
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Generalized Sub-Query Fusion for Eliminating
Redundant I/O from Big-Data Queries

Partho Sarthi, Kaushik Rajan, and Akash Lal, Microsoft Research India; Abhishek
Modi, Prakhar Jain, Mo Liu, and Ashit Gosalia, Microsoft; Saurabh Kalikar, Intel

https://www.usenix.org/conference/osdi20/presentation/sarthi

Generalized Sub-Query Fusion for Eliminating Redundant I/O
from Big-Data Queries

Partho Sarthi, Kaushik Rajan, Akash Lal
Microsoft Research India

Abhishek Modi, Prakhar Jain, Mo Liu, Ashit Gosalia
Microsoft

Saurabh Kalikar∗

Intel

Abstract
SQL is the de-facto language for big-data analytics. Despite
the cost of distributed SQL execution being dominated by
disk and network I/O, we find that state-of-the-art optimizers
produce plans that are not I/O optimal. For a significant frac-
tion of queries (25% of popular benchmarks like TPCDS), a
large amount of data is shuffled redundantly between different
pairs of stages. The fundamental reason for this limitation
is that optimizers do not have the right set of primitives to
perform reasoning at the map-reduce level that can potentially
identify and eliminate the redundant I/O.

This paper proposes RESIN, an optimizer extension that
adds first-class support for map-reduce reasoning. RESIN uses
a novel technique called Generalized Sub-Query Fusion that
identifies sub-queries computing on overlapping data, and
fuses them into the same map-reduce stages. The analysis
is general; it does not require that the sub-queries be syntac-
tically the same, nor are they required to produce the same
output. Sub-query fusion allows RESIN to sometimes also
eliminate expensive binary operations like Joins and Unions
altogether for further gains.

We have integrated RESIN into SPARKSQL and evaluated
it on TPCDS, a standard analytics benchmark suite. Our re-
sults demonstrate that the proposed optimizations apply to
40% of the queries and speed up a large fraction of them by
1.1−6×, reducing the overall execution time of the bench-
mark suite by 12%.

1 Introduction

SQL is the de-facto language for performing big-data analyt-
ics. As there are many alternative ways to express the same
query in SQL, query optimizers employ SQL-to-SQL rewrite
rules to find equivalent queries that are likely to run faster.
The rewritten query is compiled down to an executable plan
that consists of many map or reduce stages. Each stage in the
plan then runs in a data-parallel manner on many machines.

∗Work was done while the author was at Microsoft

Data is materialized to disk at the end of each stage and trans-
ferred between stages using an all-to-all network shuffle (also
referred to as an exchange). In practice, shuffles that involve
very large amount of data require multiple rounds of I/O in
order to incrementally aggregate data [15,27]. It is not surpris-
ing therefore, that the cost of running a query is dominated
by disk and network I/O [15].

Despite the bottleneck on I/O, we find that state-of-the-art
query optimizers [4, 5, 18, 21, 22] produce execution plans
that read or shuffle the same data redundantly multiple times.
In fact, on a standard benchmark like TPCDS, the SPARK
query optimizer produces plans where 40% of queries incur
redundant I/O (Section 6). A large fraction of these spend
at-least half their time in stages with redundant I/O.

A standard big-data query optimizer (Figure 1) performs
query optimization using a sequence of tree-rewrite rules. It
applies logical rules to substitute operator trees with equiva-
lent trees. Then it uses implementation strategies (also called
physical rules) to transform an optimized operator tree into a
tree of physical operators. Each physical operator has a pre-
defined map-reduce implementation. As shown in the figure,
a standard optimizer only performs SQL-to-SQL rewrite rules
at the logical level and the physical operators just provide
data-parallel implementations of SQL operators.

Performing optimization at the SQL level is not optimal for
a runtime that can execute arbitrary data-parallel operators.
A previous system called BLITZ [10, 19] shows evidence of
this opportunity for further optimization. BLITZ [19] uses
program synthesis to identify single-input single-output sub-
queries that can be implemented by a single imperative map-
reduce program. Through program synthesis, it finds map-
reduce implementations of queries where a query optimizer
produces inefficient execution plans. Subsequent work [10]
added some of the newly discovered operators (referred to as
super-operators) back into the optimizer along with rewrite-
rules that target them. They showed that queries that use a
super-operator can run up to 2× faster.

A key limitation of BLITZ, however, is that it only optimizes
single-input sub-queries, and further it only targets optimiza-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 209

Logical
rewrites

Physical
rewrites,
codegen

Execution
Plan

SQL

Implementations
of RESIN

operators

SQL+MR→SQL+MR
Rewrites, global

fusion transforms

RESIN
exchange

reuse

RESIN

SQL → SQL rewrite,
Local tree

transforms

MR
implementations
of SQL operators

+ unary SQL →
super-operator

rewrites

+implementations
of super-operators

Exchange
addition, Exact
exchange reuse

Standard
optimizer

Prior work:
BLITZ

Figure 1: Key components of a big-data query optimizer.
RESIN performs map-reduce reasoning starting at the logical
level, when prior work only considers it late in the process.

tions that produce a single map-reduce program. The logical
rewrite rules in BLITZ (as in a standard optimizer) only make
local transformations. They substitute a connected set of oper-
ators with a single super-operator. As a result, BLITZ can only
eliminate redundant I/O from specific types of sub-queries
with self-joins or self-unions. This turned out to be insufficient
on a standard benchmark suite like TPCDS where BLITZ only
applies to a small fraction (2%) of queries.

This paper introduces RESIN, an optimizer extension that
eliminates redundant I/O from complex multi-stage multi-
input queries. This fundamentally requires new techniques.
As shown in Figure 1, RESIN performs map-reduce reasoning
right from the beginning. It introduces two generic logical
operators, a parameterized mapper (RESINMAP) and a pa-
rameterized reducer (RESINREDUCE) that are each capable
of implementing complex sub-queries. RESIN introduces new
rules that fuse operators from different parts of the query
tree that are processing overlapping sets of data. The fusion
relies on the additional expressiveness of RESINMAP and
RESINREDUCE. The fusion further enables the elimination of
binary operators from the query. Binary operators are particu-
larly expensive as they typically induce multiple shuffles [10].
Compared to BLITZ, we significantly broaden the optimiza-
tion opportunities: RESIN applies to 38% of TPCDS.

We integrated RESIN with SPARK [5, 26], a popular open-
source big-data system, and evaluated on the entire TPCDS
suite. Our results demonstrate that RESIN optimizations apply
to 40 of the 104 queries in the suite, and speed up 25% of the
queries by a significant fraction (average 1.4×). RESIN brings
down the cumulative execution time for the entire benchmark
suite by 12%.

The rest of the paper is organized as follows. Section 2
gives an overview of optimizations performed by RESIN. Sec-
tion 3 formally defines the query language and introduces
RESIN operators. Section 4 describes the core optimizations,
sub-query fusion and binary operator elimination. Section 5
presents some key features of our implementation. Section 6
reports our evaluation and Section 7 discusses related work.

2 Overview

This section provides an overview of RESIN. Consider a
(fictitious) IoT application that collects readings from multiple
sensors deployed all over the world and derives intelligence
from it through SQL queries. Each device emits a single
message every few hours with two readings corresponding
to two different times. The message has the following fields,
〈id,hr1,signal1,hr2,signal2〉 where id is the device identifier,
hr1 is the hour at which the first reading was taken, signal1
is the value of the first reading. Similarly, hr2 and signal2
are the hour and value of the second reading. The collective
log, which can reach Billions of entries across all devices,
is processed once a month using SQL queries. We describe
RESIN optimizations on two example queries.

Example 1 The query is shown in Figure 2(a)1. The
query separates the subset of columns 〈id,hr1,signal1〉 and
〈id,hr2,signal2〉 of each row of the rawLogs table to get in-
termediate tables V 1 and V 2, and then performs a Union to
put them together. The Union operator performs a multi-set
union, i.e., it does not remove duplicate rows from the output.
(In general, all our queries operate with multi-set semantics.)
Each of V 1 and V 2 additionally requires a filter to check for
the validity of the input (hr fields are in the expected ranges
and the signal fields are valid). Figure 2(b) shows a small
input table with 5 rows and the result of executing the query
on that input. Each of V 1 and V 2 will contain 4 rows each and
the final output signals has 8 rows. For a production-sized
execution, imagine scaling each table by a factor of a Billion.

Figure 2(c) shows the execution plan for this query gener-
ated by SPARK. The plan employs duplicate scan operators,
thus, it reads the same input twice. Even if there is an index
on the input (in fact, we are going to assume a perfect in-
dex that can filter out irrelevant rows), many rows (R2,R3,R5)
would still be read twice (because they are needed for both V 1
and V 2) and processed independently. Unfortunately, SQL’s
relational operators provide no better way of expressing the
query because there is no way to produce multiple output
rows for each input row, other than by using a Union operator
as in this example. When the inputs to the Union have a com-
mon source, the binary operator induces redundant I/O. This
example shows a case where input data is read redundantly,
however in general a Union could induce redundant shuffles
as well.

