
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

A large scale analysis of hundreds of in-memory
cache clusters at Twitter

Juncheng Yang, Carnegie Mellon University; Yao Yue, Twitter; K. V. Rashmi,
Carnegie Mellon University

https://www.usenix.org/conference/osdi20/presentation/yang

A large scale analysis of hundreds of in-memory cache clusters at Twitter

Juncheng Yang
Carnegie Mellon University

Yao Yue
Twitter

K. V. Rashmi
Carnegie Mellon University

Abstract
Modern web services use in-memory caching extensively
to increase throughput and reduce latency. There have been
several workload analyses of production systems that have
fueled research in improving the effectiveness of in-memory
caching systems. However, the coverage is still sparse consid-
ering the wide spectrum of industrial cache use cases. In this
work, we significantly further the understanding of real-world
cache workloads by collecting production traces from 153
in-memory cache clusters at Twitter, sifting through over 80
TB of data, and sometimes interpreting the workloads in the
context of the business logic behind them. We perform a com-
prehensive analysis to characterize cache workloads based
on traffic pattern, time-to-live (TTL), popularity distribution,
and size distribution. A fine-grained view of different work-
loads uncover the diversity of use cases: many are far more
write-heavy or more skewed than previously shown and some
display unique temporal patterns. We also observe that TTL
is an important and sometimes defining parameter of cache
working sets. Our simulations show that ideal replacement
strategy in production caches can be surprising, for example,
FIFO works the best for a large number of workloads.

1 Introduction
In-memory caching systems such as Memcached [14] and

Redis [16] are heavily used by modern web applications to
reduce accesses to storage and avoid repeated computations.
Their popularity has sparked a lot of research, such as reduc-
ing miss ratio [26, 28, 36, 37], or increasing throughput and
reducing latency [43, 52, 53, 56]. On the other hand, the ef-
fectiveness and performance of in-memory caching can be
workload dependent. And several important workload analy-
ses against production systems [24,59] have guided the explo-
rations of performance improvements with the right context
and tradeoffs in the past decade [43, 56].

Nonetheless, there remains a significant gap in the under-
standing of current in-memory caching workloads. Firstly,
there has been a lack of comprehensive studies covering the
wide range of use cases in today’s production systems. Sec-
ondly, there have been new trends in in-memory caching
usage since the publication of previous work [24]. Thirdly,
some aspects of in-memory caching received little attention
in the existing studies, but are known as critical to practition-

ers. For example, TTL is an important aspect of configuring
in-memory caching, but it has largely been overlooked in
research. Last but not least, unlike other areas where open-
source traces [62, 63, 68, 70] or benchmarks [38] are avail-
able, there has been a lack of open-source in-memory caching
traces. Researchers have to rely on storage caching traces [26],
key-value database benchmarks [43, 56] or synthetic work-
loads [39, 57] to evaluate in-memory caching systems. Such
sources either have different characteristics or do not cap-
ture all the characteristics of production in-memory caching
workloads. For example, key-value database benchmarks and
synthetic workloads don’t consider how object size distribu-
tion changes over time, which impacts both miss ratio and
throughput of in-memory caching systems.

In this work, we bridge this gap by collecting and analyzing
workload traces from 153 Twemcache [6] clusters at Twitter,
one of the most influential social media companies known
for its real-time content. Our analysis sheds light on several
vital aspects of in-memory caching overlooked in existing
studies and identifies areas that need further innovations. The
traces used in this paper are made available to the research
community [1]. To the best of our knowledge, this is the first
work that studied over 100 different cache workloads covering
a wide range of use cases. We believe these workloads are
representative of cache usage at social media companies and
beyond, and hopefully provide a foundation for future caching
system designs. Here’s a summary of our discoveries:

1. In-memory caching does not always serve read-heavy
workloads, write-heavy (defined as write ratio > 30%)
workloads are very common, occurring in more than
35% of the 153 cache clusters we studied.

2. TTL must be considered in in-memory caching because
it limits the effective (unexpired) working set size. Effi-
ciently removing expired objects from cache needs to be
prioritized over cache eviction.

3. In-memory caching workloads follow approximate Zip-
fian popularity distribution, sometimes with very high
skew. The workloads that show the most deviations tend
to be write-heavy workloads.

4. The object size distribution is not static over time. Some
workloads show both diurnal patterns and experience
sudden, short-lived changes, which pose challenges for
slab-based caching systems such as Memcached.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 191

5. Under reasonable cache sizes, FIFO often shows similar
performance as LRU, and LRU often exhibits advantages
only when the cache size is severely limited.

These findings provide a detailed new look into production
in-memory caching systems, while unearthing some surpris-
ing aspects not conforming to the folklore and to the com-
monly used assumptions.

2 In-memory Caching at Twitter
2.1 Service Architecture and Caching

Twitter started its migration to a service-oriented archi-
tecture, also known as microservices, in 2011 [8]. Around
the same time, Twitter started developing its container solu-
tion [2, 3] to support the impending wave of services. Fast
forward to 2020, the real-time serving stack is mostly service-
oriented, with hundreds of services running inside containers
in production. As a core component of Twitter’s infrastruc-
ture, in-memory caching has grown alongside this transition.
Petabytes of DRAM and hundreds of thousands of cores are
provisioned for caching clusters, which are containerized.

At Twitter, in-memory caching is a managed service, and
new clusters are provisioned semi-automatically to be used
as look-aside cache [59] upon request. There are two in-
memory caching solutions deployed in production, Twem-
cache, a fork of Memcached [14], is a key-value cache pro-
viding high throughput and low latency. The other solution,
named Nighthawk, is Redis-based and supports rich data struc-
tures and replication for data availability. In this work, we
focus on Twemcache because it serves the majority of cache
traffic.

Cache clusters at Twitter are considered single-tenant1

based on the service team requesting them. This setup is very
beneficial to workload analysis, because it allows us to tag use
cases, collect traces, and study the properties of workloads
individually. A multi-tenant setup will make similar study
extremely difficult, as researchers have to tease out individual
workloads from the mixture, and somehow connect them to
their use cases. In addition, smaller but distinct workloads can
easily be overlooked or mis-characterized due to low traffic.

Unlike other cache cluster deployments, such as social
graph caching [19, 30] or CDN caching [47, 69], Twemcache
is mostly deployed as a single-layer cache, which allows us
to analyze the requests directly from clients without being
filtered by other caches. Previous work [47] has shown that
layering has an impact on properties of caching workloads,
such as popularity distribution. This single-tenant, single-
layer design provides us the perfect opportunity to study the
properties of the workloads.

2.2 Twemcache Provisioning
There are close to 200 Twemcache clusters in each data

center as of writing. Twemcache containers are highly homo-
geneous and typically small, and a single host can run many

1Although each cluster is single-tenant, each tenant might cache multiple
types of objects of different characteristics.

Slab header metadata Object Object eviction

Bounded internal memory fragmentation

LRU list

…

Slab eviction

Figure 1: Slab-based memory management for bounded memory
fragmentation. While Memcached uses object eviction, Twemcache
uses slab eviction, which evicts all objects in one slab and returns
the slab to global pool.

of them. The number of instances provisioned for each cache
cluster is computed from user inputs including throughput,
estimated dataset sizes, and fault tolerance. The number of
instances of each cluster is automatically calculated first by
identifying the correct bottleneck and then applying other
constraints, such as number of connections to support. Size
of production cache clusters ranges from 20 to thousands of
instances.

2.3 Overview of Twemcache
Twemcache forked an earlier version of Memcached with

some customized features. In this section, we briefly describe
some of the key aspects of its designs.

Slab-based memory management Twemcache often
stores small and variable-sized objects in the range of a few
bytes to 10s of KB. On-demand heap memory allocators such
as ptmalloc [45], jemalloc [13] can cause large and unbounded
external memory fragmentation in such a scenario, which
is highly undesirable in production environment, especially
when using smaller containers. To avoid this, Twemcache in-
herits the slab-based memory management from Memcached
(Figure 1). Memory is allocated as fixed size chunks called
slabs, which default to 1 MB. Each slab is then evenly divided
into smaller chunks called items. The class of each slab de-
cides the size of its items. By default, Twemcache grows item
size from a configurable minimum (default to 88 bytes) to just
under a whole slab. The growth is typically exponential, con-
trolled by a floating point number called growth factor (default
to 1.25), though Twemcache also allows precise configuration
of specific item sizes. Higher slab classes correspond to larger
items. An object is mapped to the slab class that best fits it,
including metadata. In Twemcache, this per-object metadata
is 49 bytes. By default, a slab of class 12 has 891 items of
1176 bytes each, and each item stores up to 1127 bytes of
key plus value. Slab-based allocator eliminates external mem-
ory fragmentation at the cost of bounded internal memory
fragmentation.

Eviction in slab-based cache To store a new object,
Twemcache first computes the slab class by object size. If
there is a slab with at least one free item in this slab class,
Twemcache uses the free item. Otherwise, Twemcache tries
to allocate a new slab into this class. When memory is full,

192 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

#cluster
request rate

cache size
cpu cores0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 u

se
 c

as
e

storage computation transient

Figure 2: Resources consumed for the three cache use cases.

slab eviction is needed for allocation.
Some caching systems such as Memcached primarily per-

forms item-level eviction, which happens in the same slab
class as the new object. Memcached uses an approximate
LRU queue per slab class to track and evict the least recently
used item. This works well as long as object size distribution
remains static. However, this is often not true in reality. For
example, if all keys start with small values that grow over
time, new writes will eventually require objects to be stored
in a higher slab class. However, if all memory has been allo-
cated when this happens, there will be effectively no memory
to give out. This problem is called slab calcification and is
further explored in Section 4.6.2. Memcached developed a
series of heuristics to move memory between slab classes,
and yet they have been shown as non-optimal [10, 11, 17, 46]
and error prone [9].

