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Abstract
Resource-disaggregated architectures have risen in popularity

for large datacenters. However, prior disaggregation systems

are designed for native applications; in addition, all of them

require applications to possess excellent locality to be effi-

ciently executed. In contrast, programs written in managed

languages are subject to periodic garbage collection (GC),

which is a typical graph workload with poor locality. Al-

though most datacenter applications are written in managed

languages, current systems are far from delivering acceptable

performance for these applications.

This paper presents Semeru, a distributed JVM that can

dramatically improve the performance of managed cloud ap-

plications in a memory-disaggregated environment. Its design

possesses three major innovations: (1) a universal Java heap,

which provides a unified abstraction of virtual memory across

CPU and memory servers and allows any legacy program

to run without modifications; (2) a distributed GC, which

offloads object tracing to memory servers so that tracing is

performed closer to data; and (3) a swap system in the OS

kernel that works with the runtime to swap page data effi-

ciently. An evaluation of Semeru on a set of widely-deployed

systems shows very promising results.

1 Introduction
The idea of resource disaggregation has recently attracted

a great deal of attention in both academia [16, 45, 49, 87]

and industry [3, 33, 39, 52, 65]. Unlike conventional data-

centers that are built with monolithic servers, each of which

tightly integrates a small amount of each type of resource (e.g.,
CPU, memory, and storage), resource-disaggregated datacen-

ters contain servers dedicated to individual resource types.

Disaggregation is particularly appealing due to three major

advantages it provides: (1) improved resource utilization: de-

coupling resources and making them accessible to remote

processes make it much easier for a job scheduler to achieve

full resource utilization; (2) improved failure isolation: any

server failure only reduces the amount of resources of a par-

ticular type, without affecting the availability of other types

of resources; and (3) improved elasticity: hardware-dedicated

servers make it easy to adopt and add new hardware.

State of the Art. Architecture [10, 22, 23, 58] and network-

ing [7, 30, 46, 55, 72, 83, 86, 88] technologies have matured

to a point at which data transfer between servers is fast enough

for them to execute programs collectively. LegoOS [87] pro-

vides a new OS model called splitkernel, which disseminates

traditional OS components into loosely coupled monitors,

each of which runs on a resource server. InfiniSwap [49]

is a paging system that leverages RDMA to expose mem-

ory to applications running on remote machines. FaRM [37]

is a distributed memory system that uses RDMA for both

fast messaging and data access. There also exists a body of

work [12, 28, 38, 60, 61, 64, 65, 73, 77, 94, 96, 97, 105] on

storage disaggregation.

1.1 Problems

Although RDMA provides efficient data access among remote

access techniques, fetching data from remote memory on a

memory-disaggregated architecture, is time consuming, incur-

ring microsecond-level latency that cannot be handled well

by current system techniques [20]. While various optimiza-

tions [37, 38, 49, 84, 87, 105] have been proposed to reduce

or hide fetching latency, such techniques focus on the low-

level system stack and do not consider run-time semantics of

a program, such as locality.

Improving performance for applications that exhibit good
locality is straightforward: the CPU server runs the program,

while data are located on memory servers; the CPU server has

only a small amount of memory used as a local cache1 that

stores recently fetched pages. A cache miss triggers a page

fault on the CPU server, making it fetch data from the memory

server that hosts the requested page. Good locality reduces

cache misses, leading to improved application performance.

As a result, a program itself needs to possess excellent spa-
tial and/or temporal locality to be executed efficiently under

current memory-disaggregation systems [7, 8, 49, 87].

This high requirement of locality creates two practical

challenges for cloud applications. First, typical cloud appli-

cations are written in managed languages that execute atop a

managed runtime. The runtime performs automated memory

management using garbage collection (GC), which frequently

traces the heap and reclaims unreachable objects. GC is a

typical graph workload that performs reachability analysis

over a huge graph of objects connected by references. Graph

traversal often suffers from poor locality, so GC running on

the CPU server potentially triggers a page fault as it follows

each reference. As shown in §2, memory disaggregation can

increase the duration of GC pauses by >10×, significantly

degrading application performance.

1In this paper, “cache” refers to local memory on the CPU server.
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Second, to make matters worse, unlike native programs

whose data structures are primarily array-based, managed

programs make heavy use of object-oriented data struc-

tures [74, 100, 101], such as maps and lists connected via

pointers without good locality. To illustrate, consider a Spark

RDD — it is essentially a large list that references a huge

number of element objects, which can be distributed across

memory servers. Even a sequential scan of the list needs to ac-

cess arbitrarily located elements, incurring high performance

penalties due to frequent remote fetches.

In essence, managed programs such as Spark, which are

typical cloud workloads that resource disaggregation aims

to benefit, have not yet received much support from existing

resource-disaggregated systems.

1.2 Our Contributions
Goal and Insight. The goal of this project is to design a

memory-disaggregation-friendly managed runtime that can

provide superior efficiency to all managed cloud applications

running in a memory-disaggregated datacenter. Our major

drive is an observation that shifting our focus from low-level,

semantics-agnostic optimizations (as done in prior work) to

the redesign of the runtime that improves data placement,

layout, and usage, can unlock massive opportunities.

To achieve this goal, our insights are as follows. To exploit

locality for GC, most GC tasks can be offloaded to memory

servers where data is located. As GC tasks are mostly mem-

ory intensive, this offloading fits well into a memory server’s

resource profile: weak compute and abundant memory. Mem-

ory servers can perform some offloaded GC tasks — such as

tracing objects — concurrently with application execution.

Similarly, other GC tasks — such as evacuating objects and

reclaiming memory — can be offloaded to memory servers,

albeit while application execution is paused. Furthermore,

evacuation can improve application locality by moving ob-

jects likely to be accessed together to contiguous memory.

Semeru. Following these insights, we develop Semeru,2 a

distributed Java Virtual Machine (JVM) that supports efficient

execution of unmodified managed applications. As with prior

work [49, 87], this paper assumes a setting where processes

on each CPU server can use memory from multiple memory

servers, but no single process spans multiple CPU servers.

Semeru’s design sees three major challenges:

The first challenge is what memory abstraction to provide.

A reachability analysis over objects on a memory server

requires the server to run a user-space process (such as a

JVM) that has its own address space. As such, the same

object may have different virtual addresses between the CPU

server (that runs the main process) and its hosting memory

server (that runs the tracing process). Address translation for

each object can incur large overheads.

To overcome this challenge, Semeru provides a memory

abstraction called the universal Java heap (UJH) (§3.1). The

2Semeru is the highest mountain on the island of East Java.

execution of the program has a main compute process running

on the CPU server as well as a set of “assistant” processes,

each running on a memory server. The main and assistant

processes are all JVM instances, and servers are connected

with RDMA over InfiniBand. The main process executes

the program while each assistant process only runs offloaded

memory management tasks. The heap of the main process

sees a contiguous virtual address space partitioned across the

participating memory servers, each of which sees and man-

ages a disjoint range of the address space. Semeru enables an

object to have the same virtual address on both the CPU server

and its hosting memory server, making it easy to separate an

application execution from the GC tasks.

The second challenge is what to offload. An ideal ap-

proach is to run the entire GC on memory servers while the

CPU server executes the program, so that memory manage-

ment tasks are performed (1) near data, providing locality ben-

efits, and (2) concurrently without interrupting the main exe-

cution. However, this approach is problematic because some

GC operations — notably evacuating (moving) and compact-

ing objects into a new region — must coordinate extensively

with application threads to preserve correctness. As a result,

many GC algorithms — including the high-performance GC

that our work extends — trace live objects concurrently with

application execution, but move objects only while applica-

tion execution is paused (i.e., stop-the-world collection).

We develop a distributed GC (§4) that selectively offloads

tasks and carefully coordinates them to maximize GC per-

formance. Our idea is to offload tracing to memory servers

concurrently with application execution. Tracing computes a

transitive closure of live objects from a set of roots. It does

nothing but pointer chasing, which would be a major bottle-

neck if performed at the CPU server. To avoid this bottleneck,

Semeru lets each memory server trace its own objects, as

opposed to bringing them into the CPU server for tracing.

Tracing is a memory-intensive task that does not need

much compute [27] but benefits greatly from being close to

data. To leverage memory servers’ weak compute, memory

servers trace their local objects continuously while the CPU

server executes the main threads. Tracing also fits well into

various hardware accelerators [69, 85], which future memory

servers may employ. The CPU server periodically stops the

world for memory servers to evacuate live objects (i.e., copy

them from old to new memory regions) to reclaim memory.

Object evacuation provides a unique opportunity for Semeru
to relocate objects that may potentially be accessed together

into a contiguous space, improving spatial locality.

