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Abstract
Programmable packet-processing devices such as pro-
grammable switches and network interface cards are becom-
ing mainstream. These devices are configured in a domain-
specific language such as P4, using a compiler to translate
packet-processing programs into instructions for different
targets. As networks with programmable devices become
widespread, it is critical that these compilers be dependable.

This paper considers the problem of finding bugs in com-
pilers for packet processing in the context of P416. We in-
troduce domain-specific techniques to induce both abnormal
termination of the compiler (crash bugs) and miscompilation
(semantic bugs). We apply these techniques to (1) the open-
source P4 compiler (P4C) infrastructure, which serves as a
common base for different P4 back ends; (2) the P4 back end
for the P4 reference software switch; and (3) the P4 back end
for the Barefoot Tofino switch.

Across the 3 platforms, over 8 months of bug finding, our
tool Gauntlet detected 96 new and distinct bugs (62 crash
and 34 semantic), which we confirmed with the respective
compiler developers. 54 have been fixed (31 crash and 23
semantic); the remaining have been assigned to a developer.
Our bug-finding efforts also led to 6 P4 specification changes.
We have open sourced Gauntlet at p4gauntlet.github.io
and it now runs within P4C’s continuous integration pipeline.

1 Introduction

Programmable packet-processing devices in the form of pro-
grammable switches and network interface cards (NICs) are
now common. Such devices provide network flexibility, allow-
ing network operators to customize their network, researchers
to experiment with new network algorithms, and equipment
vendors to upgrade features rapidly in firmware rather than
waiting for new hardware. At the core of this move to pro-
grammable packet processing are the domain-specific lan-
guages (DSLs) for packet processing, along with the compil-
ers that compile DSL programs.

Several commercial products now use such DSLs for packet
processing. For instance, Intel [4], Broadcom [8], Nvidia [39],
and Cisco [17] have switches and NICs programmable in
DSLs such as NPL [9] and P4 [7]. Other efforts (e.g., from
Google and the Open Networking Foundation (ONF)) use
the P4 language to model the behavior of fixed-function de-
vices [50].

These devices, whether fixed or programmable, are a crit-
ical part of the network infrastructure because they process
every packet going through the network. Hence, a miscom-
piled program can persistently affect packet processing. It
can also be very hard to track down miscompilations due
to the lack of sophisticated debugging support on these de-
vices. As network programmability becomes increasingly
common, these DSL compilers will need to be as dependable
as general-purpose compilers such as GCC and LLVM.

Motivated by these concerns, this paper considers the prob-
lem of finding bugs in compilers for packet processing. Be-
cause of the large open-source community around it, we build
our work on the P4 [7] language, but our ideas also extend to
similar DSLs such as NPL [9].

Bug finding in compilers is a well-studied topic, especially
in the context of C [15,41,42,70,74]. Past approaches (§2) to
bug finding in C compilers include fuzz testing by using ran-
domly generated C programs [41, 74], translation validation
(i.e., proving that a compiler correctly translated a given input
program to an output program) [48,52], and verification of in-
dividual compiler passes [45]. These prior approaches have to
contend with many difficulties inherent to a general-purpose
language like C, e.g., generating random programs that avoid
undefined and unspecified behavior [41,74], providing seman-
tics for pointers and memory aliasing [45], and inferring loop
invariants and simulation relations to successfully perform
translation validation [52].

Our key insight is that the restricted nature of a DSL such
as P4 allows us to avoid much of the complexity associated
with bug finding in general-purpose language compilers. In
particular, the simpler nature of P4 (e.g., no loops or pointers)
allowed us to more easily develop formal semantics, which
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can then be used as the basis for both automated high-accuracy
translation validation and model-based testing [19]. We lever-
age this insight to build a compiler bug-finding tool for P4
called Gauntlet. Gauntlet uses three key ideas: random pro-
gram generation, translation validation, and model-based test-
ing. We now describe these ideas and show how the restric-
tions of P4 allows them to be simpler than prior work.

First, we use random program generation (§4) to produce
syntactically correct and well-typed P4 programs that still
induce P4 compiler crashes. Because P4 has very little un-
defined behavior [18, §7.1.6], random program generation is
considerably simpler for P4 than for C [74]. The generator
does not have to painstakingly avoid generating programs
with undefined and unspecified behavior, which can be in-
terpreted differently across different compilers. The smaller
and simpler grammar of P4 relative to C also simplifies the
development of a random program generator.

Second, we use translation validation (§5) [48, 52] to find
miscompilations in P4 compilers in which we can access the
transformed program after every compiler pass. Translation
validation has been used in the context of C compilers before,
but has suffered one of two shortcomings. It either needs con-
siderable manual effort per compiler pass (e.g., Crellvm [37]
requires several 100 lines of manual proof-generation code for
each pass; Alive [45] requires manual translation of optimiza-
tions into the Alive DSL) or suffers from a small rate of false
positives and false negatives (e.g., [34, 48]). Fundamentally,
this is inevitable for unrestricted C: proving program equiv-
alence in the presence of unbounded loops is undecidable.
In our case, however, the finite nature of P41 makes P4 pro-
gram equivalence decidable and addresses both shortcomings.
Thus, our use of translation validation is both precise and fully
automated, requiring manual effort only to develop semantics
for the P4 language—not manual effort per compiler pass.

Third, we use model-based testing (§6) to generate input-
output test packets for P4 programs based on the seman-
tics we had to develop for translation validation. We use
these test packet pairs to find miscompilations in black-box
and proprietary P4 compilers where we can not access the
transformed program after every compiler pass. Testing for
general-purpose languages [13] is effective at generating in-
puts that provide sufficient path coverage by finding inputs
satisfying path conditions. But without language semantics,
determining the correct output for these test inputs is hard.
By creating formal semantics for P4 for translation validation,
we are able to generate both input and output test packets,
which can then be used to test the implementation produced
by the compiler for a P4 program.

We applied Gauntlet to 3 platforms (§7): (1) the open-
source P4 compiler infrastructure (P4C) [12], which serves
as a common base for different P4 compiler implementations;
(2) the P4 back end for the open-source P4 behavioral model

1Finite in that input and output packets and state are finite bit vectors.
Loops are bounded (parsing [18, §12]) or forbidden (control flow [18, §13]).

(BMv2) [6], a reference software switch for P4; and (3) the
P4 back end for Barefoot Tofino, a high-speed programmable
switching chip [4]. Across these 3 platforms, and over 8
months of testing, we found a total of 96 new and distinct
bugs, all of which were confirmed and assigned to a compiler
developer. Our efforts also led to 6 changes [18, §A.1] to the
P4 specification. 54 of these bugs have already been fixed.
We analyze these bugs in detail and describe where they were
found, their root causes, and which commits introduced them.
Gauntlet has been merged into the continuous integration
pipeline of the official P4 reference compiler [57]. Our tools
are open source and available at p4gauntlet.github.io.
To our knowledge, Gauntlet is the first example of using
translation validation for compiler bug finding on a production
compiler as part of its continuous integration workflow.

While Gauntlet has been very effective, it is still restricted
in the kinds of bugs, compiler passes, and language constructs
it can handle. We describe these restrictions to motivate future
work (§8). Further, while we developed these bug-finding
techniques in the context of P4, we believe the lessons we
have learned (§7.4) apply beyond P4 to other DSLs with
simpler semantics relative to general-purpose languages (e.g.,
the HLO IR for the TensorFlow [1] XLA compiler [71]).

