
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Cobra: Making Transactional Key-Value Stores
Verifiably Serializable

Cheng Tan and Changgeng Zhao, NYU; Shuai Mu, Stony Brook University;
Michael Walfish, NYU

https://www.usenix.org/conference/osdi20/presentation/tan

Cobra: Making Transactional Key-Value Stores Verifiably Serializable

Cheng Tan, Changgeng Zhao, Shuai Mu?, and Michael Walfish
NYU Department of Computer Science, Courant Institute ?Stony Brook University

Abstract. Today’s cloud databases offer strong properties,
including serializability, sometimes called the gold standard
database correctness property. But cloud databases are compli-
cated black boxes, running in a different administrative domain
from their clients. Thus, clients might like to know whether
the databases are meeting their contract. To that end, we intro-
duce cobra; cobra applies to transactional key-value stores.
It is the first system that combines (a) black-box checking, of
(b) serializability, while (c) scaling to real-world online trans-
actional processing workloads. The core technical challenge
is that the underlying search problem is computationally ex-
pensive. Cobra tames that problem by starting with a suitable
SMT solver. Cobra then introduces several new techniques,
including a new encoding of the validity condition; hardware
acceleration to prune inputs to the solver; and a transaction
segmentation mechanism that enables scaling and garbage col-
lection. Cobra imposes modest overhead on clients, improves
over baselines by 10× in verification cost, and (unlike the base-
lines) supports continuous verification. Our artifact can handle
2000 transactions/sec, equivalent to 170M/day.

1 Introduction and motivation

A new class of cloud databases has emerged, including Ama-
zon DynamoDB and Aurora [2, 4, 133], Azure CosmosDB [7],
CockroachDB [9], YugaByte DB [36], and others [16, 17, 21,
22, 69]. Compared to earlier generations of NoSQL databases
(such as Facebook Cassandra, Google Bigtable, and Amazon
S3), members of the new class offer the same scalability, avail-
ability, replication, and geo-distribution but in addition offer
serializable transactions [55, 110]: all transactions appear to
execute in a single, sequential order.
Serializability is the gold-standard isolation level [48, 77],

and the correctness contract that many applications and pro-
grammers implicitly assume: their code would be incorrect if
the database provided a weaker contract [137]. Note that serial-
izability encompasses weaker notions of correctness, like basic
integrity: if a returned value does not read from a valid write,
that will manifest as a non-serializable result. Serializability
also implies that the database handles failures robustly: non-
tolerated server failures, particularly in the case of a distributed
database, are a potential source of non-serializable results.

However, a user of a cloud database can legitimately wonder
whether the database in fact provides the promised contract. For
one thing, users often have no visibility into a cloud database’s
implementation. In fact, even when the source code is avail-
able [9, 16, 17, 36], that does not necessarily yield visibility: if
the database is hosted by someone else, you can’t really be sure

of its operation. Meanwhile, any internal corruption—as could
happen from misconfiguration, operational error, compromise,
or adversarial control at any layer of the execution stack—can
cause a serializability violation. Beyond that, one need not
adopt a paranoid stance (“the cloud as malicious adversary”)
to acknowledge that it is difficult, as a technical matter, to pro-
vide serializability and geo-distribution and geo-replication
and high performance under various failures [40, 78, 147].
Doing so usually involves a consensus protocol that inter-
acts with an atomic commit protocol [69, 96, 103]—a com-
plex combination, and hence potentially bug-prone. Indeed,
today’s production systems have exhibited serializability vio-
lations [1, 18, 19, 25, 26] (see also §6.1).
This leads to our core question: how can clients verify the

serializability of a black-box database? To be clear, related
questions have been addressed before. The novelty in our prob-
lem is in combining three aspects:

(a) Black box, unmodified database. In our setting, the
database does not “know” it’s being checked; the input to the
verification machinery will be only the inputs to, and outputs
from, the database. This matches the cloud context (even when
the database is open source, as noted above), and contrasts
with work that checks for isolation or consistency anomalies by
using “inside information” [62, 86, 109, 123, 130, 141, 143],
for example, access to internal scheduling choices. Also, we
target production workloads and standard key-value APIs (§2).

(b) Serializability. We focus on serializability, in contrast to
weaker isolation levels. Serializability has a strict variant and a
non-strict variant [56, 110]; in the former, the effective transac-
tion order must be consistent with real time. We attend to both
variants in this paper. However, the weight is on the non-strict
variant, as it poses a more difficult computational problem;
the strict variant is “easier” because the real-time constraint
diminishes the space of potentially-valid execution schedules.
On the one hand, the majority of databases that offer seri-

alizability offer the strict variant. On the other hand, check-
ing non-strict serializability is germane, for two reasons. First,
some databases claim to provide the non-strict variant (in
general [11], or under clock skew [35], or for read-only work-
loads [32]), while others don’t specify the variant [3, 5]. Sec-
ond, the strict case can degenerate to the non-strict case. Heavy
concurrency, for example, means few real-time constraints, so
the difficult computational problem re-enters. As a special
case, clock drift causes otherwise ordered transactions to be
concurrent (§3.5, §6.1).

(c) Scalability. This means, first, scaling to real-world online
transactional processing workloads at reasonable cost. It also

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 63

means incorporating mechanisms that enable a verifier to work
incrementally and to keep up with an ever-growing history.
However, aspects (a) and (b) set up a challenge: check-

ing black-box serializability has long been known to be
NP-complete [54, 110]. Recent work of Biswas and Enea
(BE) [59] lowered the complexity to polynomial time, under
natural restrictions (which hold in our context); see also pio-
neering work by Sinha et al. [124] (§7). However, these two
approaches don’t meet our goal of scalability. For example,
in BE, the number of clients appears in the exponent of the
algorithm’s running time (§6, §7) (e.g., 14 clients means the
algorithm is O(n14)). Furthermore, even if there were a small
number of clients, BE does not include mechanisms for han-
dling a continuous and ever-growing history.

Despite the computational complexity, there is cause for
hope: one of the remarkable developments in the field of formal
verification has been the use of heuristics to “solve” problems
whose general form is intractable. This owes to major advances
in solvers (advanced SAT and SMT solvers) [49, 57, 64, 73, 84,
99, 107, 128], coupled with an explosion of computing power.
Thus, our guiding intuition is that it ought to be possible to
verify serializability in many real-world cases. This paper de-
scribes a system called cobra, which starts from this intuition,
and provides a solution to the problem posed by (a)–(c).

Cobra applies to transactional key-value stores (everywhere
in this paper it says “database”, this is what we mean). Cobra
consists of a third-party, unmodified database that is not as-
sumed to “cooperate”; a set of legacy database clients that
cobra modifies to link to a library; one or more history col-
lectors that are assumed to record the actual requests to and
responses from the database; and a verifier that comprehen-
sively checks serializability, in a way that “keeps up” with the
database’s (average) load. The database is untrusted while the
clients, collectors, and verifier are all in the same trust domain
(for example, deployed by the same organization). Section 2
further details the setup and gives example scenarios. Cobra
solves two main problems:
1. Efficient witness search (§3). A brute-force way to vali-

date serializability is to demonstrate the existence of a graph
G whose nodes are transactions in the history and whose edges
meet certain constraints, one ofwhich is acyclicity (§2.3). From
our starting intuition and the structure of the constraints, we
are motivated to use a SAT or SMT solver [34, 50, 73, 127].
But complications arise. To begin with, encoding acyclic-
ity in a SAT instance brings overhead [79, 80, 91] (we see
this too; §6.1). Instead, cobra uses a recent SMT solver,
MonoSAT [52], that is well-suited to checking graph proper-
ties (§3.4). However, using MonoSAT alone on the aforemen-
tioned brute-force search problem is still too expensive (§6.1).

To address this issue, cobra develops domain-specific prun-
ing techniques and reduces the search problem size. First, co-
bra introduces a new encoding that exploits common patterns
in real workloads, such as read-modify-write transactions, to

efficiently infer ordering relationships from a history (§3.1–
§3.2). (We prove that cobra’s encoding is a valid reduction in
Appendix B [132].) Second, cobra uses parallel hardware (our
implementation uses GPUs; §5) to compute all-pairs reach-
ability over a graph whose nodes are transactions and whose
edges are known precedence relationships; then, cobra re-
solves some of the constraints efficiently, by testing whether a
candidate edge would generate a cycle with an existing path.
2. Scaling to a continuous and ever-growing history (§4).

Online cloud databases run in a continuous fashion, where the
corresponding history is uninterrupted and grows unbound-
edly. To support online databases, cobra verifies in rounds.
From round-to-round, the verifier checks serializability on a
portion of the history. However, the challenge is that the verifier
seemingly needs to involve all history, because serializability
does not respect real-time ordering, so future transactions can
read from values that (in a real-time view) have been over-
written. To solve this problem, clients issue periodic fence
transactions (§4.2). The epochs impose coarse-grained syn-
chronization, creating a window from which future reads, if
they are to be serializable, are permitted to read. This allows
the verifier to discard transactions prior to the window.
We implement cobra (§5) and experiment with it on pro-

duction databases with various workloads (§6). Cobra detects
all serializability violations we collect from real systems’ bug
reports. Cobra’s core (single-round) verification improves on
baselines by 10× in the problem size it can handle for a given
time budget. For example, cobra finishes checking 10k trans-
actions in 14 seconds, whereas baselines can handle only 1k
or less in the same time budget. For an online database with
continuous traffic, cobra achieves a sustainable verification
throughput of 2k txn/sec on the workloads that we experiment
with (this corresponds to a workload of 170M/day; for com-
parison, Apple Pay handles 33M txn/day [6], and Visa handles
150M txn/day [33], admittedly for a slightly different notion
of “transaction”). Cobra imposes modest overhead.

Cobra has several limitations (§8). First, there is no guar-
antee that cobra terminates in reasonable time (though our
experiments on real workloads do). Second, cobra supports
only a key-value API, and thus does not handle range queries
and SQL operations such as “join” and “sum” (though one
can translate these queries and operations to a key-value API,
as commonly done in research on transactional key-value
stores [100, 108, 129, 136, 140, 144]). Third, cobra does not
yet support async (event-driven) I/O patterns in clients (only
multithreading). Fourth, cobra mostly punts fault-tolerance
of the verifier and collectors (though modular solutions exist).
Finally, we have not identified serializability violations in the
wild. Of course, that does not mean that databases unfailingly
execute correctly. Indeed, cobra gives us a way, for the first
time, to get confidence in the observed executions of these
black box databases.

64 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

trust
domain client

verifier

database

accept/
reject

…

history
collectors

client

history

Figure 1: Cobra’s architecture. The dashed rectangle is a trust domain.
The verifier is off the critical path but must keep up on average.

2 Overview and technical background

2.1 Setup and scenarios

Figure 1 depicts cobra’s architecture. Clients issue requests to
a database (a transactional key-value store) and receive results.
The database is untrusted: the results can be arbitrary.

Each client request is one of five operations: start, commit,
abort (which refer to transactions), and read and write (which
refer to keys).

History collectors sit between clients and the database, cap-
turing the requests that clients issue and the (possibly wrong)
results delivered by the database. This capture is a fragment of
a history. A history is a set of operations; it is the union of the
fragments from all collectors.
A verifier retrieves history fragments from collectors and

attempts to verify whether the history is serializable; we make
this term precise below (§2.2).
The verifier proceeds in rounds; each round consists of a

witness search, the input to which is logically the output of the
previous round and new history fragments. The verifier must
work against an online and continuously available database;
however, the verifier performs its work in the background, off
the critical path.

