
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Building Scalable and Flexible Cluster Managers
Using Declarative Programming

Lalith Suresh, VMware; João Loff, IST (ULisboa) / INESC-ID; Faria Kalim, UIUC;
Sangeetha Abdu Jyothi, UC Irvine and VMware; Nina Narodytska, Leonid Ryzhyk,

Sahan Gamage, Brian Oki, Pranshu Jain, and Michael Gasch, VMware
https://www.usenix.org/conference/osdi20/presentation/suresh

Building Scalable and Flexible Cluster Managers Using Declarative Programming

Lalith Suresh, João Loff1, Faria Kalim2, Sangeetha Abdu Jyothi3, Nina Narodytska, Leonid Ryzhyk,
Sahan Gamage, Brian Oki, Pranshu Jain, Michael Gasch

VMware, 1IST (ULisboa) / INESC-ID, 2UIUC, 3UC Irvine and VMware

Abstract

Cluster managers like Kubernetes and OpenStack are noto-
riously hard to develop, given that they routinely grapple with
hard combinatorial optimization problems like load balanc-
ing, placement, scheduling, and configuration. Today, clus-
ter manager developers tackle these problems by developing
system-specific best effort heuristics, which achieve scalabil-
ity by significantly sacrificing the cluster manager’s decision
quality, feature set, and extensibility over time. This is prov-
ing untenable, as solutions for cluster management problems
are routinely developed from scratch in the industry to solve
largely similar problems across different settings.

We propose DCM, a radically different architecture where
developers specify the cluster manager’s behavior declara-
tively, using SQL queries over cluster state stored in a rela-
tional database. From the SQL specification, the DCM com-
piler synthesizes a program that, at runtime, can be invoked
to compute policy-compliant cluster management decisions
given the latest cluster state. Under the covers, the generated
program efficiently encodes the cluster state as an optimiza-
tion problem that can be solved using off-the-shelf solvers,
freeing developers from having to design ad-hoc heuristics.

We show that DCM significantly lowers the barrier to build-
ing scalable and extensible cluster managers. We validate our
claim by powering three production-grade systems with it: a
Kubernetes scheduler, a virtual machine management solu-
tion, and a distributed transactional datastore.

1 Introduction

Today’s data centers are powered by a variety of cluster man-
agers like Kubernetes [10], DRS [47], Openstack [15], and
OpenShift [14]. These systems configure large-scale clusters
and allocate resources to jobs. Whether juggling containers,
virtual machines, micro-services, virtual network appliances,
or serverless functions, these systems must enforce numerous
cluster management policies. Some policies represent hard

constraints, which must hold in any valid system configura-
tion; e.g., “each container must obtain its minimal requested
amount of disk space”. Others are soft constraints, which re-
flect preferences and quality metrics; e.g., “prefer to scatter
replicas across as many racks as possible”. A cluster manager
therefore solves a challenging combinatorial optimization
problem of finding configurations that satisfy hard constraints
while minimizing violations of soft constraints.

Despite the complexity of the largely similar algorith-
mic problems involved, cluster managers in various con-
texts tackle the configuration problem using custom, system-
specific best-effort heuristics—an approach that often leads

to a software engineering dead-end (§2). As new types of poli-
cies are introduced, developers are overwhelmed by having
to write code to solve arbitrary combinations of increasingly
complex constraints. This is unsurprising given that most
cluster management problems involve NP-hard combinato-

rial optimization that cannot be efficiently solved via naive
heuristics. Besides the algorithmic complexity, the lack of
separation between the cluster state, the constraints, and the
constraint-solving algorithm leads to high code complexity
and maintainability challenges, and hinders re-use of clus-
ter manager code across different settings (§2). In practice,
even at a large software vendor we find policy-level feature
additions to cluster managers take months to develop.

Our contribution This paper presents Declarative Cluster

Managers (DCM), a radically different approach to building
cluster managers, wherein the implementation to compute
policy-compliant configurations is synthesized by a compiler
from a high-level specification.

Specifically, developers using DCM maintain cluster state
in a relational database, and declaratively specify the con-
straints that the cluster manager should enforce using SQL.
Given this specification, DCM’s compiler synthesizes a pro-
gram that, at runtime, can be invoked to pull the latest cluster
state from the database and compute a set of policy-compliant
changes to make to that state (e.g., compute optimal place-
ment decisions for newly launched virtual machines). The
generated program – an encoder – encodes the cluster state
and constraints into an optimization model that is then solved
using a constraint solver.

In doing so, DCM significantly lowers the barrier to build-
ing cluster managers that achieve all three of scalability, high

decision quality, and extensibility to add new features and
policies. In contrast, today’s cluster managers use custom
heuristics that heavily sacrifice both decision quality and ex-
tensibility to meet scalability goals (§2).

For scalability, our compiler generates implementations
that construct highly efficient constraint solver encodings that
scale to problem sizes in large clusters (e.g., 53% improved
p99 placement latency in a 500 node cluster over the heavily
optimized Kubernetes scheduler, §6.1).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 827

For high decision quality, the use of constraint solvers
under-the-covers guarantees optimal solutions for the speci-
fied problems, with the freedom to relax the solution quality if
needed (e.g., 4× better load balancing in a commercial virtual
machine resource manager, §6.2).

For extensibility, DCM enforces a strict separation between
the a) cluster state, b) the modular and concise representation
of constraints in SQL, and c) the solving logic. This makes
it easy to add new constraints and non-trivial features (e.g.,
making a Kubernetes scheduler place both pods and virtual
machines in a custom Kubernetes distribution, §6.3).

Several research systems [46, 53, 57, 78, 92] propose to
use constraint solvers for cluster management tasks. These
systems all involve a significant amount of effort from opti-
mization experts to handcraft an encoder for specific problems
with simple, well-defined constraints – let alone encode the
full complexity and feature sets of production-grade cluster
managers (e.g., Kubernetes has 30 policies for driving ini-
tial placement alone). Even simple encoders are challenging
to scale to large problem sizes and are not extensible even
when they do scale (§8). In fact, for these reasons, constraint

solvers remain rarely used within production-grade cluster
managers in the industry-at-large: none of the open-source
cluster managers use solvers and, anecdotally, nor do widely
used enterprise offerings in this space.

Instead, with DCM, developers need not handcraft heuris-
tics nor solver encodings to tackle challenging cluster man-
agement problems.

Providing a capability like DCM is fraught with challenges.
First, cluster managers operate in a variety of modes and
timescales: from incrementally placing new workloads at mil-
lisecond timescales, to periodically performing global recon-
figuration (like load balancing or descheduling); we design a
programming model that is flexible enough to accommodate
these various use cases within a single system (§3). Second,
constraint solvers are not a panacea and are notoriously hard
to scale to large problem sizes. DCM’s compiler uses care-
fully designed optimization passes that bridge the wide chasm
between a high-level SQL specification of a cluster manage-
ment problem and an efficient, low-level representation of an
optimization model – doing so leverages the strengths of the
constraint solver while avoiding its weaknesses (§4).

Summary of results We report in-depth about our experi-
ence building and extending a Kubernetes Scheduler using
DCM. We implement existing policies in Kubernetes in under
20 lines of SQL each. On a 500 node Kubernetes cluster on
AWS, DCM improves 95th percentile pod placement latencies
by up to 2×, is 10× more likely to find feasible placements in
constrained scenarios, and correctly preempts pods 2× faster
than the baseline scheduler. We also report simulation results
with up to 10K node clusters and experiment with non-trivial
extensions to the scheduler, like placing both pods and VMs
within a custom Kubernetes distribution. We also use DCM

DCM Runtime

DCM

Compiler

Solver

Encoder

Schema.sql Constraints.sql

2. Encoder

fetches required

input data from

database

3. Encoder generates

optimization model

and invokes solver 4. Solution

5. Return new

configuration

Optimization

model
Code

generate

User codeUser code

1. User code invokes

generated code via runtime

Figure 1: DCM architecture. Dotted lines show the compila-
tion flow. Solid lines show runtime interactions between the
DCM runtime, user code and the cluster state DB.

to power a commercial virtual machine management solution
where we improved load balancing quality by 4×. Lastly, we
briefly discuss a distributed transactional datastore where we
implemented several features with a few lines of SQL.

2 Motivation

Our motivating concern is that ad-hoc solutions for cluster
management problems are regularly built from scratch in the
industry, due to the wide range of specialized data-center en-
vironments and workloads that organizations have, for which
off-the-shelf solutions do not suffice. Even beyond dedi-
cated cluster managers like Kubernetes [10], OpenStack [15],
and Nomad [50], similar capabilities are routinely embed-
ded within enterprise-grade distributed systems like databases
and storage systems: e.g., for policy-based configuration, data
replication, or load-balancing across machines, all of which
are combinatorial optimization problems.

Today, developers handcraft heuristics to solve these clus-
ter management problems that incur significant engineering
overhead. First, the heuristics are hard to scale to clusters with
hundreds to thousands of nodes; they often require purpose-
built and inflexible pre-computing and caching optimizations
to remain tractable [40,95]. Even then, the heuristics are chal-
lenging to get right as developers have to account for arbitrary
combinations of constraints. Second, the heuristics sacrifice
decision quality to scale (e.g., load balancing quality), which
is not surprising given that combinatorial optimization prob-
lems cannot be solved efficiently via naive heuristics. Third,
they lead to complex code that makes it hard to extend and
evolve the cluster manager over time; it is not uncommon for
policy-level feature additions to take multiple months’ worth
of effort to deliver.

We illustrate the above challenges using Kubernetes as a
representative example.

