration strategy. Each model can have its train-

ing approach, e.g., a training loop with a configured epoch

number and batch size. We follow the practice in PyTorch

Lightning [8] to provide a wrapper for programming and

configuring a training approach. An exploration strategy can

specify the training approach for each instantiated model.

Converting models for training. In our implementation,

the optimized graphs are trained on current deep learning

frameworks, such as TensorFlow and PyTorch. To make the

optimized graph executable on those frameworks, we imple-

ment a converter to translate an optimized graph into Ten-

sorFlow or PyTorch code. Taking PyTorch as an example,

the optimized graph is converted to a PyTorch module, i.e.,
graph nodes in __init__() and connections in forward().

In cases where an optimized graph could contain multiple

models, the losses are either added or concatenated to pro-

duce a single one. We enable device placement for a model

with each framework’s utility, such as the to() method in

PyTorch and with tf.device() in TensorFlow.

Distributing exploratory-training. Exploratory-training

usually requires lots of computation resources. In our imple-

mentation, Retiarii’s JIT engine runs on a single machine,

while the instantiated models can be distributed to wherever

computing resources are available (e.g., a cluster). For train-

ing of each model, Retiarii implements a wrapper to monitor

its execution and collects metrics (e.g., training performance)

to report back to the JIT engine.

Tolerating and handling failures. As exploratory-training

is usually time-consuming, in our implementation we deal

with failures of both the JIT engine and model execution.

All the exploration history is kept in the data store. When

the JIT engine fails, it will be restarted and recover the state

of exploration strategy by replaying the data in data store.

For model exploration, the most valuable data are the set of

models that have been explored and their observed results.

These data are usually enough to continue an interrupted

exploration from a previously known state. For an exploration

strategy that maintains its own, additional states that cannot

be recovered by our automatic mechanism, its own recovery

logic must be provided. Another type of failure comes from

the optimized graphs. If the execution of an optimized graph

fails (e.g., out of GPU memory, tensor shape mismatch), while

each model in this graph runs without error, Retiarii will revert

to running the individual models separately.

Limitations. Retiarii has limited support to dynamic graphs.

Retiarii’s mutators are applied to a base model. However,

sometimes it is difficult to extract a graph representation from

the a highly dynamic base model (e.g., Tree-LSTMs [58]).

Also, the current implementation of operator batching is lim-

ited. Some operator batching is possible but is not imple-

mented as it requires implementing new GPU kernels. More-

over, when a model is mutated, it requires additional program-

ming efforts to match the shape of adjacent layers’ input/out-

put tensors. It is currently out of the scope of Retiarii to handle

possible shape mismatch after mutation. We leave automatic

shape inference and matching to our future work.

7 Evaluation

We evaluate the performance of Retiarii for exploring neural

network architectures. Overall, the key findings include:

• The separation of model space and exploration strategy

makes it easy for Retiarii to try different combinations.

Retiarii currently supports 27 popular Neural Architecture

Search (NAS) solutions. Most of them can be implemented

by the three mutator classes provided by Retiarii.

• A number of micro-benchmarks show how Retiarii’s cross-

model optimizations greatly improve training efficiency.

• Retiarii improves the model exploration speed of three

NAS solutions by up to 2.58×, compared with traditional

approaches.

• Retiarii improves the scalability of weight sharing-based

NAS solutions and brings up to 8.58× speed-up using

the proposed mixed parallelism, compared with data paral-

lelism.
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Required Mutator Class
NAS Solution Model Space Exploration Strategy Input

Mutator
Operator
Mutator

Inserting
Mutator

Customized
Mutator

MnasNet [59] MobileNetV2-based space Reinforcement Learning � �

NASNet [70] NASNet cell Reinforcement Learning � �

ENAS-CNN [50] NASNet cell variant Reinforcement Learning � �

AmoebaNet [51] NASNet cell Evolutionary � �

Single-Path One Shot (SPOS) [27] ShuffleNetV2-based space Evolutionary �

Weight Agnostic Networks [23]

Evolving space w/

adding/altering nodes

adding connections
Evolutionary � �

Path-level NAS [13]
Evolving space w/

replication and split
Reinforcement Learning �

TextNAS [62] TextNAS space Reinforcement Learning � �
... ... ... ... ... ... ...