The third challenge is how to efficiently swap data. Exist-

ing swap systems such as InfiniSwap [49] and FastSwap [11]

cannot coordinate with the language runtime and have bugs

when running distributed frameworks such as Spark (§2). Mel-

lanox provides an NVMe-over-fabric (NVMe-oF) [1] driver

that allows the CPU server to efficiently access remote stor-

age using RDMA. A strawman approach here is to mount
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Figure 1: Slowdowns of two representative Spark applications under disaggregated memory; NVMe-oF was used for data swapping. Spark

was executed over OpenJDK 12 with its default (Garbage First) GC. The four groups for each program report the slowdowns of the nursery

(young) GC, full-heap GC, mutator, and end-to-end execution. Each group contains three bars, reporting the execution times under three cache

configurations: 100%, 50%, and 25%. Each configuration represents a percentage of the application’s working set that can fit into the CPU

server’s local DRAM. Execution times of the 50% and 25% configurations are normalized to that of 100%.

remote memory as RAMDisks and use NVMe-oF to swap

data. However, this approach does not work in our setting

where remote memory is subject to memory-server tracing

and compaction, precluding it from being used as RAMDisks.

To this end, we modify the NVMe-oF implementation (§5) to

provide support for remote memory management. InfiniBand

gather/scatter is used to efficiently transfer pages. We also de-

velop new system calls that enable effective communications

between the runtime and the swap system.

Results. We have evaluated Semeru using two widely-

deployed systems – Spark and Flink – each with a represen-

tative set of programs. Our results demonstrate that Semeru
improves the end-to-end performance of these systems by an

average of 2.1× and 3.7× when the cache size is 50% and

25% of the heap size, application performance by an average

of 1.9× and 3.3×, and GC performance by 4.2× and 5.6×,

respectively, compared to running these systems directly on

NVM-oF where remote accesses incur significant latency

overheads. These promising results suggest that Semeru re-

duces the gap between memory disaggregation and managed

cloud applications, taking a significant step toward efficiently

running such applications on disaggregated datacenters.

Semeru is publicly available at https://github.com/

uclasystem/Semeru.

2 Motivation
We conducted experiments to understand the latency penal-

ties that managed programs incur on existing disaggregation

systems. We first tried to use existing disaggregation systems

including LegoOS [87], InfiniSwap [49], and FastSwap [11].

However, LegoOS does not yet support socket system calls

and cannot run socket-based distributed systems such as

Spark. Under InfiniSwap and FastSwap, the JVM was fre-

quently stuck — certain remote fetches never returned.

Background of G1 GC. To collect preliminary data, we

set up a small cluster with one CPU and two memory servers,

using Mellanox’s NVMe-over-fabric (NVMe-oF) [1] protocol

for data swapping, mounting remote memory as a RAMDisk.

On this cluster, we ran two representative Spark applications:

Triangle Counting (TC) from GraphX and KMeans from

MLib with the Twitter graph [63] as the input. We used

OpenJDK 12 with its high-performance Garbage First (G1)
GC, which is the default GC recommended for large-scale

processing tasks, with a 32GB heap. G1 is a region-based,
generational GC that most frequently traces the young genera-

tion (i.e., nursery GC) and occasionally traces both young and

old generations (i.e., full-heap GC). This is based on the gen-
erational hypothesis that most objects die young and hence

the young generation contains a larger fraction of garbage

than the old generation [93].

Under G1, the memory for both the young and old genera-

tions is divided into regions, each being a contiguous range

of address space. Objects are allocated into regions. Each

nursery GC traces a small number of selected regions in the

young generation. After tracing, live objects in these regions

are evacuated (i.e., moved) into new regions. Objects that

have survived a number of nursery GCs will be promoted to

the old generation and subject to less frequent tracing. Each

full-heap GC traces the entire heap, and then evacuates and

compacts a subset of regions.

Performance. The performance of these applications is re-

ported in Figure 1. In particular, we measured time spent on

nursery and full-heap collections, as well as end-to-end execu-

tion time. Three cache configurations (shown in three bars of

each group) were considered, each representing a particular

percentage of the application’s working set that can fit into

the CPU server’s local DRAM.

Despite the many block-layer optimizations in the NVMe-

oF swap system, performance penalties from remote fetching

are still large. Under the 25% cache configuration, the average

slowdown for these applications is 10.6×. Note that for a

typical Big Data application with a large working set (e.g., 80–

100GB), 25% of the working set means that the CPU server
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Figure 2: Semeru’s heap and virtual page management.

needs at least 20–25GB DRAM for a single application to

have a ∼10× slowdown. Considering a realistic setting where

the CPU server runs multiple applications, there is a much

higher DRAM requirement for the CPU server, posing a

practical challenge for disaggregation.

Takeaway. Disaggregated memory incurs a higher slow-

down for the GC than the main application threads (i.e., mu-
tator threads in GC literature terminology) — this is easy

to understand because compared to the mutator (which, for

example, manipulates large Spark RDD arrays), the GC has

much worse locality. Moreover, KMeans suffers much more

from remote memory than TC due to significantly increased

full-heap GC time. This is because KMeans uses a number

of persisted RDDs (that are held in memory indefinitely).

Although TC also persists RDDs, those RDDs are too large

to be held in memory; as such, Spark releases them and re-

constructs them when they are needed. This increases the

amount of computation but reduces the GC effort under dis-

aggregation. However, since memoization is an important

and widely used optimization, it is not uncommon for data

processing applications to hold large amounts of data in mem-

ory. As a result, these applications are expected to suffer from

large-working-set GC as well.

These results call for a new managed runtime that can de-

liver good performance under disaggregated memory without

requiring developers to be aware of and reason about the

effects of disaggregation during development.

3 Semeru Heap and Allocator
This section discusses the design of Semeru’s memory ab-

straction. In order to support legacy applications developed

for monolithic servers and to hide the complexity of data

movement, we propose the universal Java heap (UJH) mem-

ory abstraction. We first describe this abstraction, and then

discuss object allocation and management.

3.1 Universal Java Heap

The main process (i.e., a JVM instance) running on the CPU

server sees a large contiguous virtual address space, which

we refer to as the universal Java heap. The application can

access any part of the heap regardless of the physical loca-

tions. This contiguous address space is partitioned across

memory servers, each of which provides physical memory

that backs a disjoint region of the universal heap. The CPU

server also has a small amount of memory, but this memory

will serve as a software-managed, inclusive cache and hence

not be dedicated to specific virtual addresses. Mutator (i.e.,
application) threads run on the CPU server. When they access

pages that are uncached on the CPU server, a page fault is trig-

gered, and the paging system swaps pages that contain needed

objects into the CPU server’s local memory (cache). When

the cache is full, selected pages are swapped out (evicted) to

their corresponding memory servers, as determined by their

virtual addresses.

Figure 2(a) provides an overview of the UJH. In addition

to the main process running on the CPU server, Semeru also

runs a lightweight JVM (LJVM) process on each participat-

ing memory server that performs tracing over local objects.

This LJVM3 is specially crafted to contain only the modules

of object tracing and memory compaction, with support for

RDMA-enabled communication with the CPU server. Due

to its simplicity (i.e., the modules of compiler, class loader,

and runtime as well as much of the GC are all eliminated),

the LJVM has a very short initialization time (e.g., millisec-

onds) and low memory footprint (e.g., megabytes of memory

for tracing metadata). Hence, a memory server can easily

run many LJVMs despite its weak compute (i.e., each for a

different CPU-server process).

When the LJVM starts, it aligns the starting address of its

local heap with that of its corresponding address range in the

UJH. As a result, each object has the same virtual address

on the CPU and memory servers, enabling memory servers

to trace their local objects without address translation. All

physical memory required at each memory server is allocated

when the LJVM is launched and pinned down during the

entire execution of the program.

Coherency. This memory abstraction is similar in spirit

to distributed shared memory (DSM) [66], which has been

studied for decades. However, different from DSM, which

needs to provide strong coherency between servers, Semeru’s

coherency protocol is much simpler because memory servers,

which collectively manage the address space, do not execute

3It is technically no longer a JVM since it does not execute Java programs.
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any mutator code. The CPU server has access to the entire

UJH, but each memory server can only access data in the

address range it manages. In Semeru, each non-empty virtual

page is in one of two high-level states, cached (in the CPU

server) or evicted (to a memory server). When the CPU server

accesses an evicted virtual page, it swaps the page data into

its cache and changes the page’s state to cached.

3.2 Allocation and Cache Management

Object allocation is performed at the CPU server. Allocation

finds a virtual space that is large enough to accommodate

the object being allocated. We adopt G1’s region-based heap

design where the heap is divided into regions, which are con-

tiguous segments of virtual memory. The region-based design

enables modular tracing and reclamation — each memory

server hosts a set of regions; a memory server can trace any

region it hosts independently of other regions, thereby en-

abling memory servers to perform tracing in parallel (while

the CPU server executes the program). Modular tracing is

enabled by using remembered sets, discussed shortly in §4.