There is a better way to implement the query directly using
map-reduce operators. Consider the mapper shown in Fig-
ure 3. It reads and processes each input row once, producing
up to two output rows per input row. The mapper applies the
filters (Line 4 and Line 7) one after the other and outputs
the relevant columns. (We operate in the standard multi-set

1We show queries as a sequence of statements for the ease of illustration.
They could have instead be written as a single nested query; our optimizations
still apply in the same manner.

210 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

V1 = SELECT 𝑖𝑑, ℎ𝑟 ← ℎ𝑟1,
𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙1

FROM rawLogs
WHERE ℎ𝑟1 ≥ 0 ∧ ℎ𝑟1 <

24 ∧ 𝑠𝑖𝑔𝑛𝑎𝑙1 ≥ 0

signals = SELECT * FROM V1
UNION ALL

SELECT * FROM V2

Id hr1 Signal1 hr2 Signal2

d1 -1 v1 13 v2

d2 3 v3 15 v4

d1 6 v5 16 v6

d2 9 v7 23 -1

d3 1 v9 18 v10

ra
w

Lo
gs

Union

Project

Id hr Signal

d1 13 v2

d2 15 v4

d1 16 v6

d3 18 v10

Id Hr Signal

d2 3 v3

d1 6 v5

d2 9 v7

d3 1 v9

V1

V2

Si
gn

al
s

rawLogs : (𝑖𝑑, ℎ𝑟1, 𝑠𝑖𝑔𝑛𝑎𝑙1, ℎ𝑟2, 𝑠𝑖𝑔𝑛𝑎𝑙2)

V2 = SELECT 𝑖𝑑, ℎ𝑟 ← ℎ𝑟2,
𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙2

FROM rawLogs
WHERE ℎ𝑟2 ≥ 0 ∧ ℎ𝑟2 <

24 ∧ 𝑠𝑖𝑔𝑛𝑎𝑙2 ≥ 0 𝑅1, 𝑹𝟐, 𝑹𝟑, 𝑹𝟓

ResinMap[
/*1*/{Filter(ℎ𝑟1 ≥ 0 ∧ ℎ𝑟1 < 24 ∧
𝑠𝑖𝑔𝑛𝑎𝑙1 ≥ 0)), Cols(id, ℎ𝑟 ← ℎ𝑟1,

𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙1)},
/*2*/{Filter(ℎ𝑟2 ≥ 0 ∧ ℎ𝑟2 < 24 ∧
𝑠𝑖𝑔𝑛𝑎𝑙2 ≥ 0), Cols(id, ℎ𝑟 ← ℎ𝑟2,

𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙2)}

(a) SQL Query (b) Input-output example
(c) Standard
execution plan

(d) Optimized
execution plan

signals

signals

𝑅1
𝑅2
𝑅3
𝑅4
𝑅5

𝑹𝟐, 𝑹𝟑, 𝑅4, 𝑹𝟓

Index
scan

rawLogs

Index
scan

rawLogs

Filter
Project
Filter

Index
scan

rawLogs

Figure 2: A SQL query, example input-outputs, execution plan showing redundant I/O and an optimized plan produced by RESIN.

1 //Mapper m processes a partition rawlogs[m]
2 method exampleResinMap(m){
3 foreach 〈id,hr1,signal1,hr2,signal2〉 ∈ rawLogs[m] {
4 if (hr1 ≥ 0∧hr1 < 24∧ signal1 ≥ 0) {
5 hr = hr1;signal = signal1; output(id,hr,signal);
6 }
7 if (hr2 ≥ 0∧hr2 < 24∧ signal2 ≥ 0) {
8 hr = hr2;signal = signal2; output(id,hr,signal);
9 } } }

Figure 3: A mapper that implements the query Figure 2.

semantics of SQL, so the order of rows in an output table is
immaterial.) The mapper is sufficient to implement our exam-
ple query. The reason current optimizers do not consider this
option is that they do not reason at the level of mappers (or
reducers) during optimization. They only reason about SQL
operators and perform SQL-to-SQL query rewrites.

RESIN extends the optimizer with a generic map operator
RESINMAP and a generic reduce operator RESINREDUCE
(used in the next example). RESINMAP is a row-wise operator
that may produce zero or more output rows for each input
row. The generated plan with RESIN for our example query
is shown in Figure 2(d). The plan uses a RESINMAP operator.
(The code generated for this operator is essentially the one in
Figure 3.) RESINMAP consists of multiple entries (two in the
example, marked 1 and 2 in the Figure), each with a filter and
associated expressions to produce output. The RESINMAP
operator is quite powerful. It can implement any single-input
single-output sub-query containing arbitrary combinations of
Select, Project and Union operators.

Example 2 As a second example, consider the more com-
plex query shown in Figure 4. The query has two inputs, the
signals table, which comes from the output of the previous ex-
ample, and another table called dInfo that has device-specific

J1 = SELECT 𝑐𝑖𝑡𝑦, 𝑠𝑖𝑔𝑛𝑎𝑙
FROM rawLogs JOIN dInfo

ON 𝑖𝑑 = 𝑑𝑖𝑑
WHERE ℎ𝑡 ≤ 2 ∧ ℎ𝑟 ≥

5 ∧ ℎ𝑟 ≤ 19

Id hr Signal

d2 3 v3
d1 13 v5
. . .

d1 23 v6
d3 17 v10

Si
gn

al
s

signals :
(𝑖𝑑, ℎ𝑟, 𝑠𝑖𝑔𝑛𝑎𝑙)

J2 = SELECT 𝑐𝑖𝑡𝑦, 𝑠𝑖𝑔𝑛𝑎𝑙
FROM rawLogs JOIN dInfo

ON 𝑖𝑑 = 𝑑𝑖𝑑
WHERE ℎ𝑡 ≥ 11 ∧ (ℎ𝑟 ≤

7 ∨ ℎ𝑟 ≥ 17)

(a) SQL Query

dInfo :
(𝑑𝑖𝑑 , 𝑐𝑖𝑡𝑦, ℎ𝑡, 𝑎𝑟𝑒𝑎)

Agg1 = SELECT 𝑐1 ← 𝑐𝑖𝑡𝑦,
𝑠1 ← 𝑚𝑎𝑥 𝑠𝑖𝑔𝑛𝑎𝑙

FROM J1
GROUP BY city

Agg2 = SELECT 𝑐2 ← 𝑐𝑖𝑡𝑦,
𝑠2 ← 𝑚𝑎𝑥 𝑠𝑖𝑔𝑛𝑎𝑙

FROM J2
GROUP BY city

summary = SELECT 𝑐1, 𝑠1, 𝑠2
FROM Agg1 JOIN Agg2

ON 𝑐1 = 𝑐2

id City ht
d1 a 1
d2 b 11
d3 a 18

c1 Id Signal

d1 a v5
d1 a v2
d1 a v6

c2 agg2

a Max(v9,v10)

b Max(v3)

c1 Agg1

a Max(v2,v5,v6)

d
In

fo

J1 J2

A
gg

1

A
gg

2

city Agg1 agg2

a Max(v2,v5,v6) Max(v9,v10)

su
m

m
ar

y

c2 Id Signal

d2 b v3
d3 a v9
d3 a v10

(b) Input-output example

Figure 4: A SQL query with an input-output example.

information. Each row of dInfo contains a device identifier
did , the city of deployment of the device, and the height ht
at which the device is installed. The query works as follows.
Its result is the Join of two intermediate tables Agg1 and
Agg2. The table Agg1 contains the maximum day-time read-
ing (5 ≤ hr ≤ 19) per city among all devices deployed at
ground level (ht ≤ 2). This itself requires a join on the signals
and dInfo tables. The table Agg2 similarly is the maximum
night-time (hr ≥ 17∨hr ≤ 7) reading for devices deployed at
a height above the ground level (ht ≥ 11).

A Join operator is parameterized by a predicate in the ON
clause. It takes all combinations of pairs of rows from its input
tables, concatenates them and filters according to the ON
condition. A common usage of Join is an Equi-Join, where
the ON clause equates the values of one (or more) columns
in the first argument table with one (or more) columns in the
second argument table. The query contains three equi-joins,
two on the device identifier (for J1 and J2) and one on the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 211

Figure 5: Query execution plans before and after RESIN optimization.

city (for the final output summary).
Aggregation happens via the GroupBy operator; it parti-

tions its input table on unique values of the grouping key
and performs an aggregation on each partition. It necessarily
produces only one output row per partition. For instance, the
computation of Agg1 partitions the table J1 on city, and for
each partition it computes the maximum signal value using
the aggregation max.