To avoid slab calcification, Twemcache uses slab eviction
only (Figure 1). This allows the evicted slab to transition into
any other slab class. There are three approaches to choose the
slab to evict: choosing a slab randomly (random slab), choos-
ing the least recently used slab (slabLRU), and choosing the
least recently created slab (slabLRC). In addition to avoiding
slab calcification, slab-only eviction removes two pointers
from object metadata compared to Memcached. We further
compare object eviction and slab eviction in Section 6.

2.4 Cache Use Cases
At Twitter, it is generally recognized that there are three

main use cases of Twemcache: caching for storage, caching
for computation, and caching for transient data. We remark
that there is no strict boundary between the three categories,
and production clusters are not explicitly labeled. Thus the
percentages given below are rough estimates based on our
understanding of each cache cluster and their corresponding
application.

2.4.1 Caching for Storage
Using cache to facilitate reading from storage is the most

common use case. Backend storage such as databases usually
has a longer latency and a lower bandwidth than in-memory
cache. Therefore, caching these objects reduce access latency,
increases throughput, and shelters the backend from excessive
read traffic. This use case has received the most attention
in research. Several efforts have been devoted to reducing

miss ratio [26–28, 36, 37,41, 47, 72] , redesigning for a denser
storage device to fit larger working sets [19,42,65], improving
load balancing [33, 34, 39] and increasing throughput [43, 56].

As shown in Figure 2, although only 30% of the clusters
fall into this category, they account for 65% of the requests
served by Twemcache, 60% of the total DRAM used, and
50% of all CPU cores provisioned.

2.4.2 Caching for Computation
Caching for computation is not new — using DRAM to

cache query results has been studied and used since more
than two decades ago [20,58]. As real-time stream processing
and machine learning (ML) become increasingly popular, an
increasing number of cache clusters are devoted to caching
computation related data, such as features, intermediate and
final results of ML prediction, and so-called object hydra-
tion, — populating objects with additional data, which often
combines storage access and computation.

Overall, caching for computation accounts for 50% of all
Twemcache clusters in cluster count, 26%, 31% and 40% of
request rate, cache sizes and CPU cores.

2.4.3 Transient data with no backing store
The third typical cache usage evolves around objects that

only live in cache, often for short periods of time. It is not
caching in the strict sense, and therefore has received little
attention. Nonetheless, in-memory caching is often the only
production solution that meets both the performance and scal-
ability requirements of such use cases. While data loss is still
undesirable, these use cases really prize speed, and tolerate
occasional data loss well enough to work without a fallback.

Some notable examples are rate limiters, deduplication
caches, and negative result caches. Rate limiters are counters
associated with user activities. They track and cap user re-
quests in a given time window and prevent denial-of-service
attacks. Deduplication caches are a special case of rate lim-
iters, where the cap is 1. Negative result caches store keys
from a larger database that are known to be misses against
a smaller, sparsely populated database. These caches short-
circuit most queries with negative results, and drastically re-
duce the traffic targeting the smaller database.

In our measurements, 20% of Twemcache clusters are un-
der this category. Their request rates and cache sizes account
for 9% and 8% of all Twemcache request rates and cache
sizes, meanwhile, they account for 10% of all CPU cores of
Twemcache clusters.

3 Methodology
3.1 Log Collection

Twemcache has a built-in non-blocking request logging
utility called klog that can keep up with designed throughput
in production. While it logs one out of every 100 requests
by default, we dynamically changed the sampling ratio to
100% and collected week-long unsampled traces from two
instances of each Twemcache cluster. Collecting unsampled

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 193

1 2 3 4 5 6 7 8 9 10
Top ten caches

1

0.1

0.01

0.001

M
iss

 ra
tio

(a) Production miss ratio

10 3 10 2 10 1 100

Miss ratio

1.0

1.5

2.0

2.5

M
iss

 ra
tio

 m
ax

/m
in

(b) Miss ratio variation

Figure 3: a) Production miss ratio of the top ten Twemcache clusters
ranked by request rates, the bar shows the max and min miss ratio
across one week. Note that the Y-axis is in log scale. b) The ratio
between max and min miss ratio is small for most caches.

traces allows us to avoid drawing potentially biased conclu-
sions caused by sampling. Moreover, we chose to collect
traces from two instances instead of one to prevent possible
cache failure during log collection and to compare results
between instances for higher fidelity. Barring cache failures,
the two instances have no overlapping keys.

3.2 Log Overview
We collected around 700 billion requests (80 TB in raw

file size) from 306 instances of 153 Twemcache clusters,
which include all clusters with per-instance request rate more
than 1000 queries-per-sec (QPS) at the time of collection. To
simplify our analysis and presentation, we focused on the 54
largest caches, which account for 90% of aggregated QPS and
76% of allocated memory. In the following sections, we use
Twemcache workloads to refer to the workloads from these
54 Twemcache clusters. Although we only present the results
of these 54 caches, we did perform the same analysis on the
smaller caches, and they don’t change our conclusions.

4 Production Stats and Workload Analysis
In this section, we start by describing some common pro-

duction metrics to provide a foundation for our discussion,
and then move on to workload analyses that can only be per-
formed with detailed traces.

4.1 Miss Ratio
Miss ratio is one of the key metrics that indicate the ef-

fectiveness of a cache. Production in-memory caches usually
operate at a low miss ratio with small miss ratio variation.

We present the miss ratios of the top ten Twemcache clus-
ters ranked by request rates in Figure 3a where the dot shows
the mean miss ratio over a week, and the error bars show
the minimum and maximum miss ratio. Eight out of the ten
Twemcache clusters have a miss ratio lower than 5%, and
six of them have a miss ratio close to or lower than 1%. The
only exception is a write-heavy cache cluster, which has a
miss ratio of around 70% (see Section 4.3.2 for details about
write-heavy workloads). Compared to CDN caching [47],
in-memory caching usually has a lower miss ratio.

Besides a low miss ratio, miss ratio stability is also very
important. In production, it is the highest miss ratio (and

Figure 4: The number of requests and objects being accessed every
second for two cache nodes.

request rate) that decides the QPS requirement of the backend.
Therefore, a cache with a low miss ratio most of the time, but
sometimes a high miss ratio is less useful than a cache with
a slightly higher but stable miss ratio. Figure 3b shows the
ratios of mrmax

mrmin
over the course of a week for different caches,

where mr stands for miss ratio. We observe that most caches
have this ratio lower than 1.5. In addition, the caches that have
larger ratios usually have a very low miss ratio.

Low miss ratios and high stability in general illustrate the
effectiveness of production caches. However, extremely low
miss ratios tend to be less robust, which means the corre-
sponding backends have to be provisioned with more margins.
Moreover, cache maintenance and failures become a major
source of disruption for caches with extremely low miss ratios.
The combination of these factors indicate there’s typically a
limit to how much cache can reduce read traffic or how little
traffic backends need to provision for.

4.2 Request Rate and Hot Keys
Similar to previously observed [24], request rates show

diurnal patterns (Figure 4). Besides, spikes in request rate are
also very common because cache is the first responder to any
change from the frontend services and end users.

When a request rate spike happens, a common belief is
that hot keys cause the spikes [33, 48]. Indeed, load spikes
often are the results of hot keys. However, we notice it is not
always true. As shown in Figure 4, at times, when the request
rate (top blue curve) spikes, the number of objects accessed
in the same time interval (bottom red curve) also has a spike,
indicating that the spikes are triggered by factors other than
hot keys. Such factors include client retry requests, external
traffic surges, scan-like accesses, and periodic tasks.

In addition to request rate spikes, caches often show other
irregularities. For example, in Section 4.6.2, we show that it
is common to see sudden changes in object size distribution.
These irregularities can happen for various reasons. For in-
stance, users change their behavior due to a social event, the
frontend service adds a new feature (or bug), or an internal
load test is started.

As a critical component in the infrastructure, caches stop
most of the requests from hitting the backend, and they should
be designed to tolerate these workload changes to absorb the
impact.

194 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ge
t

ge
ts se
t

ad
d

re
pla

ce
ap

pe
nd

pr
ep

en
d

ca
s

de
let

e
inc

r
de

cr

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 re

qu
es

ts

(a) Relative use of each operation

0.00 0.25 0.50 0.75 1.00
Write ratio

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Write ratio

Figure 5: a) Ratio of operation in each Twemcache cluster, box
shows the 25th and 75th percentile, red bar inside the box shows the
mean ratio, and whiskers are 10th and 90th percentile. b) write ratio
distribution CDF across Twemcache clusters.

4.3 Types of Operations
Twemcache supports eleven different operations, of which

get and set are the most heavily used by far. In addition,
write-heavy cache workloads are very common at Twitter.