2 Background and Motivation

2.1 Approaches to Testing Compilers

Levels of compiler testing. A compiler must reject incorrect
programs with an appropriate error message and accurately
translate correct programs. However, a program can be cor-
rect to varying levels. McKeeman [46] provides a taxonomy
of these levels in the context of C (Table 1). Each level cor-
responds to the program getting deeper into the compiler be-
fore it is rejected (e.g., lexer, parser, type checker, optimizer,
code generator). The difficulty of generating test programs
also goes up with increasing input level. For instance, while
general-purpose fuzzers such as AFL [75] are sufficient to
stress test the lexer, more sophistication is required to gen-
erate syntactically correct and well-typed programs, which
are required to test the optimizer. In the context of the P4
compiler, we observed very limited success in bug finding
using a general-purpose fuzzer such as AFL. This is because
testing at the first few levels of Table 1 is already handled
adequately by P4’s open-source compiler test suite [12, §3.4].

Hence, for this paper, we only consider programs at the
higher levels: static, dynamic, and model-conforming. These
are programs that pass the lexing, parsing, type checking,
and semantic analysis phases of the compiler, but still trigger
compiler bugs. Like Csmith [74], we categorize bugs into
crash bugs and semantic bugs. A crash bug occurs when the
compiler abnormally terminates on an input program without
producing either an output program or a useful error message.
Crash bugs include segmentation faults, assertion violations,
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Level Input Class Example of incorrect input
1 Sequence of ASCII characters Binary files
2 Sequence of words and spaces Variable name beginning with $
3 Syntactically correct Missing semicolon
4 Type correct Adding int to string
5 Statically conforming Undefined variables
6 Dynamically conforming Program throwing exceptions
7 Model-conforming Program producing wrong outputs

Table 1: McKeeman’s [46] 7 levels of C compiler correctness.

incomplete error messages, and out-of-memory errors. A
semantic bug occurs when the compiler produces an output
executable, but the executable’s behavior is different from the
input program, e.g., due to an incorrect program transforma-
tion in a compiler optimization pass. In P4, semantic bugs
manifest as any packet output that differs from the expected
packet output given an input packet. Crash bugs we are in-
terested in correspond to level 5 in Table 1; semantic bugs
correspond to levels 6 and 7.

Bug-finding strategies. We now look at how compiler bugs
are found. A key challenge in compiler bug finding is the
oracle problem. Given an input program to a compiler, the ex-
pected outcome (i.e., should it accept/reject the program and
what should the output be?) is unclear unless one consults an
all-knowing oracle. Below, we outline the major techniques
used to approximate this oracle knowledge.

In differential testing [46], given two compilers, which both
receive the same input program, if compiler A’s output (after
compiling and running the program) differs from compiler
B’s output, there is a bug in one of them. This works as long
as there are at least two independent compiler implementa-
tions for the same language. Csmith [74] is one example of
this approach; it feeds the same randomly generated C pro-
gram to multiple C compilers and checks whether the outputs
generated by executing the binary produced by each compiler
differ. Another example is Different Optimization Levels
(DOL) [15], which selectively omits compiler optimizations
and compares compiler outputs with and without these opti-
mization passes. If the end result differs after specific passes
have been skipped or added, it points to a bug. This technique
can be used in any compiler framework that supports selective
omission of optimizations.

Metamorphic testing [16] can serve a similar role as dif-
ferential testing, especially when multiple compilers are not
readily available or optimization passes can not be easily dis-
abled. Instead of feeding the same input program to different
compilers, different input programs that are expected to pro-
duce the same compiler output are fed to the same compiler.
The run-time outputs after compiling these different input
programs are compared to determine if there is a bug or not.
EMI is an example of this approach [41]. Given a randomly
generated C program P, and random input I to this program,
EMI uses the path coverage tool gcov [53] to identify dead
code in P when run on input I. EMI then prunes away this

dead code to produce new programs P′ whose output must
agree with P’s output when run on the input I. Then EMI
compiles and runs both P and P′ to check whether they indeed
produce the same output when given I as input.

Translation validation is a bug-finding technique that con-
verts the program before and after a compiler optimization
pass into a logical formula and checks if both programs/formu-
las are equivalent using a constraint solver [45, 48, 52, 76]. A
failed check indicates a semantic bug. Program equivalence
is an undecidable problem for Turing-complete languages
such as C, requiring manual assistance to perform translation
validation. Typical examples of manual assistance are (1)
simulation relations, which encode correspondences between
variables in two programs; and (2) loop invariants, required to
prove the equivalence of programs with loops. While it is pos-
sible to just unroll loops a constant number of times [34] or
learn these relations [48, 66], these techniques are not guaran-
teed to be precise and occasionally generate false alarms [37].
The occurrence of false alarms makes translation validation
an unlikely choice for recurring use in compiler testing for
general-purpose languages (e.g., for continuous integration).
This is because the number of false alarms typically exceeds
compiler developer tolerance.

2.2 Motivating Gauntlet’s Design

Random program generation for crash bugs. From EMI and
Csmith, we borrow the idea of generating random programs
that are lexically, syntactically, and semantically correct. Un-
like EMI and Csmith, however, our random program genera-
tion is simpler. It does not have to avoid undefined behavior,
which, by design, is quite limited in P416. Further, gener-
ating programs with undefined behavior helps us flag com-
piler passes that might exploit undefined behavior in counter-
intuitive ways [73]. We feed these randomly generated pro-
grams to the compiler to see if it generates a crash, typically a
failure of an assertion written by the P4 compiler developers.

Translation validation for semantic bugs. Differential and
metamorphic testing allow us to compare different run-time
outputs from compiled programs to detect semantic bugs.
However, we can not directly apply either to P4 compil-
ers. Differential testing requires two or more independent
compiler implementations that are comparable in their out-
put. P416 compilers for different hardware and software tar-
gets are not comparable because program behavior is target-
dependent [12, §2.1]. Presently there aren’t multiple indepen-
dent compilers for the same target. Developing an entirely
new compiler exclusively for the sake of testing the exist-
ing compiler is not productive because it can only be reused
for one target. Metamorphic testing [41], on the other hand,
requires the use of code-coverage tools such as gcov to de-
termine which parts of the program are touched by a given
input. Concurrent research [40] has proposed such tools for
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P4, but these tools were not available when we commenced
work on Gauntlet.

On the other hand, P4’s domain-specific restrictions make
translation validation easier relative to general-purpose lan-
guages such as C. P4 programs are finite-state and finite-time,
which makes program equivalence decidable at a theoretical
level. At the practical level, P4’s lack of pointers, memory
aliasing, and unstructured control flow (e.g., goto) allow for
easier generation of language semantics. Furthermore, using
an SMT solver together with translation validation is more
precise than randomized testing approaches such as EMI
and Csmith because the solver exhaustively searches over all
packet inputs to a program to find semantic bugs.