Kubernetes example The Kubernetes Scheduler is respon-
sible for assigning groups of containers, called pods, to cluster

828 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Policy Description

H1-4 Avoid nodes with resource overload, unavailability or errors
H5 Resource capacity constraints: pods scheduled on a node must not exceed

node’s CPU, memory, and disk capacity
H6 Ensure network ports on host machine requested by pod are available
H7 Respect requests by a pod for specific nodes
H8 If pod is already assigned to a node, do not reassign
H9 Ensure pod is in the same zone as its requested volumes
H10-11 If a node has a ‘taint’ label, ensure pods on that node are configured to

tolerate those taints
H12-13 Node affinity/anti-affinity: pods are affine/anti-affine to nodes according

to configured labels
H14 Inter-pod affinity/anti-affinity: pods are affine/anti-affine to each other

according to configured labels
H15 Pods of the same service must be in the same failure-domain
H16-20 Volume constraints specific to GCE, AWS, Azure.
S1 Spread pods from the same group across nodes
S2-5 Load balance pods according to CPU/Memory load on nodes
S6 Prefer nodes that have matching labels
S7 Inter-pod affinity/anti-affinity by labels
S8 Prefer to not exceed node resource limits
S9 Prefer nodes where container images are already available

Figure 2: Policies from the baseline Kubernetes scheduler,
showing both hard (H) constraints and soft (S) constraints.

nodes (physical or virtual machines). Each pod has a number
of user-supplied attributes describing its resource demand
(CPU, memory, storage, and custom resources) and place-
ment preferences (the pod’s affinity or anti-affinity to other
pods or nodes). These attributes represent hard constraints
that must be satisfied for the pod to be placed on a node (H1–
H20 in Table 2). Kubernetes also supports soft versions of
placement constraints, with a violation cost assigned to each
constraint (S1–S9 in Table 2). Like other task-by-task sched-
ulers [15, 94, 95], the Kubernetes default scheduler uses a
greedy, best-effort heuristic to place one task (pod) at a time,
drawn from a queue. For each pod, the scheduler tries to find
feasible nodes according to the hard constraints, score them
according to the soft constraints, and pick the best-scored
node. Feasibility and scoring are parallelized for speed.

Decision quality: not guaranteed to find feasible, let alone

optimal, placements Pod scheduling is a variant of the mul-
tidimensional bin packing problem [18, 21], which is NP-
hard and cannot, in the general case, be solved efficiently
with greedy algorithms. This is especially the case when the
scheduling problem is tight due to workload consolidation
and users increasingly relying on affinity constraints for per-
formance and availability.

To remain performant, the Kubernetes scheduler only con-
siders a random subset of nodes when scheduling a pod, which
might miss feasible nodes [93]. Furthermore, the scheduler
may commit to placing a pod and deny feasible choices from
pods that are already pending in the scheduler’s queue (a
common weakness among task-by-task schedulers [40]).

Feature limitations: best-effort scheduling does not support

global reconfiguration Many scenarios require the sched-
uler to simultaneously reconfigure arbitrary groups of pods

Node 1 Node 2

Pod

2

Constraints

1. Pod 1 and Pod

2 cannot be in

the same zone

(anti-affinity)

2. Pod 1 is affine

to node 1.

Zone 1

Node 1 Node 2

Pod

2

Zone 1

Scheduler

Queue

Pod

1 Pod

1

Without cross-node preemption

(Pod 1 cannot be placed)

With cross-node preemption

(Lower prio. pod preempted)

X
X

Low Priority

High Priority

Figure 3: An anti-affinity constraint prevents Pod 1 and Pod
2 from being in the same zone, pod 1 is affine to node 1, and
pod 2 has a lower priority than pod 1. Placing pod 1 on node
1 requires evicting pod 2 on node 2.

and nodes. For instance, Figure 3 shows a scenario where a
high priority pod (pod 1) can only be placed on node 1, but to
do so, the scheduler has to preempt a lower priority pod on
node 2. Computing this rearrangement requires simultaneous
reasoning about resource and affinity constraints spanning
multiple pods and nodes, which cannot be achieved in the
current architecture. Thus, although such global reconfigu-
ration is in high demand among users, it is unsupported in
Kubernetes [60, 64].

Extensibility: Best-effort scheduling leads to complex code

Similar to Borg [40, 95], Kubernetes needs careful engineer-
ing to keep scheduling tractable at scale. Several policies like
inter-pod affinity (Table 2-H14) and service affinities (Table 2-
H15) are compute intensive because they require reasoning
over groups of pods. These policies are kept tractable using
carefully designed caching and pre-computing optimizations
that are fragile in the face of evolving requirements. For exam-
ple, it is hard to extend inter-pod affinity policies to specify the
number of pods per node [58,59,61–63], and there are discus-
sions among developers to restrict these policies to make the
code efficient [60]. For similar reasons, there are discussions
among developers to remove the service affinity policy due to
accumulating technical debt around its pre-computing opti-
mizations [69]. Such complexity accumulates to make entire
classes of policies requested by users difficult to implement
in the scheduler [60, 64, 73].

Beyond policy-level extensions, the tight coupling be-
tween the cluster state representation in the scheduler’s data-
structures and the scheduling logic makes it near impossible
to introduce changes to the underlying abstractions (e.g., ex-
tending the scheduler to also place tasks other than pods, like
virtual machines [71]) without a complete rewrite [66].

3 Declarative Programming with DCM

Our position is that developers should specify cluster man-
agement policies using a high-level declarative language, and
let an automated tool like DCM generate the logic that effi-
ciently computes policy-compliant decisions. Architecturally,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 829

it allows the behavior of the cluster manager to be described
and evolved independently of the implementation details.

We use SQL as the declarative language for specifying
policies for multiple reasons. First, it allows us to consistently
describe and manipulate both the cluster state and the con-
straints on that state. Second, it is a battle-tested and widely
known language, which aids adoption. Third, it is sufficiently
expressive that we have not felt the need for designing yet
another DSL (§4.1.1).

We now demonstrate DCM’s capabilities and programming
model with a simplified guide to building a Kubernetes sched-
uler with it. Our scheduler operates as a drop-in replacement
for the default scheduler (§2), supporting all of its capabilities
and adding new ones.

The workflow in a DCM-powered scheduler consists of
three steps (Figure 1). First, the scheduler stores the clus-
ter state in an SQL database based on an SQL schema de-
signed by the developer. Second, the developer extends the
schema with scheduling constraints, also written in SQL. The
compiler generates an encoder based on the constraints and
schema. Third, at runtime, the scheduler invokes the generated
encoder via the DCM library as new pods are added to the
system. The generated encoder pulls the required cluster state
from the database, produces and solves an optimization model
that is parameterized by that state, and outputs the required
scheduling decisions.

Cluster state database Kubernetes stores all state (of
nodes and pods) in an etcd [36] cluster. The default sched-
uler maintains a cache of relevant parts of this state locally
using in-memory data structures. In DCM, we replace this
cache with an in-memory embedded SQL database (H2 [4])
and specify an SQL schema (tables and views) to represent
the cluster state. Currently, the schema uses 18 tables and 12
views to describe the set of pods, nodes, volumes, container
images, pod labels, node labels, and other cluster state. The
developer annotates some columns in the schema as deci-

sion variables, i.e., variables to be assigned automatically by
DCM. For example, a placement decision of a pod on a node
is represented by the table in Figure 4 with decision variables
(node_name) annotated as @variable_columns and other
input variables supplied by the database.

Constraints Next, the developer specifies constraints
against the cluster state as a collection of SQL views. DCM
supports both hard and soft constraints, encompassing all the
cluster management policies that the system must enforce.

Hard constraints are specified as SQL views with the anno-
tation @hard_constraint. For example, consider the con-
straint in Figure 5, which states that pod P can be scheduled
on node N if N has not been marked unschedulable by the
operator, is not under resource pressure, and reports as being
ready to accept new pods. We implement this by declaring a
view, constraint_node_predicates, with a check clause

-- @variable_columns (node_name)

create table pods_to_assign

(

pod_name varchar(100) not null primary key,

status varchar(10) not null,

namespace varchar(100) not null,

node_name varchar(100),

... -- more columns

);

Figure 4: A table describing pods waiting to be scheduled. The
@variable_columns annotation indicates that the node_name col-
umn should be treated as a set of decision variables. Other columns
are input variables, whose values are supplied by the database.

create view valid_nodes as

select node_name from node_info

where unschedulable = false and memory_pressure = false

and out_of_disk = false and disk_pressure = false

and pid_pressure = false and network_unavailable = false

and ready = true;

-- @hard_constraint

create view constraint_node_predicates as

select * from pods_to_assign

check (node_name in (select node_name from valid_nodes));

Figure 5: A hard constraint to ensure pods that are pending place-
ment are never assigned to nodes that are marked unschedulable by
the operator, are under resource pressure, or do not self-report as
being ready to accept new pod requests.

that asserts that all pods must be assigned to nodes from the
valid_nodes view computed in the database.

Soft constraints are also specified as SQL views with anno-
tation @soft_constraint and contain a single record stor-
ing an integer value. DCM ensures that the computed solution
maximizes the sum of all soft constraints. For example, con-
sider CPU utilization load balancing policy across nodes in a
cluster (Figure 6). We first write a convenience view (spare_-
capacity_per_node) that computes the spare CPU capacity
after pod placement. We then describe a soft constraint view
(constraint_load_balance_cpu) on the minimum spare
capacity in the cluster. This forces DCM to compute solutions
that maximize the minimum CPU utilization of nodes, thereby
spreading pods across the cluster.

Compiler and runtime The DCM interface for program-
mers is shown in (Figure 8). The first step is invoking the
DCM compiler using the schema and constraints as input.
This generates a program (e.g., a Java program – §4.1.2) that
pulls the required tables from the database, constructs an op-
timization model, and solves it using a constraint solver. The
generated program is compiled using the relevant toolchain
(e.g., javac – §4.1.2) and loaded into memory. The compiler
returns a Model object that wraps the loaded program.

When pods are added to the system, the scheduler updates
the relevant tables (like pods_to_assign). The scheduler

830 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

create view spare_capacity_per_node as

select (node.available_cpu_capacity

- sum(pods_to_assign.cpu_request)) as cpu_spare

from node join pods_to_assign

on pods_to_assign.node_name = node.name

group by node.name;

-- @soft_constraint

create view constraint_load_balance_cpu as

select min(cpu_spare) from spare_capacity_per_node;

Figure 6: A soft constraint that maximizes the minimum spare CPU
capacity in the cluster for load balancing.

-- @hard_constraint

create view constraint_node_affinity as

select * from pods_to_assign

check (pods_to_assign.has_requested_node_affinity = false

or pods_to_assign.node_name in

(select node_name

from candidate_nodes_for_pods

where pods_to_assign.pod_name =

candidate_nodes_for_pods.pod_name));

Figure 7: A membership constraint to describe node affinity (the
pod must only be assigned to nodes it is affine to, as computed in
another view candidate_nodes_for_pods)

then invokes model.solve() (Figure 8) to find an optimal
placement for these pods by assigning values to pods_to_as-
sign.node_name according to the specified constraints. The
call returns a copy of the pods_to_assign table with the
node_name column reflecting the computed optimal place-
ment. The scheduler then uses this data to issue placement
commands for each pod via the Kubernetes scheduling API
(the same API used by the default scheduler).