The verifier requires the full history including all requests to,
and responses from, the database. Cobra assumes that neither
the verifier nor the collectors crash (we revisit in §8).
Clients issue operations to a database through sessions; a

client can have multiple simultaneous sessions. Within a ses-
sion, transactions do not overlap (requests are blocking). Thus,
a client can be multithreaded but not event-driven.
Clients, history collectors, and the verifier are in the same

trust domain. This architecture is relevant in real-world scenar-
ios. Consider for example an enterprise web application whose
end-users are geo-distributed employees of the enterprise. The
application servers run on the enterprise’s hardware while
the back-end of the web application is a cloud database [27].
Note that our clients are the application servers, as clients of
the database. A similarly structured example is online gam-
ing, where the main program runs on company-owned servers
while the user data is stored in a cloud database [24].

In these scenarios, the verifier runs on hardware belonging
to the trust domain. There are several options, meanwhile, for
the collectors. Collectors can be middleboxes situated at the

edge of the enterprise or gaming company, allowing them to
capture the requests and responses between the database clients
and the cloud database. Another option is to run the collector
in an untrusted cloud, using a Trusted Execution Environment
(TEE), such as Intel’s SGX. Recent work has demonstrated
such a collector [46], as a TLS proxy that logs inbound and
outbound messages, thereby ensuring (via the fact that clients
expect the server to present a valid SSL/TLS certificate) that
clients’ requests and responses are indeed logged.
Verifier’s performance requirement. The verifier’s perfor-
mance will be reported as capacity (transactions/sec); this ca-
pacity must be at least the average offered load seen by the
database over some long interval, for example a day. Note that
the verifier’s capacity need not match the database’s peak load:
because the verifier is off the critical path, it can catch up.

2.2 Verification problem statement

Preliminaries. We work within Adya’s canonical framework
for specifying isolation levels [38], as summarized below.
First, assume that each database write creates a unique ver-

sion for the given key, and each transaction reads and writes
a key at most once; thus, any read can be associated with the
transaction that issued the corresponding write. Cobra dis-
charges this assumption in the client library (§5),which embeds
a unique id in each write and consumes the id on a read.
In Adya’s formalism, a history is a set of operations per-

formed by transactions (as in cobra, §2.1), together with a
version order [38, §3.1.2]: for each key, a total order of commit-
ted versions. The version order comes from within the database
and is not exposed externally. In cobra, history is collected out-
side the database so doesn’t contain a version order. (Cobra’s
history is also known as a multi-version log [54], as discussed
in Appendix B [132]).
A history is serializable, if there exists a total order on the

committed transactions such that executing transactions in this
order produces the same result as in the history (in Adya’s for-
malism, an additional requirement for serializability is that the
aforementioned total order is consistent with the given version
order). Strictly serializable [110] is the same as serializable,
except that the total order must also obey real time: if a transac-
tion Ti commits before Tj starts in real time, Ti appears earlier
than Tj in the total order.
A history imposes dependencies. Specifically, a history

(without a version order) induces read-dependencies (a trans-
action Tj reads the value written by transaction Ti, denoted
Ti → Tj). Adding a version order yields two other kinds of
dependencies: write-dependency (Ti writes a key, and Tj over-
writes it, so Ti→ Tj), and anti-dependency (Ti reads a value
that is overwritten by Tj, so Ti→ Tj).

A serialization graph (of a history and a given version order)
is a graph whose vertices are all transactions in the history and
edges are all dependencies described above. Note that aborted
and ongoing transactions are not in the serialization graph.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 65

verifier round i
from round (i-1)

accept
or rejecthistory

collectors

g

create the
known graph

coalescing
constraints

combining
writes

pruning
constraints garbage collection

MonoSAT

Figure 2: The verifier’s process, within a round and across rounds.

The core problem. An important fact is that a history H is
serializable iff there exists a version order such that the serializa-
tion graph arising from H and that version order is acyclic [54].
Based on this fact, the core problem is to identify such a seri-
alization graph (that arises from H and some version order),
or assert that none exists.
Notice that this problem would be straightforward if the

database revealed its internal ordering, thus deciding a version
order and all dependencies: one could construct the correspond-
ing serialization graph, and test it for acyclicity. Indeed, that is
a well-established family of techniques [65, 138]. But the ver-
sion order is unavailable in our context, so we have to consider
all possible version orders, and test whether any of the implied
sets of dependencies yields an acyclic serialization graph.

2.3 Starting point: intuition and brute force
This section describes a brute-force solution, which serves as
the starting point for cobra and gives intuition. The approach
relies on a data structure called a polygraph [110], which cap-
tures unknown dependencies.
In a polygraph, vertices (V) are transactions and edges (E)

are read-dependencies. Note that read-dependencies are evi-
dent from the history because values are unique, by assump-
tion (§2.2). There is a set, C, which we call constraints, that
captures possible (but unknown) dependencies. Here is an
example polygraph:

W2(x=2)

W1(x=1) R3(x):1
T1

T2

T3

It has three vertices V = {T1,T2,T3}, one known edge in
E = {(T1,T3)} from the known read-dependency W1(x)−→
R3(x), and one constraint 〈(T3, T2), (T2, T1)〉 which is shown
as two dashed arrows connected by an arc. This constraint
captures the fact that T2 cannot happen in between T1 and T3,
because otherwise T3 should have read x from T2 instead of
from T1. Hence T2 has to happen either after T3 or before T1,
but it is unknown which option is the truth.
Formally, a polygraph P = (V , E, C) is a directed graph

(V , E) which we call the known graph, together with a set of
bipaths, C; that is, pairs of edges—not necessarily in E—of the
form 〈(v, u), (u, w)〉 such that (w, v)∈ E. A bipath of that form
can be read as “either u happened after v, or else u happened
before w”. Now, define the polygraph (V , E, C) associated with
a history, as follows [138]:
• V are all committed transactions in the history

• E = {(Ti, Tj) |Tj reads from Ti}. Notation: Ti
wr(x)−−−→ Tj, for

some x.
• C = {〈(Tj, Tk), (Tk, Ti)〉 | (Ti

wr(x)−−−→ Tj) ∧
(Tk writes to x)∧Tk 6= Ti∧Tk 6= Tj}.

The edges inE capture all read-dependencies,which as noted
are evident from the history. C captures how uncertainty is en-
coded into constraints. Specifically, for each read-dependency
in the history, all other transactions that write the same key
happen either after the given read or before the given write.

A directed graph is called compatiblewith a polygraph if the
graph has the same nodes and known edges in the polygraph,
and the graph chooses one edge out of each constraint; one can
think of such a graph as a solution to the constraint satisfaction
problem posed by the polygraph. Formally, a graph (V ′,E′) is
compatible with a polygraph (V , E, C) if: V = V ′, E ⊆ E′, and
∀〈e1, e2〉 ∈ C, (e1 ∈ E′∧ e2 /∈ E′)∨ (e1 /∈ E′∧ e2 ∈ E′).

A crucial fact (proved in Appendix B [132]) is: there exists
an acyclic directed graph that is compatible with the polygraph
associated to a history H, iff there exists an acyclic serialization
graphG ofH. Furthermore, we have seen that if there is such an
acyclic serialization graph for H, then H is serializable (§2.2).
Putting these facts together yields a brute-force approach for
verifying serializability: first, construct a polygraph from a
history; second, search for a compatible graph that is acyclic.
However, not only does this approach need to consider |C|
binary choices (2|C| possibilities) but also |C| is massive: it is a
sum of quadratic terms, specifically ∑k∈K rk · (wk−1), where
K is the set of keys in the history, and each rk and wk are the
number of reads and writes of key k.

3 Verifying serializability in cobra

Figure 2 depicts the major components of verification. This
section covers one round of verification. As a simplification,
assume that the round runs in a vacuum; Section 4 discusses
how rounds are linked.

Cobra uses the MonoSAT SMT solver [52], which is geared
to graph properties (§3.4). Nevertheless, the brute-force encod-
ing (§2.3) would overwhelm even MonoSAT (§6.1).

Cobra refines that encoding in several ways. It introduces
write combining (§3.1) and coalescing (§3.2). These tech-
niques are motivated by common patterns that impose restric-
tions on the search space. Cobra’s verifier also does its own
inference (§3.3) before invoking the solver. This is motivated
by observing that (a) all-pairs reachability information (in the
“known edges”) yields quick resolution of many constraints,

66 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1: procedure ConstructEncoding(history)
2: g, readfrom, wwpairs← CreateKnownGraph(history)
3: con← GenConstraints(g, readfrom, wwpairs)
4: con, g← Prune(con, g) // §3.3, executed one or more times
5: return con, g
6:
7: procedure CreateKnownGraph(history)
8: g← empty Graph // the known graph
9: wwpairs←Map {〈Key,Tx〉 → Tx} // consecutive writes
10: readfrom←Map {〈Key,Tx〉→ Set〈Tx〉} // maps a write to its readers
11: for transaction tx in history:
12: g.Nodes+= tx
13: for read operation rop in tx:
14: g.Edges+= (rop.read_from_tx, tx) // read-dependencies
15: readfrom[〈rop.key, rop.read_from_tx〉] += tx
16:
17: // detect RMW (read-modify-write) transactions
18: for all Keys key that are both read and written by tx:
19: rop← the operation in tx that reads key
20: if wwpairs[〈key, rop.read_from_tx〉] 6= null:
21: reject // multiple consecutive writes, not serializable
22: wwpairs[〈key, rop.read_from_tx〉]← tx
23:
24: add session order edges to g // §4.2
25: return g, readfrom, wwpairs
26:
27: procedure GenConstraints(g, readfrom, wwpairs)
28: // each key maps to set of chains; each chain is an ordered list
29: chains← empty Map {Key→ Set〈List〉}
30: for transaction tx in g:
31: for write wrop in tx:
32: chains[wrop.key] += [tx] // one-element list
33:
34: CombineWrites(chains, wwpairs) // §3.1
35: InferRWEdges(chains, readfrom, g) // infer anti-dependency
36:
37: con← empty Set
38: for 〈key,chainset〉 in chains:
39: for every pair {chaini, chainj} in chainset:
40: con+= Coalesce(chaini, chainj, key, readfrom) // §3.2
41:
42: return con

43: procedure CombineWrites(chains, wwpairs)
44: for 〈key, tx1, tx2〉 in wwpairs:
45: // By construction of wwpairs, tx1 is the write immediately
46: // preceding tx2 on key. Thus, we can sequence all writes
47: // prior to tx1 before all writes after tx2, as follows:
48: chain1← the list in chains[key] whose last elem is tx1
49: chain2← the list in chains[key] whose first elem is tx2
50: chains[key] \= {chain1, chain2}
51: chains[key] += concat(chain1,chain2)

52:
53: procedure InferRWEdges(chains, readfrom, g)
54: for 〈key,chainset〉 in chains:
55: for chain in chainset:
56: for i in [0, length(chain)−2]:
57: for rtx in readfrom[〈key,chain[i]〉]:
58: if (rtx 6= chain[i+1]): g.Edges+= (rtx, chain[i+1])
59:
60: procedure Coalesce(chain1, chain2, key, readfrom)
61: edge_set1← GenChainToChainEdges(chain1, chain2, key, readfrom)
62: edge_set2← GenChainToChainEdges(chain2, chain1, key, readfrom)
63: return 〈edge_set1, edge_set2〉
64:
65: procedure GenChainToChainEdges(chaini, chainj, key, readfrom)
66: if readfrom[〈key, chaini.tail〉] = /0:
67: edge_set←{(chaini.tail, chainj.head)}
68: return edge_set
69:
70: edge_set← empty Set
71: for rtx in readfrom[〈key, chaini.tail〉]:
72: edge_set+= (rtx, chainj.head)
73: return edge_set
74:
75: procedure Prune(con, g)
76: // tr is the transitive closure (reachability of every two nodes) of g
77: tr← TransitiveClosure(g) // standard algorithm; see [70, Ch.25]
78: for c =〈edge_set1, edge_set2〉 in con:
79: if ∃(txi, txj) ∈ edge_set1 s.t. txj txi in tr:
80: g.Edges← g.Edges∪ edge_set2
81: con−= c
82: else if ∃(txi, txj) ∈ edge_set2 s.t. txj txi in tr:
83: g.Edges← g.Edges∪ edge_set1
84: con−= c
85: return con, g

Figure 3: Cobra’s procedure for converting a history into a constraint satisfaction problem (§3). After this procedure, cobra feeds the results
(a graph of known edges G and set of constraints C) to a constraint solver (§3.4), which searches for a graph that includes the known edges from
G, meets the constraints in C, and is acyclic. We prove the algorithm’s validity in Appendix B [132].

and (b) computing that information is amenable to acceleration
on parallel hardware such as GPUs (§5).