To perform translation validation, we convert P4 programs
before and after a compiler pass into logic formulas and as-
sert equivalence of these formulas. To do so, we could have
converted P4 programs into C code and then asserted equality
using Klee’s equivalence-checking mode [13]. However, in-
stead, we directly converted P4 programs into logic formulas
in Z3 [20] for two reasons. First, the effort to convert P4 to
semantically equivalent C is about the same as producing Z3
formulas directly. The difficulty lies in correctly formalizing
all the language constructs of P4, not in the output format.
Second, generating Z3 formulas directly gives us more con-
trol and allows us to leverage domain-specific techniques to
optimize these formulas.

Model-based testing for black-box compilers. Some industry
compilers do not have an open specification of their internal
program representation or machine code format. In such
cases, we cannot use our translation validation technique
because it relies on comparing semantics before and after
the compiler has transformed the program. Instead, we reuse
the semantics we have generated for the input P4 program to
determine test cases (i.e., input-output packet pairs) for these
random programs. These test cases are then used to directly
check the implementations of the P4 programs produced by
these compilers. This is effectively model-based testing [19],
with the Z3 semantics serving as a model of the P4 program
and the compiler-generated binary being the entity under test.

2.3 Goals and Non-Goals

Find many, but not all bugs. Our goal is to find many crash
and semantic bugs in the P4 compiler, but our tool is not
exhaustive. Specifically, we do not intend to build or replace
a fully verified compiler like CompCert [43], given the large
labor and time cost associated with such an undertaking with
respect to the breadth of P4 back ends. We want to strengthen
existing P4 compilers, not write a safe replacement.

Check the compiler, not the programmer. We are not verify-
ing that a particular P4 program is devoid of certain kinds of
bugs. This problem is addressed by orthogonal work on P4
program verification [22, 25, 32, 44, 68] and P4 testing [67].

Although Gauntlet can in principle be used in for verifying a
P4 program, we have not designed it for such use cases. The
random programs we generate to find bugs in the P4 compiler
are much smaller and more targeted than a typical P4 switch
program. Our tool does not need to be able to generate and ef-
ficiently solve Z3 formulas for large P4 programs to tease out
compiler bugs, although it achieves acceptable performance
on large programs (Table 4).

Unlike p4v [44] and Vera [68], whose goal is to provide
semantics to find bugs in large programs such as switch.p4,
we have developed our semantics for efficient equality checks
of diverse, but relatively small, P4 programs. Because of
this difference in goals, we believe our semantics cover a
broader set of P4 language constructs and corner cases than
p4v and Vera—broad enough that we have found bugs in the
P4 specification.

Develop target-independent techniques. We designed our
tools to be as target-independent as possible and specialize
them to test the front and mid end of the compiler. While
we support restricted forms of back-end testing (§6), we do
so in a way that allows us to quickly integrate and adapt to
new back ends without having to understand detailed target-
specific behavior. In particular, we do not cover target-specific
semantics such as externs [18, §4.3]. We do this by gener-
ating programs that are defined in a target-neutral manner
with respect to P416’s semantics, i.e., we avoid generating
target-specific extern calls.

Only test mature compilers. We only test mature compilers
such as P4C and the corresponding behavioral model2 as
well as the commercial Tofino compiler. For example, P4C
supports other back ends such as the eBPF, uBPF, and PSA
targets, which are pre-alpha quality and preliminary compiler
toolchains. Finding bugs is likely unhelpful for the respective
compiler developers at this moment.

3 Background on P4

P4 is a statically typed DSL designed to describe computa-
tions on network packet headers. This paper focuses on P416,
the latest version of P4 [18]. Figure 1 shows the main P416
concepts, explained below.

Packages and targets. A P4 program consists of a set of
procedures; each procedure is loaded into a programmable
block of the target (e.g., a switch [4] or NIC [51]). These
programmable blocks correspond to various subsystems such
as the parser or the match-action pipeline. The package lists
the available programmable blocks in a target. One example
of a package for a target is the v1model, which models the
architecture of a particular BMv2 [6] software switch target,
referred to as “simple switch” [26]. For simplicity, we will

2Both have entered “permanent beta-status” since November 2019: https:
//github.com/p4lang/p4c/issues/2080
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Figure 1: An example P4 compilation model.

refer to BMv2 as the target instead of simple switch.

P4 compilers. A P416 compiler translates a P416 program
and the target package model into target-dependent instruc-
tions. These target instructions are combined with the non-
programmable blocks (e.g., a fixed scheduler) to form the
target’s data plane. These instructions also specify how this
data plane can be accessed and configured by the control plane
(Figure 1). P4C [12] is the official open-source reference com-
piler infrastructure of the P416 language and implements the
current state of the specification. P4C employs a nanopass
design [65]: a composable library of front- and mid-end com-
piler passes that perform code analysis, transformation, and
optimization on input programs. We analyze these nanopasses
using translation validation.

Compiler back ends. To implement a P416 compiler, develop-
ers write P4C back ends, which use P4C’s front- and mid-end
passes along with their own back-end specific transforma-
tions, to translate P416 code at the conclusion of the mid end
into instructions for their own target. In this paper, we focus
on 2 production-grade P4C back ends: the Tofino [4] and
BMv2 [6] back ends.

Parsers and control blocks. A P4 parser is a finite state ma-
chine that transforms an incoming byte sequence received at
the target into a structured representation of header definitions.
For example, incoming bytes may be parsed as packets con-
taining Ethernet, IP, and TCP/UDP headers. A deparser con-
verts this representation back into a byte sequence. Control
blocks describe the per-packet operations that are performed
on the input header. These operations are expressed in the
form of the core primitives of the language: tables, actions,
metadata, and extern objects.

Tables. Tables are objects in the control block similar to a
Python dictionary. Table entries are match-action pairs in-
serted by the network’s control plane [14, 47]. When a table

is applied to a packet traversing the control block, its header
is compared against the match key of all match-action entries
in the table. If any entry’s key matches the header, the action
associated with the match is executed. Actions are procedures
that can modify state and/or input headers.

Calling conventions. P416 uses “copy-in/copy-out” [18, §6.7]
semantics for method calls. For any callable object in P4,
the parameter direction (also known as mode [36, §8.2]) ex-
plicitly specifies which parameters are read-only and which
parameters can be modified, with the modifications persisting
after function termination. Modifiable parameters are labelled
with the direction inout or out in the definition of the pro-
cedure. Read-only values are marked in. At the start of a
procedure call, the arguments are copied left-to-right into the
associated parameter slots. Parameters with out label remain
uninitialized. Once the procedure has terminated, all proce-
dure parameters with the label inout or out are copied back
towards the original input arguments.

Metadata. Metadata is programmer-defined or target-specific
data that is associated with a packet header, while it traverses
the target. Examples of metadata include the packet input
port, packet length, queue depth, or priority; this information
is interpreted by the target according to target-specific rules.
Metadata can also be modified during the execution of the
control block.

Externs. Externs are an extensibility mechanism, which al-
lows targets to describe built-in functionality. Externs are
object-like and have methods. Examples include calls to
checksum units, hash units, counters, and meters. P4’s “copy-
in/copy-out” semantics allow reasoning about externs to some
degree; we can discern which input arguments can take on an
arbitrary value and which arguments are read-only.

4 Random Program Generation

Gauntlet’s random program generator produces valid P416
programs to directly trigger a crash bug. If these programs
do not cause a compiler crash they serve as input for our
translation validation and model-based testing techniques.