When an object in a region is requested by the CPU server,

the page(s) containing the object are swapped in. At this point,

the region is partially cached and registered at the CPU server

into an active region list. Semeru uses a simple LRU-based

cache management algorithm to evict pages. The region is

removed from this list whenever all its pages are evicted.

Upon an allocation request, the Semeru allocator finds the

first region from this list that has enough space for the new ob-

ject. If none of these regions can satisfy the request, Semeru
creates a new region and allocates the object there. Allocation

is based upon an efficient bump pointer algorithm [57], which

places allocated objects contiguously and in allocation or-

der. Bump pointer allocation maintains a position pointer for

each region, pointing to the starting address of the free space.

Bump pointer allocation maintains a position pointer for each

region that points to the starting address of the region’s free

space. For each allocation, the pointer is simply “bumped

up” by the size of the allocated object. Very large objects are

allocated to a special heap area called the humongous space.

1 struct region {
2 uint64_t start; // start address
3 uint64_t bp; // bump pointer
4 uint64_t num_obj; // total # objects
5 uint64_t cached_size; // size of pages in CPU cache
6 uint16_t survivals; // # evacuations survived
7 remset* rem_set; // remembered set (Section 4)
8 ...
9 }

Figure 3: A simplified definition for a region descriptor in Semeru.

The CPU server maintains, for all regions, their state de-
scriptors. Each region descriptor is a struct, illustrated in

Figure 3. Descriptors are used in both allocation and garbage

collection. For example, start and bp are used for alloca-

tion; they can also be used to calculate the size of allocated

objects. survivals indicates the total number of evacuation

phases that the regions’ objects have survived. It can be used,

together with num_obj, to compute an age measurement for

the region. rem_set is used as the tracing roots, which will

be discussed shortly in §4.2.

Cache Management. Semeru employs a lazy write-back

technique for allocations. Each allocated object stays in the

CPU server’s cache and Semeru does not write the object

back to its corresponding memory server until the pages con-

taining the object are evicted. For efficiency, only dirty pages

are written back. Figure 2(b) shows the state machine of a

virtual page. Each virtual page is initially in the Init state.

Upon an object allocation on a page, the object is placed in

the cache of the CPU server and its virtual page is marked

as Cached, indicating that the object is currently being ac-

cessed by the CPU server. Evicted pages are swapped out to

memory servers. Virtual pages freed by the GC are unmapped
from their physical pages (their corresponding page table en-

tries are not freed) and have their states reset to Init. This

state machine is managed solely by the CPU server; memory

servers do not run application code and hence do not need to

know the state of each page (although they need to know the

state of regions for tracing).

4 Semeru Distributed Garbage Collector
Semeru has a distributed GC that offloads tracing — the most

memory-intensive operation in the GC (as it visits every live

object) — to memory servers. Tracing is a task that fits well

into the capabilities of a memory server with limited compute.

That is, traversing an object graph by chasing pointers does

not need strong compute, but benefits greatly from being

close to data. In addition to memory-server tracing that runs

continuously, Semeru periodically conducts a highly parallel

stop-the-world (STW) collection phase to free cache space

on the CPU server and reclaim memory on memory servers

by evacuating live objects.

Design Overview. Although regions have been used in

prior heap designs [36, 79], there are two unique challenges

in using regions efficiently for disaggregated memory.

The first challenge is how to enable modular tracing for
regions. Prior work such as Yak [79] builds a remembered set
(remset) for each region that records references coming into

objects in the region from other regions. These references,

which are recorded into the set by instrumentation code called

a write barrier, when the mutator executes each object write
of a non-null reference value, can be used as additional roots
to traverse the object graph for the region. However, none of

the existing techniques consider a distributed scenario, where

region tracing is done on memory servers, while their remsets

are updated by mutator threads on the CPU server. We pro-

pose a new distributed design of the remset data structure to

minimize the communication between the CPU and memory

servers. Our remset design is discussed in §4.1.

The second challenge is how to split the GC tasks between
servers. Our distributed GC has two types of collections:
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Figure 4: Semeru GC overview: the MSCT (on memory servers)

traces evicted regions; the CSSC (coordinated between CPU and

memory servers) traces cached regions and reclaims all regions.

Memory Server Concurrent Tracing (MSCT, §4.2):
Each memory server performs intra-region tracing over re-
gions for which most pages are evicted, as a continuous task.

Tracing runs concurrently on memory servers by leveraging

their cheap but idle CPU resources. One can think of this

as a background task that does not add any overhead to the

application execution. The goal of MSCT is to compute a

live object closure for each region at memory servers without

interfering with the main execution at the CPU server. As a

result, by the time a STW phase (i.e., CSSC) runs, much of

the tracing work is done, minimizing the STW pauses.

CPU Server Stop-The-World Collection (CSSC, §4.3):
The CSSC is the main collection phase, coordinated between

the CPU and memory servers to reclaim memory. During this

phase, memory servers follow the per-region object closure

computed during the MSCT to evacuate (i.e., move out) live

objects. Old regions are then reclaimed as a whole. Also

during this phase, the CPU server traces and reclaims regions

for which most pages are cached. Such regions are not traced

by the MSCT. For evacuated objects, pointers pointing to

them need to be updated in this phase as well.

Figure 4 shows an overview of these two types of collec-

tions. While the CPU server runs mutator threads, memory

servers run the MSCT that continuously traces their hosted

regions. When the CPU server stops the world and runs the

CSSC, memory servers suspend the MSCT and coordinate

with the CPU server to reclaim memory.

4.1 Design of the Remembered Set

The remset is a data structure that records, for each region, the

references coming into the region. The design of the remset

is much more complicated under a memory-disaggregated

architecture due to the following two challenges. First, in a

traditional setting, to represent an inter-region reference (e.g.,
from field o.f to object p), we only need its source location —

the address of o.f . This is because p can be easily obtained by

following the reference in o.f . However, in our setting, both

o.f and p need to be recorded for efficiency. This is because

o and p can be on different servers and naïvely following the

reference in o.f can trigger a remote access.

The second challenge is that the remset of each region

is updated by the write barrier executed on the CPU server,

while the region may be traced by a memory server. As a

result, the CPU server has to periodically send the remsets to

Figure 5: Semeru’s remset design; the source and target queues are

implemented as bitmaps for space efficiency.

memory servers for them to concurrently trace their regions.

In addition, after memory servers evacuate objects, they need

to send update addresses for the remsets back to the CPU

server for it to update the sources of references (e.g., o.f may

point to a moved object p).

Figure 5 shows our remset. To represent the source of a

reference, we leverage OpenJDK’s card table, which groups

objects into fixed-sized buckets (i.e., cards) and tracks which

buckets contain references. A card’s ID can be easily com-

puted (i.e., via a bit shift) from a memory address and yet we

can enjoy the many space optimizations already implemented

in OpenJDK (e.g., for references on hot cards that contain

references going to the same region [36], their sources need

to be recorded only once). As such, each incoming reference

is represented as a pair 〈card, tgt〉 where card is the (8-

byte) index of the card representing the source location of the

reference, and tgt is the (8-byte) address of the target object.

Shown on the left side of Figure 5 are inter-region refer-

ences recorded by the write barrier of each mutator thread. To

reduce synchronization costs, each mutator thread maintains

a thread-local queue storing its own inter-region references.

The CPU-server JVM runs a daemon (transfer) thread that pe-

riodically moves these references into the remsets of their cor-

responding regions (i.e., determined by the target addresses).

For each region, a pointer to its remset is saved in the region’s

descriptor (Figure 3), which can be used to retrieve the remset

by the CPU server. When a reference is recorded in a remset,

its card and tgt are decoupled and placed separately into a

source and a target queue.

Target queues are sent (together with stack references)

— during each CSSC via RDMA — to their corresponding

memory servers, which use them as roots to compute a closure

over live objects. Source queues stay on the CPU server and

are used during each CSST to update references if their target

objects are moved during evacuation. The benefit of using

a transfer thread is that mutator threads simply dump inter-

region references, while the work of separating sources and

targets and deduplicating queues (based on a simple hash-

based data structure) is done by the transfer thread, which

does not incur overhead on the main (application) execution.

4.2 Memory Server Concurrent Tracing (MSCT)

The MSCT brings significant efficiency benefits because (1)

tracing computation runs where data is located, avoiding
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high swapping costs, and (2) tracing regions concurrently on

multiple memory servers has zero impact on the execution of

the main application on the CPU server.

The MSCT continuously traces regions (until the CSSC

starts) in the order of a region’s age (i.e., the smaller the value

of survivals, the younger a region) and the percentage of

evicted pages. That is, younger regions with more evicted

pages are traced earlier. This is because (1) younger regions

are likely to contain more garbage (according to the genera-

tional hypothesis), and (2) evicted pages are not touched by

the CPU server. Regions with a low ratio of evicted pages are

not traced since cached objects may be frequently updated

by the CPU server. Tracing such regions would be less prof-

itable because these updates can change pointer structures

frequently, making the tracing results stale.