Figure 3 depicts the algorithm that constructs cobra’s encod-
ing and shows how the techniques combine. Note that cobra
relies on a generalized notion of constraints. Whereas previ-
ously a constraint was a pair of edges, now a constraint is a pair
of sets of edges. Meeting a constraint 〈A,B〉means including all
edges in A and excluding all in B, or vice versa. More formally,
we say that a graph (V ′,E′) is compatible with a known graph
G = (V ,E) and generalized constraints C if: V = V ′, E ⊆ E′,
and ∀〈A, B〉 ∈C,(A⊆ E′∧B∩E′ = /0)∨(A∩E′ = /0∧B⊆ E′).

We prove the validity of cobra’s encoding in Appx B [132].
Specifically we prove that there exists an acyclic graph that
is compatible with the constraints constructed by cobra on a
given history if and only if the history is serializable.

3.1 Combining writes

Cobra exploits the read-modify-write (RMW) pattern, in
which a transaction reads a key and then writes the same key.
The pattern is common in real-world scenarios, for example
shopping: in one transaction, get the number of an item in stock,
decrement, and write back the number. Cobra uses RMWs
to impose order on writes; this reduces the orderings that the
verification procedure would otherwise have to consider. Here
is an example:

W3

W1 R2 W2

R4 W4 W3

W1 R2 W2

R4 W4

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 67

There are four transactions, all operating on the same key. Two
of the transactions are RMW,namelyR2,W2 andR4,W4. On the
left is the basic polygraph (§2.3). It has four constraints (each
in a different color), derived from the two read-dependencies.

Cobra goes further, inferring chains. A single chain com-
prises a sequence of transactions whose write operations are
consecutive; in the figure, a chain is indicated by a shaded area.
Notice that the only ordering possibilities exist at the granu-
larity of chains (rather than individual writes); in the example,
the two possibilities of course are [W1, W2]→ [W3, W4] and
[W3, W4]→ [W1, W2]. This is a reduction in the possibility
space; for instance, the original version considers the possi-
bility that W3 is immediately prior to W1 (the upward dashed
black arrow), but cobra “recognizes” the impossibility of that.

To construct chains, cobra initializes every write as a one-
element chain (Figure 3, line 32). Then, cobra consolidates
chains: for each RMW transaction t and the transaction t′ that
contains the prior write, cobra concatenates the chain contain-
ing t′ and the chain containing t (lines 22 and 44–51).

If a transaction t, which is not an RMW, reads from a transac-
tion u, then t requires an anti-dependency edge to u’s successor
(call it v); otherwise, t could appear in the graph downstream
of v, which would mean t actually read from v (or even from
a later write), which does not respect history. Cobra creates
the needed edge t→ v in InferRWEdges (Figure 3, line 53).
Note that in the brute-force approach (§2.3), analogous edges
appear as the first component in a constraint.

3.2 Coalescing constraints
This technique exploits the fact that, in many real-world work-
loads, there are far more reads than writes. At a high level,
cobra combines all reads that read-from the same write. We
give an example and then generalize.

W2

W1 R3

R4

R5 W2

W1 R3

R4

R5

A AB

three constraints one coalesced constraint

In the above figure, there are five single-operation transactions,
to the same key. On the left is the basic polygraph (§2.3), which
contains three constraints; each is in a different color. Notice
that all three constraints involve the question: which write
happened first, W1 or W2?
One can represent the possibilities as a constraint

〈A′, B′〉 where A′ = {(W1,W2),(R3, W2), (R4, W2)} and B′ =
{(W2,W1),(R5, W1)}. In fact, cobra does not include
(W1,W2) because there is a known edge (W1,R3), which, to-
gether with (R3,W2) in A′, implies the ordering W1→ R3→
W2, so there is no need to include (W1,W2). Likewise, co-
bra does not include (W2,W1) on the basis of the known
edge (W2,R5). So cobra includes the constraint 〈A,B〉 =
〈{(R3, W2), (R4, W2)},{(R5, W1)}〉 in the figure.

To construct constraints using the above reductions, cobra
does the following. Whereas the brute-force approach uses all
reads and their prior writes (§2.3), cobra considers particular
pairs of writes, and creates constraints from these writes and
their following reads. The particular pairs of writes are the first
and last writes from all pairs of chains pertaining to that key. In
more detail, given two chains, chaini,chainj, cobra constructs
a constraint c by (i) creating a set of edges ES1 that point
from reads of chaini.tail to chainj.head (Figure 3, lines 71–72);
this is why cobra does not include the (W1,W2) edge above.
If there are no such reads, ES1 is chaini.tail→ chainj.head
(Figure 3, line 67); (ii) building another edge set ES2 that is
the other way around (reads of chainj.tail point to chaini.head,
etc.), and (iii) setting c to be 〈ES1,ES2〉 (Figure 3, line 63).

3.3 Pruning constraints
Our final technique mines information that is encoded in paths
in the known graph, to cull irrelevant possibilities en masse.
The underlying logic is almost trivial. The interesting aspect is
that the technique is enabled by a design decision to accelerate
the computation of reachability on parallel hardware (§5 and
Figure 3, line 77); this can be done since the computation is
iterated (Boolean) matrix multiplication. Here is an example:

W2

W1 R3

The constraint is 〈(R3,W2),(W2,W1)〉. Having precomputed
reachability, cobra knows that the first choice cannot hold,
as it creates a cycle with the path W2 R3; cobra thereby
concludes that the second choice holds. Generalizing, if cobra
determines that an edge in a constraint generates a cycle, cobra
throws away both components of the entire constraint and adds
all the other edges to the known graph (Figure 3, lines 78–84).
In fact, cobra prunes multiple times, if necessary (§5).

3.4 Solving
The remaining step is to search for an acyclic graph that is
compatible with the known graph and constraints, as computed
in Figure 3. Cobra does this with a constraint solver. However,
traditional solvers do not perform well on this task because
encoding graph acyclicity as a set of SAT formulas is expensive
(a claim by Janota et al. [91], which we also observed; §6.1).

Cobra instead uses MonoSAT, which is a particular kind
of SMT solver [57] that includes SAT modulo monotonic the-
ories [52]. This solver efficiently encodes and checks graph
properties, such as acyclicity.

Cobra represents a verification problem instance (a graph
G and constraints C) as follows. Cobra creates a Boolean vari-
able E(i,j) for each vertex-vertex pair; True (resp., False) means
the searched-for compatible graph has (resp., does not have)
the given edge. For each edge in the known graph G, Cobra
sets the corresponding Boolean variable to be True. For the

68 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

constraints C, recall that each constraint 〈A,B〉 is a pair of sets
of edges, and represents a mutually exclusive choice to include
either all edges in A or else all edges in B. Cobra encodes this
in the natural way: ((∀ea ∈ A,ea)∧ (∀eb ∈ B,¬eb))∨ ((∀ea ∈
A,¬ea)∧ (∀eb ∈ B,eb)). (By abuse of notation, we have used
ea and eb to refer to the corresponding Ei,j variable.) Finally,
cobra enforces the acyclicity of the searched-for compatible
graph (that is, the graph whose edges are given by the Ei,j
that are set to True); Cobra does so by invoking a primitive
provided by the solver.
Cobra vs. MonoSAT. One might ask: if cobra’s encoding
makes MonoSAT faster, why use MonoSAT? Can we take
the domain knowledge further? Indeed, in the limiting case,
cobra could re-implement the solver! However, MonoSAT,
as an SMT solver, leverages many prior optimizations. One
way to understand cobra’s decomposition of function is that
cobra’s preprocessing exploits some of the structure created
by the problem of verifying serializability, whereas the solver is
exploiting residual structure common to many graph problems.

3.5 On strict serializability
Cobra’s verifier checks strict serializability [56, 110] by
adding real-order edges [38]—which capture the order of non-
overlapping transactions in real time—to the known graph. The
verifier then performs the serializability checking algorithm of
Figure 3; as a result, the serialization order (in the searched-for
compatible graph) respects the real-time order.
To get real-order edges, the verifier needs timestamps for

each operation. The verifier can get them either from the
database if it exposes the relevant interface (for example,
Google Spanner [69]) or else from cobra’s collectors. A naive
way to go from timestamps to real-order edges is to examine
every pair of transactions, and create a real-order edge when
one transaction’s commit timestamp is less than another’s start
timestamp. But this approach runs in time quadratic in the
number of transactions. Instead, cobra borrows a prior algo-
rithm [131, Fig. 6], which materializes the time precedence
partial order in time O(n+z), where n is the number of transac-
tions and z is the minimum number of real-order edges needed.

A challenge is that clock drift in collectors makes it unsafe
to infer real-time precedence relationships from timestamps.
To tackle this problem, cobra introduces a clock drift thresh-
old (100ms [15] by default). Cobra assumes that clock differ-
ences among collectors do not exceed this threshold; if they
do, cobra may falsely reject a serializable history. With this
assumption, cobra increases transactions’ commit timestamps
by the threshold. Thus, if two transactions have a real-order
edge, one’s original commit timestamp is earlier than the other
transaction’s start timestamp by at least the clock drift threshold.
As a consequence, all transactions within a clock drift thresh-
old are concurrent. Within such an interval, the verifier faces
the computational expense that exists when there are no real-
order edges, which calls for cobra’s techniques (§3.1–§3.3)
to accelerate verification (see §6.1 for relevant experiments).

4 Garbage collection and scaling

Cobra verifies in rounds. There are twomotivations for rounds.
First, new history is continually produced, of course. Second,
there are limits on the maximum problem size (number of
transactions) that the verifier can handle (§6.2); breaking the
task into rounds keeps each solving task manageable.
In the first round, a verifier starts with nothing and creates

a graph from CreateKnownGraph, then does verification.
After that, the verifier receives more client histories; it reuses
the graph from the last round (the g in ConstructEncoding,
Figure 3, line 5), and adds new nodes and edges to it from the
new history fragments received (Figure 2).
The technical problem is to keep the input to verification

bounded. So the question cobra must answer is: which trans-
actions can be deleted safely from history? Below, we describe
the challenge (§4.1), the core mechanism of fence transac-
tions (§4.2), and how the verifier deletes safely (§4.3). In this
section, we describe the general rules and insights; a complete
specification and correctness proof are in Appendix C [132].

4.1 The challenge
The core challenge is that past transactions can be relevant
to future verifications; specifically, deleting a past transaction
could cause the verifier to overlook future cycles.