Note that DCM treats the state database as the input to
every call to model.solve(). It does not (and cannot) as-
sume the cluster configuration changes based on the computed
solution, because the caller may choose not to apply the solu-
tion, there may be errors during reconfiguration or numerous
other external events. This is in sharp contrast to prior art that
uses handcrafted solver encodings for specific cluster man-
agement tasks, where all the cluster state is duplicated within
the solver’s memory [40, 53, 57, 92] (§8).

Supporting diverse cluster management tasks and tun-

able search scopes DCM enables developers to arbitrarily
tune the search space of a problem by controlling the data
within the input tables and views. For example, consider the
the set of pods in the pods_to_assign table. For fast in-
cremental initial placement, we can populate the table with
a fixed size batch of newly created pods only, and compute
placement decisions for the entire batch at a time. For a pod
preemption model (a kind of global reconfiguration), we pop-
ulate the same table with previously placed pods and specify
additional constraints that assign a bounded number of pods
to a “null node“ (representing preemption). Similarly, the

Operation Description

model = DCM.compile(schema) Invoke DCM compiler to synthesize an en-
coder from the SQL schema and constraints

model.connect(db) Establish JDBC connection to the state DB
model.solve(timeout) Solve constraints and return a set of tables

Figure 8: DCM interface

scheduler may dynamically sample the subset of nodes to be
considered for placement in a given iteration.

In this manner, DCM allows developers to easily instanti-
ate models that solve different sub-problems within a clus-
ter manager. We implemented three models in our Kuber-
netes scheduler: one for fast initial placement, a slower
timescale pre-emption model, and an admin-triggered tool
for de-scheduling [68] which can be used to recover capacity
from highly utilized nodes by terminating pods.

4 DCM Design

As we show in §3, DCM enables programmers to specify
cluster management policies using a high-level declarative
language familiar to most programmers, and code generate
the logic that efficiently computes policy-compliant decisions.
However, we have to address several key challenges to realize
such a capability.

First, given the amount of expertise that is typically re-
quired to handcraft efficient optimization models and encod-
ings, it is non-trivial to bridge the gap between the SQL repre-
sentation of a problem and the generation of a corresponding
encoder that interacts with solvers via their respective low-
level APIs. We discuss how the DCM compiler synthesizes
efficient encoders in §4.1.

Second, given that programmers need systematic ways to
test and debug the policies that they write, we describe how we
leverage a common solver capability of finding unsatisfiable

cores to aid in debugging (§4.2).

4.1 DCM compiler

The DCM compiler generates an encoder that produces op-
timization models according to the database schema and the
constraints specified by the developer.

4.1.1 Syntax and expressiveness

The compiler accepts input SQL tables with variable columns
of type integer, boolean, and string (floating point is sup-
ported if the backend solver supports it, like Gecode [2]).
The compiler supports a subset of the SQL query language
for constraint specification, including most commonly used
constructs (inner join, anti-join, group by, aggregate queries,
sub-queries, correlated sub-queries as seen in Figures 5 and 6,
ARRAY columns), arithmetic and logical expressions (standard
Boolean operators, linear arithmetic, comparisons over inte-
gers, and equality checks over strings), standard SQL aggre-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 831

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {
for (int t2_it = 0; t2_it < t2.size(); t2_it++) {
if (t1.get(t1_it).getB() == t2.get(t2_it).getB()

&& t2_e. get(t2_it).getE() == 10) {
IntVar i1 = model.newIntVar(...);
model.addProductEquality(i1,

new IntVar[]{t1.get(t1_it).getCVar(),
t2.get(t2_it).getDVar()});

model.addEquality(t1_c[t1_it], i1);
}

}}

create view constraint_1 as
select * from t1 join t2 on t1.b = t2.b
where t2.e == 10
check(t1.c * t2.d = t2.c)

[check(t1_c[i] * t2_d[i] == t2_c[j])
| i -> range(t1), j -> range(t2),

where t1.b == t2.b AND t2.e == 10]

Phase 1, SQL

Parsing, program

analysis

Phase 2, IR

Convert to list

comprehension IR,

optimization passes

Phase 3, Backend

Backend-specific

optimization passes,

generate code to

efficiently traverse

input tables and

encode checks into

low-level constraints

Figure 9: System compiler workflow, showing a simple SQL
query, its representation in the IR as a list comprehension, and
a simplified version of the corresponding generated code by
our or-tools backend.

gate functions (sum, min, max, count), and additional aggre-
gates that help in constraint modeling (e.g., the all_differ-
ent aggregate which enforces pair-wise inequalities among a
set of variables (§4.1.3)). The compiler is extensible, allow-
ing user-defined aggregates to be added with a few lines of
code. We also take special care in dealing with SQL nulls,
depending on the backend.

Both SQL tables and views computed in the database can
be used as input relations for hard and soft constraints (Fig-
ures 5 and 6). This allows developers to efficiently construct
inputs for a DCM model by exploiting the full extent of the
SQL syntax and capabilities supported by the database. For
example, the database can efficiently process joins to compute
the required inputs for a model.

Using this syntax, we were able to compactly specify all
hard and soft constraints encountered in our case studies,
including resource capacity, affinity, anti-affinity, and load
balancing constraints along various axes. SQL is signifi-
cantly more concise than the low-level interfaces supported by
solvers, with an SQL view compiling down to many low-level
constraints.

4.1.2 Compiler workflow

Figure 9 shows the compiler’s workflow in generating an
encoder from the high-level SQL. The example shown is
simplified Java generated by our OR-tools backend.

Phase 1, SQL Internally, the SQL parser first extracts all
table and view definitions from the supplied database schema,
and produces syntax trees for all the hard and soft constraints.
It then performs a series of passes over the queries to in-
fer whether parts of the constraints can be evaluated in the
database. For example, 1) simple sub-queries that do not in-
volve variables are better evaluated in the database rather than

in the generated encoder or the solver, 2) some backends (like
Minizinc) cannot efficiently compute the groups produced by
an SQL group by because they cannot represent tuples – we
can compute these groups in the database as well.

Phase 2, Intermediate representation Next, the compiler
converts the query to an intermediate representation (IR)
based on list-comprehension syntax [37]. In Figure 9, the SQL
query is simplified in the IR as nested for loops and a filter-
ing condition (instead of tables and predicates across various
clauses of the SQL query). In general, the list comprehension
syntax makes it easy to apply standard query optimization al-
gorithms (like unnesting subqueries). It has been well-studied
in the database community [23, 24, 37, 45, 55, 56].

Phase 3, Backend The compiler backend generates a pro-
gram that produces an optimization model by interacting with
the interfaces exposed by specific solver toolkits, e.g., setting
up linear inequalities for an ILP solver. The IR facilitates
support for multiple backends, allowing systems to benefit
from different types of solvers. Regardless of the backend,
the generated encoders prepare optimization models where
variables and constraints are parameterized by the content
of the cluster state database. At runtime, the encoder binds
these variables to values extracted from the database before
dispatching the optimization model to the solver.

OR-tools CP-SAT: Our ‘flagship’ backend generates en-
coders for the Google OR-tools CP-SAT solver [3]. It gener-
ates Java code to pull cluster state from the database at runtime
and iterate over the state to encode constraints efficiently us-
ing the CP-SAT solver APIs. It translates joins into hash-table
based accesses when feasible (e.g., equality-based joins using
primary keys, unique columns specified via the use of SQL
distinct), or into nested for loops otherwise (Figure 9). We
generate several utility classes to aid the encoding (like type-
safe tuple classes to refer to records from different tables).
The backend performs common sub-expression elimination
within the generated code fragments (e.g., when computing a
complex expression within if or for blocks).

MiniZinc: Our initial DCM prototype interacted with the
MiniZinc toolkit [80], which exposes a high-level constraint
modeling language, and thereby supports integration with a
variety of solvers. However, despite our best efforts, we could
not scale it to clusters larger than 50-100 nodes due to the
limited control we have over Minizinc encodings. However,
we use it to interface with tools for debugging models §4.2.

4.1.3 Generating scalable encodings

We now discuss details of our backend for the Google
OR-tools CP-SAT solver [3]. A CP-solver encoding speci-
fies different constraints over input variables. For example,
to encode a simple intermediate expression a = (b < 10), we
need to introduce a constraint b < 10, and link the truth value

832 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

// Unfixed arity

sum([1 | i -> range(t1)

where t1.c1[i] = 10])

// Fixed arity

sum([(t1.c1[i] = 10)

| i -> range(t1)])

Figure 10: Two equivalent IR expressions to compute the sum
over a subset of a variable column (t1.c1).

24564 ms
6236 ms 5002 ms

150 ms 85 ms

10

1000

100000

MiniZinc
Fixed Arity

Fixed
Arity

Scalar
Product

Cumulative
Global

Half
Reification

T
im

e
 (

m
s
)

Figure 11: Effect of different optimizations in our or-tools
backend on the runtime of a benchmark model (Figure 6). Not
shown are option types, where runtimes exceed a minute.

of that constraint to a by introducing two more constraints
a → (b < 10) and ¬a → (b ≥ 10) (a process called full reifi-

cation). At a high-level, CP-solvers find feasible solutions
via a combination of search and propagation: at each node of
the search tree, the solver iteratively changes the domain of
a variable, causing constraints linked to that variable to up-
date other variables they are linked to, and so on until a fixed
point is reached. Therefore, every additional constraint and
auxiliary variable we introduce impacts solver performance.

In short, like any constraint solver, the CP-SAT solver’s
performance is highly sensitive to the encoding (two equiva-
lent encodings often result in vastly different solver runtimes).
Hence, we employ various optimizations in DCM compiler
based on structural information extracted from the SQL pro-
gram and IR, to generate encoders that produce efficient mod-
els.

The key takeaway is that a literal translation of SQL queries
into an encoding is not scalable, we therefore have to find
smarter encodings. We do so by using re-writing rules that
mimic what an optimization expert would otherwise handcraft
into an encoder. We describe the impact of these rules using
a benchmark that is bottlenecked by the spare_capacity_-
per_node view in Figure 6.