Identifying Roots. There are two types of roots for the

MSCT to trace a region: (1) objects referenced by stack vari-

ables and (2) cross-region references recorded in the region’s

remset. Both types of information come from the CPU server

— during each CSSC (§4.3), the CPU server scans its stacks,

identifies objects referenced by stack variables, and sends

this information, together with each region’s remset, to its

corresponding memory server via RDMA.

Live Object Marking. The MSCT computes a closure of

reachable objects in each region by traversing the object sub-

graph (within the region) from its roots. When live objects

are traversed, we remember them in a per-region bitmap

live_bitmap where each bit represents a contiguous range

of 8 bytes (because the size of an object is always a multiple

of 8 bytes), and the bit is set if these bytes host a live object.

Furthermore, since live objects will be eventually evacuated,

we compute a new address for a live object as soon as it is

marked. The new address indicates where this object will be

moved to during evacuation. New addresses are recorded in

a forward table (i.e., a key–value store) where keys are the

indexes of the set bits in live_bitmap and values are the

new addresses of the live objects represented by these bits.

Each new address is represented as an offset. At the start

of the MSCT, it is unclear where these objects will be moved

to (since evacuation will not be performed until a CSSC). As

a result, rather than using absolute addresses, we use offsets

to represent their relative locations. Their actual addresses

can be easily computed using these offsets once the starting

address of the destination space is determined.

Offset computation is in traversal order. For example, the

first object reached in the graph traversal receives an offset 0;

the offset for the second object is the size of the first object.

This approach dictates that objects that are contiguous in
traversal will be relocated to contiguous space after evacu-
ation. Hence, the traversal order, which determines which

objects will be contiguously placed after evacuation, is critical

for improving data locality and prefetching effectiveness.

For instance, if the traversal algorithm uses DFS, objects
connected by pointers will be relocated to contiguous memory

(based on an observation that such objects are likely in the

same logical data structure and hence accessed contiguously).

As another example, if we use BFS to traverse the graph,

objects at the same level of a data structure (such as elements

of an array) will be relocated to contiguous memory; this

can be useful for streaming applications that may do a quick

linear scan of all such element objects (i.e., BFS) rather than

fully exploring each element (i.e., DFS). To support these

different heuristics, Semeru allows the user to customize the

traversal algorithm for different workloads.

Tracing Correctness. There are two potential concerns in

tracing safety. First, if a region has a cached page, can the

memory server safely trace the region (given that the CPU

server may update the cached page)? For example, if an

update happens after tracing completes, would the tracing

results still be valid? Second, the root information may be out

of date when a region is traced because the CPU server may

have updated certain inter-region references or stack variables

since the previous CSSC (where roots are computed and sent).

Is it safe to trace with such out-of-date roots?

The answer to both questions is that it is still valid for

a memory server to trace a region over an out-of-date ob-

ject graph. An important safety property is that objects un-
reachable in any snapshot of the object graph will remain
unreachable in any future snapshots (i.e., “once garbage, al-

ways garbage”). Thus the transitive closure may include dead

objects (due to pointer changes the memory server is not

aware of), but objects not in the closure are guaranteed to be

dead (except for newly allocated objects, discussed next).

However, tracing using an out-of-date object graph may

lead to two issues. First, the CPU server may allocate new

objects into a region after the region is traced on a memory

server. These new objects are missed by the closure com-

putation. To solve this problem, we identify all objects that

have been allocated into the region since the last CSSC; such

objects are all marked live at the time the region is reclaimed

in the next CSSC so that no live object is missed. Newly

allocated objects can be identified by remembering the value

of the bump pointer (bp in Figure 3) at the the last CSSC and

comparing it with the current value of bp — the difference

between them captures objects allocated since the last CSSC.

Such handling is conservative, because some of the objects

may be dead already but are still included in the closure.

The second issue is that some objects in the region may lose

their references and become unreachable after tracing is done.

These dead objects are still in the closure. For this issue, we

take a passive approach by not doing anything — we simply

let these dead objects stay in the closure and be moved during

evacuation. These dead objects will be identified in that next

MSCT and collected during the next CSSC. Essentially, we

delay the collection of these objects by one CSSC cycle. Note

that datacenter applications are often not resource strapped;

hence, delaying memory reclamation by one GC cycle is a

better choice than an aggressive alternative that retraces the
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region before reclamation (which can increase the length of

each CSSC pause).

Handling CPU Evictions. A significant challenge is that

concurrent tracing of a region can potentially race with the

CPU server evicting a page into the region. To complicate

matters, memory servers are not aware of remote reads/writes

due to Semeru’s use of one-sided RDMA (for efficiency).

Although recent RDMA libraries (such as LITE [91]) pro-

vide rich synchronization support, our use of RDMA at the

block layer has many specific needs that are not met by these

libraries, which were developed for user-space applications.

To overcome this challenge, we develop a simple

workaround: each memory server reserves the first 4 bytes of
each region to store two tags 〈dirty , ver〉. The first 2 bytes

encode a boolean dirty tag and the second 2 bytes encode

an integer version tag. These two tags are updated by the

CPU server both before and after evicting pages into a region,

and checked by the memory server both before and after the

region is traced. Figure 6 shows this logic.

if

else

Figure 6: Detection of evictions at a memory server.

Before evicting pages, the CPU server assigns 1 to the dirty

tag and a new version number v1 to the version tag (Line 1).

This 4-byte information is written atomically by the RDMA

network interface controller (RNIC) into the target region.

After eviction, the CPU server clears the dirty tag and writes

another version number v2 (Line 3). The memory server reads

these 4 bytes atomically and checks the dirty tag (Line 4). If

it is set, this indicates a potential eviction; the memory server

skips this region and moves on to tracing the next region

(Line 10). Otherwise, the region is traced (Line 6). After

tracing, this metadata is retrieved again and the new version

tag is compared with the pre-tracing version tag. A difference

means that an eviction may have occurred and the tracing

results are discarded (Line 8).

The algorithm is sufficient to catch all concurrent evictions.

The correctness can be easily seen by reasoning about the

following three cases. (1) If Line 1 comes before Line 4

(which comes before Line 3), tracing will not be performed.

(2) If Line 1 comes after Line 4 but before Line 8, the version

check at Line 8 will fail. (3) If Line 1 comes after Line 7, the

eviction has no overlap with the tracing and thus the tracing

results are legitimate.

This algorithm introduces overheads due to extra write-

backs. However, by batching pages from the same region and

employing InfiniSwap’s gather/scatter, we manage to reduce

this overhead to about 5%, which can be easily offset by the

savings achieved by tracing objects on memory servers (see

§6.4). Concurrent CPU-server reads are allowed. Similar

to tracing out-of-date object graphs, fetching a page into the

CPU server can potentially lead to new objects and pointer

updates to the page. However, our aforementioned handling

is sufficient to cope with such scenarios.

4.3 CPU Server Stop-The-World Collection (CSSC)
CSSC Overview. As the major collection effort, the CSSC

runs when (1) the heap usage exceeds a threshold, e.g., N%

of the heap size, or (2) Semeru observes large amounts of

swapping. The CPU server suspends all mutator threads and

collaborates with memory servers to perform a collection.

Our goal is to (1) reclaim cache memory at the CPU server

and (2) provide a STW phase for memory servers to safely

reclaim memory by evacuating live objects in the traced re-

gions. Figure 7 overviews the CSSC protocol; edges represent

communications of GC metadata between CPU and memory

servers. The CSSC has four major tasks.

Task 1: The CPU server prepares information for memory

servers to reclaim regions. Such information includes which

regions to reclaim at each memory server ( 1 ) and newly

allocated objects for each region to be reclaimed ( 2 ). As

discussed in §4.2, newly allocated objects need to be marked

live for safety and are identified by differencing the current

value of bp and its old value (old_bp) captured in the last

CSSC. This information is sent to memory servers ( 2 → 10 )

before they reclaim regions. Before evacuation happens, each

memory server must ensure that regions to be evacuated have

all their pages evicted, to avoid inconsistency. To this end,

the CPU server evicts all pages for each selected region ( 1 ).

Task 2: Memory servers reclaim selected regions by mov-

ing out their live objects ( 10 – 14 ). For these regions, their

tracing (i.e., closure computation) is already performed dur-

ing the MSCT, and hence, reclamation simply follows the

closure to copy out live objects (i.e., object evacuation) from

old regions into new ones. Object evacuation is done using a

region’s forward table, which is computed in traversal order

to improve locality, as discussed earlier in §4.2. Live objects

from multiple old regions can be compacted into a new re-

gion to reduce fragmentation. Moreover, each memory server

attempts to coalesce regions connected by pointers, again, to

improve locality — if region A has references from region B,

Semeru attempts to copy live objects from A and B into the

same (new) region. The new addresses of these objects can

be computed easily by adding their offsets from the forward

tables onto the base addresses of their target spaces (which

may be brand-new or half-filled regions).