W3(y)W1(x) R2(x) W2(x)

R4(x) R4(y)

W3(y)W1(x)

R4(x) R4(y)

before deletion after deletion

T1 T2
T3

T4

T1
T3

T4

Suppose a verifier saw three transactions (T1, T2, T3) and
wanted to remove T2 (the shaded transaction) from consid-
eration in future rounds. Later, the verifier observes a new
transaction T4 that violates serializability (and a fortiori, strict
serializability) by reading from T1 and T3. To see the violation,
notice that T2 is logically subsequent to T4, which generates
a cycle (T4→ T2 T3→ T4). Yet, if we remove T2, there is
no cycle. Hence, removing T2 is not safe: future verifications
would fail to detect certain kinds of serializability violations.

Note that this example does not require malicious or exotic
behavior. For example, consider a geo-replicated database: a
client can retrieve a stale version from a local replica.

4.2 Epochs and fence transactions
Cobra addresses this challenge by creating epochs that im-
pose a coarse-grained ordering on transactions; the verifier
can then discard information from older epochs. To avoid con-
fusion, note that epochs are a separate notion from rounds: a
verification round includes multiple epochs.

To memorialize epoch boundaries in history, clients issue
fence transactions. A fence transaction is a transaction that
reads-and-writes a single key named “EPOCH” (a dedicated

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 69

key that is used by fence transactions only). Each client issues
fence transactions periodically (for example, every 20 transac-
tions).
What prevents the database from defeating the point of

epochs by placing all of the fence transactions at the beginning
of a notional serial schedule? Cobra leverages a property of
practical serializable databases: preserved session order. That
is, the serialization order must obey the execution order within
each session (defined in §2.1). Many production databases (for
example, PostgreSQL, Azure Cosmos DB, and Google Cloud
Datastore) provide this property; for those which do not, co-
bra requires clients to build the session order, for example, by
mandating that all transactions from the same session include
a read-modify-write to a distinguished (per-session) key. Since
transactions’ serialization order obeys the session order, the
epoch ordering intertwines with the workload. Indeed, the ver-
ifier adds to the known graph session-order edges (Figure 3,
line 24), which capture the transaction issuing order in each
session; the verifier gets that per-session order from collectors,
which observe it directly.

The verifier also assigns an epoch number to each trans-
action. To do so, the verifier traverses the known graph (g),
locates all the fence transactions, chains them into a list based
on the RMW relation (§3.1), and assigns their position in the
list as their epoch numbers. Then, the verifier scans the graph
again, and for each normal transaction in a session that is be-
tween fences with epoch i and epoch j (j≥ i+1), the verifier
assigns epoch number j−1.

During the scan, the verifier keeps track of the largest epoch
number that has been seen or surpassed by every session, called
epochagree. Then we have the following guarantee.

Guarantee. For any transaction Ti whose epoch ≤
(epochagree−2), and for any transaction (including future ones)
Tj whose epoch ≥ epochagree, the known graph g contains a
path Ti Tj.
To see why the guarantee holds, consider the path in three

parts. First, for the fence transaction with epoch number
epochagree (denoted Fea), g must have a path Fea Tj, through
session-order edges. Similarly, for the fence transaction after Ti
issued by the same session (denoted Fea−∆), g has Ti Fea−∆.
Finally, Ti has epoch ≤ (epochagree−2), so Fea−∆ must have
epoch ≤ (epochagree−1). Thus, Fea−∆ Fea in g.

4.3 Garbage collection
Cobra takes a conservative approach. A transaction T can be
safely deleted, if
(i) T has been superseded, meaning that no future transac-

tions can precede T or directly succeed T in the known
graph; and

(ii) T is not involved in any potential cycle that includes edges
from constraints whose resolution could be affected by
future transactions.

Below, we delve into condition (i), then motivate condition (ii),
and finally describe cobra’s procedure for garbage collection.

Identifying superseded transactions. Define the frontier as
the set of transactions that contain the most recent writes to
keys among transactions with epoch number ≤ (epochagree−
2). The frontier captures the earliest transactions that future
transactions can possibly read. A transaction T is superseded if:
(1) T does not belong to the frontier, (2) T has epoch number≤
(epochagree−2), and (3) for any transaction T ′ that has a path to
T in the known graph, T ′ has epoch number≤ (epochagree−2).
Note that condition (2) does not subsume condition (3): we
could have T ′ T with T ′ having a larger epoch than T (the
Guarantee in §4.2 does not apply to transactions whose epochs
differ by one).

At a high level, if a transaction T is superseded, the verifier
can conclude that no future transactions should read from T;
such a future transaction would have to be ordered before some
frontier transaction, which makes a cycle by having a path back
to the future transaction, per the Guarantee (§4.2). Thus T
is a candidate to delete. However, being superseded is not a
sufficient condition for safe deletion, as we illustrate next.

Superseded does not imply disposable. Here is an example:

W2(d) W2(a) R3(a) W3(b)

R5(b) W5(c)

W1(d) W1(a)
W4(b) W4(c) R7(d)

R8(c)

 ≤ epochagree - 2 > epochagree

W6(b)

The shaded transaction (T3) is superseded (T3 and its predeces-
sor T2 have epochs≤ epochagree−2, and T3 does not belong to
the frontier). Now consider the effect of future transactions T7
andT8. T8 operates on key c; the other operations on this key are
W4(c) and W5(c). By the guarantee (§4.2), both T4 and T5 hap-
pen before T8. Plus,R8(c) reads fromW5(c), henceW4(c)must
happen before W5(c) (otherwise, R8(c) should have read from
W4(c)). Consequently, the constraint 〈(T5,T4), (T4,T3)〉,which
arises from key b, is solved: T4→ T3 is chosen. Similarly, be-
cause ofR7(d), the other constraint (concerning key a) is solved
and T3→ T1. Thus, there is a cycle (T1 T4→ T3→ T1). Yet,
deleting T3 would make the cycle undetectable.

The core issue here is that future transactions can affect the
resolution of constraints among “old” transactions.

Identifying safe transactions. To garbage collect, the verifier
clones the known graph (g in Fig. 3) into g′. Then, for each
constraint (con in Fig. 3), the verifier adds all edges in both
edge sets to g′. Finally, for each superseded transaction T , if
T does not belong to any cycles in g′ or belongs to cycles
consisting only of superseded transactions, the verifier deletes
T . This approach meets conditions (i) and (ii), as argued in
Appendix C [132].

70 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Cobra component LOC written/changed

Cobra client library
history recording 620 lines of Java
database adapters 900 lines of Java

Cobra verifier
data structures and algorithms 2k lines of Java
GPU optimizations 550 lines of CUDA/C++
history parser and others 1.2k lines of Java

Figure 4: Components of cobra implementation.

5 Implementation

Figure 4 lists the components of cobra’s implementation.
Cobra’s client library wraps other database libraries: JDBC,
Google Datastore library, and RocksJava. It enforces the as-
sumption of uniquely written values (§2.2), by adding a unique
id to a client’s writes, and stripping them out of reads. It also
issues fence transactions (§4.2). Finally, we implement history
collection (§2.1) in this library (the library writes operations
to disk before sending them to the database); a better imple-
mentation would place this function in a proxy.
The verifier iterates the pruning logic within a round, stop-

ping when it finds nothing more to prune or when it reaches
a configurable maximum number of iterations (to bound the
verifier’s work); a better implementation would stop when the
cost of the marginal pruning iteration exceeds the improvement
in the solver’s running time brought by this iteration.

Another aspect of pruning is GPU acceleration. Recall that
pruningworks by computing the transitive closure of the known
edges (Figure 3, line 77). Cobra uses the standard algorithm:
repeated squaring of the Boolean adjacency matrix [70, Ch.25]
as long as the matrix keeps changing, up to log |V| matrix
multiplications. (log |V| is the worst case and occurs when two
nodes are connected by a (≥ |V|/2+1)-step path; at least in
our experiments, this case does not arise much.) The execution
platform is cuBLAS [12] (a dense linear algebra library on
GPUs) and cuSPARSE [13] (a sparse linear algebra library on
GPUs), which contain matrix multiplication routines.

Cobra includes several optimizations. It invokes a special-
ized routine for triangular matrix multiplication (after testing
the graph for acyclicity and then indexing the vertices accord-
ing to a topological sort, creating a triangular matrix). Cobra
also exploits sparse matrix multiplication (cuSPARSE), and
moves to ordinary (dense) matrix multiplication when the den-
sity exceeds a threshold (namely, “5% of the matrix elements
are non-zero”, the empirical cross-over point that we observed).
When cobra’s verifier detects a serializability violation,

it creates a certificate with problematic transactions: either a
cycle in the known graph (detected by cobra’s algorithms) or
else a set of unsatisfiable clauses (produced by MonoSAT).

 0

 2

 4

 6

 8

 10

 12

 14

0 2k 4k 6k 8k 10k

v
er

if
ic

at
io

n
 t

im
e

(s
)

 (
lo

w
er

 i
s

b
et

te
r)

number of transactions

MiniSAT-BE
nonSAT
Z3-arith
MonoSAT-polygraph
Cobra

Figure 5: Cobra’s running time is shorter than other baselines’ on
the BlindW-RW workload. The same holds on the other benchmarks
(not depicted). Verification runtime grows superlinearly.

6 Experimental evaluation

We answer three questions:
• What are the verifier’s costs and limits, and how do these
compare to baselines?

• What is the verifier’s end-to-end, round-to-round sustain-
able capacity? This determines the offered load (on the
actual database) that the verifier can support.

• How much runtime overhead (in terms of throughput and
latency) does cobra impose for clients? And what are co-
bra’s storage and network overheads?

Benchmarks and workloads. We use four benchmarks:
• TPC-C [31] is a standard. A warehouse has 10 districts
with 30k customers. There are five types of transactions
(frequencies in parentheses): new order (45%), payment
(43%), order status (4%), delivery (4%), and stock level
(4%). In our experiments, we use one warehouse, and clients
issue transactions based on the frequencies.

• C-Twitter [8] is a simple clone of Twitter, according to
Twitter’s own description [8]. Users can tweet a new post,
follow/unfollow other users, and show a timeline (the latest
tweets from followed users). Our experiments include 1000
users. Each user tweets 140-word posts and follows/unfol-
lows other users based on a Zipfian distribution (α = 100).

• C-RUBiS [30, 41] simulates bidding systems like eBay [30].
Users can register accounts, register items, bid for items,
and comment on items. We initialize the market with 20k
users and 200k items.

• BlindW measures cobra’s performance in extreme scenar-
ios, specifically those with many blind writes (that is, writes
not preceded by a read of the same key in the same transac-
tion); this pattern is the fundamental source of uncertainty in
constraints (§3). This benchmark creates 10k keys, and runs
read-only and write-only transactions, each with eight oper-
ations. It has three variants: (1) BlindW-RM (Read Mostly),
with 90% read-only transactions; (2) BlindW-RW (Read-
Write), evenly divided between read-only and write-only
transactions; and (3) BlindW-WM (Write Mostly), with 90%
write-only transactions.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 71

Violation Database #Txns Time

G2-anomaly [19] YugaByteDB 1.3.1.0 37.2k 66.3s
Disappearing writes [1] YugaByteDB 1.1.10.0 2.8k 5.0s
G2-anomaly [18] CockroachDB-beta 20160829 446 1.0s
Read uncommitted [26] CockroachDB 2.1 20? 1.0s
Read skew [25] FaunaDB 2.5.4 8.2k 11.4s

Figure 6: Serializability violations that cobra checks. “Violation”
describes the phenomenon that clients experience. “Database” is the
database (with version number) that causes the violation. “#Txns” is
the size of the violation history. “Time” is the runtime for cobra to
detect the violation.
? The bug report only contains a small fragment of the history.