Table 1: NAS solutions currently supported by Retiarii, and required mutators to implement them in Retiarii. Please refer to [4]

for the full list that contains 27 NAS solutions in total.

7.1 Expressiveness and Reusability

Table 1 shows 8 out of 27 NAS solutions currently supported

by Retiarii (please refer to [4] for the full list). After decou-

pling model spaces from exploration strategies, developers

can easily reuse them without extra coding efforts. For ex-

ample, the exploration strategy "reinforcement learning" is

reused by MnasNet [59], NASNet [70] and ENAS-CNN [50].

Several machine learning researchers at Microsoft Research

are now using Retiarii to explore more NAS solutions by lever-

aging different combinations of model spaces and exploration

strategies.

To build these model spaces, Retiarii provides three de-

fault mutator classes. Input Mutator is to mutate inputs of

matched operators. Operator Mutator is to replace matched

operators with other operators. Inserting Mutator is to insert

new operators or sub-graphs after matched operators. We find

the three mutator classes are enough to implement most of

the listed NAS solutions. Moreover, Retiarii allows model

developers to build customized mutator classes using basic

graph mutation primitives to implement more complex model

spaces, e.g., Weight Agnostic Networks [23] and Path-level

NAS [13].

7.2 Micro-benchmarks

7.2.1 Shared Data Loading and Preprocessing

The following experiments demonstrate two micro-

benchmarks of common sub-expression elimination, where

multiple models share the same data loading and preprocess-

ing. These micro-benchmarks are evaluated on 4 V100 GPUs

with 20 CPU cores. We compare Retiarii with a baseline

that runs each model independently without CSE. For a fair

comparision, CUDA Multi-Process Service (MPS) [5] is

enabled for the baseline when Retiarii decides to packed

more than one model in a GPU.

Avoiding CPU Bottleneck. Figure 12 shows the aggregate

throughput and CPU usage with the increased number of

MnasNet0.5 (i.e., depth multiplier=0.5) models [59] running

concurrently on the 4 V100 GPUs and 20 CPU cores. The

models are trained on ImageNet with a batch size of 224 with

the same preprocessing as in [59]. The baseline approach runs

each model independently, thus each batch of data will be

loaded and preprocessed multiple times. Retiarii merges the

data loading and preprocessing across different models thus

they are executed only once. Both Retiarii and the baseline

can further pack multiple models into one GPU to run them

concurrently. The models are distributed in a round-robin way.

For example, when running 6 models, the first two GPUs are

packed with two models on each GPU, while each of rest two

GPUs runs only one model. The measured performance is

averaged over one training epoch.

Figure 12: The aggregate throughput and CPU usage with

varying number of concurrently running MnasNet0.5 models.

Overall, Retiarii increases the throughput by 3.41× when

running 8 models on 4 GPUs. The bottom figure in Figure 12

shows that training one MnasNet0.5 model has already con-

sumed about 75% of CPU cores. Thus, CPU will become
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the bottleneck when running more than one model without

sharing. On the contrary, Retiarii eliminates the redundant

data loading and preprocessing. Increasing the number of con-

current models does not affect the CPU usage for data loader.

The marginal increase of CPU usage in Retiarii is due to other

computations, which can not be merged (e.g., overhead of the

training runtime).

Also note that, running 5 models does not bring higher

throughput than running 4 models. This is due to the overhead

of synchronization brought by unbalanced model assignment,

i.e., the first GPU is packed with two models while each of the

rest three GPUs runs only one model. In Retiarii, merging the

graphs will force them to be trained synchronously. Packing

two models in one GPU may increase their iteration time,

thus the rest three GPUs have to wait for the two slower

models in the first GPU in every iteration. This suggests to

merge the graphs with a similar iteration time to avoid severe

synchronization overheads.