Since objects are moved, their addresses have changed

and hence pointers (stack variables or fields of other objects)

referencing the objects must be updated. Pointer updates,

however, must be done through the CPU server, because

pointers can be scattered across the cache and other memory

servers. Thus after reclaiming regions, each memory server
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CSSC at CPU Server 
Select regions for evacuation on mem 
servers; evict all their cached pages 

1

2 Notify memory servers of these 
regions and their bp-old_bp 

3 Find regions where most pages 
are cached and trace them 

4 Evacuate their objects and write 
new regions back to mem servers 

6 Update stack ref. and propagate 
pointer updates to mem servers

5 old_bp = bp

CSSC at Memory Server 

Suspend MSCT 9

Evacuate their live objects 11
Send updated addresses to CPU 
Server 12

regions 
bp diffs

Update local pointers whose 
targets have changed 13

Identify newly allocated objects 
for these regions 10

Scan stacks/RemSet and send root 
info to memory servers  

Send CPU server dead sources 14
7 Remove dead entries from RemSets

dead 
source 

8
Reset each region to be traceable 15

roots Resume MCST 16

Figure 7: Semeru’s CSSC protocol: edges represent communications

in the RDMA control path; bp−old_bp represents the difference

between the current bp and the value of bp captured at the last CSSC.

sends the updated addresses of moved objects back to the CPU

server ( 12 ). If a cached object references a moved object, the

CPU server updates the pointer directly; the CPU server must

also propagate these update requests to other memory servers

( 6 → 13 ), which may host objects referencing moved objects.

Task 3: While memory servers reclaim their regions, the

CPU server reclaims regions where most objects are cached.

Since these regions have not been traced during the MSCT,

the CPU server has to trace them to build the closure and

then reclaim them using the same object evacuation algorithm

( 3 and 4 ). Unlike memory-server region reclamation, the

CPU server has to additionally write new regions back to their

respective memory servers after object evacuation to ensure

consistency ( 4 ). Next, the CPU server remembers the current

value of bp into old_bp ( 5 ) for use in the next CSSC.

Task 4: Since most dead objects have already been re-

claimed, the CPU server scans the remsets to remove dead
entries ( 7 ). This is important since otherwise remsets can

keep growing and dead entries would become memory leaks.

Removing dead entries at the CPU server requires memory

servers to provide information about which objects are dead

(14 → 7 ) because most regions are traced and reclaimed at

memory servers. The CPU server then scans each reference

in each region’s remset and removes those references with

dead targets. Finally, the CPU server scans its stacks and the

updated remset of each region to compute new roots, which

are sent to memory servers for the next round of MSCT ( 8 ).

Memory servers reset the metadata (e.g., live_map and for-

ward table) so that the next round of MSCT can trace each

region from scratch ( 15 and 16 ).

Since each CSSC only collects selected regions, it may not

reclaim enough memory for the application to run. In such

rare cases (e.g., one or two in our experiments with each Spark

application), Semeru runs a full-heap scan (i.e., the same as

a regular full-heap GC in G1), which brings all objects into

the cache for tracing and collection. Since CSSC relies on

remset-based modular tracing, it cannot reclaim dead objects

that are (1) in different regions and (2) form cycles. Such

objects have to be reclaimed at a full-heap GC.

5 The Semeru Swap System
We build Semeru’s swap system by piggybacking on Mel-

lanox’s NVMe-oF implementation [1]. This section briefly

describes our modifications. During booting, the CPU server

sends JVM metadata (such as metadata of loaded classes) in

its native heap to memory servers, which use such informa-

tion to launch LJVMs. On each memory server, the LJVM

receives these native objects and reconstructs their virtual

tables for function calls to execute correctly on these objects.

Block Layer. We modify NVMe-oF’s block layer to add

support for remote memory management. The remote physi-

cal memory that backs the Java heap on all memory servers

is registered as a whole as an RDMA buffer and pinned down

throughout the execution. As a simple optimization, we re-

move block-layer staging queues and merge several block I/O

(BIO) requests into a single I/O request, turning them directly

into RDMA messages.

Merging BIOs enables the use of InfiniBand’s gather-

scatter for data transfer. For each BIO request generated

by the block layer, it often contains multiple physical pages

to be transferred to a memory server. These physical pages

are not necessarily contiguous. One optimization here is in-

stead of generating multiple RDMA messages separately for

these physical pages, we amortize per-message overhead by

leveraging the scatter-gather technique so that these pages

can be processed using a single RDMA message. We also

develop thread-local RDMA message pools so that multiple

threads can perform their own RDMA message creation and

initialization without needing synchronization.

RDMA Management. All communications between the

CPU and memory servers are through reliable one-sided

RDMA. We distinguish these communications based on data

types: (1) page fetching and evictions, which dominate the

communications, go through a data path inside the kernel

(to provide transparency to applications); (2) signals and

GC information (e.g., all messages in Figure 7), are passed

through a control path implemented as a user-space library

for efficiency. A user-space implementation benefits from

efficiency from raw RDMA (e.g., no overhead from system

calls); since the control path does not overlap with the data

path and transfers small amounts of information (i.e., only

inside each CSSC), our implementation can deliver good

performance for both control and data paths.

6 Evaluation
To implement Semeru, we wrote/modified 58,464 lines of

(non-comment) C/C++ code, including 43,838 lines for the

LJVM (based upon OpenJDK version 12.0.2) on memory

servers, 7,406 lines for the CPU-server JVM, and 7,220 lines

for the Linux kernel (4.11-rc8). Our kernel support contains

4,424 lines of C code for the paging system and RDMA
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management (based upon NVMe-oF), and 2,796 lines for the

modified block layer and memory management part as well

as new system calls.

Setup and Methodology. We ran Semeru in a cluster with

one CPU server and three memory servers. Each server has

two Xeon(R) CPU E5-2640 v3 processors, 128GB memory,

one 200GB SSD, and one 40 Gbps Mellanox ConnectX-3

InfiniBand network adapter. Servers are connected by one

Mellanox 100 Gbps InfiniBand switch. To emulate the weak

compute of memory servers, we let the LJVM on each mem-

ory server use only one core. All our experiments used a

32GB heap, 512MB regions, and 4K pages. The default swap

prefetching mechanism in Linux was used.

Unfortunately, we were only able to gain exclusive use of

a small cluster with four machines when evaluating Semeru.

Despite running on this small cluster, our experiments used

large-scale applications involving multiple memory servers,

representing a real-world use of Semeru. Adding more mem-

ory servers would not change the results because (1) memory

servers perform modular collection — they do not commu-

nicate with each other and hence not have scalability issues;

and (2) the CPU server only communicates with memory

servers during each CSSC — more memory servers would

only increase the control-path communication, which is mini-

mal. Adding CPU servers and running more processes would

increase the amount of tracing work on each memory server.

However, as shown in §6.3, tracing for a large Spark applica-

tion can only utilize 13% of each memory server’s compute

— one single core on each server can support simultaneous

tracing for ∼8 Spark applications.

Name Dataset Size
GraphX-ConnectedComponents (GCC)

Wikipedia English [5] 2GB
GraphX-PageRank (GPR)

Naïve-PageRank (NPR) Wikipedia Polish [5] 1GB

Naïve TriangleCounting Synthetic 2.5K points
1GB

(NTC) 10K edges

MLlib-Bayes Classifiers (MBC) KDD 2012 [4] 5GB

Table 1: Description of five Spark programs.

Name Dataset Size
Word Count (FWC) Wikipedia English [5] 2GB

KMeans (KMS)
Wikipedia English [5] 2GB

Connected Components (FCC)

Table 2: Description of three Flink batch-processing programs.

We evaluated Semeru with two widely deployed data analyt-

ics systems: Apache Spark (3.0.0) and Apache Flink (1.10.1).

Spark was executed under Hadoop 3.2.1 and Scala 2.12.11, us-

ing a set of five programs (listed in Table 1): PageRank (GPR)

and ConnectedComponents (GCC) from the GraphX [48] li-

braries, as well as Bayes Classifier (MBC) from the MLlib

libraries. We also included naïve PageRank (NPR) and naïve

TriangleCounting (NTC), implemented directly atop Spark.

Flink also ran on top of Hadoop version 3.2.1. Flink has

both streaming and batch-processing models. In this experi-

ment, we focused on the batch-processing model, in particular,

Map/Reduce programs. The programs and their datasets are

summarized in Table 2. These programs are selected based

on their popularity and usefulness, covering a spectrum of

text analytics, graph analytics, and machine learning tasks.