Databases and setup.We evaluate cobra on Google Cloud
Datastore [21], RocksDB [29, 74] (both provide a key-value
API), and PostgreSQL [28, 114] (which only supports the SQL
interface, cobra translates SQL queries to key-value opera-
tions). In our experimental setup, clients interact with Google
Cloud Datastore through the wide-area Internet, and connect
to a PostgreSQL server through a local 1 Gbps network. One
client starts one session.
Database clients run on two machines with a 3.3GHz Intel

i5-6600 (4-core) CPU, 16GB memory, a 250GB SSD, and
Ubuntu 16.04. For PostgreSQL, a database instance runs on
a machine with a 3.8GHz Intel Xeon E5-1630 (8-core) CPU,
32GB memory, a 1TB disk, and Ubuntu 16.04. For RocksDB,
the samemachine hosts the client threads andRocksDB threads,
which all run in the same process. We use a p3.2xlargeAmazon
EC2 instance as the verifier, with an NVIDIA Tesla V100 GPU,
a 8-core CPU, and 64GB memory.

6.1 One-shot verification
In this section, we consider “one-shot verification”: a verifier
gets a history and decides whether that history is serializable.
In our setup, clients record history fragments and store them
as files; a verifier reads them from the local file system. In this
section, the database is RocksDB (PostgreSQL and Google
Cloud Datastore give similar results).
Baselines. We have four baselines:
• A non-SAT serializability-checking algorithm
(“nonSAT”): To the best of our knowledge, the most
efficient work for checking serializability that is not based
on SAT or SMT solving is Biswas and Enea [59]. In our
experiments, we use their Rust implementation [58].

• SAT solver (“MiniSAT-BE”): We use the same solving
baseline that Biswas and Enea use for their own compar-
isons [59]: encoding serializability verification into SAT
formulas, and feeding this encoding to MiniSAT [76], a
popular SAT solver.

• Cobra, subtracted (“MonoSAT-polygraph”):We imple-
ment the original polygraph (§2.3), directly encode the con-
straints (without the techniques of §3), and feed them to the
MonoSAT SMT solver [52].

• SMT solver (“Z3-arith”): An alternative use of SMT, and

314

318

 0

 4

 8

 12

TPC-C

C-Twitte
r

C-RUBiS

BlindW-RM

BlindW-RW

BlindW-W
M

v
er

if
ic

at
io

n
 t

im
e

(s
)

 (
lo

w
er

 i
s

b
et

te
r)

constructing
pruning
solving

Figure 7: Decomposition of cobra runtime, on 10k-transaction work-
loads. Pruning dominates for read-mostly workloads, whereas solving
dominates for workloads with many writes.

a natural baseline, is a linear arithmetic encoding: each node
is assigned a distinct integer index, with read-from relation-
ships creating inequality constraints, and writes inducing
additional constraints (for a total of O(|V|2) constraints, as
in §2.3). The solver is then asked to map nodes to integers,
subject to those constraints [80, 91]. We use Z3 [73] as the
solver (experiments below use Z3’s default configuration;
we also experimented with all four builtin linear integer
arithmetic tactics, which produce similar results).
As a special case, there is an alternative baseline for TPC-

C that has the same performance as cobra and beats other
baselines. Namely, for RMW transactions, add inferred read-
dependency and write-dependency edges to a candidate graph
(without constraints, so potentially missing dependency infor-
mation), topologically sort it, and check whether the result
matches history; if not, repeat. This process has even worse
order complexity than the brute-force approach (§2.3). How-
ever, it works for TPC-C because that workload has only RMW
transactions. Effectively, all of history coalesces to a single,
correctly-ordered chain (§3.1), yielding a serialization graph.
In the experiments below, the baselines and cobra make

use of session order edges (§4.2; also called program order in
BE [59] and its implementation [58]).
Verification runtime vs. number of transactions. We com-
pare cobra to other baselines, on the various workloads. We
use 24 clients. We vary the number of transactions in the work-
load, and measure the verification time. Figure 5 depicts the
results on the BlindW-RW benchmark. On all five benchmarks,
Cobra does better than MonoSAT-polygraph and Z3-arith,
which do better than MiniSAT-BE and nonSAT.
Detecting serializability violations.We investigate cobra’s
performance on unsatisfiable instances: does cobra search
for an unacceptably long time on real-world workloads? We
consider five workloads that are known to have serializability
violations [1, 18, 19, 25, 26]. We experiment by downloading
the reported histories from their bug repositories and feeding
them to cobra’s verifier. Figure 6 shows the results. Cobra
detects all violations and finishes in reasonable time.

72 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 1

 10

 100

 600

TPC-C C-Twitter BlindW-RW

v
e
ri

fi
c
a
ti

o
n

 t
im

e
(s

)
 (

lo
w

e
r

is
 b

e
tt

e
r)

Cobra
Cobra w/o P

Cobra w/o PC
MonoSAT

2

446

2

4

13

2

34

Figure 8: Differential analysis on several workloads, log-scale, with
runtime above bars. Experiments time out at 10min (dotted line); no
runtime is shown for timed-out experiments. On TPC-C, combining
writes exploits the RMW pattern and solves all the constraints. On
C-Twitter, each of cobra’s components contributes meaningfully. On
BlindW-RW, pruning is essential, because the workload has many
blind writes which cannot benefit from the other two techniques.

 0

 20

 40

 60

 80

 100

0 20 40 60 80 100

v
er

if
ic

at
io

n
 t

im
e

(s
)

 (
lo

w
er

 i
s

b
et

te
r)

clock drift threshold (ms)

Z3-arith
MonoSAT-polygraph
Cobra

Figure 9: Cobra’s running time is shorter than other baselines’ on
checking strict serializability under clock drift. The workload is 2,000
transactions of BlindW-RW (clock drift threshold of 100 ms).

Decomposition of cobra’s verification runtime. We mea-
sure the wall clock time of cobra’s verification, broken into
stages: constructing, which includes creating the known graph,
combining writes, and creating constraints (§3.1–§3.2); prun-
ing (§3.3), which includes the time taken by the GPU; and
solving (§3.4), which includes the time spent within MonoSAT.
We experiment with all benchmarks, with 10k transactions.

Figure 7 depicts the results. In benchmarks with RMWs only
(the left one), there are no constraints, so cobra doesn’t prune
(see also the special case baseline, §6.1). In benchmarks with
many reads and RMWs (the second to fourth bars), the domi-
nant component is pruning not solving, because cobra’s own
logic identifies concrete dependencies. In benchmarks with
many blind writes (the last two), solving is a much larger con-
tributor because cobra cannot eliminate as many constraints,
leading to a larger search space, an effect that grows more pro-
nounced as the fraction of blind writes increases. On the other
hand, a majority of writes is not consistent with the patterns
in common online transaction processing workloads (OLTP),
where reads dominate.
Differential analysis. We experiment with four variants: co-
bra itself; cobra without pruning (§3.3); cobra without prun-
ing and coalescing (§3.2), which is equivalent to MonoSAT
plus write combining (§3.1); and the MonoSAT baseline.

 0

 500

 1000

 1500

 2000

 2500

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

v
er

if
ic

at
io

n
 t

h
ro

u
g

h
p

u
t

(t
x

n
/s

ec
)

 (

h
ig

h
er

 i
s

b
et

te
r)

number of transactions per round (#tx
r
)

BlindW-RM
C-RUBiS

Figure 10: Verification throughput vs. round size (#txr). The verifica-
tion capacity for BlindW-RM (the dashed line) is 2.3k txn/sec when
#txr is 5k; the capacity for C-RUBiS (the solid line) is 1.2k txn/sec
when #txr is 2.5k.

90%

95%

100%

p
ea

k
 c

li
en

t
 t

h
ro

u
g
h
p
u
t

normalized client throughput

 1k

 3k

 5k

 1 10 20 30 40 50 60

v
er

if
ie

r
 t

h
ro

u
g
h
p
u
t

#transactions between fences for each client

verifier throughput

Figure 11: Client and verifier throughputs with different fence frequen-
cies. Client throughput (the solid line) is normalized to the workload
without fence transactions. In BlindW-RM, each normal transaction
has 8 operations (§6), and fence transactions have 1–2 operations.

We experiment with three benchmarks, with 10k transactions.
Figure 8 depicts the results.
Checking strict serializability under clock drift. Clock drift
adds complexity to strict serializability (§1,§3.5). To measure
this effect, we experiment with cobra, MonoSAT-polygraph,
and Z3-arith, under different clock drifts, on the same work-
load. The workload has eight clients running BlindW-RW on
1k keys for one second with a throughput of 2k transaction/sec.
To control computational overhead, the clients issue 20 trans-
actions every 10ms. The maximum clock drift threshold is 100
ms [15]; similar thresholds can be found elsewhere [10, 37].
Figure 9 depicts the results; cobra outperforms the baselines
by 45× and 107× in verification time.

6.2 Scaling
What offered load (to the database) can cobra support on
an ongoing basis? To answer this question, we must quantify
cobra’s verification capacity, in txns/second. This depends on
the characteristics of the workload, the number of transactions
one round (§4) verifies (#txr), and the average time for one
round of verification (tr). Note that the variable here is #txr; tr
is a function of that choice. So the verification capacity for a
particular workload is defined as: max#txr(#txr/tr).
To investigate this quantity, we run all our benchmarks on

RocksDB with 24 concurrent clients, each configured to issue

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 20k 40k 60k 80k

la
te

n
cy

 (
m

s)

throughput (txn/sec)

Original
Cobra

(a) RocksDB

 0

 10

 20

 30

 40

 50

0 2k 4k 6k 8k 10k 12k 14k

la
te

n
cy

 (
m

s)

throughput (txn/sec)

Original
Cobra

(b) PostgreSQL

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

la
te

n
cy

 (
m

s)

throughput (txn/sec)

Original
Cobra

(c) Google Datastore

Figure 12: Throughput and latency, for C-Twitter benchmark. For our RocksDB setup, 90th percentile latency increases by 2×, with 50%
throughput penalty, an artifact of history collection (disk bandwidth contention between clients and the DB). cobra imposes minor overhead
for our PostgreSQL. For Google Datastore, the throughput penalty reflects a ceiling (a maximum number of operations per second) imposed by
the cloud service and the extra operations caused by fence transactions.

fence transactions every 20 transactions. We generate a 100k-
transaction history ahead of time. For that same history, we
vary #txr, plot #txr/tr, and choose the optimum.

Figure 10 depicts the results for two benchmarks (C-RUBiS
and BlindW-RM); C-Twitter and TPC-C have similar results
(not depicted), but BlindW-RW and BlindW-WM run out of
memory (we elaborate below). When #txr is smaller, cobra
does not have enough transactions to garbage collect, hence
wastes cycles on redundantly analyzing transactions from prior
rounds; when #txr is larger, cobra suffers from a problem
size that is too large (recall that verification time increases
superlinearly; §6.1).
History eventually exceeds GPU memory on the BlindW-

RW and BlindW-WM benchmarks because blind writes limit
cobra’s ability to garbage collect transactions: blind writes
cannot benefit from combining writes (§3.1), hence many con-
straints remain, causing transactions to be involved in uncertain
constraints, and thus not collectible (§4.3). Addressing this is-
sue is future work (§8).
Fence frequency. The choice of fence frequency trades off ver-
ification capacity and peak client-side throughput. To quantify,
we do the same BlindW-RM experiments as in Figure 10, this
time fixing round size (at 5k transactions) and varying fence
frequency.