Figure 5 shows the execution plan generated by SPARK for
this query (solid lines indicate I/O). As before, there is an
index scan used each time the query references an input table.
The implementation of an equi-join requires its inputs to be
partitioned on equated columns, so shuffles are introduced
along both arguments for all of the joins. Standard predicate
push-down rules in a query optimizer will push the filters on
hr and ht below join and into the respective scans in order
to reduce the amount of data shuffled. Similarly, a GroupBy
requires that its inputs be partitioned by the grouping key. So
a shuffle is introduced before each GroupBy. In total, the plan
has 9 stages; four for scanning input tables (S1, S2, S3, S4),
three for the Join operators (S5, S6, S9), and a further two for
the GroupBy operators (S7, S8).

This plan has many sources of redundant I/O. First, some
rows of the signals table (e.g., with signal values v5 and v10)
are redundantly scanned. Note that the redundant scan hap-
pens despite having the best possible indices because some
rows can satisfy both the filters on hr. The scanned tables are
then partitioned on the same column (id) and shuffled to the
respective join operators (J1 and J2). A shuffle is a partition-
ing operator, it takes as input a partitioning key and a partition
count, and partitions the input rows according to the key. We
say two shuffle operators redundantly shuffle a row if (a) the
key column for the two shuffles has the same value, and (b)
all the columns of the row are derived from a common set

of source tables. For our example, the two rows correspond-
ing to v5 and v10, are redundantly shuffled before the join
because they come from the same input row in signals table.
Furthermore, as the left and right aggregates are computed
separately, the aggregated results for the same city (city a for
our example) are computed and shuffled redundantly.

Figure 5(b) is the optimized plan generated by RESIN. It
has only 4 stages, each table is scanned once and no redundant
shuffles. On a real dataset, a query with this structure (TPCDS
Q90 for example) would speedup by 2×.

RESIN eliminates redundant I/O through two key tech-
niques: sub-query fusion and binary operator elimination.
Sub-query fusion merges operators from different parts of
the query if they process the same data. More formally,
given two sub-queries Q1 and Q2, the fusion rule attempts
to construct a triple 〈Q,ResinMap1,ResinMap2〉 such that
Q1 = ResinMap1(Q) and Q2 = ResinMap2(Q).

For our example query, RESIN first merges the filters and
projects applied on each of the input tables. S1 and S2 is
merged into a single RESINMAP operator to obtain S112.
Similarly, S3 and S4 are merged into a single RESINMAP
operator S12. Notice that the filters are combined with a dis-
junction and projected columns are unioned, so that all of the
data required by the query is read in one go.

The fusion process then recursively moves up the tree and
the two joins (J1 and J2) are merged together into a single join
(J) that computes both the results. An additional RESINMAP
is added right after to ensure that only rows required by either
J1 or J2 are retained. A salient feature of the fusions rules
is that they ensure that the computation of the fused query
Q does not shuffle more rows than the individual queries.

2All the light shaded Filter, Project chains in Figure 5 actually repre-
sent RESINMAP. We do not show the RESINMAP explicitly, as we did in
Figure 2(d), for ease of exposition.

212 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 // ps ∈ partition(J, [city,signal,ht,hr]);
2 max1 = max2 = ∞;
3 rc1 = rc2 = 0;
4 foreach (〈city,signal,ht〉 in ps.group) {
5 if (hr ≤ 19∧hr ≥ 5∧ht ≤ 2 {
6 max1=max(max1 ,signal); rc1 = rc1 +1;
7 }
8 if ((hr ≥ 17∨hr ≤ 7)∧ht ≥ 11) {
9 max2=max(max2 ,signal); rc2 = rc2 +1;

10 }
11 }
12 output (city , max1 , max2 , rc1,rc2);

Figure 6: A reducer for the query plan in Figure 5.

Note once again that the output of the individual joins J1
and J2 can be separated out by applying appropriate filters
on J. The reader can verify that J1 = Select(hr ≤ 19∧hr ≥
5∧ht ≤ 2) from J and J2 = Select((hr≥ 17∨hr≤ 7)∧ht ≥
11) from J.

Finally, the two aggregations are fused together. Note that
the aggregates need to be applied on different filtered sub-
sets of J. It turns out that fusion of aggregation operations
cannot be done with standard SQL operators, neither with
RESINMAP alone. RESIN introduces a generic reduce op-
erator RESINREDUCE that makes the optimization process
much more expressive by directly considering map-reduce
plans. As seen in Figure 5, the two GroupBy are fused into
a RESINREDUCE operator. The RESINREDUCE operator is
parameterized by a (partition) key (in this case, city) and a list
with two entries. Each entry contains the filter that determines
a subset of rows to be aggregated as well as the aggregation
function. In addition, each entry has a count(∗) aggregation
for reasons described below.

Figure 6 shows the code that implements the reducer, ap-
plied to each partition of J (partitioned on city) independently.
The reducer maintains variables max1,max2,rc1,rc2 for com-
puting four aggregations. It then iterates over the partition,
and for each row, it updates the aggregation variable if the row
satisfies the corresponding predicate. The reducer outputs one
row per partition, with five columns: the grouping key city
and the four aggregated values.

The variables rc1 and rc2 are used to check if an aggre-
gation was even applied for a partition. This is necessary
to obtain back the output of the original GroupBys. For our
example, the output of the reducer3 will contain 2 rows cor-
responding to cities a and b, however for city = b, rc1 = 0,
indicating that Agg1 has no output for city = b.

Once the aggregations are fused, RESIN performs binary
operator elimination to get rid of the final Join (S7) altogether.
RESIN figures out that the join was doing nothing more than
putting together the aggregates from the two sub-queries,
which is already done in the output of the RESINREDUCE

3We have not shown the output of the fused query; its output is the union
of the original fused queries (with extra columns).

operator. RESIN replaces the Join with a simple filter that
ensures that a row is output only if both aggregates produce
an output, as is dictated by the semantics of a join.

In summary, RESIN introduces a class of optimizations that
target map-reduce operators to eliminate redundant I/O.

3 Preliminaries

We use a query language based on SPARKSQL [5] to present
our analysis formally. We define a table as a multi-set of rows
that each follow the same schema. A schema S is a set of pairs
of column name and data type: {〈a1, t1〉〈a2, t2〉 · · · ,〈an, tn〉}.
A row r that follows schema S is a tuple of form {a1 :
v1, · · · ,an : vn} that assigns a value vi of type ti to column
ai of the schema. In this case, we say r.ai = vi. We will not
explicitly refer to the data-types of columns in the rest of this
paper because it is not relevant to our analysis.

3.1 SQL Operators
This section defines the core SQL operators of our query lan-
guage. We assume a generic syntax for expressions that can be
evaluated over a row to produce a scalar data value. A predi-
cate is simply an expression that evaluates to a Boolean value.
Our implementation supports all SPARKSQL expressions and
predicates.

Select T2 = σ[φ](T1)

A Select operator discards rows of T1 that do not satisfy the
filter predicate φ.

Project T2 = π[map(ci← ei)](T1)

A Project is parameterized by a map of 〈ci,ei〉 pairs, where
ci is a column name and ei are expressions. Project is a row-
wise operator. It iterates over all the rows of the input table
T1 and for each row, it applies the expressions ei to compute
data values of output columns ci. Note that Project can be
used to create aliases of existing columns. For instance, the
operator π[cnew← cold] renames input column cold to the
output column cnew. We sometimes write this operator as
π[C← E] where C is a list of column names and E is a list
of expressions and ‖C‖= ‖E‖.

GroupBy T2 = γ[K,map(ci← aggi(coli))](T1)

A GroupBy partitions the input table T1 by unique val-
ues of columns K and applies aggregations aggi over each
partition. A partition is also referred to as a group. Each
aggregation aggi applies a commutative and associative
function (e.g., sum, min, max, etc.) over a single column
coli of T1. Each column of the output table is either the
result of an aggregation or a key column. We sometimes
write a GroupBy as γ[K,C ← A(Col)] where C and Col
are lists of column names, A is a list of aggregations, and
‖C‖= ‖A‖= ‖Col‖.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 213

1 method ResinMapOperator(T, µ[L]) {
2 foreach(row in T) {
3 foreach(〈φ,C← E〉 in L) {
4 if(φ(row)){
5 for(i in 1..|E|) out.C[i]← E[i](row)
6 output(out)
7 }
8 }
9 }

10 }

Figure 7: RESINMAP Operator

Join (equi-join) T2 = ./ [ψ, jt](Tleft,Tright)

A Join is a binary operator that matches rows from Tleft with
rows from Tright on a conjunction of equality predicates
ψ of the form (a1 = b1 ∧ a2 = b2. . . ∧ an = bn), where
ai are columns of Tleft and bi are columns of Tright. The
operator requires that the columns names of the two input
arguments be distinct. Parameter jt is a join type and can
be any of inner (i), leftOuter (lo), rightOuter (ro), leftSemi
(ls), or rightSemi (rs) with the standard semantics [5]. For
simplicity we only define rules for inner joins in this paper.
Our implementation handles other types as well.