4.3.1 Relative usage comparison
We begin from the operations used by Twemcache work-

loads. Twemcache supports eleven operations get, gets,
set, add, cas (check-and-set), replace, append, prepend,
delete, incr and decr2. As shown in Figure 5a, get and
set are the two most common operations, and average get
ratio is close to 90% indicating most of the caches are serving
read-heavy workloads. Apart from get and set, operations
gets, add, cas, delete, incr are also frequently used in
Twemcache clusters. However, compared to get and set,
these operations usually account for a smaller percentage of
all requests. Nonetheless, these operations serve important
roles in in-memory caching. Therefore, as suggested by the
author of Memcached, they should not be ignored [15].

4.3.2 Write ratio
Although most caches are read dominant, Figure 5a shows

that both get and set ratios have a large range across caches.
We define a workload as write-heavy if the percentage sum of
set, add, cas, replace, append, prepend, incr and decr
operations exceeds 30%. Figure 5b shows the distribution of
write ratio across caches. More than 35% of all Twemcache
clusters are write-heavy, and more than 20% have a write
ratio higher than 50%. In other words, in addition to the well-
known use case of serving read-heavy workloads, a substantial
number of Twemcache clusters are used to serve write-heavy
workloads. We identify the main use cases of write-heavy
caches below.

Frequently updated data Caches under this category
mostly belong to cache for computation or transient data (Sec-
tion 2.4.2 & 2.4.3). Updates are accumulated in cache before
they get persisted, or the keys eventually expire.

2See https://github.com/memcached/memcached/wiki/Commands
for details about each command.

Opportunistic pre-computation Some services contin-
uously generate data for potential consumption by itself or
other services. One example is the caches storing recent user
activities, and the cached data are read when a query asks for
recent events from a particular user. Many services choose
not to fetch relevant data on demand, but instead opportunisti-
cally pre-compute them for a much larger set of users. This is
feasible because pre-computation often has a bounded cost,
and in exchange read queries can be quickly fulfilled by pre-
computed results partially or completely. Since this is a trade-
off mainly for user experience, the caches under this category
see objects with fewer reuse. Therefore, the write ratio is of-
ten higher (>80%), and object access (read+write) frequency
is often lower. In one case, we saw one cluster with a mean
object frequency close to 1.

4.4 TTL
Two important features that distinguish in-memory caching

from a persistent key-value store are TTL and cache eviction.
While evictions have been widely studied [26, 28], TTL is
often overlooked. Nonetheless, TTL has been routinely used
in production. Moreover, as a response to GDPR [5], the
usage of caching TTL has become mandatory at Twitter to
enforce data retention policies. TTL is set when an object is
first created in Twemcache, and decides its expiration time.
Request attempts to access an expired object will be treated as
misses, so keeping expired objects in the cache is not useful.

We observe that in-memory caching workloads often use
short TTLs. This usage comes from the dynamic nature of
cached objects and the usage for implicit deletion. Under
this condition, effectively and efficiently removing expired
objects from the cache becomes necessary and important,
which provides an alternative to eviction in achieving low
miss ratios.

4.4.1 TTL Usages
We measure the mean TTLs used in each Twemcache clus-

ter and show the TTL distribution in Figure 6a. The figure
shows that TTL ranges from minutes to days. More than 25%
of the workloads use a mean TTL shorter than twenty minutes,
and less than 25% of the workloads have a mean TTL longer
than two days. Such a TTL range is longer than DNS caching
(minutes) [51], but shorter than common CDN object caching
(days to weeks). If we divide caches into short-TTL caches
(TTL ≤ 12 hours) and long-TTL caches (TTL > 12 hours).
Figure 6a shows 66% of all Twemcache clusters have a short
mean TTL.

In addition to mean TTL distribution, we have also mea-
sured the number of TTL used in each cache. Figure 6b shows
that only 20% of the Twemcache workloads use a single TTL,
while the rest majority use more than one TTL. In addition,
we observe that over 30% of the workloads use more than ten
TTLs and there are a few workloads using more than 1000
TTLs. In the last case, some clients intentionally scatter TTLs
over a pre-defined time range to avoid objects expiring at the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 195

https://github.com/memcached/memcached/wiki/Commands

102 103 104 105 106

Mean TTL (s)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

<20 min

 >2 day

(a) Mean TTL distribution

100 101 102 103

#TTL used

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Number of TTL in each cache

102 104 106

The smallest TTL (s)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

<5 min

 >6 hour

(c) The smallest TTL distribution

100 101 102 103 104

TTL range
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

TTLmax
TTLmin

(d) TTL range distribution

Figure 6: a) More than half of caches have mean TTL shorter than one day. b) Only 20% of caches use single TTL. c) The smallest TTL in
each cache can be very long. d) TTLs ranges in workloads are often large.

same time. This technique is called TTL jitter. In another case,
the clients seek the opposite effect — computing TTLs so
that a group of objects will expire at the same, predetermined
time.

Besides the number of TTLs used, the smallest TTL and
the TTL range, defined as the ratio between T T Lmax and
T T Lmin, are also important for designing algorithms that re-
move expired objects (see Section 7). Figure 6c shows that
the smallest TTL in each cache varies from 10s of seconds to
more than half day. In detail, around 30 to 35% of the caches
have their smallest TTL shorter than 300 seconds, and over
25% of caches have the smallest TTL longer than 6 hours.
Figure 6d shows the CDF of each workload’s TTL range. We
observe that fewer than 40% of the workloads have a rela-
tively small TTL range (< 2× difference), while almost 25%
of the caches have T T Lmax

T T Lmin
over 100.

Below we present the three main purposes of TTL to better
explain how TTL settings relate to the usages of the caches.

Bounding inconsistency Objects stored in Twemcache
can be highly dynamic. Because cache updates are best-effort,
and failed cache writes are not always retried, it is possible
that objects stored in in-memory cache are stale. Therefore,
applications often use TTL to bound inconsistency, which is
also suggested in the AWS Redis documentation [7]. TTLs
for this purpose usually have relative large values, in the
range of days. Some Twitter services further developed soft
TTL to achieve a better tradeoff between data consistency

0 40 80 120 160
Time (hour)

0

5000

10000

15000

20000

W
or

ki
ng

 se
t s

ize
 (M

B) no-ttl
ttl

(a)

0 40 80 120 160
Time (hour)

0

3000

6000

9000

12000

W
or

ki
ng

 se
t s

ize
 (M

B)

no-ttl
ttl

(b)

Figure 7: The working set size grows over time when TTL is not
considered. However, when TTL is considered, the working set size
is capped.

and avaiilability. The main idea of soft TTL is to store an
additional, often shorter TTL as part of the object value. When
application decodes the value of a cached object and notices
that the soft TTL has expired, it will refresh the cached value
from its corresponding source of truth in the background.
Meanwhile, the application continues to use the older value to
fulfill current requests without waiting. Soft TTL is typically
designed to increase with each background refresh, based on
the assumption that newly created objects are more likely to
see high volume of updates and therefore inconsistency.

Implicit deletion In some caches, TTL reflects the intrin-
sic life span of stored objects. One example is the counters
used for API rate limiting, which are declared as maximum
number of requests allowed in a time window. These counters
are typically stored in cache only, and their TTLs match the
time windows declared in the API specification. In addition
to rate limiters, GDPR required TTL would also fall into this
category, so no data would live in cache beyond the duration
permitted under the law.

Periodic refresh TTL is also used to promote data fresh-
ness. For example, a service that calculates how much a user’s
interest matches a cluster/community using ML models can
make "who-to-follow" type of recommendations with the
results. The results are cached for a while because user char-
acteristics tend to be stable in the very short term, and the cal-
culation is relatively expensive. Nonetheless, as users engage
with the site, their portraits can change over time. Therefore
such a service tends to recompute the results for each user pe-
riodically, using or adding the latest data since last update. In
this case, TTL is used to pace a relatively expensive operation
that should only be performed infrequently. The exact value
of the TTL is the result of a balance between computational
resources and data freshness, and can often be dynamically
updated based on circumstances.
4.4.2 Working Set Size and TTL

Having the majority of caches use short TTLs indicate
that the effective working set size (WSSE) — the size of all
unexpired objects should be loosely bounded. In contrast, the
total working set size (WSST), the size of all active objects
regardless of TTL, can be unbounded.

In our measurements, we identify two types of workloads

196 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

shown in Figure 7. The first type (Figure 7a) has a con-
tinuously growing WSST , and it is usually related to user-
generated content. With new content being generated every
second, the total working set size keeps growing. The second
type of workload has a large growth rate in WSST at first, and
then the growth rate decreases after this initial fast-growing
period, as shown in Figure 7b. This type of workloads can be
users related, the first quick increase corresponds to the most
active users, the slow down corresponds to less active users.
Although the two workloads show different growth patterns
in total working set size, the effective working set size of both
arrive at a plateau after reaching its TTL. Although the WSSE
may fluctuate and grow in the long term, the growth rate is
much slower compared to WSST .

Bounded WSSE means that, for many caches, there exists a
cache size that the cache can achieve compulsory miss ratio,
if an in-memory caching system can remove expired objects
in time. This suggest the importance of quickly removing
expired object from cache, especially for workloads using
short TTLs. Unfortunately, while eviction has been widely
studied [26, 28, 54], expiration has received little attention.
And we will show in Section 7.2, existing solutions fall short
on expiration.

4.5 Popularity Distribution
Object popularity is another important characteristic of a

caching workload. Popularity distribution is often used to
describe the cachebility of a workload. A popular assumption
is that cache workloads follow Zipfian distribution [29], and
the frequency-rank curve plotted in log-log scale is linear. A
large body of work optimizes system performance under this
assumption [33, 39, 44, 50, 57, 61]. However, a recent work
from Facebook [19] suggested that in-memory caching work-
loads may not follow Zipfian distribution. Here we present
the popularity of the caching workloads at Twitter.