Figure 11 depicts the results. The verifier has better through-
put if clients issue fence transactions more frequently. The
reason is that more fence transactions result in smaller epoch
sizes, hence transactions can be garbage collected earlier, and
the problem size for the verifier in each round is smaller. More-
over, with more fence transactions, the problem in each round
is easier to solve because fence transactions add ordering con-
straints, which further reduce the number of possibly-valid ex-
ecution schedules. However, more frequent fence transactions
sacrifices peak client-side throughput because more resources
are occupied by fence transactions.
The right setting of fence frequency depends on client of-

fered load, peak:average throughput ratio, database capacity,
and tolerance for latency. If the frequency is set too high (to-
ward the left side of the x-axis), clients will no longer be able
to offer the original workload with acceptable latency. On the

workload network overhead history
traffic percentage size

BWrite-RW 227.4 KB 7.28% 245.5 KB
C-Twitter 292.9 KB 4.46% 200.7 KB
C-RUBiS 107.5 KB 4.53% 148.9 KB
TPC-C 78.2 KB 2.17% 1380.8 KB

Figure 13: Network and storage overheads per 1k transactions. The
network overheads comes from fence transactions and the metadata
(transaction ids and write ids) added by cobra’s client library.

other hand, for too-low frequencies (toward the right side of
the x-axis), the verifier will not be able to keep up with the
database’s average load. Of course, if client load is constant, the
fence frequency should be chosen as the point where verifier
throughput equals client offered load.

6.3 Online overheads
The baseline in this section is the legacy system; that is, clients
use the unmodified database library (for example, JDBC), with
no recording of history.
Latency-versus-throughput. We evaluate cobra’s client-
side throughput and latency in the three setups, tuning the
number of clients (up to 256) to saturate the databases. Fig-
ure 12 depicts the results. (Although these results include the
overhead of collecting histories in the client library (§5), that
overhead is negligible, as the log size is small and disk latency
is lower than network latency.)
Network cost and history size.We evaluate the network traffic
on the client side by tracking the number of bytes sent over
the NIC. We measure the history size by summing sizes of the
history files. Figure 13 summarizes.

6.4 Summary of experimental evaluation
cobra improves by at least 10× on baselines in verification
cost (Figure 5), detects real-world issues (Figure 6), gains from
its techniques versus the baseline (Figures 7 and 8), and im-
poses tolerable overhead (Figures 12 and 13).
Furthermore, its sustained throughput of 2k txn/sec (Fig-

ure 10) corresponds to large-scale real-world workloads. While
2k/sec might not sound large, recall that the verifier’s perfor-

74 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mance requirement is to match average database load (§2.1).
An average of 2k/sec corresponds to 170M/day, sufficient to
handle Apple Pay [6] (33M txn/day), Visa [33] (150M txn/-
day), and others. Of course, a “transaction”, in the sense of a
payment, might translate to several database transactions, so
the comparison is inexact.

7 Related work

As stated earlier (§1), cobra is the first system that verifies the
executions of (a) black box databases, for (b) serializability,
under (c) workloads of realistic scale.

Three works that we are aware of tackle (a) and (b) together.
Biswas and Enea [59] was covered in Section 1 and compared
in Section 6. Sinha et al. [124] use SMT solvers to analyze
all possible interleavings for a concurrent program, to search
for serializability violations. Finally, Gretchen [23] is an ex-
perimental checker that verifies the non-strict serializability
of a cobra-style history. Gretchen encodes the history as con-
straints [67] (similar to our MiniSAT-BE baseline; §6.1) and
solves them with the fzn-gecode [20] solver.
A recent work that deserves special mention is Elle [94],

which tests for isolation anomalies, and has found many isola-
tion bugs in production databases. (Elle is part of the impactful
Jepsen [14] project, which we discuss later in this section.)
Elle has two modes for testing serializability. In one, it verifies
Adya’s serializability (PL-3 [38]), the same goal as cobra. But
Elle in this mode requires a workload that makes the version
order (§2.2) manifest; for example, clients invoke “append”,
and writes become appends to a list (Elle in this mode also
supports counters and sets). In relying on a specific API and
a specific workload for testing, this mode does not meet our
notion of black box (§1).

In the second mode, Elle works over arbitrary observations
of key-value input/output, the same setup as cobra. Without
a determined version order, it applies heuristics to identify
bugs. These heuristics are useful but not comprehensive, so
this is not verification. For example, if a history contains a
set of concurrent transactions that form a cycle through anti-
dependencies, Elle’s current heuristics do not detect the non-
serializability.
Checking consistency. Serializability is a particular isolation
level in a transactional system—the I in ACID transactions.
In shared memory systems and systems that offer replication
(but do not necessarily support transactions), there is an analo-
gous correctness contract, namely consistency. (Confusingly,
the “C(onsistency)” in ACID transactions refers to something
else [47].) Example consistency models are linearizability [88],
sequential consistency [97], and eventual consistency [112].
Testing adherence to these models is an analogous problem
to ours. In both cases, one searches for a total order of op-
erations that fits the ordering constraints of both the model
and the history [82]. As in checking serializability, the com-

putational complexity of checking consistency decreases if a
stronger model is targeted (for example, linearizability vs. se-
quential consistency) [81], or if more ordering information can
be (intrusively) acquired (by opening black boxes) [123, 139].
Concerto [43] uses deferred verification, allowing it to ex-

ploit offline memory checking [60] to check online the se-
quential consistency of a highly concurrent key-value store.
Concerto’s design achieves orders-of-magnitude performance
improvement compared to Merkle tree-based approaches [60,
106], but it also requires modifying the storage layer. (See
elsewhere [75, 98] for algorithms related to Concerto.)
A body of work examines cloud storage consistency [39,

42, 83, 101, 102, 115, 135, 142]. These works rely on extra
ordering information obtained through techniques like loosely-
or well-synchronized clocks [39, 42, 82, 83, 93, 102, 115, 135,
142], or client-to-client communication [101, 122], or by guess-
ing [143] (which risks falsely rejecting honest executions). As
another example, a gateway that sequences the requests can
ensure consistency by enforcing ordering [90, 113, 122, 125],
thereby dramatically reducing concurrency.

Some of cobra’s techniques are reminiscent of these works,
such as its use of serialization graphs [42, 82]. However, a
substantial difference is that cobra neither modifies the “mem-
ory” (the database) to get information about the actual internal
schedule nor depends on external synchronization. Cobra of
course exploits epochs (§4.2), but this is for scaling, not core to
the verification task, and invokes standard database interfaces.
Execution integrity. Our problem relates to the broad cate-
gory of execution integrity—ensuring that a module in another
administrative domain is executing as expected.
One approach is to use trusted components. For example,

Byzantine fault tolerant (BFT) replication [66] (where the
assumption is that a super-majority is not faulty) and TEEs
(trusted execution environments, comprising TPM-based sys-
tems [68, 87, 104, 105, 111, 117, 119, 126] and SGX-based
systems [44, 45, 51, 89, 95, 118, 121, 125]) ensure that the
right code is running. However, this does not ensure that the
code itself is right; concretely, if a database violates serializ-
ability owing to a bug, neither BFT nor SGX hardware helps.
Other examples are Verena [92], Orochi [131], AVM [85],

and Ripley [134]. These systems provide end-to-end assurance
that a whole stack is executing as it should, but they are not
black box. Cobra is the other way around: it treats the database
as a black box, but its purview is limited to the database.
A class of systems uses complexity-theoretic and crypto-

graphic mechanisms [61, 120, 145, 146]. None of these works
handle systems of realistic scale, and only one of them [120]
handles concurrent workloads. An exception is Obladi [71],
which remarkably provides ACID transactions atop an ORAM
abstraction by exploiting a trusted proxy that carefully manages
the interplay between concurrency control and the ORAM pro-
tocol; its performance is surprisingly good (as cryptographic-
based systems go) but still pays 1-2 orders of magnitude over-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 75

head in throughput and latency.
Detecting application anomalies caused by weak consis-
tency. Several works [63, 109, 116] detect anomalies for ap-
plications deployed on weakly consistent storage. Like cobra,
these works use SAT/SMT solvers on graph-related problems.
But the similarities end there: these works analyze applica-
tion behavior, taking the storage layer as trusted input. As a
consequence, the technical mechanisms are very different.
Testing distributed systems. There is a line of research on
testing the correctness of distributed systems under various
failures, including network partition [40], power failures [147],
and storage faults [78]. Among these, Jepsen [14] is a very
successful testing framework (the aforementioned Elle is one
of Jepsen’s checkers) with active, ongoing innovation, which
has detected large numbers of correctness bugs in production
distributed systems. Cobra is complementary (and intended to
be complimentary) to these works. Indeed, cobra uses several
of Jepsen’s traces in Figure 6 (§6.1).
Definitions and interpretations of isolation levels. Cobra
of course uses dependency graphs, which are a common tool
for reasoning about isolation levels [38, 56, 110]. However,
isolation levels can be interpreted via other means such as
excluding anomalies [53] and client-centric observations [72];
an open and intriguing question is whether the other definitions
yield a more intuitive or more easily-implemented encoding
and algorithm than the one in cobra.

8 Discussion, future work, and conclusion

Applicability. Cobra cannot preventmisbehavior, only detect
it. On the other hand, no system that we are aware of can detect
and prevent serializability violations online. Meanwhile,cobra
could contribute to recovery: given a certificate (§5), the user
could supply a candidate serialization order, enabling roll back
and replay. See also Concerto’s eloquent case for deferred
verification [43, §1.1].

Who would use cobra? We covered some scenarios in Sec-
tion 2.1. Another is to use cobra as the checker of a testing
framework (for example, Jepsen [14], §7). Then one could in-
sert malfunctions into various layers of the system (OS, storage,
network) and avoid instrumenting the database.
One might assume that the verifier needs to be at least as

powerful as the database, so why have the database? While they
must match in long-term average transactions/sec (§2.1), the
two do different kinds of work per transaction. The database
provides geo-replication, concurrency control, crash-atomicity,
durability, load-balancing, and more; the verifier is a single
machine and purely algorithmic.

Limitations and future work. cobra can be slow for certain
workloads (for example, when there are many unconstrained
writes, as in the BlindW-WM benchmark; §6.1). In fact, co-
bra’s worst-case running time is in principle exponential; fu-

ture work is to investigate whether there are real-world work-
loads that induce this behavior, or does it just happen under
contrived problem instances as in the NP-reduction?
Consistent with our experiments, we expect “real-world”

workloads not to trigger this behavior. For intuition, low con-
tention on each key yields a relatively small number of con-
straints and a small search space; the extreme is that each key
is touched once, yielding no dependencies. If there is high
contention with sufficient reads, there are more dependencies
among transactions, which imposes more ordering. An extreme
case is that there is only one key, and transactions read and
write this key, so that all transactions are ordered accordingly.

We have assumed that the verifier and the collectors oper-
ate fault-free. Future work is to make them fault-tolerant. To
that end, cobra could use standard techniques (for example,
transparent state machine replication) or extend its protocols
to handle failures. Note that even if some history fragments are
lost, cobra can (with minor modifications) produce meaning-
ful results: a cyclic dependency (serializability violation) in a
partial history is also a violation against the full history. An-
other idea is to use cobra to infer what the missing transactions
would have to be in order to ensure serializability.