6.1 Overall Semeru Performance

We compared Semeru and the original OpenJDK 12 that runs

the G1 GC — the default GC in the JVM since OpenJDK

9. G1 is a concurrent GC that runs concurrent tracing as

the mutator thread executes and stops the world for memory

reclamation. G1 is designed for short latency (i.e., GC pauses)

at the cost of reduced throughput (i.e., concurrent tracing

slows down the mutator as it competes resources with the

mutator). We have tested other GCs as well and found that

G1 consistently outperforms all others in latency.

We ran G1 with two swap mechanisms: a local RAMDisk

and NVMe-oF, which connects the CPU server to remote

memory on the three memory servers. To use NVMe-oF, we

configured remote memory as remote RAMDisks, which host

data objects without supporting memory management. Se-
meru ran on our own swap system built on top of NVMe-oF

with added support for the remote heap and memory man-

agement. Each memory server hosts around one-third of

the 32GB Java heap. There are three cache configurations:

100%, 50%, and 25%. The 100% configuration is our base-

line, which represents the original OpenJDK’s performance

without any swapping.

Running Time. Figure 8 shows performance comparison

between these systems, for our eight programs, under the

three cache configurations. There is only one bar under the

100% cache configuration, representing the original perfor-

mance of G1 that does not perform swapping.

50% Cache 25% Cache

System Mutator GC All Mutator GC All
G1-RD 1.82× 2.79× 1.87× 3.16× 4.59× 3.23×

G1-NVMe 2.00× 4.44× 2.24× 3.85× 14.13× 4.58×
Semeru 1.06× 1.42× 1.08× 1.22× 2.67× 1.32×

Table 3: Overhead summary: overheads are calculated using the G1

performance under the 100% cache configuration as the baseline.

Table 3 summarizes the time overheads incurred by mem-

ory disaggregation on these systems. The baseline used to

calculate these overheads is the G1 performance under the

100% cache ratio (without any kernel and JVM modification).

On average, G1 has 1.87× and 2.24× end-to-end overhead

under RAMDisk and NVMe-oF, respectively, for the 50%

cache configuration. When the cache ratio reduces to 25%,

these overheads increase to 3.23× and 4.58×, respectively.

By offloading tracing and evacuation to memory servers and

improving the locality for the mutator threads, Semeru re-

duces these overheads, by 3.23 times overall, to 1.08× and

1.32× for the two cache ratios, respectively.

Our first observation here is that disaggregation incurs a

much higher overhead on GC than the mutator for Spark
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Figure 8: Performance comparisons between G1 under NVMe-oF (left bar of each group), G1 under RAMDisk (middle bar), and Semeru

(right bar) for three cache configurations: 100%, 50%, and 25%; each bar is broken down into mutator (bottom) and GC (top) time (second).

applications, and it is consistent with our motivating data

reported in §2. This is because GC algorithms inherently do

not possess good locality and, as a result, pay a higher penalty

for remote memory fetching than the mutator. This overhead

grows significantly when the cache size decreases. It is also

easy to see that accessing remote memory (via NVMe-oF)

incurs a higher overhead than accessing the local RAMDisk.

The second observation is that for Flink, which has much

less GC than Spark, Semeru can still considerably improve

its performance. An inspection found that Flink stores data

in the serialized form and implements operators that can pro-

cess data without creating objects for them. Flink allocates

long-lived data items directly in native memory and/or re-

served space in the old generation. Nevertheless, Semeru’s

optimizations are still effective. This is because the G1 GC

uses a disaggregation-agnostic policy to dynamically tune the

size of young generation. Since most objects in Flink die

in the young generation, the pause time of each young GC

is extremely short (e.g., less than 10 ms) and always meets

G1’s pause-time target. As such, G1 keeps increasing the

young generation size to reduce the GC frequency, making

the young generation quickly reach the size of the CPU cache.

However, the problem here is the young generation con-

tains large amounts of garbage, cached on the CPU server,

leaving little cache space for long-lived data. This causes

hot, long-lived data (e.g., in native memory) to be frequently

swapped in and out. In contrast, under Semeru’s region de-

sign, a CSSC is triggered when Semeru observes frequent

swapping. The CSSC reclaims garbage and compacts regions,

freeing up cache space for accommodating other hot data.

The third observation is that applications have different

levels of tolerance to fetching latency. For example, GCC and

GPR have an exceedingly high GC overhead because they

create large RDDs and persist them in memory. These RDDs

50% Cache 25% Cache

System Mutator GC All Mutator GC All
G1-RD 1.73× 2.31× 1.75× 2.65× 2.35× 2.56×

G1-NVMe 1.91× 4.20× 2.10× 3.31× 5.61× 3.69×

Table 4: Summary of performance improvements achieved by Se-
meru: improvements are computed with a

b
where a is the (mutator,

GC, or end-to-end) time under a system and cache configuration,

and b is Semeru’s time under the same configuration.

and their elements quickly become old and get promoted

to the old generation. G1 cannot reclaim much memory in

nursery GCs and, as such, most GCs scan the entire heap,

requiring many remote fetches. For other applications such

as Spark NPR, their GC performance is not as significantly

degraded because their executions generate many temporary

objects that die young (rather than old objects) — when a

nursery GC runs, most young objects are garbage cached

locally on the CPU server, and hence, they can be easily

reclaimed without triggering many remote fetches.

To make Semeru’s improvements clear, Table 4 reports

detailed improvement ratios under each configuration. It is

easy to see that Semeru improves the performance of both the

mutator and GC. On the mutator side, Semeru eliminates G1’s

concurrent marking — which runs on the CPU server in paral-

lel with application execution, competing for resources with

mutator threads and polluting the cache — and dynamically

improves locality (discussed in §4.3) by relocating objects

likely to be accessed to contiguous memory. On the GC side,

Semeru significantly reduces pause time by letting memory

servers perform tracing and evacuation, all of which used to

be done on the CPU server.

Memory. To understand Semeru’s ability to reclaim mem-

ory, we collected post-GC memory footprints for Spark NPR

and Spark KMS under three GCs: Semeru, G1, and Parallel
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(a) Memory: NPR, 50% cache (b) Memory: KMS, 25% cache (c) Mem/time: NPR, w/ and w/o cont. tracing

Figure 9: Memory footprints under Semeru, G1, and Parallel Scavenge for NPR (a) and KMS (b); (c) shows the memory footprint and GC

pause time with and without continuous tracing for NPR.

Scavenge (PS). PS is a non-concurrent GC designed for high

throughput. We added PS because it often can reclaim more

memory at each GC than G1 at the cost of higher latency.

PS’s strong memory reclamation capabilities are clearly seen

in Figure 9(a) where PS has the lowest memory footprint

throughout the execution. Semeru outperforms G1 — G1

uses concurrent tracing to estimate a garbage ratio for each

region; with this information, when each STW phase runs, the

GC can selectively reclaim regions with the highest garbage

ratios. Under memory disaggregation, however, concurrent

tracing runs slowly due to frequent remote fetches. It cannot

finish tracing the heap at the time a STW starts; as a result,

garbage ratios are not available for most regions.

As a result, at each STW phase, there is not much informa-

tion about which regions have the most garbage, and thus, the

GC selects arbitrary regions to collect. Many such regions

do not have much garbage, which explains why G1 reclaims

less memory than Semeru and PS. Note that Semeru does not

suffer from this problem because tracing is done locally on

memory servers; hence, it runs efficiently and can trace many

regions between two consecutive CSSCs.

Figure 9(b) shows the memory footprint for Spark KMS

running under the 25% cache configuration. In this case, Se-
meru’s collection performance is close to that of PS — for

both of them, the program’s memory consumption becomes

stabilized after about 400 seconds. Under G1, however, the

memory footprint fluctuates, again due to the (semi-random)

selection of regions to collect. If regions with large garbage

ratios happen to be in the cache, G1 is able to quickly identify

them during concurrent marking and collect them in a subse-

quent STW phase. However, if they are remotely resident on

memory servers, G1 would lack sufficient information in a

STW phase to collect the right regions.

6.2 Effectiveness of Continuous Tracing

To understand the usefulness of continuous tracing on mem-

ory servers, we compared Semeru with a variant that does

not perform continuous tracing but rather traces regions in

each CSSC. In this variant, tracing is still done on memory

servers but combined with other memory management tasks

such as object evacuation in each STW phase. Without con-

tinuous tracing, which uses idle resources on memory servers

to trace local regions, Semeru suffers from the same problem

as G1 — when a CSSC runs, Semeru does not know which

regions have the most garbage and thus should be reclamation

targets. To minimize the GC latency, each CSSC has to be

extremely short, leaving memory servers insufficient time to

trace many regions. As a result, memory servers can only

trace and reclaim regions based on their age without the more

useful information of their garbage ratio.