Union T2 =](Tleft,Tright)

A Union is a binary operator that unions the rows of Tleft
and Tright. It performs a multi-set union, i.e., it does not
remove duplicate rows from the output. The two tables
need to have the same number of columns and their types
must match. The output table T2 retains the schema from
the left input. We note that different SQL dialects tend to
pick different ways of assigning the output schema of a
Union. We choose one particular style that is closest to
SPARKSQL.

A query is a sequence of assignments that each produce a
new table from existing ones using one the operators de-
scribed above. Formally, let T0,T1, · · · ,Tn be a sequence of
input tables. A query is a sequence of assignments of the form
Ti = uop(Tj) (for unary operators uop) or Ti = bop(Tj,Tk)
(for binary operators bop) such that i > n, j < i,k < i. We
sometimes refer to a table Ti by the query that computes it.

3.2 RESIN operators
RESIN introduces two operators, RESINMAP and RESINRE-
DUCE that are used during the optimization process.

RESINMAP T2 = µ[List(φ,C← E)](T1)

A RESINMAP is a row-wise unary operator. It is param-
eterized by a list L of pairs 〈φ,C← E〉. Its semantics is
defined by the imperative code shown in Figure 7. For each
input row, the operator can produce up to ‖L‖ output rows.
The operator iterates over L (Line 3), and if the predicate

1 method ResinReduceOperator(G, ρ[K,L]) {
2 foreach (〈φi,ci,aggi(coli)〉 in L)
3 out.ci← init(aggi)
4 foreach(row in G.rows) {
5 foreach (〈φi,ci,aggi(coli)〉 in L)
6 if (φi) out.ci = agg(out.ci,row.coli)
7 }
8 output(G.keys ,out)
9 }

Figure 8: RESINREDUCE Operator

φ is satisfied (Line 4) then it applies expressions in E to
compute data values of output columns C (Line 5). In other
words, RESINMAP applies different chains of Select (σ[φ])
followed by Project[C← E] operators, to produce multiple
output rows for each input row. This operator requires that
for each map C← E in its list, the set of output columns
C be the same (which is also the schema of the output ta-
ble). The expressions in E can, however, be different. For
example, µ[(φ1,a← e1,b← e2),(φ2,a← e3,b← e4)] is
a valid operator, whereas the following is not: µ[(φ1,a←
e1),(φ2,c← e3)].

RESINREDUCE T2 = ρ[K,List(φ,c← agg(col))](T1)

A RESINREDUCE operator first partitions the input into
groups on input columns K, and processes each group in-
dependently in a streaming manner. The operator is param-
eterized by a list L of triples 〈φ,c,agg(col))〉. Figure 8 de-
scribes the per-group computation. It takes a single group G
as input, represented as the partition key G.key and a multi-
set of rows G.rows. It first initializes all the aggregations
(Line 3) and then iterates over the rows in G (Line 4). For
each row, it applies the filter φi (Line 6) and then updates
the corresponding aggregate aggi (Line 6). Once the entire
group is processed, we get a single row containing the keys
and the computed aggregates. As notational convenience,
we use init(agg) to denote the identity value for an aggre-
gation agg. For instance, init(sum) would be 0, init(max)
would be −∞ and init(min) would be ∞.

RESINSIMPLEMAP T2 = λ[φ,C← E](T1)

RESINSIMPLEMAP is a simplified version of RESINMAP
that produces at-most one output row per input row. It ap-
plies a single predicate φ and if a row satisfies the predicate,
it computes output columns C by applying expressions E.
Its semantics is as in Figure 7 with L having a single ele-
ment. It represents the most basic form of a mapper that
still subsumes a Select and a Project.

4 RESIN optimizations

RESIN integrates new rules into an existing query optimizer. It
leverages the existing rules to perform certain normalizations

214 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that increase the scope of the newly introduced rules. We
begin this section by stating rule ordering assumptions and
then describe the two core optimizations of RESIN, namely
sub-query fusion and binary operator elimination.

4.1 Assumptions
RESIN assumes that the following two rules are applied before
further optimizations are attempted. These assumptions are
not fundamental to the analysis, they are only required to
simplify the presentation.

Column name normalization The query language allows
the reuse of column names within a query. For example, T ′ =
γ[a,b← sum(b)](T) assigns the column name b to the result
of an aggregation in T ′, even though b is already a column in
T . We assume that a normalization pre-pass assigns unique
names to new columns produced in the query. For example,
the above would be rewritten to T ′ = γ[a,b#1← sum(b)](T).
Such a pre-pass is commonly applied by all query optimizers.
In addition to aggregations, a Project operator can also pro-
duce new columns. We require that for any projection map
map(ci← ei), either ei is just ci or ci is a fresh column name.
In other words, either a column is just passed through or the
output table must use a fresh column name.

Predicate pushdown The optimizer pushes Select opera-
tors to apply before Project operators. Such a rewriting is
always possible, and in fact, standard optimizers have many
rules that ensure Select operators apply on the input data as
soon as possible. In particular, RESIN assumes that a Select
operator is never a parent of a Project.

We also define some standard functions. The function
cols(e) takes as input an expression e and returns the set of
column names used in the expression. For example, cols(b1 +
b3 > 0) is {b1,b3}. We also define a function f resh() that
returns a fresh (globally unique) column name each time.
Finally, as the output of a Union operator inherits column
names from the left argument, we assume the availability of an
expression-renaming function α(](Tle f t ,Tright),e) that given
an expression e over columns of Tright , returns an expression
over the corresponding columns of Tle f t . For example, if Tle f t
has columns (a1,a2,a3) and Tright has columns (b1,b2,b3),
then α(](Tle f t ,Tright),b1 + b3 > 0) is a1 + a3 > 0. We drop
the first argument of α when it it clear from the context.

4.2 Generalized sub-query fusion
The goal of sub-query fusion is to combine two queries Q1
and Q2 that operate on the same set of input tables, but may
produce different outputs. Fusion produces a common query
Q and two residual RESINSIMPLEMAP operators λr1 and λr2
such that Q1 = λr1(Q) and Q2 = λr2(Q). This ensures that
the any redundant computation across Q1 and Q2 is captured

T

𝜆1[𝜙1,
𝐶1 ← 𝐸1]

FUSE
𝜆𝑐𝑜𝑚𝑚𝑜𝑛[𝜙1 ∨ 𝜙2,
𝐶1 ← 𝐸1 ∪ 𝐶2 ← 𝐸2
∪ 𝐼 𝑐𝑜𝑙𝑠 𝜙1 ∪ 𝐼 𝑐𝑜𝑙𝑠 𝜙2]

𝜆2[𝜙2,
𝐶2 ← 𝐸2]

𝜆𝑟1[𝜙1, 𝐼 𝐶1] 𝜆𝑟2[𝜙2, 𝐼 𝐶2]

T

Figure 9: Basic query fusion.

in one single query Q, and only simple map operators (via
the residual operators) are needed to get back the original
outputs. Furthermore, as would be evident from the way we
fuse operators, we ensure that the computation of Q itself does
not require more stages than what is required for computing
just one of the sub-queries. Finally, we ensure that Q does not
output any row that is not needed by either Q1 or Q2. This
kind of fusion is, of course, not always possible. The rules
below define the conditions under which it is possible and
how to combine the queries when possible.

Identity Invariant. Given a RESINSIMPLEMAP operator
λ[φ,map(ci← ei)], we say that it satisfies the identity invari-
ant if ei is simply ci for all indices i. This means that the
operator carries a subset of the input columns unmodified to
the output table. For a set of columns C, we use the shorthand
λ[φ, I(C)] to represent such operators, where I(C) is the iden-
tity function on C: {c← c | c ∈C}. We will ensure that all
residual operators produced as a result of fusion satisfy the
identity invariant.

4.2.1 Base rule

The rule for fusing two RESINSIMPLEMAP operators ap-
plied on the same table is shown in Figure 9. The RESIN-
SIMPLEMAP operators λ1 and λ2 apply different filters and
projections to the same input table. Fusing these operators is
simple, except that we must take care to establish the identity
invariant for the residual operators. This is important for re-
cursively fusing more operators up the query tree. The fusion
first applies a disjunction of the filters and a union of the pro-
jections (λcommon). This ensures that the necessary rows and
columns are carried forward. Next, all the residual operators
λ1 and λ2 need to do is to apply the specific filters for Q1 and
Q2, respectively.