Cobra focuses on serializability and strict serializability;
future work is extending to other isolation levels. Relatedly,
cobra does not support range queries and other high-level
operators (for example, sum and join); if applications want
them, they have to rewrite queries (§1). Handling these queries
“natively” would require the verifier to analyze both keys that
are returned and keys that are not returned.

Making garbage collection more aggressive is another area
of potential improvement, for example, by allowing the verifier
to query the database to resolve certain constraints.

Conclusion. A final critique is that we lack a sensational head-
line, as we did not identify novel serializability violations. How-
ever, validation doesn’t always produce a gotcha: from our
perspective, it’s equally significant to be able to report on a
system that gives us confidence that cloud databases do meet
serializability. This was something we used to have to trust;
cobra, however imperfect, helps us be sure.

Acknowledgments

Sebastian Angel, Miguel Castro, Pete Chen, Byron Cook, An-
dreas Haeberlen, Dennis Shasha, Ioanna Tzialla, ThomasWies,
and Lingfan Yu made helpful comments and gave useful point-
ers. We thank the anonymous reviewers (including at SOSP
and NSDI) for careful and constructive comments, and like-
wise our shepherd Chris Hawblitzel. We thank the anonymous
artifact evaluators for their patience and attention to detail.
This work was supported by NSF grants CNS-1423249 and
CNS-1514422, ONR grant N00014-16-1-2154, AFOSR grants
FA9550-15-1-0302 and FA9550-18-1-0421, andDARPA under
Agreement HR00112020022.

76 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Acknowledged inserts can be present in reads for tens of seconds, then

disappear.
https://github.com/YugaByte/yugabyte-db/issues/824.

[2] Amazon Aurora. https://aws.amazon.com/rds/aurora/.

[3] Amazon Aurora MySQL Reference.
https://docs.aws.amazon.com/AmazonRDS/latest/
AuroraUserGuide/AuroraMySQL.Reference.html.

[4] Amazon DynamoDB. https://aws.amazon.com/dynamodb/.

[5] Amazon DynamoDB Transactions.
https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/transaction-apis.html.

[6] Apple pay transaction volume and new user growth outpacing paypal,
tim cook says. https://9to5mac.com/2019/07/30/apple-pay-
transactions-users-paypal/.

[7] Azure Cosmos DB.
https://azure.microsoft.com/en-us/services/cosmos-db/.

[8] Big data in real time at Twitter. https://www.infoq.com/
presentations/Big-Data-in-Real-Time-at-Twitter.

[9] CockroachDB: Distributed SQL. https://www.cockroachlabs.com.

[10] CockroachDB: What happens when node clocks are not properly
synchronized? https://www.cockroachlabs.com/docs/stable/
operational-faqs.html#what-happens-when-node-clocks-
are-not-properly-synchronized.

[11] CockroachDB’s consistency model.
https://www.cockroachlabs.com/blog/consistency-model/.

[12] cuBLAS: Dense Linear Algebra on GPUs.
https://developer.nvidia.com/cublas.

[13] cuSPARSE: Sparse Linear Algebra on GPUs.
https://developer.nvidia.com/cusparse.

[14] Distributed system safety research. https://jepsen.io/.

[15] Executive summary: Computer network time synchronization.
https://www.eecis.udel.edu/~mills/exec.html.

[16] FaunaDB. https://fauna.com.

[17] FoundationDB. https://www.foundationdb.org.

[18] G2: anti-dependency cycles.
https://github.com/cockroachdb/cockroach/issues/10030.

[19] G2-item anomaly with master kills.
https://github.com/YugaByte/yugabyte-db/issues/2125.

[20] Gecode: Flatzinc. https://www.gecode.org/flatzinc.html.

[21] Google Cloud Datastore. https://cloud.google.com/datastore/.

[22] Google Cloud Spanner. https://cloud.google.com/spanner/.

[23] Gretchen: Offline serializability verification, in clojure.
https://github.com/aphyr/gretchen.

[24] How Halo 5 implemented social gameplay using Azure Cosmos DB.
https:
//azure.microsoft.com/en-us/blog/how-halo-5-guardians-
implemented-social-gameplay-using-azure-documentdb/.

[25] Jepsen: Faunadb 2.5.4.
http://jepsen.io/analyses/faunadb-2.5.4.

[26] Lessons learned from 2+ years of nightly jepsen tests. https:
//www.cockroachlabs.com/blog/jepsen-tests-lessons/.

[27] Norwegian electronics giant scales for sales, sets record with
cloud-based transaction processing.
https://customers.microsoft.com/en-us/story/elkjop-
retailers-azure.

[28] PostgreSQL. https://www.postgresql.org/.

[29] RocksDB. https://rocksdb.org/.

[30] RUBiS. https://rubis.ow2.org/.

[31] TPC-C. http://www.tpc.org/tpcc/.

[32] Transactions, cloud Spanner.
https://cloud.google.com/spanner/docs/transactions.

[33] Visa: Small business retail. https://usa.visa.com/run-your-
business/small-business-tools/retail.html.

[34] The Yices SMT solver. http://yices.csl.sri.com/.

[35] YugaByte db 1.3.1, undercounting counter.
http://jepsen.io/analyses/yugabyte-db-1.3.1.

[36] YugaByte DB: Home. https://www.yugabyte.com.

[37] yugabyte source code. https://github.com/yugabyte/yugabyte-
db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/
yb/util/physical_time.cc#L36.

[38] A. Adya. Weak consistency: a generalized theory and optimistic
implementations for distributed transactions. PhD thesis,
Massachusetts Institute of Technology, 1999.

[39] A. S. Aiyer, E. Anderson, X. Li, M. A. Shah, and J. J. Wylie.
Consistability: Describing usually consistent systems. In Proc.
HotDep, Dec. 2008.

[40] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany. An analysis
of network-partitioning failures in cloud systems. In Proc. OSDI, Oct.
2018.

[41] C. Amza, E. Cecchet, A. Chanda, A. L. Cox, S. Elnikety, R. Gil,
J. Marguerite, K. Rajamani, and W. Zwaenepoel. Specification and
implementation of dynamic web site benchmarks. In Proc. IEEE
WWC, Nov. 2002.

[42] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie. What
consistency does your key-value store actually provide? In Proc.
HotDep, Oct. 2010. Full version: Technical Report HPL-2010-98,
Hewlett-Packard Laboratories, 2010.

[43] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey,
and R. Ramamurthy. Concerto: a high concurrency key-value store
with integrity. In Proc. SIGMOD, May 2017.

[44] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell, et al. SCONE:
Secure Linux containers with Intel SGX. In Proc. OSDI, Oct. 2016.

[45] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe,
J. Lind, R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch. LibSEAL:
Revealing service integrity violations using trusted execution. In Proc.
EuroSys, Apr. 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 77

https://github.com/YugaByte/yugabyte-db/issues/824
 https://aws.amazon.com/rds/aurora/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html
 https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html
https://9to5mac.com/2019/07/30/apple-pay-transactions-users-paypal/
https://9to5mac.com/2019/07/30/apple-pay-transactions-users-paypal/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://www.infoq.com/presentations/Big-Data-in-Real-Time-at-Twitter
https://www.infoq.com/presentations/Big-Data-in-Real-Time-at-Twitter
https://www.cockroachlabs.com
https://www.cockroachlabs.com/docs/stable/operational-faqs.html#what-happens-when-node-clocks-are-not-properly-synchronized
https://www.cockroachlabs.com/docs/stable/operational-faqs.html#what-happens-when-node-clocks-are-not-properly-synchronized
https://www.cockroachlabs.com/docs/stable/operational-faqs.html#what-happens-when-node-clocks-are-not-properly-synchronized
https://www.cockroachlabs.com/blog/consistency-model/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusparse
https://jepsen.io/
https://www.eecis.udel.edu/~mills/exec.html
https://fauna.com
https://www.foundationdb.org
https://github.com/cockroachdb/cockroach/issues/10030
https://github.com/YugaByte/yugabyte-db/issues/2125
https://www.gecode.org/flatzinc.html
https://cloud.google.com/datastore/
https://cloud.google.com/spanner/
https://github.com/aphyr/gretchen
https://azure.microsoft.com/en-us/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
https://azure.microsoft.com/en-us/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
https://azure.microsoft.com/en-us/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
http://jepsen.io/analyses/faunadb-2.5.4
https://www.cockroachlabs.com/blog/jepsen-tests-lessons/
https://www.cockroachlabs.com/blog/jepsen-tests-lessons/
https://customers.microsoft.com/en-us/story/elkjop-retailers-azure
https://customers.microsoft.com/en-us/story/elkjop-retailers-azure
https://www.postgresql.org/
https://rocksdb.org/
https://rubis.ow2.org/
http://www.tpc.org/tpcc/
https://cloud.google.com/spanner/docs/transactions
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
http://yices.csl.sri.com/
http://jepsen.io/analyses/yugabyte-db-1.3.1
https://www.yugabyte.com
https://github.com/yugabyte/yugabyte-db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/yb/util/physical_time.cc#L36
https://github.com/yugabyte/yugabyte-db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/yb/util/physical_time.cc#L36
https://github.com/yugabyte/yugabyte-db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/yb/util/physical_time.cc#L36

[46] A. Awad and B. Karp. Execution integrity without implicit trust of
system software. In ACM Workshop on System Software for Trusted
Execution (SysTEX), 2019.

[47] P. Bailis. Linearizability versus serializability.
http://www.bailis.org/blog/linearizability-versus-
serializability/, Sept. 2014.

[48] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Highly available transactions: virtues and limitations.
PVLDB, Sept. 2014.

[49] T. Balyo, M. J. Heule, and M. Jarvisalo. SAT competition 2016:
Recent developments. In Proc. AAAI, Feb. 2017.

[50] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli. CVC4. In Proc. CAV, July 2011.

[51] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from
an untrusted cloud with Haven. In Proc. OSDI, Oct. 2014.

[52] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. SAT modulo
monotonic theories. In Proc. AAAI, Jan. 2015.

[53] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. In Proc. SIGMOD, May
1995.

[54] P. A. Bernstein and N. Goodman. Multiversion concurrency
control—theory and algorithms. ACM Transactions on Database
Systems (TODS), 8(4):465–483, 1983.

[55] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems. Addison-Wesley Longman
Publishing Co., Inc., 1987.

[56] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal aspects of
serializability in database concurrency control. TSE, SE-5(3), May
1979.

[57] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[58] R. Biswas and C. Enea. dbcop source code.
https://zenodo.org/record/3367334.

[59] R. Biswas and C. Enea. On the complexity of checking transactional
consistency. In Proc. OOPSLA, Oct. 2019.

[60] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking
the correctness of memories. Algorithmica, 12(2-3), Sept. 1994.

[61] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. In Proc. SOSP, Nov.
2013.

[62] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev. Serializability for
eventual consistency: criterion, analysis, and applications. In Proc.
POPL, Jan. 2017.

[63] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev. Static
serializability analysis for causal consistency. In Proc. PLDI, 2018.

[64] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
The MathSAT 4 SMT solver. In Proc. CAV, July 2008.

[65] M. A. Casanova. The concurrency control problem for database
systems. Number 116. Springer Science & Business Media, 1981.

[66] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proc.
OSDI, Feb. 1999.

[67] A. Cerone, G. Bernardi, and A. Gotsman. A framework for
transactional consistency models with atomic visibility. In 26th
International Conference on Concurrency Theory (CONCUR 2015),
Sept. 2015.

[68] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar. Towards
verifiable resource accounting for outsourced computation. In Proc.
VEE, Mar. 2013.