Measuring all Twemcache workloads, we observe major-
ity of the cache workloads still follow Zipfian distribution.
However, some workloads show deviations in two ways. First,
unpopular objects appear significantly less than expected (Fig-
ure 8a) or the most popular objects are less popular than ex-
pected (Figure 8b). The first deviation happens when objects

101 103 105 107

Object rank

101

103

105

Fr
eq

ue
nc

y

(a)

101 103 105 107

Object rank

101

103

105

Fr
eq

ue
nc

y

(b)

Figure 8: Some workloads showing small deviations from Zipfian
popularity. a) The least popular objects are less popular than ex-
pected. b) The most popular objects are less popular than expected.

0.2 0.4 0.6 0.8 1.0
R2

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(a) R2 in Zipfian fitting

1.0 1.5 2.0 2.5
zipf alpha

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Zipfian parameter α

Figure 9: a) Most of workloads follow Zipfian popularity distri-
bution with large confidence R2. b) The parameter α in Zipfian
distribution is large, and the popularity of most workloads are highly
skewed (α > 1).

are always accessed multiple times so that there are few ob-
jects with frequency smaller than some value. The second
deviation happens when the client has an aggressive client-
side caching strategy so that the most popular objects are
often cached at client. In this case, the cache is no longer
single-layer.

Although these deviations happen, they are rare, and we
believe it is still reasonable to assume in-memory caching
workloads follow Zipfian distribution. Since most part of the
frequency-rank curves are linear in the log-log scale, we use
linear fitting3 confidence R2 [12] as the metric for measuring
the goodness of fit. Figure 9a shows the results of fitting. 80%
of all workloads have R2 larger than 0.8, and more than 50%
of workloads have R2 larger than 0.9. These results indicate
that the popularity of most in-memory caching workloads at
Twitter follows Zipfian distribution. We further measure the
parameter α of the Zipfian distribution shown in Figure 9b.
The figure shows that most of the α values are in the range
from 1 to 2.5, indicating the workloads are highly skewed.

4.6 Object Size
One feature that distinguishes in-memory caching from

other types of caching is the object size distribution. We ob-
serve that similar to previous observations [24], the majority
of objects stored in Twemcache are small. In addition, size
distribution is not static over time, and both periodic distri-
bution shifts and sudden changes are observed in multiple
workloads.

4.6.1 Size Distribution
We measure the mean key size and value size in each Twem-

cache cluster, and present the CDF of the distributions in Fig-
ure 10. Figure 10a shows that around 85% of Twemcache
clusters have a mean key size smaller than 50 bytes, with
a median smaller than 38 bytes. Figure 10b shows that the
mean value size falls in the range from 10 bytes to 10 KB, and
25% of workloads show value size smaller than 100 bytes,
and median is around 230 bytes. Figure 10c shows that CDF

3We remark that linear regression is not the correct way to modelling Zipf
distribution from the view of statistics, we perform this to align with existing
works [29].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 197

25 50 75 100 125
Key size (byte)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(a) Key size

101 102 103 104

Value size (byte)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Value size

102 103 104 105

Key+value size (byte)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(c) Object size

10 1 100 101 102 103

Value/key size ratio

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(d) Value/key size ratio

Figure 10: Mean key, value, object size distribution and mean value
key size ratio across all caches.

0 24 48 72 96 120 144
Time (hour)

38

55

79

114

Re
qu

es
t s

ize
 (b

yt
e)

0.0

0.1

0.2

0.3

0.4

(a)

0 24 48 72 96 120 144
Time (hour)

410

2540

15726

97369

Re
qu

es
t s

ize
 (b

yt
e)

0.0

0.1

0.2

0.3

(b)

0 24 48 72 96 120 144
Time (hour)

95

237

591

1470

3657

Re
qu

es
t s

ize
 (b

yt
e)

0.00

0.05

0.10

0.15

0.20

(c)

0 24 48 72 96 120 144
Time (hour)

32

198

1225

7584

46956

Re
qu

es
t s

ize
 (b

yt
e)

0.0

0.2

0.4

0.6

(d)

Figure 11: Heatmap showing request size distribution over time for four typical caches. X-axis is time, Y-axis is the object size using slab
class size as bins, and the color shows the fraction of requests that fall into a slab class in that time window.

distribution of the mean object size (key+value), which is very
close to the value size distribution except at small sizes. Value
size distribution starts at size 1, while object size distribution
starts from size 16. This indicates that for some of the caches,
value size is dramatically smaller than the key size. Figure 10d
shows the ratio of mean value and key sizes. We observe that
15% of workloads have the mean value size smaller than or
equal to the mean key size, and 50% of workloads have value
size smaller than 5× key size.

4.6.2 Size Distribution Over Time
In the previous section, we investigated the static size distri-

bution of all objects accessed in the one week’s time of each
Twemcache cluster. However, the object size distribution of
workloads are usually not static over time. In Figure 11, we
show how the size distribution changes over time. The X-
axis shows the time, and the Y-axis shows the size of objects
(using slab class size as bins), the color shows how much of
the objects in one time window fall into each slab class. We
observe that some of the workloads show diurnal patterns
(Figure 11a, 11b), while others show changes without strict
patterns.

Periodic/diurnal object size shifts can come from the fol-
lowing sources, a) value for the same key grows over time.
and b) size distribution correlates with temporal aspects of key
access. For example, text content generated by users in Japan
are shorter/smaller than those by users in Germany. In this
case, it is the geographical locality that drives the temporal
pattern. On the other hand, we do not yet have a good under-
standing of how most sudden, non-recurring changes happen.
Current guesses include user behavior changes during events,

Table 1: Correlation between write ratio and other properties

Property Pearson coefficient with write ratio

log(TTL) -0.6336
log(Frequency) -0.7414
Zipf fitting R2 -0.7690

Zipf alpha -0.7329

and a temporary change in production settings.
Both short-term and long-term size distribution shifts pose

additional challenges to memory management in caching sys-
tems. They make it hard to control or predict external frag-
mentation in caches that use heap memory allocators directly,
such as Redis. For slab-based caching systems, they can cause
slab calcification. In Section 7.5, we discuss why existing
techniques do not completely address the problem.

5 Further Analysis of Workload Properties
We have shown the properties of the in-memory caching

workloads at Twitter. In this section, we show the relationship
between the properties, and how they relate to major caching
use cases.

5.1 Correlations between Properties
Throughout the analysis in previous sections, we observe

some workload characteristics have strong correlations with
the write ratio. For example, write-heavy workloads usually
use short TTLs. Presented in Figure 12a, the dashed red curve
shows the mean TTL distribution of write-heavy workloads,
and the solid blue curve shows the mean TTL distribution

198 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

101 102 103 104 105 106

Mean TTL (sec)
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(a) TTL distribution

100 101 102 103

Mean frequency
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(b) Object frequency distribution

0.60 0.75 0.90
r2 in Zipfian popularity

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(c) R2 in fitting Zipfian

0.6 1.2 1.8 2.4
 in Zipfian popularity

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(d) α of Zipfian distribution

Figure 12: Write-heavy workloads tend to show short TTL, small object access frequency, relatively large deviations from Zipfian popularity
distribution and are usually less skewed (small α).

of read-heavy workloads. Around 50% of the write-heavy
workloads have mean TTL shorter than 10 minutes, while for
read-heavy workloads, this is 15 hours. Further, the Pearson
coefficient between write ratio and log 4 of mean TTL (Ta-
ble. 1) is -0.63 indicating a negative correlation, confirming
that large write ratio workloads usually have short TTLs.

Besides TTL, write-heavy workloads also show low ob-
ject frequencies. We present the mean object frequency (in
terms of the number of accesses in the traces) of read-heavy
and write-heavy workloads in Figure 12b. It shows that read-
heavy workloads have a mean frequency mostly in the range
from 6 to 1000, with 75% percentile above 200. Meanwhile,
write-heavy workloads have a mean frequency mostly be-
tween 1 and 100, with 75% percentile below 10. We further
confirm this relationship with the Pearson coefficient between
write ratio and log of frequency, which is -0.7414 (Table. 1),
suggesting the low object access frequency in write-heavy
caches.

In addition, the popularity of write-heavy workloads has
relatively larger deviations from Zipfian distribution, and the
fitting confidence R2 is usually much smaller than that of read-
heavy workloads (Figure 12c). Moreover, the α parameter of
Zipfian distribution in write-heavy workloads is usually small,
as shown in Figure 12d. It shows the write-heavy workloads
have a median α around 0.9, and the median of read-heavy
workloads have an α around 1.4. This correlation is also
backed up by the Pearson coefficient (Table 1).

5.2 Properties of Different Cache Use Cases
Here we further explore common properties exhibited by

each of the three major caching use cases as described in
Section 2.4.

5.2.1 Caching for Storage
Caches for storage usually serve ready-heavy workloads,

and their popularity distributions typically follow Zipfian dis-
tribution with a large parameter α in the range of 1.2 to 2.2.
While this type of workload is highly skewed, they are easier
to cache, and in production, 95% of these clusters have miss
ratios of around or less than 1%. Being more cacheable and
having smaller miss ratios do not indicate they have small

4We choose to use log of TTL and frequency because of their wide ranges
in different workloads.

working set sizes. In our observation, 7 of the top 10 caches
(ranked by cache size) belong to this category.