Re-writing to use fixed arity Consider the two expressions
in our IR shown in Figure 10. Both these statements corre-
spond to a high-level SQL operation to compute the number
of elements in a variable column with values equal to 10.
In the first case, we cannot statically determine the size of
the filtered list in our encoder, because the values of the vari-
ables (and therefore the arity of the list to sum) are not fixed

yet. The general way to encode such an expression is to use
option types [75], where a variable might be ‘absent’. How-
ever, several auxiliary variables and constraints need to be
introduced to encode such an expression using option types.
This problem is exacerbated by the join in spare_capac-

ity_per_node, and where we do not know the arity of the
produced table. An option type encoding for 1000 nodes and
50 pods for this view produces roughly 200K auxiliary vari-

ables and 400K constraints, and makes our benchmark take
more than a minute to complete.

Another approach is to avoid option types, and instead,
compute a sum of predicates (Figure 10), which achieves the
same result because the predicates evaluate to 0 or 1. Doing
so keeps the number of auxiliary variables proportional to the
number of predicates to evaluate, and brings the benchmark’s
runtime from minutes to 6.2s (Figure 11). The same encoding
in MiniZinc takes 24s to solve, representing the inefficiencies
introduced by high-level modeling frameworks.

Re-writing to use scalar products Re-writing to use fixed
arity introduces O(|pods| ∗ |nodes|) reified boolean variables
and constraints to encode whether a particular combination
of rows from both tables appear in the final result set, which
is then used to compute the sums required to specify hard
constraints (like capacity bounds) and soft constraints (like
load balancing requirements). Rather than naively iterate row
by row to create several auxiliary variables that are summed
to compute the load, our compiler infers that we are effec-
tively computing a scalar product between two vectors, which
can be expressed more efficiently with fewer auxiliary vari-
ables, which improves runtime by 20% (Figure 11). However,
this does not still eliminate the O(|pods| ∗ |nodes|) boolean
variables and is still prohibitively slow for large clusters.

Re-writing to use global constraints Global constraints
are constraints over groups of variables for which solvers
implement specialized and efficient propagator algorithms
that dramatically reduce the search space of the problem. En-
coding a problem using global constraints is key to scaling
optimization models to large problem sizes because they typi-
cally avoid the need to generate too many auxiliary variables
and constraints that burden the solver.

The join discussed above can be further optimized by using
global constraints. Observe that we compute the load so that
we can specify a capacity constraint on it (the load should be
less than a constant). We can therefore detect this possibility
and generate code to encode the join and the capacity con-
straint together as an interval packing problem: given a set
of interval variables I1, I2 . . . In of lengths S1,S2 . . .Sn, with de-
mands D1,D2...Dn pack them onto a timeline represented by
the intervals, such that the total demand at any given instant
of time is less than a capacity C (here, each interval variable
represents a cell on the variable column, whereas the timeline
represents rows on the column being joined to). This allows us
to use a well known global constraint, cumulative. Crucially,
this non-trivial encoding only introduces O(|pods|+ |nodes|)
auxiliary variables (instead of O(|pods| ∗ |nodes|)), that al-
lows us to scale that SQL query to large cluster sizes, leading
to a 96% reduction in runtime over the previous optimization
in our benchmark (Figure 11).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 833

Another example of a global constraint is the all_differ-
ent constraint that ensures a group of variables take different
values (a common pattern in various anti-affinity policies). We
also leverage membership global constraints where possible
to encode the SQL IN operator.

As we mention in §4.1.1, we provide a suite of custom
aggregate functions that developers may use in their models:
these functions take advantage of the above global constraints
under the covers.

Full- versus half-reification We already mentioned full
reification (e.g., a ↔ (b < 10)). In several cases, it is both
correct and more efficient to only introduce half reified con-
straints of the form a → (b < 10), because it introduces only
half the constraints. Doing so is particularly effective to en-
code soft constraints for placement preferences in the fol-
lowing form: b → (var = A∨ var = B . . .) (the solver tries
to maximize b, which coaxes var to draw from a pool of
preferred values). Again, using structural information from
the IR, we can statically determine when we only need half-
reified expressions. In our benchmark, this further yields a
43% improvement in performance (Figure 11).

4.2 Testing and debugging models

An important concern in using DCM is understanding why

the cluster manager failed in finding a valid solution (e.g., a
pod placement decision). Did the cluster run out of resources?
Did the user mistakenly specify mutually contradicting con-
straints, e.g., affinity and anti-affinity over the same group
of pods? Or was there a bug in the developer’s constraint
specification? DCM improves debuggability by taking advan-
tage of a common solver capability: identifying unsatisfiable

cores [72]. An unsatisfiable core is a minimal subset of model
constraints and inputs that suffices to make the overall prob-
lem unsatisfiable (e.g., a single input variable that cannot
simultaneously satisfy two contradicting constraints).

We leverage this capability by providing a translation layer
that extracts an unsatisfiable core from the solver and identi-
fies corresponding SQL constraints and records in the tables
that lead to a contradiction. We found this invaluable when de-
bugging complex scenarios involving affinity and anti-affinity
constraints. For example, a common pattern we experienced
when adding and testing new affinity policies was that the new
policy tightened the problem, and therefore triggered a viola-
tion of some other constraint in the system (such as resource
capacity constraints). Rather than suspect a bug in our spec-
ification of the new policy, the unsatisfiable core rightfully
points us to the contradiction between the capacity constraint
and the affinity requirement.

4.3 Implementation

Our DCM implementation is 6.1K LoC in Java for the library
and an additional 2.7K LoC for tests. Of this, the OR-tools

and MiniZinc backends take up roughly 2K and 1K LOC,
respectively. We use the JOOQ library [8] to conveniently in-
terface with different SQL databases. All our experiments use
the OR-Tools backend, given that MiniZinc simply does not
scale to large cluster sizes. Our implementation is available
as an open-source project [17].

5 Experience using DCM

We now describe the three case studies we applied DCM to,
and qualitatively assess the development effort to do so. The
case studies are presented in the reverse chronological order
in which we applied DCM; we found that the overall design
and SQL-based programming model were stable throughout
the process, even though we did harden DCM along the way.
DCM’s ability to compute unsatisfiable cores (§4.2) were
invaluable in all these efforts.

Kubernetes scheduler This use case is both our most re-
cent and most comprehensive application of DCM. Like the
Kubernetes default scheduler, our scheduler also runs as a pod
within Kubernetes and uses the same REST APIs and hooks
to consume and actuate upon the Kubernetes’ cluster state.
Our scheduler consumes the same cluster metadata (informa-
tion about nodes, pods, labels, and other input information)
as the default scheduler to make scheduling decisions. Our
scheduler uses an embedded in-memory SQL database (H2)
as a cache of the cluster state, which is used to serve inputs to
model.solve() (§3). It computes scheduling decisions for
a batch of pods at a time.

Our scheduler is implemented in ~1.5K lines of Java code,
with 1.8K lines of code for tests. Roughly half the scheduler’s
code is boilerplate to subscribe to Kubernetes’ state and store
it in an in-memory SQL database (H2 [4]). All the tables,
views, and policies amount to ~550 lines of SQL. We imple-
mented all policies in Table 2, except H16-20, as they were
specific to volume management on GCE, AWS, and Azure.

Of the 550 lines of SQL, roughly two-thirds describe input
tables and views that are executed entirely in the database,
whereas the rest were used to describe constraints. We were
able to handle heavy and complex joins in the database (e.g.
computing groups of pods that repel each other due to in-
ter pod anti-affinity). Support for SQL ARRAY columns was
critical to bounding the size of inputs to DCM.

We spent the vast majority of our effort trying to under-
stand Kubernetes’ semantics. Particularly, Kubernetes’ match

expression logic, a DSL used to filter objects based on la-

bels, was widely used within several policies supported by
the scheduler (taints, tolerations, node/pod (anti) affinities,
etc.). Its semantics differed arbitrarily across policies (multi-
ple affinity requirements for nodes were treated as a logical
OR, whereas the equivalent for pods was treated as a logical
AND [11, 12, 90]). Once we understood the semantics, trans-
lating the requirements into SQL was straightforward: it took

834 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a few hours per policy to design and code (i) the schema and
constraints, (ii) the logic to write Kubernetes’ state into the
database, and (iii) the required unit and integration tests.

Most of the time and effort in performance engineering the
scheduler went into ensuring that the views executed by the
database used the right indexes. While these views could all
be expressed concisely in SQL (<20 LOC), the most concise
SQL was sometimes not the most performant. For example,
an OR in some join predicates caused H2 to not use indexes
and revert to scans. We had to split these queries into two and
UNION the results together to meet our performance needs [6].
In another case, we used triggers to simulate materialized
views [5], to incrementally update resource reservation coun-
ters on each node as pods were placed (rather than compute
these statistics each time using a join during pod placement).

VM load balancing utility We built a tool for suggesting
VM migrations in a commercial data-center management
solution. The system has a resource manager that makes
VM placement decisions at various timescales. At slower
timescales (e.g., every five minutes), the system introspects
the state of the entire cluster and identifies a series of VM
migrations to make, with the objective of reducing the overall
standard deviation of node resource utilization (along multiple
resource dimensions). We apply DCM to improve load balanc-
ing in §6.2. The load balancing and capacity constraints we
introduced were structurally similar to the ones we specified
in our Kubernetes use case.

Distributed transactional datastore We implemented a
management plane from scratch for a distributed transactional
data platform used in a commercial product. Nodes in the
system assume one or more ‘roles’, such as being a serial-
izer (as in Megastore [20], Omid [25]), a backup serializer,
data nodes (that host data shards and replicas), or manage-
ment nodes. We apply DCM to the management node logic,
supporting several requirements provided by engineers. We
replicated existing failure handling policies and added new
capabilities like distributing roles across nodes, and rack-
aware placement of data shards. All policies used <10 lines
of SQL, as the system was simple compared to our other use
cases.

6 Evaluation

The premise of our work is that DCM is a viable approach
to building cluster managers that can (Q1) scale, (Q2) com-
pute high-quality decisions, and (Q3) be easily extended. We
answer these questions as follows:

Q1: For scalability: we study the Kubernetes scheduler we
built using DCM and evaluate it on a 500 node cluster on
Amazon EC2 using workload characteristics from Azure [77].
We use simulations to study scalability up to 10K nodes.