To illustrate this problem, Figure 9(c) shows the post-GC

memory footprint (i.e., y-axis on the left) and the pause time

of each CSSC (i.e., y-axis on the right). The two lines rep-

resent the memory footprints of Semeru with and without

continuous tracing while the short bars report the GC pauses.

We make two important observations here. First, Semeru
with continuous tracing consistently reclaims more memory

than the version without continuous tracing, because it knows

the right regions to reclaim in each CSSC. Second, since the

version without continuous tracing cannot reclaim enough

memory, it triggers a full-heap scan at the 484th second, which

is extremely time consuming (i.e., 65 seconds).

A modern generational GC achieves its efficiency by scan-

ning only the young nursery generation in most of its GC

runs. As soon as it needs to scan the entire heap, its perfor-

mance degrades significantly. This is especially the case with

memory disaggregation where a full-heap scan fetches most

objects from memory servers to the CPU server, incurring an

extremely long pause, as shown in the figure. The full-heap

GC reclaims much space and reduces memory consumption.

In contrast, with continuous tracing, Semeru does not en-

counter any full-heap GC throughout the execution. Although

it does not reclaim as much memory as a full-heap GC, it

avoids long pauses and yet is still able to give the application

enough memory to run.

6.3 Tracing Performance

Memory servers are expected to possess weak compute power.

To understand how tracing performs under different levels of

compute, we used one single core on each memory and varied

its frequency with DVFS. Table 5 summarizes the impact of

each frequency on the tracing performance, GC and mutator

performance, and end-to-end performance of NPR. We also

obtained the same measurements when tracing is performed

on the CPU server with a dedicated core. As shown, even with

a single core at 1.2GHz, tracing on memory servers still yields
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Tracing Performance Overall Performance
Configuration Thruput CUtil AT AIT GC Mutator Overall

(Memory Server) single core, 1.2 GHz 418.3 MB/s 29.0% 6.5 secs 4.6 secs 59.4 secs 180.2 secs 239.6 secs

(Memory Server) single core, 2.6 GHz 922.2 MB/s 12.4% 5.7 secs 5.0 secs 59.3 secs 173.9 secs 233.2 secs

(CPU Server) single core, 2.6 GHZ, dedicated to GC 93.9 MB/s N/A 38.8 secs N/A 126.0 secs 218.9 secs 344.9 secs

Table 5: Performance of NPR when tracing is performed under different core frequencies at memory servers: reported are the configurations

(Configuration) of memory-server cores, tracing throughput (Thruput), memory-server CPU utilization (CUtil), average time between two

consecutive CSSCs (AT), average idle CPU time between two consecutive CSSCs (AIT), total GC (GC) and mutator time (Mutator), and

end-to-end run time (Overall).

(a) (b)

Figure 10: Comparisons between Semeru’s swap system and local

RAMDisk: (a) shows Spark running times when the size of the

cache is 50% of the heap size; the first bar reports performance of the

baseline (cache ratio = 100%); (b) shows normalized performance

(i.e., slowdowns) for the two cache configurations (50% and 25%).

a throughput 4.5× higher than doing so on the CPU server

with a dedicated 2.6GHz core. This is easy to understand:

the bottleneck of a memory-disaggregated system is at (1)

the poor locality, which triggers many on-demand swaps, and

(2) racing for network resource between the mutator and GC

threads, not the lack of compute power.

Another important observation is on the low CPU utiliza-

tion on memory servers. Even with a 1.2GHz core, continuous

tracing between consecutive CSSCs has only 29% CPU uti-

lization — this is because (1) tracing only follows pointers,

(2) dead objects are not traced and hence, for each region,

only a small fraction needs to be traced, and (3) not all re-

gions need to be traced (i.e., those with a high rate of cached

objects are not traced). These results demonstrate that sup-

porting multiple processes, with weak compute on memory

servers, should not be a concern.

6.4 Swap Performance

To evaluate our swap system’s performance, we turned off

the Semeru runtime (i.e., all memory management tasks on

memory servers) and ran the original G1 GC on top of our

swap system. We tried to run InfiniSwap [49], but its execu-

tions were frequently stuck, even on native programs. This

subsection focuses on comparisons of swap performance be-

tween local RAMDisk and Semeru’s swap system (with and

without using InfiniSwap’s gather/scatter).

The results of Spark NPR are reported in Figure 10. We

used two cache configurations: 50% and 25%. Figure 10(a)

shows actual running times when the cache ratio is 50% be-

tween four versions of the system: in-memory (i.e., cache

ratio is 100%), RAMDisk, Semeru-no-gs (i.e., gather/scatter

is not used), and Semeru-gs (which uses gather/scatter). For

ease of comparison, Figure 10(b) shows normalized times.

 B
an

dw
dt

Figure 11: A comparison of the combined swap read/write through-

put between Semeru-gs, Semeru-no-gs, and RAMDisk.

Under the 50% cache configuration, using RAMDisk as

the swap partition incurs a 1.5× and 1.6× overhead in the

mutator and GC, respectively, compared with the in-memory

baseline. Semeru-no-gs increases the overheads to 1.6× and

2.2×. Merging BIO requests and using gather/scatter brings

the overheads down to 1.5× and 1.7×, which are on par with

those of the RAMDisk. Similar observations can be made

for the 25% cache rate. Across all programs, gather/scatter

improves the swap performance overall by 14%.

Figure 11 compares the read/write throughput between

Semeru-gs, Semeru-no-gs, and RAMDisk when Spark LRG

is executed under the 25% cache configuration. As shown,

gather/scatter helps Semeru achieve a higher peak read/write

bandwidth than Semeru-no-gs (especially when pages con-

tiguously swapped come from / go to the same region).

0 100 200 300 400

Read Write

Semeru-gs

Semeru-no-gs

RAMDisk

Throughput (MB/s)

Figure 12: Average read/write throughput.

A comparison on the average read/write throughput be-

tween the three systems is shown in Figure 12. Semeru-gs’s
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Figure 13: Numbers of on-demand swap-ins between G1 and Semeru
under the 25% cache configuration for Spark MBC.

overall read/write throughput is 13% higher than that of Se-
meru-no-gs and is on par with that of RAMDisk. Clearly,

additional gains can be obtained by merging BIO requests

and using gather-scatter.

6.5 Locality Improvement

To understand how Semeru improves locality for application

execution, we measured the number of on-demand swap-ins

performed by the swap system under G1 and Semeru when

Spark MBC was executed with a 25% cache ratio. Figure 13

reports how such numbers change as the execution progresses

for both the mutator and GC. Both Semeru-muator and Se-
meru-GC need significantly fewer on-demand swap-ins due

to improved locality. On average, Semeru reduces the number

of on-demand swap-ins by 8.76×. Note that both G1 and

Semeru ran under the default swap prefetcher in Linux, which

relies on the pages swapped in during the last two page faults:

if they are contiguous, Linux continues to bring in several

contiguous pages into the page cache; otherwise, it assumes

that there are no patterns and reduces or stops prefetching.

Despite the recent development of more advanced prefetchers

(such as Leap [71]) for remote memory, Semeru already per-

forms well under the default prefetcher in Linux. We expect

it to continue to work well when other prefetchers are used.

The average ratio between the sizes of data swapped in the

data and control path is 29.8 across the programs.

7 Related Work
Resource Disaggregation. Due to rapid technological ad-

vances in network controllers, it has become practical to reor-

ganize resources into disaggregated clusters [21, 29, 45, 51].

A disaggregated cluster can increase the hardware resource

utilization and has the potential to overcome fundamen-

tal hardware limits, such as the critical “memory capacity

wall” [9, 13, 17, 58, 67, 68, 95]. A good number of systems

have been developed in the past to take advantage of this ar-

chitecture [7, 35, 41, 42, 44, 54, 62]. However, almost all of

them treat remote memory as fast storage. When the network

connection only has microseconds of latency and hundreds of

gigabits of bandwidth [55, 72], applications can suffer from

significant delays in memory access. Despite many optimiza-

tions [7, 11, 49, 84, 87–89] developed to reduce this latency,

they all focus on low-level system stacks and do not con-

sider run-time characteristics of programs. They do not work

well for managed cloud applications such as [6, 14, 15, 24–

26, 31, 32, 50, 56, 75, 76, 81, 82, 92, 102–104, 106]. Semeru
co-optimizes the runtime and the swap system, unlocking

opportunities unseen by existing techniques.

Garbage Collection for Modern Systems. GC is a

decades-old topic. In order to meet the requirements of

low latency and high throughput, many concurrent GC al-

gorithms have been proposed, including the Garbage-First

(G1) GC [36], Compressor [59], ZGC [2], the Shenandoah

GC [43], Azul’s pauseless GC [34], and C4 [90], as well as

several real-time GCs [18, 19]. These GC algorithms can

run in the background with short pauses for mutator threads.