Because these caches store objects persisted in the backend
storage, any modifications to the objects are explicitly written
to both the backend and the cache. Therefore the TTLs used
in these caches are usually large, in the range of days. There
is no specific pattern about object size in this type of caches,
and the value can be as large as tens of KB, or as small as
a few bytes. For example, the number of favorites a tweet
received is persisted in the backend database and sometimes
cached.

5.2.2 Caching for Computation
Caches under this category serve both read-heavy and write-

heavy traffic depending on the workloads. For example, ma-
chine learning feature workloads are usually read-heavy show-
ing a good fit of Zipfian popularity distribution. While inter-
mediate computation workloads are normally write-heavy
and show deviations from Zipfian. Compared to caching for
storage, workloads under this category use shorter TTLs, usu-
ally determined by the application requirement. For example,
caches storing intermediate computation data usually have
TTLs no more than minutes because other services will con-
sume the data in a short time. For features and prediction
results, the TTLs are usually in the range of minutes to hours
(some up to days) depending on how fast the underlying data
change and how expensive the computation is. The mean
TTLs we observe for caches under this category is 9.6 hours.
There are no particular patterns about object sizes in these
caches.

Since objects stored in these caches are indirectly related
to users and contents, the workloads usually have large key
spaces and total working set sizes. For example, a cache stor-
ing the distance between two users will require a N2 cache
size where N denotes the number of users. However, because
these caches have short TTLs, the effective working set sizes
are usually much smaller. Thus removing expired objects can
be more important than eviction for these caches.

As real-time stream processing becomes more popular,
we envision there will be more caches being provisioned
for caching computation results. Because the characteristics
are different from caching for storage, they may not ben-
efit equally from optimizations that only aim to make the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 199

read path fast and scalable, such as optimistic cuckoo hash-
ing [43]. Therefore, including evaluation against caching-
for-computation workloads that are write-heavy and more
ephemeral will paint a more complete picture of the capabili-
ties of any caching system.

5.2.3 Transient Data with No Backing Store
There are two characteristics associated with this type of

caches: Caches under this category usually have short TTLs,
and the TTLs are often used to enforce implicit object dele-
tion (Section 4.4). In addition, objects in these caches are
usually tiny and we observe an average object size of 54
bytes. Although caches of this type only contribute 9% of to-
tal Twemcache cluster request rate and 8% of total cache sizes,
they currently play an irreplaceable role in site operations.

6 Eviction Algorithms
We have shown the characteristics of in-memory cache

workloads in the previous sections. In this section, we use
the same cache traces to investigate the impact of eviction
algorithms. This evaluation considers production algorithms
offered by Twemcache and other production systems.

6.1 Eviction algorithm candidates
Object LRU and object FIFO LRU and FIFO are the

most common algorithms used in production caching sys-
tems [4, 18]. However, they cannot be applied to systems
using slab-based memory management such as Twemcache
without modification. Therefore, we evaluate LRU and FIFO
assuming the workloads are served using a non-slab based
caching system, while ignoring memory inefficiency caused
by external fragmentation. As a result, we expect that the re-
sults to have a bias toward the effectiveness of LRU and FIFO
compared to the three slab-based algorithms. Production re-
sults for these two algorithms might be worse than what is
suggested in this section, depending on the workloads.

slabLRU and slabLRC These two algorithms are part
of eviction algorithms offered in Twemcache. slabLRU and
slabLRC are equivalent to LRU and FIFO but executed at a
level much coarser granularity of slabs rather than a single
object. Twitter employs these algorithms to alleviate the effect
of slab calcification and also to reduce the size of per-object
metadata.

Random slab eviction Besides slabLRU and slabLRC,
Twemcache also offers Random slab eviction, which globally
picks a random slab to evict. This algorithm is workload-
agnostic with robust behavior, and therefore used as the de-
fault policy in production. However, it is rarely the best of
all algorithms and are non-deterministic, therefore we do not
include it in comparison.

Memcached-LRU Memcached adapted LRU by creating
one LRU queue per slab class. We call the resulted eviction
algorithm Memcached-LRU, which does not enable Mem-
cached’s slab auto-move functionality. We did, however, eval-
uate Memcached-LRU with slab auto-move turned on, and

most of the results are somewhere between LRU and slabLRU.
The rest of the paper omits this combination.

6.2 Simulation Setup
We built an open-source simulator called libCacheSim [71]

to study the steady-state miss ratio of the different eviction
algorithms. Specifically, we use five-day traces to warm up
the caches, then use one-day traces to evaluate cache miss
ratios. Each algorithm is applied against all traces, and then
grouped by results.

In terms of cache sizes, our simulation always starts with
64MB of DRAM, and chooses the maximum as 2× their
current memory in production. We stop increasing the size
for a particular workload when all algorithms have reached
the compulsory miss ratio. Note that when plotting, the size
range is truncated to better present the trend.

6.3 Miss Ratio Comparison
The outcome of our comparison can be grouped into four

types, and representatives of each are shown in Figure 13.
The first group shows comparable miss ratios for all al-

gorithms in the cache sizes we evaluated. For this type of
workload, the choice of eviction algorithms has a limited
impact on the miss ratio. Production deployments may very
well favor simplicity or decide based on other operational
considerations such as memory fragmentation. Twemcache
uses random slab eviction by default because random eviction
is simple and requires less metadata.

The second type of result shows that for some workloads
LRU works better than others. Such a result is often expected
because LRU protects recently accessed objects and is well-
known for its miss ratio performance in workloads with strong
temporal locality.

The third type of result shows that FIFO is the best eviction
algorithm (Figure 13c). This result is somewhat surprising
since it does not conform to what is typically observed in
caching of other scenarios such as CDN caching. We give our
suspected reasons below. Figure 14 shows the inter-arrival
time distribution of the two workloads in Figure 13b and Fig-
ure 13c respectively. The inter-arrival time is the number of
requests between two accesses to the same object. Figure 14a
shows a smooth inter-arrival time curve, while Figure 14b
shows a curve with multiple segments. For workloads with
inter-arrival time like Figure 14a, LRU can work better than
FIFO because it promotes recently accessed objects, which
have a higher chance of being reused soon. This promotion
protects the recently accessed objects but demotes other ob-
jects that are not reused recently. Demoting non-recently used
objects can be an unwise decision if some of the demoted
objects will be reused after 106 requests, such as the ones
shown in Figure 14b. In contrast, FIFO treats each stored
object equally; in other words, it protects the objects with a
large inter-arrival gap. Therefore, for workloads similar to the
one in Figure 14b, FIFO can perform better than LRU. Such

200 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

500 MB 2 GB 8 GB
Cache size

0.005

0.010

0.015

0.020

0.025

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(a) Similar miss ratio

100 MB 1 GB 8 GB
Cache size

0.025

0.050

0.075

0.100

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(b) LRU is better

500 MB 2 GB 8 GB
Cache size

0.24

0.32

0.40

0.48

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(c) FIFO is better

100 MB 1 GB 8 GB
Cache size

0.15

0.30

0.45

0.60

0.75

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(d) slabLRU is better

Figure 13: Four typical miss ratio results: a) all algorithms have similar performance, b) LRU is slightly better than others, c) FIFO is better
than others, d) slabLRU is much better than others.

102 105 108

#Request since last access

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 re

qu
es

t (
CD

F)

(a)

102 105 108

#Request since last access

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 re

qu
es

t (
CD

F)

(b)

Figure 14: The inter-arrival gap distribution corresponding to the
workloads in Figure 13b and Figure 13c respectively.

workloads may include scan type of requests such as a service
that periodically sends emails.

The last type of result show that in some workloads,
slabLRU performs much better than any other algorithms.
The main reason is that the workloads showing this type of
result have periodic/diurnal changes. Figure 11b shows the
object size distribution over time of the workload correspond-
ing to Figure 13d. We suspect this is due to the following
reason, but we leave the verification as future work. Although
LRU and FIFO are not affected by any change in object size
distribution, they cannot respond to workload change instantly.
In contrast, slabLRU can quickly adapt to a new workload
when the new workload uses a different slab class because
it prioritizes the slabs that have more recent access. From
another view, slabLRU gives a larger usable cache size for
the new workloads (slab class). Figure 13d shows that the
difference between algorithms reduces at larger cache sizes,
this is because the benefit of having a large usable cache size
diminishes as cache size increases. Moreover, in these work-
loads, Memcached-LRU sometimes has better performance
than LRU, but for most of the workloads, Memcached-LRU
is worse (not shown in the figure) because of the missing
capability of moving slabs. Thus it has a smaller usable cache
size. When Memcached-LRU has better performance at small
cache sizes, we suspect that the changing workloads cause
thrashing for LRU and FIFO [27]. Since Memcached-LRU
can only evict objects within from the same slab class as the
new object, it protects the objects in other slab classes from
thrashing, thus showing better performance.

very small small
medium large

Cache size

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 w

or
kl

oa
ds

LRU
FIFO

slabLRU
Memcached-LRU

(a)

0.6 0.3 0.0 0.3 0.6
Relative miss ratio difference

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 w

or
kl

oa
ds

 (C
DF

)

very small
small
medium
large

(b)

Figure 15: a) The best eviction algorithms under different sizes. b)
The relative miss ratio difference between FIFO and LRU under
different sizes. Positive region shows FIFO is worse.