4.1 Design

We require diverse input programs to exercise code paths
within many compiler passes—and hence bugs in those passes.
P4C already contains a sample of over 600 programs as part
of its test suite. During testing, the reference outputs of each
of the test programs are textually compared to the actual
outputs after the front- and mid-end passes to check for re-
gressions [12, §3.4]. However, this comparison technique is
inadequate for semantic bugs. Further, these programs are
typically used to test the lexer and parser, not deeper portions
of the compiler.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    687



P4Fuzz [2] is a tool that can generate random P4 programs.
However, when we tried using P4Fuzz, we found that the
programs generated by it are not complex enough to find a
large number of new crash or semantic bugs. For example,
P4Fuzz generates programs with complex declarations (e.g.,
structs within structs), but does not generate programs
with sufficiently complicated control flow. Hence, it does not
cause P4C to execute a diverse set of compiler passes. We
developed our own generator for random P4 programs that
works by generating random abstract syntax trees (ASTs).
With this generator we can exercise the majority of language
constructs in P4. This leads to diverse test programs covering
many combinations of P4 expressions. We can use these test
programs to find programs that lead to unexpected crashes.

Gauntlet’s random program generator is influenced by
Csmith [74] and follows its philosophy of generating only
well-formed input programs that pass the lexer, parser, and
type checker. The generator grows an AST corresponding to
the random program by probabilistically determining what
kind of AST node to add to the AST at each step. By adjusting
the probabilities of generating each AST node, we can steer
the generator towards the language constructs we want to fo-
cus on. We can also use these probabilities to keep the size of
the average generated program small, in both the number of
code lines as well as program paths. With this technique we
can find an ample number of semantic bugs while also avoid-
ing programs with too many paths; such “branch” programs
pose challenges for translation validation and model-based
testing.

Undefined behavior. We differ from Csmith in the treatment
of undefined behavior. Whereas CSmith tries to avoid gener-
ating expressions that lead to undefined behavior, we accom-
modate such language constructs (e.g., reading from variables
that are not initialized). We record the output affected by
undefined behavior as part of the logic formulas that we gen-
erate from P4 programs during translation validation (§5.2).
These formulas allow us to track changes in programs with
undefined behavior across compiler passes, which we use to
inform compiler developers of suspicious—but not necessar-
ily incorrect—compiler transformations [73].

4.2 Implementation
We implement our random P4 program generator as extension
to P4C. The generator uses the intermediate representation
(IR) of P4C to automatically grow an abstract syntax tree
(AST) by expanding branches of the tree at random. For
example, a block statement may generate up to (say) 10 state-
ments or declarations, which in turn may result in further sub
nodes. The generated IR AST is then converted into a P4
program using P4C’s ToP4 module. Our random program
generator can be specialized towards different compiler back
ends by providing a skeleton of the back-end-specific P4 pack-
age, back-end-specific restrictions, and which package blocks

NO

P4Ccompile

Semantic Bug

Crash Bug

bad

exit code

pass.p4pass.p4
pass.p4pass.p4

pass.p4pass.p4

pass.p4
pass.p4

pass.p4generate Z3 

with Gauntlet

P4 program

YESequal?

emit IR

Figure 2: Translation validation in Gauntlet.

are to be filled in with randomly generated program snippets.
We have currently implemented two back ends for our ran-
dom program generator corresponding to the BMv2 [26] and
Tofino [4] targets.

Programs generated by our random program generator are
required to be syntactically sound and well-typed. Our aim is
not to test if P4C can correctly catch syntax and type errors
(levels 3 and 4 of Table 1). If P4C’s parser and type checker
(correctly) reject a generated program, we consider this to be
a bug in our random program generator. For example, if an
action parameter has a inout or out qualifier, only writable
variables may be passed as arguments.

5 Translation Validation

To detect semantic bugs, we employ translation valida-
tion [52], a classic technique from the compiler literature
in which an external tool certifies that a particular compiler
pass has correctly transformed a given input program.

5.1 Design

To perform translation validation for P4, we developed a
symbolic interpreter for the P416 language to transform P4
programs into Z3 formulas [20]. Figure 2 describes our work-
flow. To validate a P4 program, the symbolic interpreter
converts the program into a Z3 formula capturing its input-
output semantics. An equivalence checker then submits the
Z3 formulas of a program before and after a compiler pass
to the Z3 SMT solver. The solver tries to find an input that
violates equivalence of these two formulas. If it finds such
an input, this is a semantic bug. Translation validation has
two advantages over random testing. First, it can accurately
detect subtle differences in program semantics without any
knowledge about expected input packets or table entries. Sec-
ond, when we can access intermediate P4 programs after each
compiler pass, we can pinpoint the erroneous pass.
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5.2 Implementation

Like our random program generator, we wrote the interpreter
as an extension to P4C. We use the IR generated by the
P4C parser to determine the semantics of a P4 program.
Each programmable block of a P4 package represents an
independent Z3 formula. For example, the v1model pack-
age [26] of the BMv2 back end has 6 different independent
programmable blocks: Parser, VerifyChecksum, Ingress,
Egress, ComputeChecksum, and Deparser. For each block,
we generate a separate Z3 formula.

Developing the symbolic interpreter. Overall, it took us 5
months of implementation effort until our symbolic inter-
preter was reliable enough to find new semantic bugs in P4
compilers, instead of encountering false alarms that were ac-
tually interpreter bugs. The fact that P4C contains a sizeable
test suite [12, §3.4] was helpful in stress testing our interpreter
during development. We started our development process by
performing translation validation on programs in the P4C
test suite. A semantic bug on one of these test programs
is probably a false alarm and a bug in our interpreter. This
is because it is unlikely that the compiler miscompiles test
suite programs. The reference outputs of each test after the
front- and mid-end passes are tracked as part of regression
testing, and the reference outputs themselves are audited by
the compiler developers. We also continuously consulted with
the compiler developers to ensure our understanding of the
language semantics was correct.

However, we quickly realized that we also needed to gen-
erate random programs to achieve coverage and truly stress
test our symbolic interpreter. Subsequently, we co-evolved
the interpreter with our generator. We attribute part of our
success in finding bugs to this development technique, since
it forced us to consider many edge cases—more than P4C
does. The test suite for our interpreter now has over 600 P4C
tests plus over 100 of our own tests.

Eventually, our interpreter had become complete and trust-
worthy enough to perform translation validation for randomly
generated programs so as to trigger semantic bugs in P4C.
After we had detected the first semantic bug, we randomly
generated around 10000 programs every week and added the
resulting compiler bugs to our backlog. Adding support for
new P4 language features as part of random program genera-
tion typically first led to a crash in our interpreter. After we
fixed our own interpreter, we were frequently able to find new
semantic bugs in the P4 compiler that pertained to those lan-
guage features. Because any of the compiler passes may have
bugs, our symbolic interpreter does not rely on any compiler
pass of P4C. It only relies on the P4C parser and the ToP4
module to produce P4 code from the IR. Hence, we designed
our interpreter to handle any P4 program that successfully
passed the P4C parser, i.e., before the program is desugared
into any normalized form. This allows us to detect semantic
bugs in the earliest front-end passes.