Avoiding GPU Bottleneck. Non-trainable embedding [49]

can be regarded as a special type of data preprocessing. In this

micro-benchmark, we use BERT [19] to obtain pre-trained

contextual embeddings of input tokens from Stanford Senti-

ment Treebank (SST) dataset [55] for training TextNAS [62],

which is one of the state-of-the-art natural language process-

ing models. The batch size for each TextNAS model is 128.

Different from the micro-benchmark of avoiding CPU bot-

tleneck, the embedding computation is placed on GPU be-

cause the BERT embedding runs much faster on GPU than

CPU [3]. The baseline still runs multiple models indepen-

dently. The performance is measured by averaging over one

training epoch.

Figure 13: The aggregate throughput with varying number of

TextNAS models.

Figure 13 shows the result. Overall, Retiarii achieves 1.97×
throughput of the baseline when training 12 TextNAS models

on 4 V100 GPUs. Both the baseline and Retiarii meet out-of-

memory when running more than 12 TextNAS models. As

we have shown in Figure 9, Retiarii uses model parallelism to

dedicate one GPU to compute the BERT embedding, which

is pipelined with the training of TextNAS models on the other

three GPUs. Since the BERT embedding is the bottleneck in

each training iteration, this optimization allows the training

of more TextNAS models to be overlapped with the BERT

Figure 14: The aggregate throughput with varying number of

batched models.

embedding. In this experiment, we find Retiarii can pack

two TextNAS models on each GPU (i.e., 6 models in total)

without affecting the iteration time. And 12 models can be

packed in total with better aggregated throughput, but each

model’s iteration time is degraded. Although the baseline can

also pack up to 12 models on 4 GPUs, the compute-intensive

BERT embedding repeats three times per GPU that greatly

increases the iteration time. Only marginal improvement on

throughput is observed in the baseline when packing more

models using CUDA MPS.

7.2.2 Operator Batching

To evaluate operator batching across graphs, we insert adapter

layers to a pre-trained MobileNet [29]. Weights from the Mo-

bileNet are fixed during training. These models use the same

batch size, which is 8 images per mini-batch. Synthetic data

without preprocessing is used to avoid the gain from shared

data loading. The models are trained on one V100 GPU of

16GB GPU memory. Similar to previous micro-benchmarks,

the baseline uses CUDA MPS to execute multiple models

in one GPU. The performance is measured by averaging the

throughput over 1500 mini-batches.

Figure 14 shows the average throughput of concurrently

running models. Overall, Retiarii’s operator batching im-

proves the aggregate throughput by 3.08× when batching

192 models, compared with the baseline that can only train at

most 12 models together. Retiarii can batch more models than

the baseline because it only has one copy of (fixed) weights

from MobileNet. Only the memory for adapters is increased

when batching more models. Even when Retiarii batches 12

models, it still achieves 1.76× improvement on the aggregate

throughput. This improvement comes from the benefit of vec-

torization to execute the batched operators in a single kernel,

which increases GPU utilization.

7.2.3 Optimization for Weight Sharing

To evaluate Retiarii’s optimization for weight sharing, we

use Single Path One-Shot (SPOS) [27] to explore a model

space built by ShuffleNetV2 blocks, where a model is instan-

tiated for every batch of data. The models are trained with
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(a) NVIDIA Data Loading Library (DALI) (b) PyTorch DataLoader

Figure 16: The completion time of the search phase of three NAS approaches, each of which generates 1,000 models for training.

synthetic data on a V100 GPU of 16GB GPU memory. We

implemented two baselines that share weights of overlapped

operators among the instantiated models through weight sav-

ing and loading. In the first baseline, a checkpoint file is used

for weight sharing, i.e., a model loads its weights from the

file, then saves its updated weights to the file after training a

mini-batch. In the second baseline, the file is replaced with a

dict object located in GPU memory. Both model weights and

optimizer states (e.g., momentum) need to be checkpointed.

Figure 15: The throughput of weight sharing with and without

cross-model optimization.