Q2: For decision quality: we study scenarios involving our

Kubernetes scheduler as well as the load balancer we built for
the commercial virtual machine management platform.

Q3: For extensibility: we were able to express all cluster
management policies in our three use cases using SQL. In
addition, we discuss a non-trivial extension we built for our
Kubernetes scheduler using DCM.

6.1 Q1: Scalability evaluation

We set up a 500 node Kubernetes cluster running on AWS.1

We use t3.2xlarge instances (8 vCPUs, 32 GB RAM) for the
Kubernetes master node and t3.small instances for worker
nodes, given that in these experiments, the focus is on the
schedulers running on the master node.

Workload We use a publicly available trace from
Azure [77], that describes a month’s worth of workload infor-
mation for two million VMs in 20192. It gives us a trace of
replicas that were launched, with their corresponding CPU
and memory reservations. We replay 14 hours worth of traces
and speed them up by 20× to achieve arrival rates seen in
Borg clusters at Google [95] (median/peak of 100/500 pod
creations per second). We then replay three variants of the
workload, each with a fraction F of replica groups configured
with inter-pod anti affinities within the group; F = 100% is a
Kubernetes best practice for availability reasons [1], and users
even run automated tools like kube-score [9] to prevent
pods from being deployed without anti-affinities configured.
The anti-affinity policy is a challenging constraint because
it requires reasoning across groups of pods and uses several
handcrafted performance optimizations in the Kubernetes de-
fault scheduler (§2). In addition, the workload also exercises
most hard and soft constraints shown in Table 2.

End-to-end latency results Figure 12 shows the end-to-
end latency for bringing up pods on the AWS cluster, for
different values of F. The latency is measured from when
the workload generator issues a pod creation command to
when the pod first changes its status to Running. The default
scheduler’s end-to-end latency degrades as more pods are con-
figured with anti-affinity constraints, with its 95th percentile
latency degrading from 4.14s at F = 0 to 12.45s at F = 100.
On the other hand, DCM incurs a higher latency than the de-
fault scheduler at F = 0 due to the added latency in its critical
path from the database and solver (p95 of 5.33s). However,
DCM’s end-to-end latency characteristics are insensitive to
the fraction of pods configured with constraints (ECDFs for
DCM are identical across all F , Figure 12). At F = 100, DCM
improves the 95th percentile end-to-end latency over the de-
fault scheduler by 53% (5.9s vs 12.45s).

1Kubernetes requires careful configuration and tuning to scale beyond
500 nodes. Even at this size, we had to overcome several issues around
networking, kubelet failures, and API throttling to stabilize the cluster [27,70].
We defer to simulations to stress DCM beyond 500 nodes.

2Our results are qualitatively similar when using the 2017 trace.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 835

F
=

0
%

F
=

5
0

%
F

=
1

0
0

%

1 2 3 4 5 6 7 8 9 1011121314151617181920

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

End−to−end pod creation latency (s)

E
C

D
F

DCM default−scheduler (sampling)

Figure 12: End-to-end pod creation latency on a 500 node
AWS cluster, using workload characteristics from the Azure
2019 trace [77] (trace sped up by 20×). F is the percentage
of pods configured with anti-affinity constraints.

Note that our scheduler evaluates all nodes per scheduling
decision, whereas the default scheduler only evaluates half
the nodes in the cluster for scalability reasons (the number of
nodes sampled depends on the total cluster size [93]). When
we configured the Kubernetes scheduler to evaluate all nodes,
its average latency doubled over DCM. Furthermore, the de-
fault scheduler incurs a significant amount of engineering
complexity in the form of caching and pre-computing opti-
mizations for the sole purpose of speeding up anti-affinity
predicates. In contrast, DCM only required a simple SQL
specification of the same constraints using 4 SQL views.

Per-pod scheduling latency Figure 13 shows the per-pod
scheduling latency for DCM versus the baseline. For DCM,
we measure the amortized latency over a batch of pods (maxi-
mum batch size of 50 pods), which includes the time taken
for querying data from the database, creating a model based
on the input data, running the solver, and returning results
to the calling code. For Kubernetes, to be conservative, we
only measure the time taken to execute all predicates and
priorities for a pod once that pod is pulled from the sched-
uler’s work queue. DCM’s scheduling latency is competitive
with the baseline at F = 0: DCM experiences a median (p95)
pod scheduling latency of 3.11ms (14.46ms) versus 2.55ms
(6.19ms) for the default scheduler. However, DCM’s per-pod
scheduling latency is similar across all tested values of F ,
whereas the default scheduler’s latency increases significantly
with F . At F = 100, DCM improves average latency by 1.6×
(5.13ms versus 8.04ms). The p95 latency for DCM to sched-
ule a batch of pods stayed under 250ms in all cases. DCM’s
ability to schedule a batch of pods at a time is what leads
to larger absolute savings in end-to-end latency (Figure 12)
versus the per-pod scheduling latency.

F
=

0
%

F
=

5
0

%
F

=
1

0
0

%

1 2 3 4 5 10 20 30 4050 100

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Scheduling Latency (ms)

E
C

D
F

DCM default−scheduler (sampling)

Figure 13: Per-pod scheduling latency at 20× trace speed up
(log-scale). Despite our use of a full-featured SQL database
and a constraint solver in the critical path, DCM improves
per-pod scheduling latency at higher values of F .

#Nodes N=500 N=5K N=10K
#Variables 5524 45983 91010

Table 1: Average number of model variables before the OR-
tools presolve phase.

DCM scheduling latency breakdown Figure 14 breaks
down the scheduling latency in DCM by its various
phases: the time to fetch inputs from the database
(database), to encode the inputs into an optimization model
(modelCreation), and to run the solver (orToolsTotal).
We also plot the time spent within the or-tools presolve phase
(presolve), where the solver applies several complex op-
timizations to simplify the supplied encoding. dcmSolve
subsumes modelCreation and orToolsTotal. The sum of
dcmSolve and database equals the total scheduling latency.

At a cluster size of 500 and F = 0, fetching the required in-
puts from the database is inexpensive (mean 0.58ms per-pod)
compared to invoking the solver (2.8ms per-pod) (Figure 14).
DCM’s generated code is highly efficient at model creation,
contributing an average latency of 450µs per-pod. Similarly,
presolve times are also low, staying around 2.5ms for 95%
of cases. As we increase F , the database’s latency gradually
increases (mean 0.88ms) due to the views computed in the
database for finding groups of pods that repel each other, but
the increase remains small relative to the overall latency. Im-
portantly, solver latency is largely unaffected by the more
complex constraints.

Effect of increased cluster sizes To study the impact of
cluster size and scale on DCM, we turn to simulations. This
is straightforward to do in our scheduler implementation: we
simply mock the Kubernetes API, mimicking cluster sizes of
500, 5000, and 10000 nodes. It allows us to replay the same
Azure traces against an identical DCM scheduler, but subject
the system to a variety of scales and loads. To stress DCM,

836 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

F
=

0
%

F
=

5
0

%
F

=
1

0
0

%

0.01 0.10 1.00 10.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Latency (ms)

E
C

D
F

database

dcmSolve

modelCreation

orToolsTotal

presolve

Figure 14: Scheduling latency breakdown between time spent
fetching input data from the database (database), our gener-
ated code creating an optimization model (modelCreation),
the ‘pre-solve’ phase in or-tools (presolve), and the total
solve time in or-tools (orToolsTotal).

we speed up the trace by 100× and set F = 100%.
We observe the scheduling latency breakdowns again in

Figure 15. At 5K node scale, the per-pod scheduling latency
is under 13ms (and 690ms per batch) 99% of the time. At
10K node scale, however, the p99 per-pod scheduling latency
is 30ms and 1.6s per batch, which is high. To dig deeper,
note that the relative contributions of the database and the
constraint solver to the overall latency widen with increasing
cluster size. As we mentioned before, our scheduler consid-
ers all nodes when placing pods, which shifts more of the
burden to the solver as cluster sizes increase. We note that
the presolve phase is the primary contributor to the over-
all latency. This is because of an API limitation in OR-tools
around creating interval variables (§4.1.3).

In particular, there are steps within the solver’s presolve
pass that we could perform efficiently during model creation,
but the OR-tools API is not rich enough to permit. This forces
our generated code to construct models with redundant vari-
ables (proportional to the number of nodes) that the solver
internally tidies up into a more compact encoding (specifically,
when encoding our capacity constraints). Table 1 shows the
average model sizes generated by our encoder – the presolve
phase trims these models down by an order of magnitude.
The added cost of repeatedly performing this step on every
scheduling decision is acceptable at cluster sizes of up to 5000
nodes (< 1ms at N = 500 and < 8ms at N = 5K, Figure 15).
We are reaching out to the or-tools developers to see if the
API can be augmented to avoid this cost.

6.2 Q2: Decision quality evaluation

Kubernetes packing efficiency for higher consolidation

We now evaluate a common enterprise data center scenario,

N
=

5
0

0
N

=
5

0
0

0
N

=
1

0
0

0
0

0.1 1.0 10.0 100.0

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Latency (ms)

E
C

D
F

database

dcmSolve

modelCreation

orToolsTotal

presolve

Figure 15: Simulation: scheduling latency breakdown at dif-
ferent cluster sizes. Per-pod scheduling latencies stay under
30ms even at 10K node scale. At 5K and 10K node scales,
the presolve phase of the solver dominates.

where cluster sizes are typically small (under fifty nodes), but
consolidation rates need to be kept high. In such scenarios, it
is imperative for schedulers to find feasible and dense pack-
ings. We use a common pod affinity/anti-affinity pattern seen
in production workloads [67], where nginx [13] servers in a
web application need to be co-located on the same machine
as an in-memory Redis cache [84]. We create 30 such ap-
plications, each with 10 pods, with pod CPU and memory
requirements following an exponential distribution. We gen-
erate 35 such workloads, which leads to a different arrival
sequence of resource demands per experiment.

We find that DCM places 100% of pods in 29 out of 35
experiments, and in the worst case, places at least 93% of
pods across all runs. In contrast, the baseline scheduler packs
all pods only in 3 out of 35 instances. This highlights DCM’s
effectiveness at placing groups of pods. Instead, the base-
line myopically places one pod at a time, causing it to make
decisions that prevent future pods from being placed. Note,
if the pods appear well spaced apart in time, or DCM uses
smaller batching sizes, its performance will approach that of
the baseline.