1 struct Hdr { bit <8> a; bit <8> b; }
2
3 control ingress(inout Hdr hdr) {
4 action assign () { hdr.a = 1; }
5 table t {
6 key = hdr.a : exact;
7 actions = {
8 assign ();
9 NoAction ();
10 }
11 default_action = NoAction ();
12 }
13 apply {
14 t.apply();
15 }
16 }

(a) Simplified P4 program applying a table.

1 Input: t_table_key , t_action , hdr
2 Output: hdr_out
3
4 hdr_out =
5 if (hdr.a == t_table_key) :
6 if (1 == t_action) : Hdr(1, hdr.b)
7 otherwise : Hdr(hdr.a, hdr.b)
8 otherwise : Hdr(hdr.a, hdr.b)

(b) Its semantic interpretation in Z3 shown in functional form.

Figure 3: A P4 table converted to Z3 semantics.

Converting P4 programs into Z3 formulas. We now describe
briefly how we convert a P4 program into a Z3 logic formula.
Figure 3 shows an example. Conceptually, our goal is to
represent P4 programs in a functional form so that the input-
output behavior of the functional form is identical to the input-
output behavior of the P4 program. To determine function
inputs and outputs, we use the parameter directions of each P4
package. Parameters with the direction inout and out make
up the output Z3 data type of the function whereas parameters
with the in and inout are free Z3 variables that represent the
input of the function.

To determine the functional form, the symbolic interpreter
traverses each path through the P4 program, maintaining ex-
pressions representing path conditions for branching. Once
it reaches a portion of the program where execution ends, it
stores an if-then-else Z3 expression with the condition set to
the path condition and the return value set to a tuple consist-
ing of the inout and out parameters at that point. Ultimately,
the interpreter will return a single nested if-then-else Z3 ex-
pression, with each branch corresponding to a unique output
from the program under a set of conditions. Using this expres-
sion we can perform operations such as equivalence checking
between two Z3 formulas for translation validation or query-
ing Z3 to provide an output for particular input for test case
generation.

Handling tables. The contents of a table are unknown at
compile time. Since we want to make sure we cover any
possible table content, we interpret match-action pairs in
tables symbolically. Figure 3 describes a simplified exam-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    689



ple of how Gauntlet interprets tables within a control block.
Per match-action table call, we generate one symbolic match
(t_table_key) and one symbolic action variable (t_action),
which represent a single match key and its choice of action
respectively. We compare the symbolic packet header with
the symbolic match key (hdr.a == t_table_key). If the ex-
pression evaluates to true it implies the execution of a specific
action, which is chosen based on the value of the symbolic
action index (t_action). We express this as a series of nested
if-then-else statements per action available to the table. Fi-
nally, if the key does not match, the default action is selected.
For instance, in Figure 3, we execute action assign (action
id 1) iff the symbolic match variable (t_table_key) equals
the symbolic header (hdr.a) and the symbolic action variable
(t_action) equals 1. With this encoding we can avoid having
to use a separate symbolic match-action pair for every entry in
the match-action table, which is a prohibitively large number
of symbolic variables.

Header validity. The P416 specification does not explicitly
restrict the behavior of header validity. We model our seman-
tics to align with the implementation in P4C. We clarified
these assumptions with the compiler and specification main-
tainers [62]. If a previously invalid header is marked valid,
all fields in that header are initially undefined. If an invalid
header is returned in the final output, all fields in the header
are set to invalid as well.

Interpreting function calls. Any out parameter in a function
call is initially set undefined. If the function returns, we also
generate a new free Z3 variable. In our interpreter, externs
are treated as a function call that returns an arbitrary value.
In addition, each argument for a parameter that has the label
inout and out is set to a new free Z3 variable because the
behavior of extern is unknown. Copy-in/copy-out semantics,
albeit necessary to control side effects in extern objects, have
been a persistent source of bugs in the compiler. A significant
portion of the semantic bugs we identified were caused by
erroneous passes that perform incorrect argument evaluation
and side effect ordering in relation to copy-in/copy-out.

Checking equivalence between P4 programs. We use
p4test to emit a P4 program after each compiler pass.
p4test is a P4C back end used to test P4C. It does not pro-
duce any executable output but exercises all the default front-
and mid-end passes. We only examine passes that actually
modify the input program and ignore any emitted intermedi-
ate program that has a hash identical to its predecessor. We
explicitly reparse each emitted P4 file to also catch bugs in
the parser and the ToP4 module.

For an input program A and the transformed output pro-
gram B after a compiler pass we perform a pair-wise equiv-
alence check for each programmable block. We use our in-
terpreter to retrieve the Z3 formulas for all programmable
blocks of the program package and compare each individual
block of A to the corresponding block in B. The query for

the Z3 solver is a simple inequality. It is satisfiable only if
there is a Z3 assignment (e.g., a packet header input or table
match-action entry) in which the Z3 formula of A produces a
different output from B.

If the inequality query is satisfiable, it produces the assign-
ment that would lead to different results and saves the failed
passes for later analysis. With this technique we can precisely
pinpoint in which pass a semantic bug may have happened
and we can also infer the packet values we need to trigger
the bug. If the report turns out to be a false alarm and is not
confirmed by compiler developers, this is a bug in our sym-
bolic interpreter, which we fix. The generated Z3 formulas
could in principle be very large and checking could take a
long time. However, we use quantifier free formulas for the
equality check, which can be solved efficiently in Z3 [20].
Even very large expression trees can be compared under a
second.

Handling undefined behavior. We track changes in unde-
fined behavior in which the undefined portion of a P4 pro-
gram has more restricted (less undefined) behavior after a
compiler pass. This means we can identify scenarios where
the compiler transforms a program fragment based on unde-
fined behavior. While not immediately harmful, such changes
might still indicate problematic behavior in the compiler that
may be surprising to a programmer [73].

To track undefined behavior, any time a variable is affected
by undefined behavior (e.g., a header is set to invalid and
then valid) we label that variable “undefined.” This undefined
variable effectively acts as taint. Every read or write to this
undefined variable is tainted. When comparing Z3 formulas
before and after a pass, we can choose to replace tainted ex-
pressions with concrete values in the formula before a pass.3

With this, we can determine if a translation validation failure
was caused by undefined behavior. If we find a failure based
on undefined behavior, we classify it as unstable code [73] to
avoid confusion with real bugs.

6 Model-Based Testing

Our approach to translation validation is applicable only in
scenarios where we have access to the P4 IR (and hence the
P4 program). This is because it rests on having semantics
for P4. This is the case for P4C, which has a flag that allows
us to emit the input P4 program after every compiler pass
as a transformed P4 program [12, §3.3]. However, in the
back end, a P4 compiler employs back-end-specific passes
that translate P4 into proprietary formats. These formats are
undocumented, making it hard to provide semantics for them.
Hence, to find back-end bugs, we developed a bug-finding
approach based on model-based testing [19].

3We only replace tainted expressions in the “before” formula so that we
can detect compiler bugs where a previously well-defined expression turns
undefined, which is an actual compiler bug, not just an unsafe optimization.
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Figure 4: Model-based testing in Gauntlet.