The result is shown in Figure 15. By merging multiple

models as a super-graph, Retiarii’s cross-model optimization

improves the throughput by up to 6.52× when batch size

is 32, and 2.08× when batch size is 256 (compared with

checkpoint-to-file). Since SPOS only trains an instantiated

model with a batch of data, frequent checkpointing brings

significant overheads. Merging instantiated models into a

super-graph allows Retiarii to load the models only once (at

the beginning). Thus, Retiarii can use control flow to only

activate the desired model, which also saves the time of model

initialization. The performance of a jumbo model is similar

to that of Retiarii’s super-graph, the difference is that the

super-graph is automatically built by Retiarii’s JIT engine

while the same graph is manually programmed in the jumbo

model approach. This leads to a big performance gap on

parallel training which will be illustrated in §7.4, as Retiarii

fully understands each sampled graph and the weight sharing

pattern.

7.3 Speeding up Neural Architecture Search
To evaluate the performance of running NAS solutions on

Retiarii, we select three popular and representative NAS solu-

tions from Table 1: (1) MnasNet [59], (2) NASNet [70], and

(3) AmoebaNet [51]. They cover different combinations of

model spaces and exploration strategies: MnasNet and NAS-

Net use the same search strategy; NASNet and AmoebaNet

have the same model space. We compare Retiarii against

the one-off solutions built by traditional deep learning frame-

works. Since Retiarii separates the cross-model optimization

from model generation, all the three NAS solutions can lever-

age the three cross-model optimizations in §5 to accelerate

the search of architectures without extra effort.

To evaluate the traditional approaches, which are unaware

of cross-model relations, we test the following two baselines.

(1) Exclusive execution: a model is trained independently

and exclusively on one GPU. (2) Packing: multiple models

may share the same GPU using CUDA MPS without merging

their graphs; it uses Retiarii’s decisions to choose the models

to be packed onto the same GPU.

In the experiments, each NAS approach will generate 1,000

models in 20 batches (each batch contains 50 models). For a

fair comparision, Retiarii and the two baselines are given the

same set of models in the same order. We compare the time to

finish the training of all the 1,000 models for 1 epoch on Ima-

geNet’s training images [18]. We vary the batch size from 32

to 96 (batch size larger than 96 will lead to Out-of-Memory).

We also compare the performance using two implementa-

tions of the data loader, i.e., NVIDIA Data Loading Library

(DALI) [6] and PyTorch DataLoader [7], to understand the

impact of data loading. The experiments are conducted on 4
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NVIDIA Tesla V100 GPUs (each has 16GB GPU memory).

Simlar to [64], we “fast-forward” the experiment by instruct-

ing model trainings to skip a number of iterations when the

iteration time becomes stable. We measure the average itera-

tion time over 100 mini-batches, which is used to project the

entire training time.

Figure 16 shows the results of the search time of differ-

ent settings. In most settings, Retiarii is substantially faster

than the two baselines due to the cross-model optimizations.

Overall, Retiarii achieves up to 2.57× speed-up on the search

time compared with the two baselines. The performance gain

mainly comes from packing multiple models in the same

GPU, and shared dataloading and preprocessing. Because the

packing baseline is agnostic to the cross-model relations, it

cannot apply cross-model optimizations thus only brings up

to 1.42× speed-up over the exclusive execution. Moreover,

due to the increased CPU burden on the larger batch size, the

packing baseline runs even slower by 31% than the exclu-

sive execution on PyTorch DataLoader when the batch size

is 96. Note that, an introspective policy, e.g., Gandiva [64],

can remedy the packing baseline’s slow-down by reverting

the packing when the training speed is slower. But the key

insight in this experiment is that only using packing without

cross-model merging will limit the space for improvement.

Retiarii achieves higher speed-up on MnasNet than NAS-

Net and AmoebaNet. Because the models from MnasNet are

designed for mobile devices that have a lower GPU mem-

ory usage and shorter iteration time, Retiarii can pack more

MnasNet models into one GPU and merge their graphs for

cross-model optimizations. As the generated models have

different memory consumption, the number of models that

can be fit in the same GPU varies accordingly. When the

batch size is 32, Retiarii can run 4-22 MnasNet models simu-

tanously; but only 4-8 NASNet/AmoebaNet models due to the

larger model size. We also observe Retiarii achieves higher

speed-up on PyTorch DataLoader, because DALI is more ef-

ficient on data preprocessing that reduces the probability of

bottleneck on CPU.