In most cases, both miss ratio and the difference between
algorithms decrease as cache capacity increases. We observe
that within our simulation configuration, which stops at or
before 2× current size, the difference between algorithms
eventually disappears. This suggests that to achieve low miss
ratio in real life, it can be quite effective to create imple-
mentations that increase the effective cache capacity, such as
through metadata reduction, adopting higher capacity media,
or data compression.

Given there are more than a couple of workloads showing
each of the four result types, we would like to explore whether
there is one algorithm that is often the best or close to the best
most of the time.

In the next section, we explore how often each algorithm is
the best with a special focus on LRU and FIFO.

6.4 Aggregated Statistics
In this section, we evaluate the same set of algorithms as in

Section 6.3, focusing on four distinct cache sizes and present
the aggregated statistics. Because different workloads have
different working set sizes and compulsory miss ratios, we
choose the four cache sizes in the following way. We define
the ultimate cache size su to be the size where LRU achieves
compulsory miss ratio for a workload. However, if LRU can
not achieve compulsory miss ratio at 2× production cache
size, we use 2× production cache size as su. We choose large
cache size to be 90% of su, and medium, small and very small

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 201

cache sizes to be 60%, 20% and 5% of su respectively. We
remark that, at Twitter, 76% of the caches have cache sizes
larger than the large cache size category, and 34% of the rest
have cache sizes within 10% of the large cache size.

We show the miss ratio comparison in Figure 15a, where
each bar shows the fraction of workloads for which a particu-
lar algorithm is the best. We see that at the large cache size
slabLRU is the best for around 10% of workloads, and this
fraction gradually increases as we reduce cache size. This
increase is because for smaller cache sizes, quickly adapting
to workload change is more valuable. Besides this, FIFO has
similar performance compared to LRU at small, medium and
large size categories. And only at very small cache sizes, LRU
becomes significantly better than FIFO. This is because at rel-
atively large cache sizes, promoting recently accessed objects
is less crucial. Instead, not demoting other objects is more
helpful in improving the miss ratio, especially for workloads
having multiple segments in inter-arrival time like the one
shown in Figure 14b.

Figure 15a suggests that for close to half of the work-
loads, FIFO is as good as LRU at reasonably large cache
sizes. Now we explore the magnitude by which FIFO is better
or worse compared to LRU on each workload. Figure 15b
shows the relative miss ratio difference between FIFO and
LRU:

(
mrFIFO−mrLRU

mrLRU

)
, where mr stands for miss ratio, for

each workload at different cache sizes. When the value on X-
axis is positive, it indicates that FIFO has a higher miss ratio,
and LRU has better performance, while a negative value indi-
cates the opposite. We observe that all the curves except the
one for very small cache size are all close to being symmetric
around x-axis value 0. This indicates that across workloads,
FIFO and LRU have similar performance for small, medium
and large cache sizes. For the very small size category, we
observe LRU being significantly better than FIFO, this is
because for workloads with temporal locality, promoting re-
cently accessed objects becomes crucial at very small cache
sizes. In production, most of the caches are running at cache
sizes larger than or close to the large category. We believe
that for most in-memory caching workloads, FIFO and LRU
have a similar performance at reasonably large cache sizes.

The fact that FIFO and LRU often exhibit similar perfor-
mance in production-like settings is important because using
LRU usually incurs extra computational and memory over-
head compared to FIFO [55, 56]. For example, implementing
LRU in Memcached requires extra metadata and locks, some
of which can be removed if FIFO is used.

7 Implications
In this section, we show how our observations differ from

previous work, and what the takeaways are for informing
future in-memory caching research.

7.1 Write-heavy Caches
Although 70% of the top twenty Twemcache clusters serve

read-heavy workloads (Section 4.3.2), write-heavy workloads

are also common for in-memory caching. This is not unique to
Twitter. Previous work [24] from Facebook also pointed out
the existence of write-heavy workloads, although the preva-
lence of them were not discussed due to the limited number
of workloads. Furthermore, write-heavy workloads are ex-
pected to increase in prominence as the use case of caching
for computation increases (Section 2.4.2). However, most of
the existing systems, optimizations and research assume a
read-heavy workload.

Write-heavy workloads in caching systems usually have
lower throughput and higher latency, because the write path
usually involves more work and can trigger more expensive
events such as eviction. In Twitter’s production, we observe
that serving write-heavy workloads tend to have higher tail
latencies. Scaling writes with many threads tends to be more
challenging as well. In addition, as discussed in Section 5,
write-heavy workloads have shorter TTLs with less skewed
popularity, which are in sharp contrast to read-heavy work-
loads. This calls for future research on designing systems
and solutions that consider performance on write-heavy work-
loads.

7.2 Short TTLs
In Section 4.4.1, we show that in-memory caching work-

loads frequently use short TTLs, and the usage of short TTLs
reduces the effective working set size. Therefore, removing
expired objects from the cache is far more important than
evictions in some cases. In this section, we show that existing
techniques for proactively removing expired objects (termed
proactive expiration) are not sufficient. This calls for future
work on better proactive expiration designs for in-memory
caching systems.

Transient object cache An approach employed for proac-
tive expiration (especially for handling short TTLs), proposed
in the context of in-memory caches at Facebook [59], is to
use a separate memory pool (called transient object pool) to
store short-lived objects. The transient object cache consists
of a circular buffer of size t with the element at index i being a
linked list storing objects expiring after i seconds. Every sec-
ond, all objects in the first linked list expire and are removed
from the cache, then all other linked lists advance by one.

This approach is effective only when the cache user uses a
mix of very short and long TTLs with the short TTL usually
in the range of seconds. Since objects in the transient pool
are never evicted before expiration, the size of transient pool
can grow unbounded and cause objects in the normal pool to
be evicted . In addition, the TTL threshold of admitting into
transient object pool is non-trivial to optimize.

As we show in Figure 6b, 20% of the Twemcache work-
loads use a single TTL. For these workloads, transient object
pool does not apply. For the workloads using multiple TTLs,
we observe that fewer than 35% have their smallest TTL
shorter than 300 seconds, and over 25% of caches have the
smallest TTL longer than 6 hours (Figure 6c). This indicates

202 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that the idea of transient object cache is not applicable to a
large fraction of Twemcache clusters.

Background crawler Another approach for proactive ex-
piration, which is employed in Memcached, is to use a back-
ground crawler that proactively removes expired objects by
scanning all stored objects.

Using a background crawler is effective when TTLs used
in the cache do not have a broad range. While scanning is
effective, it is not efficient. If the cache scans all the objects
every Tpass, an object of TTL t can be scanned up to 1+d t

Tpass
e

times before removal, and can overstay in the system by up
to Tpass. The cache operator therefore has to make a tradeoff
between wasted space and the additional CPU cycles and
memory bandwidth needed for scanning. This tradeoff gets
harder if a cache has a wide TTL range, which is common
as observed in Section 4.4. While the Twemcache workloads
are single tenant, wide TTL range issue would be further
exacerbated for multi-tenant caches.

Figure 6d shows that TTLs used within each workload have
a wide range. Close to 60% of workloads have the maximum
TTL more than twice as long as the minimum, and 25% of
workloads show a ratio at or above 100. This indicates that
for the 25% of caches, if we want to ensure all objects are
removed within 2× their TTLs, objects with the longest TTL
will be scanned 100 times before expiration.

The combination of transient object cache with background
crawler could extend the coverage of workloads that can be
efficiently expired. However, the tradeoff between wasted
space and the additional CPU cycles and memory bandwidth
consumed for scanning would still remain. Hence, future inno-
vation is necessary to fundamentally address use cases where
TTLs exhibit a broad range.

7.3 Highly Skewed Object Popularity

Our work shows that the object popularity of in-memory
caching can be far more skewed than previously shown [19],
or compared to studies on web proxy workloads [29] and
CDN workloads [47]. We suspect this has a lot to do with the
nature of Twitter’s product, which puts great emphasis on the
timeliness of its content. It remains to be seen whether this is
a widespread pattern or trend. Cache workloads are also more
skewed compared to NoSQL database such as RocksDB [38],
which is not surprising because database traffic is often al-
ready filtered by caches, and has the most skewed portion
removed via cache hits. In other words, in-memory caching
and NoSQL database often observe different traffic even for
the same application. Besides these two reasons, sampling
sometimes results in bias in the popularity modelling, and we
avoid this by collecting unsampled traces. Our observation
that the workloads still follow Zipfian distribution with large
alpha value emphasizes the importance of addressing load
imbalance [44, 57, 61].

7.4 Object Size
Similar to previously reported [24], we observe that objects

cached in in-memory caching are often tiny (Section 4.6). As
a result, in-memory caches are not always bound by memory
size; instead, close to 20% of the Twemcache clusters are
CPU-bound.

On the other hand, small objects signifies the relative large
overhead of metadata. Memcached stores 56-byte with each
object, and Twitter’s current production cache uses 38-byte
metadata with each object. Reducing object metadata further
can yield substantial benefits for caching tiny objects.

In addition, we observe that compared to value size, the
key size can be large in some workloads. For 60% of the
workloads, the mean key size and mean value size are in
the same order of magnitude. This indicates that reducing
key size can be very important for these workloads. Many
workloads we observed have namespaces as part of the object
keys, such as NS1:NS2:...:id. This format is commonly
used to mirror the naming in a multi-tenant database, which is
also observed at Facebook [32]. Namespaces thus can occupy
large fractions of precious cache space while being highly
repetitive within a single cache cluster. However, there is no
known techniques to “compress” the keys. To encourage and
facilitate future research on this, we keep the original but
anonymized namespace in our open sourced traces.