6.1 Design

In this approach, we reuse our symbolic interpreter to produce
a Z3 formula of a randomly generated P4 program (Figure 4).
With this Z3 formula, we can produce input packets that
traverse unique paths in the P4 program, by generating a path
condition for every unique program path and asking Z3 for an
input packet that satisfies this path condition. Using the same
Z3 formula, we can also determine the output packet for this
input packet. Thus, we generate a test case for each path and
feed this case into the testing framework of the compiler’s
target. If the framework reports a mismatch, we know that
there is likely a bug. This test technique can identify semantic
bugs without requiring access to the P4 program after every
intermediate compiler pass. However, unlike the translation
validation approach, it is harder to pinpoint the pass causing
the bug. This is effectively model-based testing [19] with the
Z3 formulas being the model and the compiler output being
the system under test.

6.2 Implementation

Model-based testing requires a back-end testing framework
that is capable of taking input packets and producing output
packets, which can then be matched against the expected out-
put from Z3. We test two back ends: (1) the BMv2 back end
that uses the simple test framework (STF) [10], which feeds
packets to a software test switch and records output packet
capture files and (2) the Tofino back end that uses the Packet
Test Framework (PTF) [5] to inject and receive packets. We
use the Tofino software simulator to check for semantic bugs
in Tofino. We initially reconfirmed every semantic bug we
found on the Tofino hardware target, but ultimately switched
to running only the simulator for faster testing. However, we
confirmed all Tofino bugs with the Tofino compiler develop-
ers.

Undefined variables. Variables affected by undefined behav-
ior (undefined variables) are difficult to model in model-based-

testing because any back end is free to perform arbitrary op-
erations on these variables. We were left with two choices:
(1) we could avoid undefined behavior in our P4 programs;
(2) alternatively, we could ascribe specific values to unde-
fined variables and check if these values conform with the
implementation of the particular target. We picked the second
approach because it allows independent testing of compiler
optimizations in the face of undefined language constructs.

Computing input and output for test cases. We do not have
control over program paths that involve undefined variables
because we cannot force a target to assign specific values to
such variables. Hence, we add conditions which will cause
Z3 to only give us solutions for specific restricted program
paths. For any path we can control (e.g., a branch that de-
pends on the value of an input header) we compute all the
possible input-output values that lead to a new path through
the P4 program. This technique is computationally expensive
because the number of paths can be exponential in the length
of the program. However, in practice, because our P4 pro-
grams have a relatively small number of branches, test-case
generation followed by testing on a P4 program still com-
pletes quickly. If members of an output header are undefined
we mark those bits as “don’t care” and ignore that portion of
the output packet. For any invalid header we omit its member
bits from the expected test output.

For every path, we feed path conditions into Z3 and re-
trieve a candidate set of input-output values that would cause
program execution to go down that path. Because there are
typically many solutions for these input-output values, we
configure the Z3 solver to give us a randomized, non-zero
input and its corresponding output value. In some back ends,
using zero values by default may mask erroneous behavior.
For example, since BMv2 initializes any undefined variable
with zero, the bug in program 5c would not have been caught,
had we not asked Z3 for a non-zero input-output pair.

6.3 Limitations

In contrast to translation validation that runs entirely on a
formal logic-based representation of the P4 program, model-
based testing has several limitations that are caused by need-
ing to run actual end-to-end tests on real targets.

Dropped packets in the testing framework. A key assump-
tion in the model-based-testing approach is that the generated
test cases can actually be fed to the testing framework of
the back end. However, the semantics of the generated P4
program do not describe hardware-specific restrictions. For
example, some devices impose minimum packet size require-
ments or drop packets with invalid MAC addresses. More
generally, we have found that test cases where the input pack-
ets have certain values in their headers can be dropped silently
by the back end without generating an output packet. Effec-
tively, there is a mismatch between the Z3 semantics, which
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Bug Type Status P4C BMv2 Tofino

Crash
Filed 36 4 35
Confirmed 33 4 25
Fixed 27 4 8

Semantic
Filed 31 1 10
Confirmed 26 1 7
Fixed 22 1 0

Total 96 59 5 32

Table 2: Bug summary. Unfixed bugs have been assigned.

says that a certain output packet must be produced and the
back end’s semantics, which produces no output packet. In
such cases, we have had to discard these test cases, reducing
the breadth of coverage for testing the compiler.

Unknown interfaces between programmable blocks. P4 also
does not provide semantics on the treatment of packets in-
between the individual control or parser blocks. This is not
an issue for translation validation since we compare each
programmable block individually. For an end-to-end test,
however, we need to know how data is modified between
these blocks so that we know what output packet to expect.

Test case complexity. Paths with many branches can generate
a large number of distinct path conditions. Thus, millions of
input-output packet pairs might be generated. Since small
programs have sufficed so far for bug finding, we have not
run into these issues. In the future, we may need an efficient
path selection technique to tease out more complex bugs on
closed-source compilers.

7 Results

We now analyze the P4 compiler bugs found by Gauntlet. A
detailed breakdown can be found at p4gauntlet.github.io.
Our main findings are summarized below.

1. We confirmed a total of 96 new, distinct bugs across the
P4C framework and the BMv2 and Tofino P4 compilers.
Of these bugs, 62 are crash and 34 are semantic bugs.

2. Our efforts led to 6 P4 specification changes [18, §A.1].
3. We achieved this in the span of only 8 months of test-

ing with Gauntlet, and despite only generating random
programs from a subset of the P416 language.

4. Model-based testing is effective enough to find seman-
tic bugs in closed-source back ends such as the Tofino
compiler, despite us not having access to the internal IR.

7.1 Sources of Bugs

We distinguish the bugs we found into three primary sources:
bugs we found in the common P4C framework and bugs we
found in the compiler back ends for BMv2 and Tofino. Both

Location P4C BMv2 Tofino Total

Front End 38 - - 38
Mid End 21 - - 21
Back End - 5 32 37

Total 59 5 32 96

Table 3: Distribution of bugs in the P4 compilers.

the BMv2 and Tofino back ends use the P4C front- and mid-
end passes. Hence, most bugs detected in P4C also likely
apply to these back ends. Note that since the Tofino back end
is closed source, we don’t know which P4C passes it uses.

All semantic bugs in P4C were found by translation vali-
dation because we had full access to the compiler IR. Where
applicable, we reproduced the semantic bugs using model-
based testing and attached the failing input-output packet pair
with our bug report. All the semantic bugs in the Tofino
compiler were found with model-based testing.

Distribution of Bugs. Table 3 lists where we identified bugs.
The overall majority of bugs were found in the P4C front-
and mid-end framework, mainly because we concentrated on
these areas. The majority of the back end bugs were found in
the Tofino compiler. There are two reasons for this. First, the
Tofino back end is more complex than BMv2 as it compiles
for a high-speed hardware target. Second, we did not test the
BMv2 back end as extensively as other parts of the compiler.

Bugs in the P4C infrastructure. As Table 2 shows, we were
able to confirm 96 distinct bugs. 59 were uncovered in P4C,
with a comparable distribution of crash bugs (33) and seman-
tic bugs (26). Initially, the majority of bugs that we found
were crash bugs. However, after these crash bugs were fixed,
and as our symbolic interpreter became reliable, the semantic
bugs began to exceed the crash bugs.