Note that column-name normalization (Section 4.1) guar-
antees that for any column c, if c ∈ C1 and c ∈ C2 then the
column must be passed through from T , i.e., both λ1 and λ2
apply the projection c← c. This ensures that the projection
map of λcommon is well-defined, i.e., it does not include two
different mappings for the same output column.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 215

Q

𝜆𝑟1

𝑜𝑝1

𝜆𝑟2

𝑜𝑝2

FUSE

Q

𝜆𝑟2
′

op′

𝑄1 𝑄2

𝜆𝑟1
′

𝐹𝑈𝑆𝐸 𝑜𝑝1(𝑄1), 𝑜𝑝2(𝑄2) ≔ ⟨𝑜𝑝′(𝑄), 𝜆𝑟1
′ , 𝜆𝑟2

′ ⟩
Given 𝐹𝑈𝑆𝐸 𝑄1, 𝑄2 ≔ ⟨𝑄, 𝜆𝑟1, 𝜆𝑟2⟩

Figure 10: Recursive fusion of unary operators. Given two
fusible queries Q1 and Q2, shown in dotted circles, the figure
shows how to fuse op1(Q1) and op2(Q2). The shaded circles
depict the output of the fusion.

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝜆1[𝜙1,
𝐶1 ← 𝐸1]

𝜆2[𝜙2,
𝐶2 ← 𝐸2]

Q

Rewrite
𝜆[𝜙1 ∧ 𝜙𝑟1,
𝐶1 ← 𝐸1]

Q

𝜆[𝜙2 ∧ 𝜙𝑟2,
𝐶2 ← 𝐸2]

Figure 11: RESINSIMPLEMAP query fusion.

4.2.2 Recursive fusion of unary operators

Fusion proceeds recursively. For this section, fix the fact that
FUSE (Q1,Q2) := 〈Q,λr1,λr2〉. As described in Figure 10,
our goal is to construct FUSE(op1 (Q1) ,op2(Q2)), where
op1 and op2 are one of RESINSIMPLEMAP (λ), GroupBy (γ)
or RESINREDUCE (ρ). For ease of notation, an operator λx
always expands to λ[φx,Cx← Ex].

Recursive fusion of two RESINSIMPLEMAP operators,
which subsumes the fusion of Select and Project operators, is
shown in Figure 11. Observe that predicates φr1 and φr2 are
applied on the output of Q. Further, as the residual operators
satisfy the identity invariant, the columns referred in the pred-
icates φ1 and φ2 also come from the result of Q. Therefore,
the identity projections in λr1 and λr2 can be dropped and the
filters φ1 and φr1 can be conjoined together, and so can φ2 and
φr2. Fusion then follows by applying the rule in Figure 9.

The rule for fusing two GroupBy operators is shown in
Figure 12. The figures shows two aggregations on the same
table, which is the output of Q, except that they first apply
their own filter sλr1 and λr2, respectively. (For simplicity, we
have shown a single aggregation in each of the GroupBy oper-
ators. The case for multiple aggregations extends easily.) The
GroupBy operators are on the same key, so we can fuse them
into a single RESINREDUCE operator that does the aggrega-
tions conditionally as shown in the figure. In addition, the

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜌[𝑘,
{(𝜙𝑟1, 𝑔1 ← agg1 𝑐1),

𝜙𝑟1, 𝑟𝑐1 ← 𝑐𝑜𝑢𝑛𝑡 ∗ ,

(𝜙𝑟2, 𝑔2 ← agg2 𝑐2),
(𝜙𝑟2, 𝑟𝑐2 ← 𝑐𝑜𝑢𝑛𝑡 ∗)}]

𝜆𝑟1′[𝑟𝑐1 > 0,
𝐼 𝑘, 𝑔1]

𝜆𝑟2′[𝑟𝑐2 > 0,
𝐼 𝑘, 𝑔2]

Q

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝛾1[𝑘, 𝑔1 ←
agg1(𝑐1)]

𝛾2[𝑘, 𝑔2 ←
agg2(𝑐2)]

Q

FUSE

Figure 12: GroupBy query fusion. Both rc1 and rc2 are fresh
column names.

FUSE

𝜆𝑟2
′

op′

𝜆𝑟1
′

𝐹𝑈𝑆𝐸 𝑜𝑝1(𝑄1, 𝑄3), 𝑜𝑝2(𝑄2, 𝑄4) ≔ ⟨𝑜𝑝′(𝑄𝑙𝑡, 𝑄𝑟𝑡), 𝜆𝑟1
′ , 𝜆𝑟2

′ ⟩
given 𝐹𝑈𝑆𝐸 𝑄1, 𝑄2 ≔ 𝑄𝑙𝑡, 𝜆𝑟1, 𝜆𝑟2

and 𝐹𝑈𝑆𝐸 𝑄3, 𝑄4 ≔ ⟨𝑄𝑟𝑡, 𝜆𝑟3, 𝜆𝑟4⟩

𝑄𝑙𝑡

𝜆𝑟1

𝑜𝑝1

𝑄𝑟𝑡

𝜆𝑟3𝜆𝑟2 𝜆𝑟4

𝑜𝑝2

𝑄1 𝑄2 𝑄3
𝑄4

𝑄𝑙𝑡 𝑄𝑟𝑡

Figure 13: Recursive fusion of binary operators. The figure
shows how to extend fusion of two pairs of fusible queries
Q1,Q3 and Q2,Q4 (shown in dotted circles), by additional
binary operators op1 and op2. The shaded circles depict the
output of such recursive fusion.

fusion requires two new aggregations rc1 and rc2 that count
how often the predicates are satisfied. For the left (respec-
tively, right) group-by to produce any output for a grouping
key, at least some rows in the group should satisfy the filter of
λr1 (respectively, λr2). Thus, we need to guard the left (right)
output of the fused query with a predicate that ensures that
at least one row in the group satisfied the predicate. The new
residual operators λ′r1 and λ′r2 apply the filters rc1 > 0 and
rc2 > 0 to only output groups that have at least some rows
that satisfy the predicates. The rule extends directly to the
fusion of two RESINREDUCE operators as well.

Column Aliasing Our implementation relaxes the rule’s
precondition that grouping keys be exactly the same; even
aliasing columns are allowed. That is, columns can be
renamed versions of the same column in an earlier table. The
same relaxation also applies to the join rule that follows later.

216 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

⋈𝐾1=𝐾2⋈𝐾1=𝐾2

𝜆𝑟3[𝜙𝑟3,
𝐼 𝐶𝑟3]

𝜆𝑟4[𝜙𝑟4,
𝐼 𝐶𝑟4]

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝑄𝑟𝑡𝑄𝑙𝑡

FUSE

𝑄𝑟𝑡𝑄𝑙𝑡

⋈𝐾1=𝐾2

𝜆𝑟1′[𝜙𝑟1 ∧ 𝜙𝑟3,
𝐼 𝐾1 ∪ 𝐶𝑟1 ∪ 𝐶𝑟3]

𝜆𝑟2′[𝜙𝑟2 ∧ 𝜙𝑟4,
𝐼 𝐾2 ∪ 𝐶𝑟2 ∪ 𝐶𝑟4]

Figure 14: Join query fusion

⊎⊎

𝜆𝑟3[𝜙𝑟3,
𝐼 𝐶𝑟3]

𝜆𝑟4[𝜙𝑟4,
𝐼 𝐶𝑟4]

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝑄𝑟𝑡𝑄𝑙𝑡

FUSE

𝑄𝑟𝑡𝑄𝑙𝑡

⊎

𝜆𝑟1′[𝜙𝑟1 ∧ 𝜙𝑟3 ∧
𝑠𝑖𝑑𝑒 = 0, 𝐼 𝐶𝑙𝑡]

𝜆𝑟2′[𝛼(𝜙𝑟2 ∧ 𝜙𝑟4) ∧
𝑠𝑖𝑑𝑒 = 1, 𝐼 𝐶𝑟𝑡]

𝜆𝑙𝑡′ [𝑡𝑟𝑢𝑒,
𝐼 𝐶𝑙𝑡) ∪ (𝑠𝑖𝑑𝑒 ← 0]

𝜆𝑟𝑡′[𝑡𝑟𝑢𝑒,
𝐼 𝐶𝑟𝑡) ∪ (𝑠𝑖𝑑𝑒 ← 1]

Figure 15: Union query fusion. The column side is a fresh name.

4.2.3 Binary operator fusion

Binary operator fusion is depicted in Figure 13. It defines
FUSE(op1(Q1,Q3),op2(Q2,Q4)) using FUSE(Q1,Q2) and
FUSE(Q3,Q4).

Figure 14 shows the rule for fusing two Join operators.
The rule simply pulls up the residual predicates from before
the join to after. Next, it conjoins the residual predicates that
are relevant to (Q1 ./ Q3), namely φr1 and φr3, to obtain λ′r1.
Similarly, φ′r2 = φr2∧φr4. The residual predicates satisfy the
identity invariant. However, we still apply the base fusion rule
(Figure 9) to push down the common predicate (φr1∧φr3)∨
(φr2∧φr4). This would eliminate rows that are not needed by
either Q1 ./ Q3 or Q2 ./ Q4, potentially before a shuffle.