Several recent works [26, 28] on reducing miss ratio (im-
proving memory efficiency) focused on improving eviction
algorithms and often add more metadata. Given our observa-
tions here, we would like to call more attention to the opti-
mization of cache metadata and object keys.

7.5 Dynamic Object Size Distribution
In Section 4.6.2, we show that the object size distribution

is not static, and the distribution shifts over time can cause
out-of-memory (OOM) exceptions for caching systems using
external allocators, or slab calcification for those using slab-
based memory management. In order to solve this problem,
one solution, employed by Facebook, is to migrate slabs be-
tween slab classes by balancing the age of the oldest items in
each class [59]. Earlier versions of Memcached approached
this problem by balancing the eviction rate of each slab class.
Since version 1.6.6, Memcached has also moved to using the
solution of balancing the age as mentioned above.

Besides efforts in production systems, slab assignment and
migration has also been a hot topic in recent research [31, 35,
36, 46]. However, to the best of our knowledge, the problem
has only been studied under a “semi-static” request sequence.
Specifically, the research so far assumes that the miss ratio
curve or some other properties of each slab class hold steady
for =certain amount of time, which often precludes periodic
and sudden changes in object size distribution.

In general, the temporal properties of object sizes in cache
are not well understood or quantified. As presented in Fig-
ure 11c and Figure 11d, it is not rare to see unexpected

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 203

changes in size distribution only lasting for a few hours. Some-
times it is hard to pinpoint the root cause of such changes.
Nonetheless, we believe that temporal changes related to
object size, whether recurring or as a one-off, usually have
drivers with roots beyond the time dimension. For example,
the tweet size drift throughout the day may very well depend
on the locales or geo-location of active users. Some caches
may be shared by datasets which differ in size distribution
and access cycles, resulting in different distributions dominat-
ing the access pattern at different instants of the day. In this
sense, studying the object size distribution over time could
very well provide deeper insights into characteristics of the
datasets being cached. Considering the increasing interest in
using machine learning and other statistical tools to study and
predict caching behavior, we think object size dynamics might
provide a good proxy to evaluate the relationship between
basic dataset attributes and their behavior in cache, allowing
caching systems to make smarter decisions over time.

8 Related Work
Due to the nature of this work, we have discussed related

works in detail throughout the paper.
Multiple caching and storage system traces were collected

and analyzed in the past [24, 25, 32, 47, 48, 59]; however,
only a limited number of reports focus on in-memory caching
workloads [24,48,59]. The closet work to our analysis is Face-
book’s Memcached workload analysis [24], which examined
five Memcached pools at Facebook. Similar to the observa-
tions in this work [24], we observe the sizes of objects stored
in Twemcache are small, and diurnal patterns are common
in multiple characteristics. After analyzing 153 Twemcache
clusters at Twitter, in addition to previous observations [24],
we show that write-heavy workloads are popular. Moreover,
we focus on several aspects of in-memory caching which have
not been studied to the best of our knowledge , including TTL
and cache dynamics. Although previous work [24] proposed
analytical models on the key size, value size, and inter-arrival
gap distribution, the models do not fully capture all the di-
mensions of production caching workloads such as changing
working set and dynamic object size distribution. Compared
to synthetic workload models, the collection of real-world
traces that we collected and open sourced provide a detailed
picture of various aspects of the workloads of production
in-memory caches. .

Besides workload analysis on Memcached, there have been
several workload analysis on web proxy [21–23, 49, 64] and
CDN caching [47, 67]. The photo caching and serving in-
frastructure at Facebook has been studied [47], with a focus
on the effect of layering in caching along with the relation-
ship between content popularity, age, and social-networking
metrics.

In addition to caching in web proxies and CDNs, the ef-
fectiveness of caching is often discussed in workload stud-
ies [25,60,66] of file systems. However, these works primarily

studied the cache to the extent that of its effectiveness in re-
ducing traffic to the storage system rather than on aspects
that affect the design of the cache itself. Besides, file system
caching is different from distributed in-memory caches due
to a variety of reasons. For example, file system caches usu-
ally stores objects of fixed-sized chunks (512 bytes, 4 KB
or larger), while in-memory caches store objects of a much
wider range (Section 4.6), and scan is common in file systems,
while rare in in-memory caches.

Because of the similarities in the interface, in-memory
caching is sometimes discussed together with key-value
databases. Three different RocksDB workloads [32] at Face-
book has been studied in depth, with a focus on the distribu-
tion of key and value sizes, locality, and diurnal patterns in
different metrics. Although Twemcache and RocksDB have
a similar key-value interface, they are fundamentally differ-
ent because of their design and usage. RocksDB stores data
for persistence, while Twemcache stores data to provide low
latency and high throughput without persistence. In addition,
compared to RocksDB, TTL and evictions are unique to in-
memory caching.

9 Conclusion
We studied the workloads of 153 in-memory cache

clusters at Twitter and discovered five important facts
about in-memory caching. First, although read-heavy
workloads account for more than half of the resource
usages, write-heavy workloads are also common. Second,
in-memory caching clients often use short TTLs, which
limits the effective working set size. Thus, removing expired
objects needs to be prioritized before evictions. Third,
read-heavy in-memory caching workloads follow Zipfian
popularity distribution with a large skew. Fourth, the object
size distributions of most workloads are not static. Instead,
it changes over time with both diurnal patterns and sudden
changes, highlighting the importance of slab migration
for slab-based in-memory caching systems. Last, for a
significant number of workloads, FIFO has similar or lower
miss ratio performance as LRU for in-memory caching
workloads. We have open sourced the traces collected at
https://github.com/twitter/cache-trace.

Acknowledgements We thank our shepherd Andrea Arpaci-
Dusseau and the anonymous reviewers for their valuable feed-
back. We thank our colleagues Jack Kosaian and Rebecca
Isaacs for their extensive reviews and comments that improved
this work. We also want to thank the Cache team and IOP
team at Twitter for their support in collecting and analyzing
the traces, and Daniel Berger for his comments in the early
stage of the project. Moreover, we thank CloudLab [40] in
helping us process the open-sourced traces, and Geoff Kuen-
ning from SNIA in helping hosting and sharing the traces.
This work was supported in part by NSF grants CNS 1901410
and CNS 1956271.

204 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/twitter/cache-trace

References
[1] Anonymized twitter production cache traces. https:

//github.com/twitter/cache-trace.

[2] Apache aurora. http://aurora.apache.org/. Ac-
cessed: 2020-05-06.

[3] Apache mesos. http://mesos.apache.org/. Ac-
cessed: 2020-05-06.

[4] Apache traffic server. https://trafficserver.
apache.org/. Accessed: 2020-05-06.

[5] Art. 17 gdpr right to erasure (‘right to be forgotten’).
https://gdpr-info.eu/art-17-gdpr/. Accessed:
2020-05-06.

[6] Caching with twemcache. https://blog.
twitter.com/engineering/en_us/a/2012/
caching-with-twemcache.html. Accessed:
2020-10-10.

[7] database caching strategy using redis. https:
//d0.awsstatic.com/whitepapers/Database/
database-caching-strategies-using-redis.
pdf. Accessed: 2020-05-06.

[8] Decomposing twitter: Adventures in service-
oriented architecture. https://www.infoq.com/
presentations/twitter-soa/. Accessed: 2020-09-
25.

[9] Do not join lru and slab maintainer threads if they
do not exist. https://github.com/memcached/
memcached/pull/686. Accessed: 2020-08-06.

[10] Enhance slab reallocation for burst of evictions. https:
//github.com/memcached/memcached/pull/695.
Accessed: 2020-08-06.

[11] Experiencing slab ooms after one week of uptime.
https://github.com/memcached/memcached/
issues/689. Accessed: 2020-08-06.

[12] How to interpret r-squared and goodness-of-fit in regres-
sion analysis. https://www.datasciencecentral.
com/profiles/blogs/regression-analysis-\
how-do-i-interpret-r-squared-and-assess-the.
Accessed: 2020-09-28.

[13] jemalloc. http://jemalloc.net/. Accessed: 2020-
05-06.

[14] memcached - a distributed memory object caching sys-
tem. http://memcached.org/. Accessed: 2020-05-
06.

[15] Paper review: Memc3. https://memcached.org/
blog/paper-review-memc3/. Accessed: 2020-05-06.

[16] Redis. http://redis.io/. Accessed: 2020-05-06.

[17] slab auto-mover anti-favours slab 2. https://github.
com/memcached/memcached/issues/677. Accessed:
2020-08-06.

[18] Varnish cache. https://varnish-cache.org/. Ac-
cessed: 2020-05-06.

[19] The cachelib caching engine: Design and experiences
at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), Banff,
Alberta, November 2020. USENIX Association.

[20] Mehmet Altinel, Christof Bornhoevd, Chandrasekaran
Mohan, Mir Hamid Pirahesh, Berthold Reinwald, and
Saileshwar Krishnamurthy. System and method for adap-
tive database caching, July 1 2008. US Patent 7,395,258.

[21] Martin Arlitt, Rich Friedrich, and Tai Jin. Workload
characterization of a web proxy in a cable modem envi-
ronment. ACM SIGMETRICS Performance Evaluation
Review, 27(2):25–36, 1999.