In addition, 6 of the bugs we found led to corresponding
changes in the specification as they uncovered missing cases
or ambiguous behavior because our interpretation of a spe-
cific language construct clashed with the interpretation of
the compiler developers and language designers. We also
continuously checked out the master branch to test the latest
compiler improvements for bugs. Many bugs (16 out of 59)
were caused after recent merges of pull requests during the
months in which we used Gauntlet for testing. Gauntlet was
able to quickly detect these bugs. To catch such bugs as soon
they are introduced, the P4C developers have now integrated
Gauntlet into P4C’s continuous integration (CI) pipeline.

Bugs in the Tofino compiler. Model-based testing on the
Tofino compiler was also successful. We confirmed 25 crash
bugs and 7 semantic bugs in the Tofino compiler. These bugs
are all distinct from the bugs reported to P4C. The majority
of bugs present in P4C could be reproduced in the Tofino
compiler as well, because it uses P4C for its front and mid end.
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Program Arch LoC Time (mm:ss)
tna_simple_switch.p4 TNA 1940 00:05
switch_tofino_x0.p4 TNA 5751 00:51
switch_tofino2_y0.p4 TNA2 6024 00:53
fabric.p4 V1Model 958 00:02
switch.p4 (from P414) V1Model 5894 10:20

Table 4: Time needed to get semantics from a P416 program.

Hence, our Tofino bug count does not include any front- and
mid-end crash and semantic bugs already present in P4C. We
also do not include Tofino compiler crashes that were caused
by a missed transformation in the P4C front end. The Tofino
back end was relying on these passes to correctly transform
specific P4 expressions. We filed two of these crashes in the
Tofino compiler as missed optimization issues in P4C.

Fixing the bugs. Out of the 96 new bugs we filed, 54 have
been fixed. The remaining bugs have been assigned a devel-
oper, but are still open because we filed them very recently,
they required a specification change to be resolved first, or
they have been de-prioritized in favor of more pressing bug
reports. We have received confirmation by the Tofino com-
piler developers that 8 bugs have already been resolved; the
remainder are targeted to be resolved by the next release.

7.2 Performance on Large P4 Programs
We also measured the time Gauntlet currently requires to
generate semantics for several large P4 programs (Table 4).
Generating semantics is the slowest part of our validation
check; comparing the equality of the generated formulas in
Z3 is typically fast. We have observed that retrieving seman-
tics for a single pass takes on the order of a minute for a large
program. We believe we can substantially improve this per-
formance for two reasons. First, large parts of our semantic
interpreter are written in Python as opposed to C++. Second,
we currently use a simple state-merging approach for parser
branches. This approach does not sufficiently address the scal-
ing challenge of dense branching. When run on switch.p4
retrieving semantics takes about 10 minutes. We note, how-
ever, that switch.p4 is not a representative switch program
as the code is autogenerated from old P414 code. Programs
like switch_tofino_x0.p4, which model the data plane of
a data center switch, only require a minute per pass.

7.3 Deep Dive into Bugs

Ripple effects. A common crash we observed occurs because
a compiler pass incorrectly transforms an expression or does
not process it at all. Back end compiler developers rely on
the front end to correctly transform the IR of the P4 program.
But, if a pass misses a language construct it is responsible for,
the back end often cannot handle the resulting expression and

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.mac_src =
4 (h.mac_src > 2 ? 48w1 : 48w2) + h.mac_src;
5 }
6 }

(a) A bug caused by a defective pass.

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.mac_src = (1 << h.modifier) + 8w1;
4 }
5 }

(b) A crash in the type checker.

1 control ig(inout Hdr h, ...) {
2 apply {
3 bool tmp = 1 != 8w2[7:0];
4 }
5 }

(c) An incorrect type checking error.

1 control ig(inout Hdr h, ...) {
2 action assign_eth_type(inout bit <8> val) {
3 h.eth_type[15:8] = 0xFF;
4 }
5 apply {
6 assign_eth_type(h.eth_type[7:0]);
7 }
8 }

(d) Incorrect deletion of an assignment.

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.ipv4.setInvalid ();
4 h.ipv4.src_addr = 1;
5 h.eth.src_addr = h.ipv4.src_addr;
6 if (h.eth.src_addr != 1) {
7 h.ipv4.setValid ();
8 h.ipv4.src_addr = 1;
9 }
10 }
11 }

(e) An unsafe compiler optimization.

1 control ig(inout Hdr h, ...) {
2 action assign_and_exit(inout bit <16> val) {
3 val = 0xFFFF;
4 exit;
5 }
6 apply {
7 assign_and_exit(h.eth_type);
8 }
9 }

(f) Incorrect interpretation of exit statements.

Figure 5: Examples of bugs that were caught by Gauntlet.

generates an assertion failure. For example, in program 5a,
the front end SideEffectOrdering [10] pass should have
converted the conditional operator in line 3 into normal if-
then-else control flow. However because of the addition ex-
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pression, the pass failed to transform the conditional operator,
which ultimately caused an assertion to fire in the Tofino
back end [61]. In another case, the InlineFunctions [10]
pass did not fully inline all functions calls, causing a crash in
back ends that were not able to understand function calls and
expected them to have been inlined by then [58].

Crashes in the type checker. Many of the crashes (21 out of
33) were in the type checker infrastructure. The code in 5b
shows an expression that crashed type checking [60]. It is
not possible to shift this value since its width is unknown
at compile-time. This program was deemed illegal, but the
specification did not explicitly forbid it. The type checker
tried to infer a type regardless and crashed. This bug also
triggered an update to the P416 specification [27]. In other
cases, the type checker was incorrectly forbidding a valid
expression. In example 5c, the program was legal, but be-
cause a safety check in the StrengthReduction [10] pass
was incorrectly implemented, the resulting slice index was
overflowing and turned negative, which prompted the type
checker to terminate with an error message [60].

Handling side effects. Side effects from a function operate on
the concept of copy-in/copy-out semantics, described earlier.
However, these semantics, while seemingly simple, turn out to
be hard to implement correctly in the compiler. A particularly
tricky case can be seen in 5d [64].

In the program, a slice of a variable is passed as an inout
parameter. At the same time, a disjoint subset of the variable
is assigned within the function. The correct behavior here is
to leave the assignment unchanged, and copy back the sliced
portion of the variable alone. However, the compiler assumed
that the entire variable would be copied back and removed
the assignment in line 3, an incorrect optimization.

A large subset of the semantic bugs we found in P4C (at
least 11 out of 26) can be traced to incorrect handling of side
effects and copy-in/copy-out. Copy-in/copy-out is difficult to
handle because for a compiler pass that reorders expressions
or statements, side-effects can be translated incorrectly.

Unstable code. Even though the P416 language has limited
undefined behavior, we also found incidents of unstable
code [73]. This unstable code conforms with the specifi-
cation but may lead to instability in specific back end targets.
Dumitru et al. also discuss the potential safety consequences
of undefined variable access [24]. Program 5e is a concrete
example. The compiler collapses the assignment of line 4 into
line 5, setting h.eth.src_addr, which is still part of a valid
header, to 1. All of this is legal behavior, since read and write
operations on invalid header values are undefined as part of
the P4 specification. The compiler is free to perform these
optimizations. However, these changes may cause issues in
specific back ends, e.g., back ends in which assignments to
invalid headers are no-ops. In this case, the compiler has cho-
sen a particular subset interpretation of undefined behavior,
which may clash with the expectations of programmers for

that back end. We raised this with the compiler developers,
who agreed to print a warning [62].