Kubernetes placement convergence time for preemptions

We now test DCM’s effectiveness in making global recon-
figuration decisions. We replay a workload used to test Ku-
bernetes’ preemption logic [65], that creates 3 sets of pods
with different priorities. The resource demands are set to ac-
commodate only the highest priority pods on the cluster, and
the lower priority pods should either not be placed or be pre-
empted. The default scheduler invokes its preemption logic
on a pod-by-pod basis and uses a set of heuristics to deter-
mine when to retry pods it could not place (e.g according
to a backoff policy, and retrying when nodes report status

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 837

0.00
0.25
0.50
0.75
1.00

40 50 60 70 80

Memory load (%)

E
C

D
F

Baseline DCM

Figure 16: VM load balancing use case: memory load distri-
bution across hosts with and without DCM.

B
a

s
e

lin
e

D
C

M

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

0

25

50

75

0

25

50

75

Host

M
e

m
o

ry
 l

o
a

d
 (

%
)

Figure 17: Load distribution before and after using DCM. The
X-axis represents hosts, the Y-axis represents the memory
utilization per host. Hosts have different capacities, and boxes
in each bar represent VM sizes, scaled to the host’s capacity.

updates). In doing so, the baseline scheduler takes almost 100
seconds to place all high priority pods. Instead, DCM initially
places low priority pods and systematically replaces them
with higher priority pods in phases as new pod requests arrive,
by invoking its preemption model to look at the state of all
nodes (§3). In doing so, the scheduler converges to placing
all high priority pods in just under 50 seconds, twice as fast
as the baseline scheduler.

VM load balancing quality evaluation We test our VM
load balancing tool (§4.3) using a trace from a bug report
submitted by a customer. This production cluster has 16 hosts
with heterogeneous CPU and memory capacities, and 524
VMs with a range of CPU and memory sizes. The baseline
system’s heuristic-based load balancer could not identify VM
migrations to improve the load distribution of the cluster,
which led to the bug report. Figure 16 (baseline) shows the
memory utilization of every host as per the trace (we only

show memory utilization because there were no CPU resource
reservations by the VMs). Figure 17 shows the VM sizes,
scaled according to each host’s capacity.

With DCM, we specified the necessary hard constraints
(capacity and affinity requirements) and a soft constraint that
minimizes the load difference between the most and least
utilized node. We then asked the tool to identify twenty VM
migrations, which significantly improved the load distribution
(Figure 16). With the baseline, the most loaded and least
loaded nodes were at 85% and 39% utilization, whereas DCM
found moves to spread utilization between 52% and 67%.
DCM took a second to make its decision, whereas the baseline
heuristic takes roughly five seconds.

6.3 Q3: Extensibility

We validate our hypothesis that DCM enables building exten-

sible cluster managers. §5 discusses the ease with which we
added policies to all three case studies, taking only a few hours
per policy to design, implement, and test. In this section, we
focus on a more challenging test of extensibility by discussing
a non-trivial modification to our Kubernetes scheduler.

Our case study involves a custom Kubernetes distribution
where the Kubernetes control plane deploys both pods and
VMs (the nodes run both pods and VMs). A challenge here
is that the default scheduler’s implementation is intricately
coupled to the Kubernetes data-structures that represent pods
(for example, every predicate and priority implementation
expects a pod object). VMs, as a Kubernetes object that can
also be placed on nodes, is beyond the Kubernetes scheduler’s
resource management model. This scheduling inflexibility is a
known pain point in the Kubernetes community [66] The only
option today is for the Kubernetes scheduler to coordinate
with another scheduler that can deploy VMs. This is, therefore,
a good case study to validate DCM’s extensibility goal.

We extend the Kubernetes scheduler we built using DCM
to jointly reason about pods and VMs. From a placement
standpoint, pods and VMs are simply tasks that need to be
assigned to nodes, and only represent a slightly different set
of constraints (for example, VMs can be migrated but pods
cannot, because most of the Kubernetes ecosystem does not
assume pods can be migrated).

Most of our effort went into the Java code and boiler-
plate required to subscribe to the Kubernetes API to learn
about new VM creations (specifically, a Kubernetes Custom
Resource [85]) and writing these obtained objects into our
database. On the SQL side, however, these capabilities only
involved minimal changes to the DCM-based Kubernetes
scheduler: we added four constraints in total and made a
cosmetic change to the SQL schema for readability (replac-
ing instances of pods_to_assign with tasks_to_assign).
The minimal effort here was possible only because DCM en-
forces a declarative approach to specifying the cluster state
and the constraints on it.

838 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7 Discussion and future work opportunities

Solver Scalability Cluster sizes in enterprises are typically
modest and well within Kubernetes’ scalability targets. This
is a scale that we are confident DCM excels at (§6.1).

Pushing DCM to hyperscale needs, however, is an interest-
ing area for future work. While the techniques described in
§4.1.3 are required for scalability, there will inevitably be a
point where it is better to partition a problem, something that
DCM cannot perform automatically for the developer. For
example, in a cluster with 100K nodes, it is likely overkill to
evaluate every single node in the cluster for an optimal place-
ment decision. Instead, the 100K nodes can be partitioned
into 10 or 20 groups that are somewhat similar in composition
(analogous to Borg cells [95] or sub-clusters in Hydra [29]).
A DCM model (or a custom heuristic) could pick a group to
place a workload in, followed by another model that places
the workload within the selected group (the second model, in
this case, would use as input, a table/view with only nodes
from the selected group). Another approach would be to eval-
uate multiple such groups in parallel and pick the result with
the best objective function. We explicitly designed DCM’s
programming model for such flexibility.

There are several further opportunities for improving per-
formance that we have not yet explored. For example, solvers
can be configured to return good-enough (as opposed to opti-
mal) results, when the current best solution is within a certain
bound, to improve performance.

Database scalability In-memory, incremental view main-
tenance is key to scaling the database side. For now, we had
to simulate materialized views using triggers in H2 (§5). H2’s
simplicity also meant that its optimizer did not perform sev-
eral natural query transformations that more mature engines
do, which required us to write more complex SQL than was
required (§5). This is additional work that would not be re-
quired with an incremental engine. We are currently integrat-
ing DCM with the Differential Datalog (ddlog) engine [86].

Expressiveness of SQL So far, across all use cases (§5),
we are yet to find a policy we could not express using this
model. We are confident of SQL’s expressive power for sev-
eral reasons.

SQL shines at concisely cross-referencing state across dif-
ferent tables, a capability that has been useful in a broad
range of contexts (e.g., SQCK [48]). We simply leverage that
strength of SQL to both represent complex cluster state and
concisely specify constraints spanning several tables; the ac-
tual check clauses and objective function expressions within
these constraint queries are typically comparable to what is
shown in Figures 5, 6, and 7.

The more complex SQL we have written are for views exe-
cuted in the database, which become inputs for the generated
code (§4.1.1, §5). There is a lot of expressive power here;

for example, developers may use a database’s user-defined
functions for specific input transformations if required, but we
have not yet needed to do so (even for handling Kubernetes’s
match expression DSL, §5).

At the same time, DCM does require expressing policies
in terms of intent, rather than the exact steps of an algorithm.
We anticipate that this will pose a learning curve for some
developers.

Generality of optimizations DCM cannot prevent users
from writing SQL that generates inefficient code, a com-
mon challenge for declarative programming models (SQL
databases provide tools for users to inspect query plans for this
reason, like the EXPLAIN query). For now, our compiler warns
developers when it emits inefficient code (e.g., cross products
across tables without indexes), and exposes detailed diagnos-
tics to understand runtime performance (e.g., Figure 14 and
Table 1).

We provide a suite of aggregate functions (like all_dif-
ferent) that we encourage developers to use because it leads
to clearer policies and makes it straightforward to generate
efficient code that uses global constraints (§4.1.1). So far, we
only added functions if they were useful across several use
cases. It is similar with rewrite rules: we only add ones that
have broad utility (e.g., we find the fixed-arity rule applying
to most uses of SUM/COUNT).

8 Related work

Use of solvers for resource management A large body
of work has used solvers for resource management, includ-
ing CP solvers [51] to pack and migrate VMs; flow network
solvers [40, 53] and MIPs [38, 42–44, 91, 92] for job schedul-
ing, and ILPs for traffic engineering [30]. These systems use
handcrafted encoders written by optimization experts for spe-
cific problems. Even in the industry, we find that the few
organizations that use solvers for such tasks typically have
dedicated teams of optimization experts. In contrast, we gener-
ate scalable encoders from a declarative specification written
using SQL. Our programming model significantly lowers the
barrier to powering systems with constraint solvers – develop-
ers express policies directly against the cluster state, without
having to translate them into the low-level mathematical for-
malisms of solver encodings.

We sketched out the initial idea for DCM in a workshop
paper [89]. In this paper, we extend this preliminary work with
a detailed design and implementation, and a comprehensive
evaluation using three case studies.

Quincy [53] and Firmament [40] use flow network solvers
for scheduling, which yield quick solve times (sub-second,
even for topologies with thousands of nodes), but cannot
model many classes of constraints, including inter-task con-
straints like affinity/anti-affinity [41]. Compared to DCM,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 839

they involve a high degree of modeling complexity: develop-
ers need to map scheduling constraints to flow network con-
structs like vertices, arcs, and flows, which make it challenging
to apply to general systems like Kubernetes. For example, the
experimental Poseidon Kubernetes scheduler [88] is based
on Firmament, but the developers found constraints like inter-
pod affinity both hard to implement [87] and scale [16] (up to
3× slower than the default scheduler evaluating all nodes).

Wrasse [82] uses a DSL based on a balls and bins abstrac-
tion to specify resource allocation constraints and a GPU-
based solver to find solutions. Its low-level modeling language
makes it hard to express complex constraints; it supports re-
source capacity constraints, but not other important classes of
constraints like affinities and load balancing.

Some production systems use meta-heuristic search for
resource management. VMware DRS [47] uses a greedy hill-
climbing search, and Service Fabric [76] uses simulated an-
nealing. Several systems employ a variety of heuristics for
resource management [26, 28, 29, 32, 33, 39, 54]. These works
neither use declarative programming techniques nor benefit
from solver-based optimal solutions to enforce policies.