[22] Martin Arlitt and Tai Jin. A workload characterization
study of the 1998 world cup web site. IEEE network,
14(3):30–37, 2000.

[23] Martin F Arlitt and Carey L Williamson. Internet web
servers: Workload characterization and performance im-
plications. IEEE/ACM Transactions on networking,
5(5):631–645, 1997.

[24] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

[25] Mary G Baker, John H Hartman, Michael D Kupfer,
Ken W Shirriff, and John K Ousterhout. Measurements
of a distributed file system. In Proceedings of the thir-
teenth ACM symposium on Operating systems princi-
ples, pages 198–212, 1991.

[26] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. Lhd
: Improving cache hit rate by maximizing hit density. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 389–403, 2018.

[27] Nathan Beckmann and Daniel Sanchez. Talus: A simple
way to remove cliffs in cache performance. In 2015
IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 64–75.
IEEE, 2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 205

https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace
http://aurora.apache.org/
http://mesos.apache.org/
https://trafficserver.apache.org/
https://trafficserver.apache.org/
https://gdpr-info.eu/art-17-gdpr/
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://www.infoq.com/presentations/twitter-soa/
https://www.infoq.com/presentations/twitter-soa/
https://github.com/memcached/memcached/pull/686
https://github.com/memcached/memcached/pull/686
https://github.com/memcached/memcached/pull/695
https://github.com/memcached/memcached/pull/695
https://github.com/memcached/memcached/issues/689
https://github.com/memcached/memcached/issues/689
https://www.datasciencecentral.com/profiles/blogs/regression-analysis-\ how-do-i-interpret-r-squared-and-assess-the
https://www.datasciencecentral.com/profiles/blogs/regression-analysis-\ how-do-i-interpret-r-squared-and-assess-the
https://www.datasciencecentral.com/profiles/blogs/regression-analysis-\ how-do-i-interpret-r-squared-and-assess-the
http://jemalloc.net/
http://memcached.org/
https://memcached.org/blog/paper-review-memc3/
https://memcached.org/blog/paper-review-memc3/
http://redis.io/
https://github.com/memcached/memcached/issues/677
https://github.com/memcached/memcached/issues/677
https://varnish-cache.org/

[28] Aaron Blankstein, Siddhartha Sen, and Michael J Freed-
man. Hyperbolic caching: Flexible caching for web
applications. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 499–511, 2017.

[29] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and zipf-like distributions: Ev-
idence and implications. In IEEE INFOCOM’99, vol-
ume 1, pages 126–134. IEEE, 1999.

[30] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. Tao: Face-
book’s distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 49–60, 2013.

[31] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. Faster
slab reassignment in memcached. In Proceedings of the
International Symposium on Memory Systems, pages
353–362, 2019.

[32] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[33] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu,
Yuanyuan Sun, Huan Liu, and Feifei Li. Hotring: A
hotspot-aware in-memory key-value store. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 239–252, Santa Clara, CA, February
2020. USENIX Association.

[34] Yue Cheng, Aayush Gupta, and Ali R. Butt. An in-
memory object caching framework with adaptive load
balancing. In Proceedings of the Tenth European Con-
ference on Computer Systems, EuroSys ’15, New York,
NY, USA, 2015. Association for Computing Machinery.

[35] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Dynacache: Dynamic cloud caching. In
7th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 15), 2015.

[36] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 379–392, 2016.

[37] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 321–334, 2017.

[38] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[39] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 79–
94, 2019.

[40] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of cloudlab. In Proceedings of the USENIX
Annual Technical Conference (ATC), jul 2019.

[41] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM Trans-
actions on Storage (ToS), 13(4):1–31, 2017.

[42] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 65–78, 2019.

[43] Bin Fan, David G Andersen, and Michael Kamin-
sky. Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing. In Presented as
part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13), pages 371–
384, 2013.

[44] Bin Fan, Hyeontaek Lim, David G Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, pages 1–12, 2011.

[45] Wolfram Gloger. ptmalloc. http://www.malloc.de/
en/. Accessed: 2020-05-06.

[46] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Ying-
wei Luo, Chen Ding, Song Jiang, and Zhenlin Wang.
Lama: Optimized locality-aware memory allocation for
key-value cache. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 57–69, 2015.

[47] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of

206 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.malloc.de/en/
http://www.malloc.de/en/

facebook photo caching. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, pages 167–181, 2013.

[48] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing load imbalance in real-world
networked caches. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, pages 1–7, 2014.

[49] Sunghwan Ihm and Vivek S Pai. Towards understand-
ing modern web traffic. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement
conference, pages 295–312, 2011.

[50] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 121–136,
2017.

[51] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert
Morris. Dns performance and the effectiveness of
caching. In Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, pages 153–167,
2001.

[52] Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao
Jia, Stephen Yang, and John Ousterhout. Slik : Scal-
able low-latency indexes for a key-value store. In 2016
USENIX Annual Technical Conference (USENIX ATC
16), pages 57–70, 2016.

[53] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
pages 137–152, 2017.

[54] Conglong Li and Alan L Cox. Gd-wheel: a cost-aware
replacement policy for key-value stores. In Proceedings
of the Tenth European Conference on Computer Systems,
pages 1–15, 2015.

[55] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn,
Anuj Kalia, Michael Kaminsky, David G Andersen,
O Seongil, Sukhan Lee, and Pradeep Dubey. Architect-
ing to achieve a billion requests per second throughput
on a single key-value store server platform. In Proceed-
ings of the 42nd Annual International Symposium on
Computer Architecture, pages 476–488, 2015.

[56] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. Mica : A holistic approach to fast

in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[57] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 143–157, 2019.

[58] Qiong Luo, Sailesh Krishnamurthy, C Mohan, Hamid
Pirahesh, Honguk Woo, Bruce G Lindsay, and Jeffrey F
Naughton. Middle-tier database caching for e-business.
In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 600–611,
2002.

[59] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 385–398, 2013.

[60] John K Ousterhout, Herve Da Costa, David Harrison,
John A Kunze, Mike Kupfer, and James G Thompson. A
trace-driven analysis of the unix 4.2 bsd file system. In
Proceedings of the tenth ACM symposium on Operating
systems principles, pages 15–24, 1985.

[61] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
401–417, Savannah, GA, November 2016. USENIX As-
sociation.

[62] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In ACM Symposium on Cloud Computing (SoCC), San
Jose, CA, USA, October 2012.

[63] Charles Reiss, John Wilkes, and Joseph L. Hellerstein.
Google cluster-usage traces: format + schema. Technical
report, Google Inc., Mountain View, CA, USA, Novem-
ber 2011. Revised 2014-11-17 for version 2.1. Posted
at https://github.com/google/cluster-data.

[64] Weisong Shi, Randy Wright, Eli Collins, and Vijay
Karamcheti. Workload characterization of a person-
alized web site and its implications for dynamic con-
tent caching. In Proceedings of the 7th International
Workshop on Web Caching and Content Distribution
(WCW’02). Citeseer, 2002.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 207

https://github.com/google/cluster-data

[65] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. Ripq : Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 373–386, 2015.

[66] Werner Vogels. File system usage in windows nt 4.0.
ACM SIGOPS Operating Systems Review, 33(5):93–109,
1999.

[67] Patrick Wendell and Michael J Freedman. Going viral:
flash crowds in an open cdn. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement
conference, pages 549–558, 2011.

[68] wikimedia. Analytics/data lake/traffic/caching.
https://wikitech.wikimedia.org/wiki/
Analytics/Data_Lake/Traffic/Caching. Ac-
cessed: 2020-05-06.

[69] Wikimedia. caching overview - wikitech.
https://wikitech.wikimedia.org/wiki/
Caching_overview. Accessed: 2020-05-06.

[70] John Wilkes. More Google cluster data. Google
research blog, November 2011. Posted at
http://googleresearch.blogspot.com/2011/
11/more-google-cluster-data.html.

[71] Juncheng Yang. libcachesim. https://github.com/
1a1a11a/libCacheSim. Accessed: 2020-09-28.

[72] Juncheng Yang, Reza Karimi, Trausti Sæmundsson,
Avani Wildani, and Ymir Vigfusson. Mithril: mining
sporadic associations for cache prefetching. In Proceed-
ings of the 2017 Symposium on Cloud Computing, pages
66–79, 2017.

208 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Caching_overview
https://wikitech.wikimedia.org/wiki/Caching_overview
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim

	Introduction
	In-memory Caching at Twitter
	Service Architecture and Caching
	Twemcache Provisioning
	Overview of Twemcache
	Cache Use Cases
	Caching for Storage
	Caching for Computation
	Transient data with no backing store

	Methodology
	Log Collection
	Log Overview

	Production Stats and Workload Analysis
	Miss Ratio
	Request Rate and Hot Keys
	Types of Operations
	Relative usage comparison
	Write ratio

	TTL
	TTL Usages
	Working Set Size and TTL

	Popularity Distribution
	Object Size
	Size Distribution
	Size Distribution Over Time

	Further Analysis of Workload Properties
	Correlations between Properties
	Properties of Different Cache Use Cases
	Caching for Storage
	Caching for Computation
	Transient Data with No Backing Store

	Eviction Algorithms
	Eviction algorithm candidates
	Simulation Setup
	Miss Ratio Comparison
	Aggregated Statistics

	Implications
	Write-heavy Caches
	Short TTLs
	Highly Skewed Object Popularity
	Object Size
	Dynamic Object Size Distribution

	Related Work
	Conclusion