[69] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. TOCS, 31(3), June 2013.

[70] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, third edition. The MIT Press, 2009.

[71] N. Crooks, M. Burke, E. Cecchetti, S. Harel, L. Alvisi, and R. Agarwal.
Obladi: Oblivious serializable transactions in the cloud. In Proc.
OSDI, Oct. 2018.

[72] N. Crooks, Y. Pu, L. Alvisi, and A. Clement. Seeing is believing: a
client-centric specification of database isolation. In Proc. PODC, July
2017.

[73] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc.
TACAS, Mar. 2008.

[74] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum. Optimizing space amplification in RocksDB. In Proc.
CIDR, Jan. 2017.

[75] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How
efficient can memory checking be? In Proc. TCC, Mar. 2009.

[76] N. Eén and N. Sörensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability testing.
Springer, 2003.

[77] A. Fekete, S. N. Goldrei, and J. P. Asenjo. Quantifying isolation
anomalies. Proceedings of the VLDB Endowment, 2(1):467–478,
2009.

[78] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Redundancy does not imply fault tolerance: Analysis
of distributed storage reactions to single errors and corruptions. In
Proc. FAST, Feb. 2017.

[79] M. Gebser, T. Janhunen, and J. Rintanen. Answer set programming as
SAT modulo acyclicity. In Proc. ECAI, 2014.

[80] M. Gebser, T. Janhunen, and J. Rintanen. SAT modulo graphs:
acyclicity. In Proc. JELIA, 2014.

[81] P. B. Gibbons and E. Korach. Testing shared memories. SIJC, 26(4),
Aug. 1997.

[82] W. Golab, X. Li, and M. Shah. Analyzing consistency properties for
fun and profit. In Proc. PODC, June 2011.

[83] W. Golab, M. R. Rahman, A. AuYoung, K. Keeton, and I. Gupta.
Client-centric benchmarking of eventual consistency for cloud storage
systems. In Proc. ICDCS, June 2014.

[84] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver.
In Proc. DATE, Mar. 2002.

[85] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Accountable
virtual machines. In Proc. OSDI, Oct. 2010.

[86] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of
atomic-set-serializability violations. In Proc. ICSE, May 2008.

78 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.bailis.org/blog/linearizability-versus-serializability/
http://www.bailis.org/blog/linearizability-versus-serializability/
https://zenodo.org/record/3367334

[87] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad apps: end-to-end security via automated
full-system verification. In Proc. OSDI, Oct. 2014.

[88] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. TOPLAS, 12(3), July 1990.

[89] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: a distributed
sandbox for untrusted computation on secret data. In Proc. OSDI, Oct.
2016.

[90] R. Jain and S. Prabhakar. Trustworthy data from untrusted databases.
In Proc. ICDE, Apr. 2013.

[91] M. Janota, R. Grigore, and V. M. Manquinho. On the quest for an
acyclic graph. CoRR, abs/1708.01745, Aug. 2017.

[92] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun. Verena:
End-to-end integrity protection for Web applications. In Proc. S&P,
May 2016.

[93] B. H. Kim and D. Lie. Caelus: Verifying the consistency of cloud
services with battery-powered devices. In Proc. S&P, May 2015.

[94] K. Kingsbury and P. Alvaro. Elle: Inferring isolation anomalies from
experimental observations. arXiv preprint arXiv:2003.10554, 2020.

[95] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia,
and C. Fetzer. Pesos: Policy enhanced secure object store. In Proc.
EuroSys, Apr. 2018.

[96] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC:
Multi-data center consistency. In Proc. EuroSys, Apr. 2013.

[97] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. TC, C-28(9), Sept. 1979.

[98] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic
authenticated index structures for outsourced databases. In Proc.
SIGMOD, June 2006.

[99] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Exponential
recency weighted average branching heuristic for SAT solvers. In Proc.
AAAI, Feb. 2016.

[100] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada: Dependably fast
multi-core in-memory transactions. In Proc. SIGMOD, May 2017.

[101] Q. Liu, G. Wang, and J. Wu. Consistency as a service: Auditing cloud
consistency. TNSM, 11(1), Mar. 2014.

[102] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus,
S. Kumar, and W. Lloyd. Existential consistency: measuring and
understanding consistency at Facebook. In Proc. SOSP, Oct. 2015.

[103] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi.
Low-latency multi-datacenter databases using replicated commit.
PVLDB, 6(9), July 2013.

[104] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB reduction and attestation. In
Proc. S&P, May 2010.

[105] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In Proc.
EuroSys, Apr. 2008.

[106] R. C. Merkle. A digital signature based on a conventional encryption
function. In Proc. Crypto, Aug. 1987.

[107] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proc. DAC, June 2001.

[108] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more
concurrency from distributed transactions. In Proc. OSDI, Oct. 2014.

[109] K. Nagar and S. Jagannathan. Automated detection of serializability
violations under weak consistency. arXiv preprint arXiv:1806.08416,
2018.

[110] C. H. Papadimitriou. The serializability of concurrent database
updates. JACM, 26(4), Oct. 1979.

[111] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in modern
computers. Springer, 2011.

[112] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J.
Demers. Flexible update propagation for weakly consistent replication.
In Proc. SOSP, Oct. 1997.

[113] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang.
Enabling security in cloud storage SLAs with CloudProof. In Proc.
USENIX ATC, June 2011.

[114] D. R. Ports and K. Grittner. Serializable snapshot isolation in
PostgreSQL. PVLDB, 5(12), Aug. 2012.

[115] M. R. Rahman, W. Golab, A. AuYoung, K. Keeton, and J. J. Wylie.
Toward a principled framework for benchmarking consistency. In
Proc. HotDep, Oct. 2012.

[116] K. Rahmani, K. Nagar, B. Delaware, and S. Jagannathan. Clotho:
directed test generation for weakly consistent database systems. In
Proc. OOPSLA, Oct. 2019.

[117] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and
implementation of a TCG-based integrity measurement architecture.
In Proc. USENIX Security, Aug. 2004.

[118] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy data analytics
in the cloud using SGX. In Proc. S&P, May 2015.

[119] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla.
Pioneer: Verifying integrity and guaranteeing execution of code on
legacy platforms. In Proc. SOSP, Oct. 2005.

[120] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct execution
of concurrent services in zero-knowledge. In Proc. OSDI, Oct. 2018.

[121] S. Shinde, D. Le Tien, S. Tople, and P. Saxena. Panoply: Low-TCB
Linux applications with SGX enclaves. In Proc. NDSS, Feb. 2017.

[122] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and
D. Shaket. Venus: Verification for untrusted cloud storage. In Proc.
CCSW, Oct. 2010.

[123] A. Sinha and S. Malik. Runtime checking of serializability in software
transactional memory. In Proc. IPDPS, Apr. 2010.

[124] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predicting serializability
violations: SMT-based search vs. DPOR-based search. In Haifa
Verification Conference, 2011.

[125] R. Sinha and M. Christodorescu. VeritasDB: High throughput
key-value store with integrity. IACR Cryptology ePrint Archive, 2018.

[126] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical attestation: an authorization
architecture for trustworthy computing. In Proc. SOSP, Oct. 2011.

[127] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to
cryptographic problems. In Proc. SAT, June 2009.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 79

[128] A. Stump, C. W. Barrett, and D. L. Dill. CVC: a cooperating validity
checker. In Proc. CAV, July 2002.

[129] C. Su, N. Crooks, C. Ding, L. Alvisi, and C. Xie. Bringing modular
concurrency control to the next level. In Proceedings of the 2017 ACM
International Conference on Management of Data, May 2017.

[130] W. N. Sumner, C. Hammer, and J. Dolby. Marathon: Detecting
atomic-set serializability violations with conflict graphs. In Proc. RV,
Sept. 2011.

[131] C. Tan, L. Yu, J. Leners, and M. Walfish. The efficient server audit
problem, deduplicated re-execution, and the web. In Proc. SOSP, Oct.
2017.

[132] C. Tan, C. Zhao, S. Mu, and M. Walfish. Cobra: Making transactional
key-value stores verifiably serializable (extended version).
arXiv:1912.09018, https://arxiv.org/abs/1912.09018, Dec.
2019.

[133] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao.
Amazon Aurora : Design considerations for high throughput
cloud-native relational databases. In Proc. SIGMOD, May 2017.

[134] K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically securing
web 2.0 applications through replicated execution. In Proc. CCS, Nov.
2009.

[135] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency
properties and the trade-offs in commercial cloud storage: the
consumers’ perspective. In Proc. CIDR, Jan. 2011.

[136] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore
databases via constrained parallel execution. In Proc. SIGMOD, June
2016.

[137] T. Warszawski and P. Bailis. ACIDRain: Concurrency-related attacks
on database-backed web applications. In Proc. SIGMOD, May 2017.

[138] G. Weikum and G. Vossen. Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery.
Elsevier, 2001.

[139] J. M. Wing and C. Gong. Testing and verifying concurrent objects.
JPDC, 17(1-2), Jan. 1993.

[140] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang.
High-performance acid via modular concurrency control. In Proc.
SOSP, Oct. 2015.

[141] M. Xu, R. Bodík, and M. D. Hill. A serializability violation detector
for shared-memory server programs. SIGPLAN Notices, 40(6), 2005.

[142] K. Zellag and B. Kemme. How consistent is your cloud application?
In Proc. SoCC, Oct. 2012.

[143] K. Zellag and B. Kemme. Consistency anomalies in multi-tier
architectures: automatic detection and prevention. The VLDB Journal,
23(1), Feb. 2014.

[144] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports. Building consistent transactions with inconsistent replication.
In Proc. SOSP, Oct. 2015.

[145] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.
vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases. In Proc. S&P, May 2017.

[146] Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB: Verifiable SQL
for outsourced databases. In Proc. CCS, Oct. 2015.

[147] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang,
B. W. Zhao, and S. Singh. Torturing databases for fun and profit. In
Proc. OSDI, Oct. 2014.

A Artifact Appendix

This artifact contains two parts: a cobra verifier and cobra
clients. The cobra verifier checks serializability of a set of
transactions (called a history). Cobra clients include database
clients and cobra’s client library. Database clients are bench-
mark programs that interact with a black-box database (not
part of cobra) and generate histories. Cobra’s client library
wraps database libraries, encodes and decodes values to and
from the database, and records histories to logs.

Cobra’s artifact, including source code and comprehensive
instructions for running the code and reproducing results, is re-
leased at: https://github.com/DBCobra/CobraHome. Co-
bra’s verifier requires an NVIDIA GPU to run, and cobra de-
pends on Linux (tested on Ubuntu 18.04), Java (1.8 or higher),
CUDA (tested on 10.0.130), and MonoSAT (1.6.0).

80 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://arxiv.org/abs/1912.09018
https://github.com/DBCobra/CobraHome

	1 Introduction and motivation
	2 Overview and technical background
	2.1 Setup and scenarios
	2.2 Verification problem statement
	2.3 Starting point: intuition and brute force

	3 Verifying serializability in cobra
	3.1 Combining writes
	3.2 Coalescing constraints
	3.3 Pruning constraints
	3.4 Solving
	3.5 On strict serializability

	4 Garbage collection and scaling
	4.1 The challenge
	4.2 Epochs and fence transactions
	4.3 Garbage collection

	5 Implementation
	6 Experimental evaluation
	6.1 one-shot verification
	6.2 Scaling
	6.3 Online overheads
	6.4 Summary of experimental evaluation

	7 Related work
	8 Discussion, future work, and conclusion
	A Artifact Appendix