7.4 Scaling Weight-Shared Training

In addition to system optimizations, Retiarii also enables and

enhances the weight sharing optimization advocated by the

machine learning community. As shown in §7.2.3, Retiarii

builds a super-graph for weight sharing to avoid the overhead

of model building and checkpointing. This optimization can

be further improved by training the super-graph using mixed

parallelism to scale it to a GPU cluster.

In this experiment, we build a model space with Shuf-

fleNetV2 blocks described in the Single Path One-Shot

(SPOS) paper [27]. Each model in the model space is ran-

domly sampled and trained for one batch of data [17,27]. The

models are trained for 60 epochs in total on the ImageNet

dataset (with 1,281,167 images). As a result, a new model

is instantiated for every batch of data (e.g., 1281167/256×
60 = 300240 models are instantiated when the batch size

is 256). The experiment runs on two servers, each has 4

V100 GPUs. We use the common evaluation metric of weight

sharing-based approaches [12, 27] to evaluate the searched

space. We randomly sample 196 models and evaluate each

model using 256 images from ImageNet’s validation set. Then

we calculate the average validation accuracy of the 196 mod-

els. The higher the average validation accuracy is, the better

the space is explored. We compare Retiarii’s mixed paral-

lelism with three commonly used data parallelism approaches.

To understand the benefit of mixed parallelism, all the three

baselines of data parallelism and Retiarii’s mixed parallelism

enable the super-graph optimization (i.e., no saving and load-

ing of weights). Specifically, the former three are manually

programmed jumbo-models, while the latter is a super-graph

automatically built by Retiarii.

Figure 17: Training time and validation accuracy of weight

sharing. The left y-axis shows the training time (bar chart).

The right y-axis shows the validation accuracy (line chart).

Figure 17 shows the training time and validation accuracy

of the three data parallelism approaches and Retiarii’s mixed

parallelism. The data parallelism of the left two bars and Re-

tiarii’s mixed parallelism use the batch size of 256 with a

learning rate of 0.125 per model (or per 256 data samples).

As a common practice of data parallelism, scaling to 8 GPUs

requires to split each batch of data across the 8 GPUs (i.e.,
the batch size per GPU is 32). SyncBN [66] is an optimiza-

tion to calculate batch normalization across multiple GPUs,

which proves to improve the model quality, but slows down

the training due to intensive synchronization and data trans-

mission across GPUs. As shown in Figure 17, SyncBN-based

data parallelism requires more than 60 hours of training time.

Disabling SyncBN reduces the training time to ∼ 20 hours

but harms the model accuracy. In contrast, Retiarii’s mixed

parallelism greatly reduces training time (only 7.45 hours),

achieving up to 8.58× speed-up over SyncBN-based Data

Parallel training. This is because the mixed parallel training

avoids the synchronization overhead of SyncBN as each GPU

runs a different model requiring no cross-GPU synchroniza-
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tion. Moreover, Retiarii’s mixed parallel training produces a

comparable validation accuracy to SyncBN-based Data Par-

allel training (61.49% v.s. 61.11%). Another practice of data

parallelism is to increase batch size and learning rate with the

increased number of GPUs. The result is shown as the second

bar on the right of Figure 17. Although the training time is re-

duces to 7.04 hours, the model’s validation accuracy degrades

significantly. This result is consistent with the common wis-

dom in deep learning community that larger batch size could

hurt model accuracy [25, 35]. In summary, Retiarii’s mixed

parallelism achieves better scalability for weight-shared train-

ing, without sacrificing model accuracy.

8 Related Work

Deep Learning Frameworks. Deep learning frameworks

(e.g., PyTorch [48], TensorFlow [11], and MXNet [14]) are

designed to describe and train an individual DNN model,

which covers only one step in the end-to-end exploration-

training process of devising a high-quality model.