Figure 15 shows the rule for fusing two Union operators.
We only describe a simplified version of the rule where we
assume that Qlt and Qrt are union-compatible, i.e., they have
the same number of columns and their types match. This
version is enough to cover the core ideas.

In order to fuse two unions, we need to be able to pull up
filters above a union. This poses a challenge as the output
has rows from both sides and we want to apply different
predicates to the rows from each side. To enable this pull
up, we add an additional (fresh) column side that tags rows
with the side that generated them. This additional column
is added by applying λ′lt and λ′rt to Qlt and Qrt , respectively.
The new residual predicates do an additional check to match
rows from the appropriate sides. As the union result renames
the columns from the right input, λ′r2 additionally applies the

renaming function α (defined in Section 4.1).

4.2.4 Operator alignment and exact fusion

The fusion rules described so far only fuse operators of the
same type. RESIN also has an auxiliary rule that enables
fusion of operators that are preceded by a RESINSIMPLEMAP
on one side but not on the other. Given Q1 and Q2 are fusible,
we enable the fusion of op1(λ(Q1)) and op2(Q2), where op1
and op2 are fusible according to rules 1-6 above. We do so by
adding an empty lambda λe = λ[true, I(∗)] as a child of op2.

We have described the fusion of core SQL operators. Our
implementation handles all SPARKSQL operators, but fusion
of other operators is only possible if they have the exact same
parameters and apply on the exact same query. We define this
exact fusion rule as FUSE(op1(Q1),op2(Q2)) = op1(Q1)
only if op1 = op2 and Q1 = Q2. Finally, note that the rules
above define the fusion of two sub-queries. Through repeated
application of the rules we can fuse any number of sub-queries
(say, n) into a single query with n residual operators.

4.3 Binary operator elimination
When the two arguments of a binary operators can be fused,
RESIN can sometimes eliminate the binary operator altogether.
The two elimination rules are defined below.
UNION ELIMINATION RULE

Given a Union query](Q1,Q2) where Q1 and Q2 can
be fused such that FUSE(Q1,Q2) := 〈Q,λr1,λr2〉 then we

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 217

⊎

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝑄

Elim.

𝜇 𝜙𝑟1, 𝐼(𝐶𝑟1 ,

𝛼(𝜙𝑟2 , 𝐶𝑟1 ← 𝐶𝑟2)]

𝑄

Figure 16: Union elimination rule.

⋈𝐾1=𝐾2

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝜌[𝐾, 𝐿]

Elim.

𝜆[𝜙𝑟1 ∧ 𝜙𝑟2, 𝐼 𝐶𝑟1 ∪ 𝐶𝑟2]

𝑄

𝜌[𝐾, 𝐿]

𝑄

Figure 17: Join elimination rule. The rule requires that each
of K1 and K2 alias with K.

can eliminate the Union altogether using the rule shown in
Figure 16. The rule follows directly from the definition of
RESINMAP. Recall that a RESINMAP operator µ[List(φ,C←
E)] can produce multiple outputs per input row. This sufficient
to implement the Union operator of the form above. The
resulting RESINMAP operator has one entry for each input
that applies the filter φri. The right expressions are renamed
using α and assigned to the column names from the left (C1) to
conform to the semantics of a Union. Figure 2 is an example
application of this rule.

RESIN rules show that any single-input query consisting of
Select, Project and Union operators can be implemented by a
single RESINMAP operator.
JOIN ELIMINATION RULE The goal of this rule is to substi-
tute a binary join operator with a mapper, which is a row-wise
unary operator. This is only possible if the output of the join
has already been computed in the fused query. This holds
when the join combines the results of a RESINREDUCE query
ρ[K,L] and is equi-join on K (modulo aliasing). The rule is
shown in Figure 17. Figure 5 shows an example application
of this rule.

5 Implementation

We integrated RESIN into a popular state-of-the-art big-data
system SPARK [26]. Our optimizations are general and can
be applied to other big-data systems [22, 30] as well. We
chose SPARK because it is easier to extend [5], has rich code-

gen support as well as competitive performance. Moreover,
SPARK already performs some low-level I/O optimizations.
For instance, it implements exchange reuse [1, 2] that deter-
mines if two exchanges are exactly equivalent and skips the
duplicate computation. It also implements store-predicate
pushdown that pushes down filters and projections to the
storage layer [3].

SPARK makes use of the Catalyst query optimizer [5]. Op-
timization rules in Catalyst are organized into batches. As is
standard, logical rules are applied before physical rules. Each
physical operator has a pre-defined map-reduce implementa-
tion based on a low-level resilient distributed dataset (RDD)
API [25]. SPARK uses a whole-stage code generator [23] to
efficiently compile all operators in a single stage. We describe
key details of our implementation.

Initiation and termination of RESIN rules We added all
RESIN rules in a batch that executes after the standard opti-
mizations are applied. These rules apply in a single (pre-order)
traversal of the query tree. RESIN initiates fusion starting from
input table scans. It then moves up the tree fusing operators
recursively. The fusion process terminates when none of the
fusion rules apply. At this point, RESIN applies the operator
elimination rules in cases where the consumers of a fused
query share a common parent. After elimination, the resulting
query could have zero or more fused sub-queries whose output
is consumed more than once, requiring the use of exchange
operators, as described next.

RESIN exchange reuse The only operator in SPARK whose
output can be consumed more than once is an exchange oper-
ator. Thus, RESIN introduces an exchange at the reuse points.
An exchange is parameterized by a partitioning column. To
decide on the partition column, RESIN traverses up along
each of the consumers Ci until it hits an operator that requires
partitioning (RESINREDUCE, Join, GroupBy), and identifies
a partitioning column pi for each consumer. Next, it picks
the column pi that is required by most consumers (we use
random choice to break ties).

RESIN operators We added three new logical operators
with the structure defined in Section 3. We also add their corre-
sponding physical operators. The physical operator for RESIN-
SIMPLEMAP is just a combination of Select and Project. We
added a new physical operator that implements RESINMAP
with appropriate whole-stage code-generation support. The
physical operator for RESINREDUCE is implemented by care-
fully extending existing aggregation iterators in SPARK. This
allowed us to delegate the handling of different column types
and the various associated subtleties in the application of
aggregation functions (e.g., null values, type-casting, over-
flow/underflow, etc.) to routines already present in SPARK.
Finally, we added implementation strategies for our opera-

218 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 18: Fraction of time spent in stages with redundant I/O.

tors. The strategies analyze the logical operators, construct
partial aggregates and introduce partitioning operators (for
RESINREDUCE), and substitute the logical operators with
corresponding physical operators.

6 Evaluation

We evaluated RESIN using the TPCDS benchmark suite, con-
sisting of 104 queries, at scale factors of 1TB and 10TB. The
evaluation was done on two different SPARK clusters. We
used a cluster with 120 cores and roughly 480GB memory,
spread over 10 nodes for evaluating at 1TB scale. For eval-
uating at 10TB we used a cluster with 480 cores and 1.6TB
memory, spread over 34 nodes. The input tables were stored
in parquet format. We ran each query 5 times, discarded the
first run and took average of the rest. Among the 104 queries,
we found that 40 queries have redundant I/O. As mentioned
before, the baseline already has basic I/O optimizations. It
pushes predicates and projects to the store for all these queries.
And it is able to reuse exchanges (usually right after a map
stage) even without RESIN optimizations in about half of these
queries. In the rest of this section, we focus on these queries
alone. We begin by presenting detailed results at 1TB scale
and present summary results at 10TB scale in Section 6.4.

6.1 Optimization opportunity
For each query, we identified stages that perform redundant
I/O. This was done post-facto by comparing baseline and
optimized plans, and determining the baseline stages that
were fused together by RESIN. Figure 18 shows the fraction
of time spent in these stages relative to the total execution
time of the query. The larger the fraction, the greater the
optimization opportunity. We find that 40% of the queries
spend at least 50% of the time in stages with redundant I/O.
We mark these queries as high-impact queries as they have
significant potential for improvement. Another 25% spend at
least 10% of their time in stages with redundant I/O, and we
mark them as medium-impact queries. The remaining (low-

impact) queries may have some redundant I/O but eliminating
it is unlikely to affect the overall query execution time.

TPCDS queries are over multiple (fact and dimension) in-
put tables. There are 6 large fact tables and several small
dimension tables. A deeper inspection of our results revealed
that the fraction of time spent in redundant sub-queries is sig-
nificantly influenced by whether one of these large tables was
redundantly processed or not. All queries that have medium or
high impact were processing at least one such table multiple
times (sometimes even after joining with few other tables).