However, none of them can work directly in the resource-

disaggregated environment, which has a unique resource pro-

file — data are all located on memory servers, the CPU server

has a small cache, and memory servers have weak compute.

Efficiently using memory is important especially for appli-

cations running on the cloud [40]. Yak [79] is a region-based

GC developed for such applications. Taurus [70] coordinates

GC efforts in a distributed setting for cloud systems. Fa-

cade [80] uses region-based memory management to reduce

GC costs for Big Data applications. Gerenuk [78] develops a

compiler analysis and runtime system that enable native repre-

sentation of data for managed analytics systems such as Spark

and Hadoop. Espresso [99] and Panthera [95] are designed

for systems with non-volatile memory. Platinum [98] is a GC

that aims to reduce tail latency for interactive applications.

NUMAGiC [47] is a GC developed for the NUMA architec-

ture. However, NUMAGiC assumes that NUMA nodes are

completely symmetric (with the same CPU, the same amount

of local memory, and the same GC algorithm) — which is

not the case for disaggregated clusters. DMOS [53] is a dis-

tributed GC algorithm that has not been implemented and

whose performance in a real-world setting is unclear.

8 Conclusions
Semeru is a managed runtime designed for efficiently running

managed applications with disaggregated memory. It achieves

superior efficiency via a co-design of the runtime and swap

system as well as careful coordination of different GC tasks.
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A Artifact Appendix
A.1 Artifact Summary

Semeru is a managed runtime built for a memory-

disaggregated cluster where each managed application uses

one CPU server and multiple memory servers. When

launched on Semeru, the process runs its application code

(mutator) on the CPU server, and the garbage collector on

both the CPU server and memory servers in a coordinated

manner. Due to task offloading and moving computation close

to data, Semeru significantly improves the locality for both

the mutator and GC and, hence, the end-to-end performance

of the application.

A.2 Artifact Check-list

• Hardware: Intel servers with InfiniBand
• Run-time environment: OpenJDK 12.02, Linux-4.11-rc8,

CentOS 7.5(7.6) with MLNX-OFED 4.3(4.5)
• Public link: https://github.com/uclasystem/
Semeru

• Code licenses: The GNU General Public License (GPL)

A.3 Description

A.3.1 Semeru’s Codebase

Semeru contains the following three components:

• the Linux kernel, which includes a modified swap system,

block layer and a RDMA module,

• the CPU-server Java Virtual Machine (JVM),

• the Memory-server lightweight Java Virtual Machine

(LJVM).

These three components and their relationships are illustrated

in Figure 14.

CPU-Server JVM Memory Server#0 
Lightweight JVM

Memory Server#1 
Lightweight JVM

RDMA on InfiniBand

MSCT

Mutator

Linux Kernel

Block Layer

Swap System

RDMA Module

CSSC
Launcher

MSCT
Launcher

Memory Compactor

Memory Compactor

Control Path Data Path
Figure 14: Overview of Semeru’s codebase.

A.3.2 Deploying Semeru

To build Semeru, the first step is to download its source code:

git clone

git@github.com:uclasystem/Semeru.git

When deploying Semeru, install the three components in

the following order: the kernel on the CPU server, the Semeru
JVM on the CPU server, and the LJVM on each memory

server. Finally, connect the CPU server with memory servers

before running applications.

Kernel Installation. We first discuss how to build and in-

stall the kernel.

• Modify grub and set transparent_hugepage to

madvise:

sudo vim /etc/default/grub

+ transparent_hugepage=madvise

• Install the kernel and restart the machine:

cd Semeru/Linux-4.11-rc8

sudo ./build_kernel.sh build

sudo ./build_kernel.sh install

• Build the Semeru RDMA module:

# Add the IP of each memory server into

# Semeru/linux-4.11-rc8/include/

# linux/swap_global_struct.h

# e.g., the Infiniband IPs of the 2 memory servers

# are 10.0.0.2 and 10.0.0.4.

char* mem_server_ip[][] = {"10.0.0.2",

"10.0.0.4"};

uint16_t mem_server_port = 9400;

# Then build the Semeru RDMA module

make

Install the CPU-Server JVM. We next discuss the steps

to build and install the CPU-server JVM.

• Download Oracle JDK 12 to build Semeru JVM:

# Assume jdk 12.02 is under path

# ${home_dir}/jdk12.0.2

# Or change the path in shell script

# Semeru/CPU-Server/build_cpu_server.sh

boot_jdk="${home_dir}/jdk12.0.2"

• Build the CPU-server JVM:

# ${build_mode} can be one of the three modes:

# slowdebug, fastdebug, or release.

# We recommend fastdebug to debug the JVM code

# and release to test the performance.

# Please make sure both the CPU server and

# memory servers use the same build mode.

cd Semeru/CPU-Server/

./build_cpu_server.sh ${build_mode}

./build_cpu_server.sh build

# Take fastdebug mode as example — the compiled

# JVM will be in:

# Semeru/CPU-Server/build

# /linuxx86_64serverfastdebug/jdk
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Install the Memory-Server LJVM. The next step is to

install the LJVM on each memory server.

• Download OpenJDK 12 and build the LJVM:

# Assume OpenJDK12 is under the path

#${home_dir}/jdk-12.0.2

# Or you can change the path in the script

# Semeru/Memory-Server/build_mem_server.sh

boot_jdk="${home_dir}/jdk-12.0.2"

• Change the IP addresses:

# E.g., mem-server #0’s IP is 10.0.0.2, ID is 0.

# Change the IP address and ID in file:

# Semeru/Memory-Server/src/hotspot/share/

# utilities/globalDefinitions.hpp

#@Mem-server #0

#define NUM_OF_MEMORY_SERVER 2

#define CUR_MEMORY_SERVER_ID 0

static const char cur_mem_server_ip[] =

"10.0.0.2";

static const char cur_mem_server_port[]

= "9400";

• Build and install the LJVM:

# Use the same ${build_mode} as the CPU-server

# JVM.

cd Semeru/CPU-Server/

./build_memory_server.sh ${build_mode}

./build_memory_server.sh build

./build_memory_server.sh install

# The compiled Java home will be installed under:

# {home_dir}/jdk12u-self-build/jvm/

# openjdk-12.0.2-internal

# Set JAVA_HOME to point to this folder.

A.3.3 Running Applications

To run applications, we first need to connect the CPU server

with memory servers. Next, we mount the remote memory

pools as a swap partition on the CPU server. When the appli-

cation uses more memory than the limit set by cgroup, its

data will be swapped out to the remote memory via RDMA.

• Launch memory servers:

# Use the shell script to run each memory server.

#${execution_mode} can be execution or gdb.

#@Each memory server

cd Semeru/ShellScrip

run_rmem_server_with_rdma_service.sh

Case1 ${execution_mode}

• Connect the CPU server with memory servers:

#@CPU server

cd Semeru/ShellScript/

install_semeru_module.sh semeru

# To close the swap partition, do the following:

#@CPU server

cd Semeru/ShellScript/

install_semeru_module.sh close_semeru

• Set a cache size limit for an application:

# E.g., Create a cgroup with 10GB memory limita-

tion.

#@CPU server

cd Semeru/ShellScript

cgroupv1_manage.sh create 10g

• Add a Spark executor into the created cgroup:

# Add a Spark worker into the cgroup, memctl.
# Its sub-process, executor, falls into the same cgroup.

# Modify the function start_instance under

# Spark/sbin/start-slave.sh

#@CPU server

cgexec -sticky -g memory:memctl

"${SPARK_HOME}/sbin" /sparkdaemon.sh

start $CLASS $WORKER_NUM -webui-port

"$WEBUI_PORT" $PORT_FLAG $PORT_NUM

$MASTER "$@"

• Launch a Spark application:

Some Semeru JVM options need to be added for both CPU-

server JVM and LVJMs. CPU-server JVM and memory

server LJVMs should use the value for the same JVM

option.

# E.g., under the configuration of 25% local memmory

# 512MB Java heap Region

#@CPU server

-XX:+SemeruEnableMemPool

-XX:EnableBitmap -XX:-UseCompressedOops

-Xnoclassgc -XX:G1HeapRegionSize=512M

-XX:MetaspaceSize=0x10000000

-XX:SemeruLocalCachePercent=25

#@Each memory server

# ${MemSize}: the memory size of current memory

server

# ${ConcThread}: the number of concurrent threads

-XX:SemeruEnableMemPool

-XX:-UseCompressedOops

-XX:SemeruMemPoolMaxSize=${MemSize}

-XX:SemeruMemPoolInitialSize=${MemSize}

-XX:SemeruConcGCThreads=${ConcThread}

More details of Semeru’s installation and deployment can

be found in Semeru’s code repository.
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