Network Architecture Search Algorithms. To automate

the design of neural networks, Neural Architecture Search

(NAS) [39, 50, 59, 60, 69, 70] develops algorithms to discover

the state-of-the-art neural model architecture. Limited by the

existing deep learning frameworks, their implementations

often couple model space, exploration strategy, and model

training together, introducing barriers to innovations and op-

timizations. In contrast, Retiarii’s modular and decoupled

approach maximizes reusability and facilitates optimizations.

AutoML Systems. Automated Machine Learning (Au-

toML) automates the end-to-end process of real-world ma-

chine learning problems, e.g., AutoGluon [21], TPOT [47],

Auto-Sklearn [22], Auto-WEKA [61], AutoKeras [32]. The

implementations of these systems still couple the domain-

specific model space and exploration strategy, making it

hardly reusable to other problem domains.

The hyper-parameter tuning systems like Google

Vizier [24] and Katib [68] can be used for neural architecture

search. To use a hyper-parameter tuning system, the model

space and exploration strategy are being parameterized. Since

different model space and exploration strategy often use a

different set of parameters, this approach limits the reusability

of the implementation. Moreover, the hyper-parameter tuning

approach can limit the expressiveness of the system as

well. Some model space is hard to be parameterized, e.g.,
evolutionary NAS [13,23,51]. It is worth noting that Retiarii’s

Mutator abstraction can also be used for hyper-parameter

tuning. The hyper-parameter tuning can be treated as a

special case of neural model mutation.

DeepArchitect [46] also strives to decouple model spaces

and exploration strategies. Compared to DeepArchitect, Re-

tiarii differentiates itself with the Mutator abstraction. As

shown in §7, Retiarii can implement multiple model spaces

using a few mutators, demonstrating great reusability and

composability. More importantly, with the Mutator abstrac-

tion, Retiarii is able to exploit cross-model optimizations

easily, which is not addressed previously.

Graph Optimization for Deep Learning. Recently, there

are many proposals to optimize the computation of a single

neural network model by optimizing the data-flow graph, e.g.,
TVM [15], DLVM [63], TensorFlow-XLA [38], TASO [31],

TensorFlow-Fold [41]. In contrast, Retiarii exploits the cross-

model optimizations exposed by Mutator. HiveMind [45],

FLEET [26] and some other works [40] apply common sub-

expression elimination in the AutoML scenario to deduplicate

the common prefix nodes of multiple graphs. This can be

considered a special case in Retiarii’s larger optimization

space, which includes other techniques like operator batching

and weight sharing.

9 Conclusion
We propose Retiarii, the first deep learning framework that

supports the exploratory training on a neural network model

space, rather than on a single neural network model. The core

of Retiarii is the Mutator abstraction, which not only allows

the specification of different neural network model spaces,

interacts with various model exploration strategies, and ex-

poses the model correlations for further optimization, but also

serves as a clean interface to separate the three. The design

leads to ease of programming, reuse of model space, explo-

ration strategy, and cross-model optimization. Our evaluation

demonstrates the effectiveness of the design, showing more

than 8× improvement in the overall exploratory-training per-

formance over approaches that rely on existing deep learning

frameworks, which only support one model at a time. The

artifacts of Retiarii are available at https://github.com/
microsoft/nni/tree/retiarii_artifact.
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A Artifact Appendix

A.1 Abstract
This artifact is designed to reproduce the main results of this

work, which have two goals:

• Functionality: Retiarii can express NAS spaces using mu-

tators, explore spaces using Exploration Engine, and accel-

erate the exploration using cross-model optimization.

• Performance: Retiarii’s cross-model optimization

achieves the performance number claimed in §7.

A.2 Artifact check-list
• Algorithm: yes

• Data set: ImageNet [18], SST [55]

• Run-time environment: Ubuntu 16.04, CUDA 10.0, cuDNN

7.6.5. Root access is required.

• Hardware: GPUs with NVIDIA MPS.