6.2 Speedup from RESIN optimizations

Figure 19 reports the performance improvements from RESIN
on high and medium impact queries. These cover 25% of
the entire benchmark suite. As can be seen, RESIN improves
the execution time of most of the queries. It achieves an
average (geomean) speedup of 1.4× across these queries.
RESIN performs particularly well on high-impact queries
where it achieves a geomean speedup of 1.6× with some
queries speeding up by 6×.

The queries that benefit most (Q9, Q28, Q88, Q75, Q31,
Q90) are also ones where RESIN was able to apply bi-
nary operator elimination. All the other queries benefit
only from generalized sub-query fusion. Some of these
(Q65,Q61,Q81,Q1,Q30,Q59) had multiple exchanges after
fusion on the reuse exchange column and they see moderate
gain. A few queries (Q92, Q32, Q16,Q41) had reuses close
to input scans. These are the queries that see the least benefit
because the baseline already performs some basic I/O opti-
mizations (exchange reuse and store-predicate pushdown; see
Section 5).

In two queries (Q74,Q41) the data overlap between the
sub-queries that were fused was very low. However, fusion
still helps produce execution plans with fewer stages, and
does so while guaranteeing that the number of rows shuffled
after fusion is no more than the baseline. We find that, in Q74,
simplifying the plan has some second order system effects
(see Section 6.3), and fusion improves performance. In Q41,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 219

Figure 19: Overall execution time speedup for high and medium impact
queries. Each bar is labeled with the execution time of the baseline query
(in seconds).

Figure 20: For low impact queries we plot the
speedup in sub-query with redundant I/O alone.
Along the x-axis we report the execution time of the
entire query (in seconds) with and without RESIN.

the reuse is close to the input and hence fusion only eliminates
one map stage. As a result, we see a small 3% degradation.

Comparison with BLITZ We evaluated BLITZ on these
queries and found that it only optimizes two of the queries:
Q9 and Q28. Both these queries perform a chain of joins at the
end. BLITZ was only able to eliminate the first of these joins
and therefore was only able to get speedups of 1.6× and 1.9×,
respectively. This limitation has also been acknowledged in
prior work [10]. RESIN eliminates multiple joins and achieves
a speedup of 2.4× and 3.3×, respectively, on these queries.

Speedup on low impact queries Figure 20 reports
speedups for low impact queries. We report the execution
time of the entire query along the x-axis. As can be seen
RESIN optimizations have no significant gains or degradation
on any of these queries. To isolate the effects of RESIN
optimizations, we plot the speedup for the sub-query that was
optimized. RESIN achieves a moderate speedup on several
of these sub-queries. RESIN optimizations show a small
degradation in a few of these sub-queries (Q2, Q5, Q95). In
Q5 the amount of redundant I/O is too small to matter. In
Q2,Q95, the baseline already performs an exchange reuse.
RESIN fuses one additional operator, but once again the
additional I/O is too small to matter.

Overall, RESIN reduces the total time to run all the 104 queries
by 12%. Note that RESIN has a negligible impact on query
optimization time; the overall compilation time for the entire
benchmark increased from 42 to 45 seconds.

6.3 Impact of RESIN optimizations
on systems resources

Figure 21 - Figure 24 plot the impact of RESIN optimizations
on disk, network, memory and CPU for medium and high
impact queries (we see no discernible impact on low impact
queries). For disk, we report the cumulative bytes of data
accessed from disk. For network, we report the cumulative
number of packet transfers performed. Note that data sizes
transferred over the network follow the same trend as disk
I/O, as most I/O in a big-data setting is over the network. For
memory, we plot the cumulative memory footprint. For CPU,
we plot the total CPU time spent by all tasks on all machines.
This is a measure of the total CPU work done to evaluate a
set of queries and is largely independent of cluster size [19].
We infer the following conclusions from these plots.

First RESIN reduces the cumulative CPU, network and disk
footprint, consuming 24%, 25% and 19% fewer resources
respectively. The savings in-terms of CPU are slightly higher
than disk because RESIN not only saves on I/O but also on
I/O induced processing (compression, serialization etc) which
have a significant compute cost [14].

Second, RESIN achieves these benefits while incurring the
same overall memory cost (Figure 23) as the baseline. A
few queries (Q64,Q31,Q61) see a slight increase in memory
requirement, while a few others (Q4,Q75,Q88) need lesser
memory. However, all these queries see significant reduction
in execution time. Overall even if fusion increases the amount
of data processed by each operator, it does not impact the
overall memory footprint of the workload (see Figure 19).

Third, the gap between RESIN and the baseline widens as
we move to the right. Queries on the right usually have deeper
operator trees and this graph demonstrates that RESIN is able
to fuse deep and complex queries.

Finally, the plots indicate that RESIN optimizations

220 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 21: Cumulative disk I/O Figure 22: Cumulative network packets

Figure 23: Cumulative memory footprint Figure 24: Cumulative CPU time of tasks

Figure 25: Speedup for 10TB TPCDS. Each bar is labeled with the execution time of the baseline query (in seconds).

are fairly robust, even the worst performing queries
(Q92,Q32,Q41) do not show any discernible degradation on
any of the system metrics. In Q74 RESIN fusion does not
reduce the amount of disk I/O, but it still reduces the CPU
and network load, and hence sees an execution time benefit.

6.4 Impact on larger scale data

We report the impact of RESIN on TPCDS at 10TB scale.
Figure 25 shows the speedup’s obtained for the 40 affected
queries. We see that RESIN does somewhat better at larger

scale. It obtains higher speedup on a few medium and high
impact queries (Q64,Q39a,Q39b,Q28) while achieving sim-
ilar speedups for the other queries (except Q59). We find that
the average (geomean) speedup for high and medium impact
queries goes up to 1.5× (was 1.4× at 1TB). Once again, the
optimizations have no significant improvement or degrada-
tion on the low-impact queries. Figure 26 reports the I/O
savings. The total disk I/O saved went up to 31% (was 19%
at 1TB). Overall, RESIN reduces the execution time of the
entire workload (104 queries) by 17%.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 221

Figure 26: Cumulative disk I/O for 10TB TPCDS.

7 Related Work

We discuss three broad lines of work related to this paper.
Advances in big-data query optimization Big-data query

optimizers borrow and build upon rewrite rules from the
database literature. Several big-data-specific optimizations
have also been used [8, 9, 15, 16, 28–30]. However, none of
these logically fuse multiple operators or eliminate binary
operators. The work that is most closely related to RESIN
is BLITZ [10], which presented an extension to the query
optimizer to find and substitute sub-queries that can be imple-
mented by a streaming operator. BLITZ added new rules that
optimize three specific query patterns. Two of these patterns
were self-joins and self-unions that followed a GroupBy on
the same input table. The third pattern was a specialized im-
plementation of a min aggregation followed by a Join. The
BLITZ rules can perform some of the operator eliminations
that RESIN can perform. However, we find that BLITZ pat-
terns cover a very small fraction of queries in standard bench-
marks. Only one of the patterns applies to TPCDS queries and
that too only on two queries. Furthermore, BLITZ operators
do not compose with each other and therefore do not even
eliminate redundant shuffles from multi-way self-joins and
self-unions. RESIN introduces the ability to fuse multi-input
sub-queries and eliminate unnecessary shuffles. This fusion
facilitates more join and union elimination.

Multi-query optimization Multi-query optimization
(MQO) is a well studied problem in classical database lit-
erature [11,17,20,31]. The goal of MQO is to optimize many
concurrently submitted queries together, and is typically done
by reusing results of common sub-queries. Such optimizations
are typically performed in a single scale-up database setting
and trade-off latency for throughput. The goal of RESIN is
very different. RESIN looks for intra-query redundancy in
the big-data setting, and eliminates it while ensuring no ad-
ditional rows are shuffled. Thus, it simultaneously improves
both latency and throughput.

The fusion techniques proposed here are also significantly
different than MQO. MQO is typically limited to Select-
Project-Join (SPJ) queries, whereas RESIN supports com-

posible fusion for all SparkSQL operators. Such support is
necessary to eliminate redundancy from deep queries. Our
evaluation reveals that optimization of the high and medium
impact queries in TPCDS requires fusion of a large num-
ber of operators: 21 of 25 queries have 10 to 30 operators.
We show that fusion and elimination are not always possible
without having new operators and propose RESINMAP and
RESINREDUCE operators to enable this. For example, Union
elimination is only possible with RESINMAP and GroupBy
fusion is only possible with RESINREDUCE. Finally, our bi-
nary operator elimination rules are not part of any multi-query
or database optimizer.