Simplifying systems using relational languages Several
works have used the strengths of relational languages to sim-
plify systems programming. Boom Analytics [19] uses the
Overlog language to build an HDFS/Hadoop clone with com-
parable performance. P2 [74] also uses Overlog, but to declar-
atively specify peer-to-peer overlays. Ravel [96] is an SDN
controller that uses SQL databases to abstract and manipu-
late network state. SQCK [48] simplifies filesystem checker
implementations by using declarative queries to validate com-
plex filesystem images instead of writing low-level C code.
DCM builds on the above ideas and not only uses a relational
database to store and manipulate cluster state but also code
generates logic to search for new configurations based on
constraints written in SQL.

Network configuration synthesis Network configuration
synthesis from high-level specification [22, 34, 35] for BGP
and OSPF is orthogonal to dynamic cluster management with
constraint specification by DCM. ConfigAssure [79] and Al-
loy [78] use model finding to identify configurations that
satisfy a specification given by an administrator (or detect
errors in existing ones). Alloy uses a DSL for specification,
whereas ConfigAssure uses the Prolog language. DCM, on
the other hand, works on top of standard SQL databases and is
capable of supporting optimization goals as well. The tested
use cases for ConfigAssure and Alloy are well within scope
for DCM.

DSLs for infrastructure automation Many configuration
management tools use custom DSLs. Hewson et al. [52]
propose an object-oriented DSL to specify a configuration
for a data-center, which is enforced by a constraint solver.
PoDIM [31] does not use a solver but uses an SQL-like DSL to

specify requirements for a configuration. Configuration man-
agement tools like Puppet [81], Ansible [83], Terraform [49],
and Helm [7] all use custom DSLs to configure and deploy
infrastructure repeatably. These systems target a different use
case than DCM: they are not designed to solve optimization
tasks within a dynamic distributed system at short timescales
but instead target infrastructure deployment, which runs at
much slower timescales.

9 Conclusion

Cluster management logic is notoriously hard to develop,
given that they routinely involve combinatorial optimization
tasks that cannot be efficiently solved using best-effort heuris-
tics. With DCM, we propose building cluster managers where
the implementation to compute policy-compliant decisions
is synthesized by a compiler from a high-level specification.
DCM significantly lowers the barrier to building cluster man-
agers that scale, compute high-quality decisions, and are easy
to evolve with new features over time. We validate our thesis
by applying DCM to three production use cases: we built a
Kubernetes scheduler that is faster and more flexible than the
heavily optimized default scheduler, improved load balancing
quality in a virtual machine management solution, and easily
added features to a distributed transactional data store.

Acknowledgements

We thank our shepherd Lidong Zhou and the anonymous
reviewers for their valuable feedback. We are grateful to Mihai
Budiu, Jon Howell, Sujata Banerjee, and Jacques Chester for
their valuable inputs that helped shape this project.

References

[1] 10 most common mistakes using Kuber-
netes. https://blog.pipetail.io/posts/

2020-05-04-most-common-mistakes-k8s/.

[2] Gecode. https://www.gecode.org/.

[3] Google OR-Tools. https://developers.google.

com/optimization/.

[4] H2 Database. https://github.com/h2database/

h2database/.

[5] H2 Database Features: Triggers. https:

//h2database.com/html/features.html#

triggers.

[6] H2 Database: Performance. https://h2database.

com/html/performance.html.

[7] Helm. https://helm.sh/.

840 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[8] JOOQ. https://github.com/jOOQ/jOOQ.

[9] Kube Score. https://github.com/zegl/

kube-score.

[10] Kubernetes. http://github.com/kubernetes/

kubernetes.

[11] Kubernetes Issue 52141: Multiple matchExpres-
sions in nodeSelectorTerms works unexpectedly.
https://github.com/kubernetes/kubernetes/

issues/52141.

[12] Kubernetes Issue 70394: s/ORed/ANDed/ node-
SelectorTerms matchExpressions. https:

//github.com/kubernetes/kubernetes/pull/

70394#issuecomment-434127780.

[13] Nginx. http://nginx.org/en/docs/http/load_

balancing.html.

[14] Openshift. https://www.openshift.com/.

[15] Openstack. https://www.openstack.org/.

[16] Poseidon benchmarks. https://github.com/

kubernetes-sigs/poseidon/blob/master/

docs/benchmark/README.md.

[17] Declarative Cluster Management Github
Repository. https://github.com/vmware/

declarative-cluster-management/, 2019.

[18] Susanne Albers and Michael Mitzenmacher. Average-
case analyses of first fit and random fit bin packing.
Random Structures & Algorithms, 16(3):240–259, 2000.

[19] Peter Alvaro, Tyson Condie, Neil Conway, Khaled
Elmeleegy, Joseph M. Hellerstein, and Russell Sears.
Boom analytics: Exploring data-centric, declarative pro-
gramming for the cloud. In Proceedings of the 5th Eu-

ropean Conference on Computer Systems, EuroSys ’10,
page 223–236, New York, NY, USA, 2010. Association
for Computing Machinery.

[20] Jason Baker, Chris Bond, James C. Corbett, JJ Fur-
man, Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing scalable, highly available storage
for interactive services. In Proceedings of the Confer-

ence on Innovative Data system Research (CIDR), pages
223–234, 2011.

[21] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko.
Improved approximation algorithms for multidimen-
sional bin packing problems. In 2006 47th Annual

IEEE Symposium on Foundations of Computer Science

(FOCS’06), pages 697–708. IEEE, 2006.

[22] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Network configuration syn-
thesis with abstract topologies. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2017, pages
437–451, New York, NY, USA, 2017. ACM.

[23] Kevin Beyer, Don Chambérlin, Latha S. Colby, Fatma
Özcan, Hamid Pirahesh, and Yu Xu. Extending XQuery
for Analytics. In Proceedings of the 2005 ACM SIG-

MOD International Conference on Management of Data,
SIGMOD ’05, pages 503–514, New York, NY, USA,
2005. ACM.

[24] Scott Boag, Don Chamberlin, Mary F Fernández,
Daniela Florescu, Jonathan Robie, Jérôme Siméon, and
Mugur Stefanescu. XQuery 1.0: An XML query lan-
guage. http://www.w3.org/TR/xquery, 2002. Re-
trieved March 2019.

[25] Edward Bortnikov, Eshcar Hillel, Idit Keidar, Ivan Kelly,
Matthieu Morel, Sameer Paranjpye, Francisco Perez-
Sorrosal, and Ohad Shacham. Omid, reloaded: Scal-
able and highly-available transaction processing. In
15th USENIX Conference on File and Storage Technolo-

gies (FAST 17), pages 167–180, Santa Clara, CA, 2017.
USENIX Association.

[26] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In Proceedings of USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI), pages 285–300, Broomfield, CO, Oc-
tober 2014. USENIX Association.

[27] Architecting Kubernetes clusters. https://learnk8s.
io/kubernetes-node-size.

[28] Carlo Curino, Djellel E. Difallah, Chris Douglas,
Subru Krishnan, Raghu Ramakrishnan, and Sriram Rao.
Reservation-based scheduling: If you’re late don’t blame
us! In Proceedings of the ACM Symposium on Cloud

Computing (SoCC), SOCC ’14, pages 2:1–2:14, New
York, NY, USA, 2014. ACM.

[29] Carlo Curino, Subru Krishnan, Konstantinos Karana-
sos, Sriram Rao, Giovanni M. Fumarola, Botong Huang,
Kishore Chaliparambil, Arun Suresh, Young Chen,
Solom Heddaya, Roni Burd, Sarvesh Sakalanaga, Chris
Douglas, Bill Ramsey, and Raghu Ramakrishnan. Hy-
dra: A federated resource manager for data-center scale
analytics. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages
177–192, Boston, MA, February 2019. USENIX Asso-
ciation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 841

[30] Emilie Danna, Subhasree Mandal, and Arjun Singh. A
practical algorithm for balancing the max-min fairness
and throughput objectives in traffic engineering. In 2012

Proceedings IEEE INFOCOM, pages 846–854. IEEE,
2012.

[31] Thomas Delaet and Wouter Joosen. Podim: A language
for high-level configuration management. In LISA, vol-
ume 7, pages 1–13, 2007.

[32] Christina Delimitrou and Christos Kozyrakis. Paragon:
QoS-aware scheduling for heterogeneous datacenters. In
Proceedings of the eighteenth international conference

on Architectural support for programming languages

and operating systems, ASPLOS ’13, pages 77–88, New
York, NY, USA, 2013. ACM.

[33] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and QoS-aware cluster management.
SIGARCH Comput. Archit. News, 42(1):127–144, Febru-
ary 2014.

[34] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-wide configuration syn-
thesis. In Rupak Majumdar and Viktor Kunčak, editors,
Computer Aided Verification, pages 261–281, Cham,
2017. Springer International Publishing.

[35] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. NetComplete: Practical network-
wide configuration synthesis with autocompletion. In
15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pages 579–594, Renton,
WA, 2018. USENIX Association.

[36] etcd. etcd. https://github.com/coreos/etcd,
2014.

[37] Leonidas Fegaras and David Maier. Optimizing ob-
ject queries using an effective calculus. ACM Trans.

Database Syst., 25(4):457–516, December 2000.

[38] Panagiotis Garefalakis, Konstantinos Karanasos, Pe-
ter Pietzuch, Arun Suresh, and Sriram Rao. Medea:
Scheduling of long running applications in shared pro-
duction clusters. In Proceedings of the Thirteenth Eu-

roSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[39] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
Choosy: Max-min fair sharing for datacenter jobs with
constraints. In Proceedings of the 8th ACM European

Conference on Computer Systems, EuroSys ’13, page
365–378, New York, NY, USA, 2013. Association for
Computing Machinery.

[40] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert
N. M. Watson, and Steven Hand. Firmament: Fast, cen-
tralized cluster scheduling at scale. In 12th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), pages 99–115, Savannah, GA,
2016. USENIX Association.

[41] Ionel Corneliu Gog. Flexible and efficient computation
in large data centres, 2018.

[42] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In Proceed-

ings of the 2014 ACM Conference on SIGCOMM, SIG-
COMM ’14, page 455–466, New York, NY, USA, 2014.
Association for Computing Machinery.