• Metrics: training throughput; job completion time; model vali-

dation accuracy.

• Output: Web UI; stdout from console.

• Required disk space: 200 GB

• Expected experiment run time: 20 hours

• Public link: https://github.com/microsoft/nni/tree/
retiarii_artifact

• Code licenses: MIT License

A.3 Description
A.3.1 How to access

Clone the “retiarii_artifact” branch of Microsoft NNI’s GitHub repos-

itory.

1 git clone -b retiarii_artifact https://github.com/
Microsoft/nni.git

A.3.2 Hardware dependencies

This artifact requires at least one server with four NVIDIA V100

GPUs.

A.3.3 Software dependencies

• CUDA 10.1;

• cuDNN 7.6.5;

• Python 3.7;

• NVIDIA DALI;

• NVIDIA Apex;

• PyTorch 1.5.1;

• TensorFlow 2.3;

• Other Python packages in “requirements.txt”.

A.3.4 Data sets

• ImageNet: should be placed at “retiarii_perf/data/imagenet”.

• SST: The three text files (dev.txt, test.txt, train.txt) SST should

be placed at “retiarii_perf/data/sst/trees”.

A.4 Installation
For running Retiarii’s artifact, please install NNI v1.8 first. This

artifact contains two parts. In the folder of “retiarii_nas”, we demon-

strate the functionality of Retiarii to express different NAS solutions.

In the folder of “retiarii_perf”, we evaluate Retiarii’s performance

using cross-model optimization.

For some experiments, it requires NVIDIA MPS to be enabled.

To start NVIDIA MPS:

1 sudo ./mps_scripts/init_mps_for_all_gpus.sh
2 ./mps_scripts/set_mps_env_for_all_gpus.sh

To stop NVIDIA MPS:

1 sudo ./mps_scripts/stop_mps_for_all_gpus.sh

A.5 Evaluation: NAS Solution All-stars
In the folder of “retiarii_nas”, we have implemented 17 NAS so-

lutions using Retiarii. We support both PyTorch and TensorFlow.

Weight Agnostic Networks (wann), Path-level NAS (path_level),

and Hierarchical Representation (hierarchical) are implemented with

TensorFlow. Other NAS solutions are implemented with PyTorch.

We also provide a script to test them, which can be started using the

following command.

1 python3 retiarii.py e2e_launch.py [nas_mode]

(Use “python3 retiarii.py -L” to get the list of supported models)

After the command is executed, a Web UI URL will be given,

which contains the trial execution status.

Note that, to speed up the test, we run each generated model by

only one mini-batch (thus, returned values are all 0), you are free to

remove the ‘break’s in e2e_launch.py (ModelTrain, ModelTrainCifar,

ModelTrainTextNAS) to run each generated model completely.

This artifact has supported three classic exploration strate-

gies: random, reinforcement learning, and evolution, and also

has supported two differentiable training strategies: DARTS

training strategy and ProxylessNAS training strategy. Other

exploration strategies have been supported in NNI (https:
//github.com/microsoft/nni/blob/retiarii_artifact/
backend_nni/docs/en_US/Tuner/BuiltinTuner.md), have not

been integrated into this artifact. They will be formally supported in

Retiarii official release.

Paper Claim: Retiarii is able to support 27 NAS solutions.

Clarification: We have included 17 of the 27 NAS solutions in the

artifact evaluation. The remaining ones only have minor differences

with the included implementations (e.g., EfficientNet v.s. MnasNet,

SCARLET-NAS v.s. FairNAS v.s. SPOS). We believe the included

ones are sufficient to demonstrate the programmability of Retiarii.

Full support of the 27 NAS solutions will be included in an official

release version of Microsoft NNI.
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A.6 Evaluation: Retiarii Performance
A.6.1 Micro-benchmark: Deduplication to avoid CPU

bottleneck

Execution command:

1 python artifact_start.py micro_dedup_cpu --n=8

This python script will start 8 jobs (each GPU runs two jobs), then

profile the total throughput. This command takes 1.5 minutes. The

result will be printed after the profiling as follows. The error should

be within 10%.