Code generation techniques for query processing.
There is a long line of work on compilation techniques to
generate efficient single-machine code for a chain of SQL
operators [6, 12, 13, 23]. Such compilers target low level inef-
ficiencies such as virtual call overheads and computation of
common sub-expressions across operators. This is an active
area of research, and includes recent efforts like FLARE [6]
that target the compilation of SPARK to single machine sys-
tems. Such compilers have limited scope in the big-data set-
ting because they only optimize the code within a single
stage [6]; determining what operators constitute a stage is
still decided by the query optimizer. SPARK makes use of one
such code-generation engine [23] that builds upon HyPer [13].
The physical operators that we add are whole-stage code-gen
enabled and benefit directly from such techniques.

Recent literature has seen advance techniques that optimize
mixed-mode queries: queries that embed non-SQL functions
and expressions into SQL [7, 16, 24]. This line of work is
orthogonal to RESIN.

8 Conclusions

The cost of running big-data queries is dominated by I/O.
This paper proposes RESIN, a system that helps identify and
eliminate redundant I/O. The system proposes extensions to
big-data query optimizers that enable first class map-reduce
reasoning during query compilation. We show how these
can be used to fuse operators processing overlapping data
into a single stage of computation, and sometimes eliminate
expensive binary operators altogether. We demonstrate that
the optimizations are useful for 40% of queries in TPCDS,
and bring significant gains (average 1.4×) to a quarter of the
benchmark queries.

Acknowledgements

We would like to thank the anonymous reviewers and our
shepherd Wenguang Chen for their valuable feedback and
suggestions. We would also like to thank Ajith Shetty, Srinivas
T, Shahid K, Lev Novik and Tomas Talius for code and design
reviews.

222 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Reuse Query Fragments. https://issues.apache.
org/jira/browse/SPARK-13756, 2016.

[2] Reuse the exchanges in a query. https://issues.
apache.org/jira/browse/SPARK-13523, 2016.

[3] Parquet Predicate Pushdown improvement. https://
issues.apache.org/jira/browse/SPARK-25419,
2018.

[4] Amazon red-shift. https://docs.aws.amazon.com/
redshift/index.html, 2020.

[5] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing
in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’15, pages 1383–1394, New York, NY, USA, 2015.
ACM.

[6] Gregory Essertel, Ruby Tahboub, James Decker, Kevin
Brown, Kunle Olukotun, and Tiark Rompf. Flare: Opti-
mizing apache spark with native compilation for scale-
up architectures and medium-size data. In OSDI, pages
799–815, 2018.

[7] X. Fan, Z. Guo, H. Jin, X. Liao, J. Zhang, H. Zhou,
S. McDirmid, W. Lin, J. Zhou, and L. Zhou. Spot-
ting code optimizations in data-parallel pipelines
through periscope. IEEE Transactions on Parallel and
Distributed Systems, 26(6):1718–1731, June 2015.

[8] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang,
Hucheng Zhou, Sean McDirmid, Chang Liu, Wei Lin,
Jingren Zhou, and Lidong Zhou. Spotting code opti-
mizations in data-parallel pipelines through periscope.
In OSDI, pages 121–133, 2012.

[9] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther
Hagleitner, Eric N. Hanson, Owen O’Malley, Jitendra
Pandey, Yuan Yuan, Rubao Lee, and Xiaodong Zhang.
Major technical advancements in apache hive. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 1235–1246, New York, NY, USA, 2014. ACM.

[10] Jyoti Leeka and Kaushik Rajan. Incorporating super-
operators in big-data query optimizers. PVLDB,
13(3):348–361, 2019.

[11] Darko Makreshanski, Georgios Giannikis, Gustavo
Alonso, and Donald Kossmann. Mqjoin: Efficient shared
execution of main-memory joins. Proc. VLDB Endow.,
9(6):480–491, January 2016.

[12] Derek Gordon Murray, Michael Isard, and Yuan Yu.
Steno: Automatic optimization of declarative queries.
In PLDI, pages 121–131, 2011.

[13] Thomas Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 4(9), 2011.

[14] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making sense of
performance in data analytics frameworks. In 12th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 293–307, Oak-
land, CA, May 2015. USENIX Association.

[15] Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman,
Hiren Patel, and Jaliya Ekanayake. Hyper dimension
shuffle: Efficient data repartition at petabyte scale in.
PVLDB, 12(10):1113–1125, 2019.

[16] Veselin Raychev, Madanlal Musuvathi, and Todd
Mytkowicz. Parallelizing user-defined aggregations us-
ing symbolic execution. In SOSP, pages 153–167, 2015.

[17] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh
Bhobe. Efficient and extensible algorithms for multi
query optimization. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’00, page 249–260, New York, NY,
USA, 2000. Association for Computing Machinery.

[18] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig,
Petros Venetis, Chanjun Yang, Keith Peters, Jeff Shute,
Daniel Tenedorio, Himani Apte, Felix Weigel, David G
Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan,
Craig Chasseur, Qiang Zeng, Ian Rae, Anurag Biyani,
Andrew Harn, Yang Xia, Andrey Gubichev, Amr El-
Helw, Orri Erling, Allen Yan, Mohan Yang, Yiqun Wei,
Thanh Do, Colin Zheng, Goetz Graefe, Somayeh Sar-
dashti, Ahmed Aly, Divy Agrawal, Ashish Gupta, and
Shivakumar Venkataraman. F1 query: Declarative
querying at scale. pages 1835–1848, 2018.

[19] Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and
Malavika Samak. Optimizing big-data queries using pro-
gram synthesis. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 631–
646, New York, NY, USA, 2017. ACM.

[20] Timos K. Sellis. Multiple-query optimization. ACM
Trans. Database Syst., 13(1):23–52, March 1988.

[21] Srinath Shankar, Rimma Nehme, Josep Aguilar-Saborit,
Andrew Chung, Mostafa Elhemali, Alan Halverson, Eric
Robinson, Mahadevan Sankara Subramanian, David
DeWitt, and César Galindo-Legaria. Query optimiza-
tion in microsoft sql server pdw. In Proceedings of
the 2012 ACM SIGMOD International Conference on

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 223

https://issues.apache.org/jira/browse/SPARK-13756
https://issues.apache.org/jira/browse/SPARK-13756
https://issues.apache.org/jira/browse/SPARK-13523
https://issues.apache.org/jira/browse/SPARK-13523
https://issues.apache.org/jira/browse/SPARK-25419
https://issues.apache.org/jira/browse/SPARK-25419
https://docs.aws.amazon.com/redshift/index.html
https://docs.aws.amazon.com/redshift/index.html

Management of Data, SIGMOD ’12, page 767–776,
New York, NY, USA, 2012. Association for Computing
Machinery.

[22] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive: A warehousing
solution over a map-reduce framework. Proc. VLDB
Endow., 2(2):1626–1629, August 2009.

[23] Reynold Xin and Josh Rosen. Project Tungsten: Bring-
ing Apache Spark Closer to Bare Metal. https://
tinyurl.com/mzw7hew, 2015.

[24] Guoqing Harry Xu, Margus Veanes, Michael Barnett,
Madan Musuvathi, Todd Mytkowicz, Ben Zorn, Huan
He, and Haibo Lin. Niijima: Sound and automated com-
putation consolidation for efficient multilingual data-
parallel pipelines. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP
’19, pages 306–321, New York, NY, USA, 2019. ACM.

[25] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 2–2, Berkeley,
CA, USA, 2012. USENIX Association.

[26] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Clus-

ter computing with working sets. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, pages 10–10, Berkeley, CA,
USA, 2010. USENIX Association.

[27] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching,
and Michael J. Freedman. Riffle: Optimized shuffle
service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, pages
43:1–43:15, New York, NY, USA, 2018. ACM.

[28] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching,
and Michael J. Freedman. Riffle: Optimized shuffle
service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, pages
43:1–43:15, New York, NY, USA, 2018. ACM.

[29] J. Zhou, P. Larson, and R. Chaiken. Incorporating parti-
tioning and parallel plans into the scope optimizer. In
ICDE, pages 1060–1071, 2010.

[30] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake
Larson, Ronnie Chaiken, and Darren Shakib. Scope:
Parallel databases meet mapreduce. The VLDB Journal,
21(5):611–636, October 2012.

[31] Jingren Zhou, Per-Ake Larson, Johann-Christoph Frey-
tag, and Wolfgang Lehner. Efficient exploitation of simi-
lar subexpressions for query processing. In Proceedings
of the 2007 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’07, page 533–544,
New York, NY, USA, 2007. Association for Computing
Machinery.

224 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://tinyurl.com/mzw7hew
https://tinyurl.com/mzw7hew

	Introduction
	Overview
	Preliminaries
	SQL Operators
	Resin operators

	Resin optimizations
	Assumptions
	Generalized sub-query fusion
	Base rule
	Recursive fusion of unary operators
	Binary operator fusion
	Operator alignment and exact fusion

	Binary operator elimination

	Implementation
	Evaluation
	Optimization opportunity
	Speedup from Resin optimizations
	Impact of Resin optimizations on systems resources
	Impact on larger scale data

	Related Work
	Conclusions