[43] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic schedul-
ing in multi-resource clusters. In Proceedings of the

12th USENIX Conference on Operating Systems Design

and Implementation, OSDI’16, page 65–80, USA, 2016.
USENIX Association.

[44] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. Graphene: Packing and
dependency-aware scheduling for data-parallel clusters.
In Proceedings of the 12th USENIX Conference on Op-

erating Systems Design and Implementation, OSDI’16,
page 81–97, USA, 2016. USENIX Association.

[45] Torsten Grust. Monoid Comprehensions as a Target for
the Translation of OQL. In Workshop on performance

enhancement in object bases, Schloss Dagstuhl, 1996.

[46] B. Guenter, N. Jain, and C. Williams. Managing cost,
performance, and reliability tradeoffs for energy-aware
server provisioning. In 2011 Proceedings IEEE INFO-

COM, pages 1332–1340, April 2011.

[47] Ajay Gulati and Xiaoyun Zhu. VMware distributed
resource management: design, implementation, and
lessons learned. VMware Technical Journal, 1(1):45–64,
2012.

[48] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SQCK:
A declarative file system checker. In Proceedings of the

8th USENIX Conference on Operating Systems Design

and Implementation, OSDI’08, page 131–146, USA,
2008. USENIX Association.

[49] HashiCorp. Terraform. https://www.terraform.

io/, 2014.

[50] HashiCorp. Nomad. https://www.nomadproject.

io/docs/internals/scheduling.html, 2015.

842 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[51] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud,
Gilles Muller, and Julia Lawall. Entropy: A consol-
idation manager for clusters. In Proceedings of the

2009 ACM SIGPLAN/SIGOPS international conference

on Virtual execution environments, pages 41–50. ACM,
2009.

[52] John A Hewson, Paul Anderson, and Andrew D Gordon.
A declarative approach to automated configuration. In
LISA, volume 12, pages 51–66, 2012.

[53] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair scheduling for distributed computing clusters. In
ACM Symposium on Operating systems principles

(SOSP), pages 261–276. ACM, 2009.

[54] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards automated SLOs for enterprise clusters.
In Proceedings of the 12th USENIX Conference on Op-

erating Systems Design and Implementation, OSDI’16,
page 117–134, USA, 2016. USENIX Association.

[55] Manos Karpathiotakis, Ioannis Alagiannis, and Anas-
tasia Ailamaki. Fast queries over heterogeneous data
through engine customization. Proc. VLDB Endow.,
9(12):972–983, August 2016.

[56] Manos Karpathiotakis, Ioannis Alagiannis, Thomas Hei-
nis, Miguel Branco, and Anastasia Ailamaki. Just-in-
time data virtualization: Lightweight data management
with vida. In Proceedings of the 7th Biennial Conference

on Innovative Data Systems Research (CIDR), number
EPFL-CONF-203677, 2015.

[57] Arie MCA Koster, Manuel Kutschka, and Christian
Raack. Towards robust network design using integer
linear programming techniques. In Next Generation In-

ternet (NGI), 2010 6th EURO-NF Conference on, pages
1–8. IEEE, 2010.

[58] Kubernetes. Add a new predicate: max replicas
limit per node. https://github.com/kubernetes/
kubernetes/pull/71930, 2018.

[59] Kubernetes. Add max number of replicas per node/topol-
ogyKey to pod anti-affinity. https://github.com/

kubernetes/kubernetes/issues/40358, 2018.

[60] Kubernetes. Affinity/Anti-Affinity Optimization of
Pod Being Scheduled #67788. https://github.com/
kubernetes/kubernetes/pull/67788, 2018.

[61] Kubernetes. Allow Minimum (or Maximum) Pods per
failure zone. https://github.com/kubernetes/

kubernetes/issues/66533, 2018.

[62] Kubernetes. Maximum of N per topology value.
https://github.com/kubernetes/kubernetes/

pull/41718, 2018.

[63] Kubernetes. MaxPodsPerNode - be able to set
hard and soft limits for deployments / replicasets.
https://github.com/kubernetes/kubernetes/

issues/63560, 2018.

[64] Kubernetes. Pod priorities and preemption.
https://kubernetes.io/docs/concepts/

configuration/pod-priority-preemption/,
2018.

[65] Kubernetes. Scheduler sometimes preempts unnec-
essary pods. https://github.com/kubernetes/

kubernetes/issues/70622, 2018.

[66] Kubernetes. Add custom resource scheduling.
https://github.com/kubernetes/kubernetes/

issues/82118, 2019.

[67] Kubernetes. Assigning Pods to Nodes.
https://kubernetes.io/docs/concepts/

configuration/assign-pod-node/

#more-practical-use-cases, 2019.

[68] Kubernetes. Kubernetes Descheduler. https:

//github.com/kubernetes-sigs/descheduler,
2020.

[69] Kubernetes mailing list. Let’s remove ServiceAffinity
. https://groups.google.com/forum/#!topic/

kubernetes-sig-scheduling/ewz4TYJgL0M,
2018.

[70] Kubernetes Master Tier For 1000 Nodes Scale. https:
//tinyurl.com/y97ysbrd.

[71] KubeVirt. https://kubevirt.io/.

[72] Kevin Leo and Guido Tack. Debugging unsatisfiable
constraint models. In Domenico Salvagnin and Michele
Lombardi, editors, Integration of AI and OR Techniques

in Constraint Programming, pages 77–93, Cham, 2017.
Springer International Publishing.

[73] Kubernetes Topology Manager Limitations.
https://kubernetes.io/docs/tasks/

administer-cluster/topology-manager/

#known-limitations.

[74] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein,
Petros Maniatis, Timothy Roscoe, and Ion Stoica. Im-
plementing declarative overlays. In Proceedings of the

Twentieth ACM Symposium on Operating Systems Prin-

ciples, SOSP ’05, page 75–90, New York, NY, USA,
2005. Association for Computing Machinery.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 843

[75] Christopher Mears, Andreas Schutt, Peter J. Stuckey,
Guido Tack, Kim Marriott, and Mark Wallace. Mod-
elling with option types in MiniZinc. In Helmut Si-
monis, editor, Integration of AI and OR Techniques in

Constraint Programming, pages 88–103, Cham, 2014.
Springer International Publishing.

[76] Microsoft. Service Fabric. https://tinyurl.com/

y728dctp, 2016.

[77] Microsoft. Azure Public Dataset. https://github.

com/Azure/AzurePublicDataset, 2017.

[78] Sanjai Narain et al. Network configuration management
via model finding. In LISA, volume 5, pages 15–15,
2005.

[79] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram
Kaul. Declarative infrastructure configuration synthesis
and debugging. J. Network Syst. Manage., 16:235–258,
09 2008.

[80] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket,
Sebastian Brand, Gregory J. Duck, and Guido Tack.
MiniZinc: Towards a standard CP modelling language.
In Christian Bessière, editor, Principles and Practice of

Constraint Programming – CP 2007, pages 529–543,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[81] Puppet Labs. Puppet. https://puppet.com/, 2005.

[82] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. Gen-
eralized resource allocation for the cloud. In Proceed-

ings of the Third ACM Symposium on Cloud Comput-

ing, SoCC ’12, pages 15:1–15:12, New York, NY, USA,
2012. ACM.

[83] Red Hat. Ansible. https://www.ansible.com/,
2012.

[84] Redis. Redis. http://redis.io/, 2009.

[85] Kubernetes Custom Resources. https:

//kubernetes.io/docs/concepts/

extend-kubernetes/api-extension/

custom-resources/.

[86] Leonid Ryzhyk and Mihai Budiu. Differential datalog.
In Datalog 2.0, Philadelphia, PA, June 4-5 2019.

[87] SIG Scheduling. Affinity/Anti-Affinity Update
. https://groups.google.com/forum/#!msg/

kubernetes-sig-scheduling/nHWb9zCMOyo/

tkbtFf8lBgAJ, 2018.

[88] SIG Scheduling. Poseidon . http://github.com/

kubernetes-sigs/poseidon, 2018.

[89] Lalith Suresh, João Loff, Nina Narodytska, Leonid
Ryzhyk, Mooly Sagiv, and Brian Oki. Synthesizing
cluster management code for distributed systems. In
Proceedings of the Workshop on Hot Topics in Operat-

ing Systems, HotOS ’19, page 45–50, New York, NY,
USA, 2019. Association for Computing Machinery.

[90] Assigning Pods to Nodes: affinity and anti affin-
ity. https://kubernetes.io/docs/concepts/

scheduling-eviction/assign-pod-node/

#affinity-and-anti-affinity.

[91] Alexey Tumanov, James Cipar, Gregory R. Ganger, and
Michael A. Kozuch. Alsched: Algebraic scheduling of
mixed workloads in heterogeneous clouds. In Proceed-

ings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, New York, NY, USA, 2012. Association for
Computing Machinery.

[92] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.
Ganger. Tetrisched: Global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In Pro-

ceedings of the European Conference on Computer Sys-

tems (EuroSys), EuroSys ’16, pages 35:1–35:16, New
York, NY, USA, 2016. ACM.

[93] Kubernetes Scheduler Performance Tun-
ing. https://kubernetes.io/docs/

concepts/scheduling-eviction/

scheduler-perf-tuning/.

[94] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache Hadoop YARN: Yet another resource negotiator.
In Proceedings of the 4th Annual Symposium on Cloud

Computing, SOCC ’13, pages 5:1–5:16, New York, NY,
USA, 2013. ACM.

[95] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-

ceedings of the European Conference on Computer Sys-

tems (EuroSys), pages 18:1–18:17, Bordeaux, France,
2015. ACM.

[96] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Cae-
sar, and Brighten Godfrey. Ravel: A database-defined
network. In Proceedings of the Symposium on SDN

Research, SOSR ’16, New York, NY, USA, 2016. Asso-
ciation for Computing Machinery.

844 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Motivation
	Declarative Programming with DCM
	DCM Design
	DCM compiler
	Syntax and expressiveness
	Compiler workflow
	Generating scalable encodings

	Testing and debugging models
	Implementation

	Experience using DCM
	Evaluation
	Q1: Scalability evaluation
	Q2: Decision quality evaluation
	Q3: Extensibility

	Discussion and future work opportunities
	Related work
	Conclusion