1 Throughput: 4746.849792184445 samples/s

Paper Claim: In Figure 12, when running 8 models, Retiarii can

achieve about 5000 samples/s.

A.6.2 Micro-benchmark: Deduplication to avoid GPU
bottleneck

Execution command:

1 python artifact_start.py micro_dedup_gpu --n=12

This python script will start 12 jobs. GPU-0 runs one job, each of the

other three GPUs run 4 jobs). Then it profiles the total throughput.

This command takes 1.5 minutes. The result will be printed after the

profiling as follows. The error should be within 10%.

1 Throughput: 5028.187640607402 samples/s

Paper Claim: In Figure 13, when running 12 models, Retiarii can

achieve about 5100 samples/s.

A.6.3 Micro-benchmark: Operator batching

Execution command:

1 python artifact_start.py micro_batching --n=192

This python script will use Retiarii to pack 192 models into one job

to be run on a single GPU-0. Then it profiles the total throughput.

This command takes 10 minutes. It is normal if it has no output for

a long time, because it takes 3 minutes for the cross-model optimiza-

tion policy to calculate a plan. The result will be printed after the

profiling as follows. The error should be within 10%.

1 Throughput: 6124.981150684514 samples/s

Paper Claim: In Figure 14, when batching 192 models, Retiarii can

achieve about 5800 samples/s.

A.6.4 End-to-end Evaluation: MnasNet using DALI

Execution command:

1 python artifact_start.py e2e_dali_mnasnet

This experiment will train 1000 MnasNet models in 20 batches

(each batch has 50 models). Each model will be trained for 1 epoch

on ImageNet, which will be very time-consuming and costly if we

train all 1000 models. Since we only want to know the training

time but not the validation accuracy. We use a workaround to “fast-

forward” the training. We profile each job for 150 mini-batches to

measure the iteration time. Then we use the measured job speed to

emulate the experiment with a simple job scheduler (implemented in

“fast_scheduler.py”). The experiment takes about 1 hour to run. The

result will be printed as follows. The error should be within 10%.

1 124.35633072276445 hours for mnasnet w/ BS=32

Paper Claim: In Figure 15(a), when Batch Size=32, Retiarii can

finish NAS exploration of MnasNet in about 130 hours.

A.6.5 End-to-end Evaluation: SPOS training using
mixed parallelism

Execution command:

1 python artifact_start.py e2e_spos_mix_parallel
--n=4

This python script will start 4 jobs, each on one GPU, to train

SPOS in mixed parallelism, a new type of training parallelism we

proposed for weight sharing-based training. The super-graph is gen-

erated in the function “_gen_spos_super_graph(n_job)” in “arti-

fact_start.py”. In the paper, we used 8 V100 GPUs in two servers,

which takes about 7.45 hours to train SPOS for 60 epochs achieving

61.2% average validation accuracy. The result will be printed as

follows.

1 [03/31 02:40:46] INFO (main) Epoch [60/60]
Validation Step [196/196] acc1 0.650000
(0.611117) acc5 0.887500 (0.833490) loss
2.359303 (2.586974)

Note that, the training of SPOS is unstable. The average valida-

tion accuracy could vary from 60% to 62%. For your reference, we

also provide the training log we obtained on eight V100 GPUs in

“data/spos_8_v100.log”.

Paper Claim: In Figure Figure 17, Retiarii’s mixed parallelism can

train SPOS for 60 epochs with a batch size of 256 to achieve 61.11%.

A.7 Experiment customization

New experiments can be customized and added in “re-

tiarii_nas/e2e_launch.py” and “retiarii_perf/artifact_start.py”.

A.8 Notes

NVIDIA CUDA MPS may fail if a job is not stopped properly,

which requires NVIDIA CUDA MPS to be restarted. Experiments in

“retiarii_nas” will kill a running job for saving time, but may trigger

the failure of NVIDIA CUDA MPS. We suggest to disable NVIDIA

CUDA MPS when running experiments in “retiarii_nas”.
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