Consequences of compiler changes. Once we started actively
monitoring the master branch of P4C we observed that many
(19 out 59) of the bugs we filed in P4C were caused by recent
merges into master. A notable example is a recent change
to the Predication [10] pass, which caused at least 6 (1
crash and 5 semantic) new bugs. We caught and filed these
bugs quickly during our weekly routine random code genera-
tion. The compiler pass has become so complicated that the
compiler maintainers are now relying on Gauntlet to ensure
correctness [3]. A P4 programmer also filed a bug on this
issue [28]. The report was considered a duplicate because
of our earlier reports, highlighting that the bugs we find do
affect actual P4 programmers.

Specification changes. Some of our bug reports kicked off
larger discussions and changes around the P4 language speci-
fication. Our bug reports and questions have led to at least 6
distinct specification changes. For example, a concern we had
about the validity of uninitialized headers (at what point does
a header variable become valid?) led to three clarification
pull requests on the specification and a suggestion to propose
more fundamental changes for the next language version [30].

Another prominent example was caused by am-
biguity in the specification. In example 5f, the
RemoveActionParameters [10] compiler pass moved
the statement in line 3 after the exit statement, because the
assumption was that exits called within functions ignores
the copy-in/copy-out semantics. We instead interpreted
exit statements to still respect copy-in/copy-out semantics
and caught the discrepancy. This is a significant difference.
A packet that traverses the control program could lose all
the modifications that have been written to its header, a
potential security risk. We filed this as a concern with
the open-source community [59] and our interpretation
was deemed reasonable, which required a specification
update [31]. The corresponding compiler changes resulted in
at least 3 new bugs, which we detected and filed.

Invalid transformations. Because P4C provides the option
to emit transformed programs after each pass as a valid P4
program, the compiler developers maintain an invariant that
each compiler pass in the front and mid end needs to emit
syntactically correct P4. We uncovered several bugs with how
P4 code is emitted and transformed across compiler passes.
We detected these bugs by reparsing each P4 program after it
had been emitted by the ToP4 compiler module. If the emitted
program can not be reparsed, it indicates a bug in one of three
compiler components: the ToP4 module, the P4C parser, or
the compiler pass. While these bugs typically do not harm
correctness, they affect compiler debugging. Overall, we
identified 4 bugs of invalid intermediate P4, all of which were
fixed; these 4 are not included in our count of 96. Additionally,
because we reparse P4 after each compiler pass, we found a
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case where the emitted program being parsed incorrectly was
a symptom of a larger bug in the P4C parser [63].

7.4 Lessons Learned

P4C debugging support. P4C has several facilities that were
useful for bug finding. The ability to dump the intermediate
representation, specify which passes to dump, and the ToP4
tool, which converts the P4 IR to P4 programs accelerated our
development process. In addition, the compiler has compre-
hensive assert instrumentation with distinct messages, which
we used to identify unique crash bugs and to distinguish them
from valid error messages. The AST visitor library in P4C
allowed us to develop extensions like our random program
generator and interpreter.

P4C’s nanopass architecture, which factors the compiler
into a large number of “thin” passes, helps with bug fixing,
especially for semantic bugs that were narrowed down to one
pass by translation validation. A different architecture that
has fewer “thick” passes would need more developer effort to
fix semantic bugs. We also observed that almost all crash bugs
were assertion violations where an invariant was violated in a
particular compiler pass due to an incorrect or absent compiler
transformation from a previous pass. In the absence of such
assertions, these crash bugs could have easily manifested as
semantic bugs that are harder to detect.

Reporting bugs. This project would not have been possible
without the responsiveness and receptiveness of the P4 com-
munity. Our questions, concerns, and bug reports were an-
swered within a day and in great detail. The developers were
able to even dissect our initial questions and confusions into
bug reports, guiding us further in our development effort.
We were encouraged to participate in the language design
working group that discusses changes to the P4 specification.

Likewise, when we filed bugs for the closed-source and
proprietary Tofino compiler, we found the developers to be
receptive and responsive. Still, the pace of bug finding and
fixing with the Tofino compiler was slower than the open-
source compiler because of two unavoidable reasons. First,
we naturally didn’t have access to the company bug tracker
to assess the life cycle of our bug once it had been filed.
Second, the official binary of the Tofino compiler updates
less frequently than P4C, which can be rebuilt from source
after every commit. Hence, we would trigger the same bugs
repeatedly in our testing until a new Tofino compiler version
with a bug fix was released. Neither of these two problems
would manifest, if our tool was to be used internally as part
of the compiler development process for Tofino.

8 Future Work

New types of bugs. Gauntlet can not find compiler bugs that
affect performance or resource usage of generated code. For

a switching ASIC that guarantees line-rate performance, the
compiler must produce code that consumes a small number
of computational and memory units [33]. For software targets
where line rate performance is not guaranteed, the generated
code must have good performance. For example, the P4-eBPF
compiler, which converts P4 to eBPF/XDP [35] byte code,
occasionally produces code with poor performance [72]. We
are investigating methods that allow us to identify when a
compiler pass negatively affects performance and resource
usage. We anticipate that handling such bugs would require
techniques that are conceptually very different from our meth-
ods, which deal with correctness bugs.

Supporting aggressive compiler optimizations. Similar to
credible compilation [55], we plan to repurpose Gauntlet
as an attachable compiler plugin to facilitate development of
experimental compiler optimizations. During compilation,
if a newly added optimization produces semantically incor-
rect code, Gauntlet will notify the compiler to discard the
optimization. With this technique, a developer can integrate
potentially buggy code into the compiler while still guaran-
teeing a safe compilation process. However, for the plugin to
be useful, Gauntlet’s translation validation needs to be fast
enough so that compilation time remains acceptable.

Extending translation validation to the compiler back end.
So far we have applied translation validation only to com-
piler front and mid ends. This is because these passes allow
us to dump the P4 program before and after the pass has
run, allowing us to compare the before and after programs
for equality. The back end is typically proprietary, inacces-
sible, and uses an opaque intermediate representation. To
understand the constraints of these back ends we are cur-
rently working with industry compiler developers to integrate
translation validation into their compilers. We will develop
translation validation techniques that allow us to compare
a P4 program’s semantics with the semantics of a back end
language that is not P4.

Long-term study on translation validation in CI. Now that
translation validation is running as part of the CI pipeline of
P4C we would like to perform empirical, long-term studies.
We want to identify which passes frequently cause semantic
issues and understand why they do. We would also like to
observe how developer-friendly our tool is. For example to
avoid confusing compiler developers, we already had to make
sure that Gauntlet does not report changes in undefined be-
havior [29] or fails gracefully when Gauntlet does not support
a particular language construct [11].

Automatic test case reduction. We have not developed an
automatic test-case reduction suite (e.g., C-Reduce [54]) and
reduce buggy programs in a manual fashion. After our testing
pipeline has identified problematic programs in a randomly
generated batch, we inspect each P4 program individually.
We prune the random P4 program that caused the bug until
we get a sufficiently small program that can be attached to a
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bug report. We are currently automating this process.

Better coverage of the compiler and P416 language. While
our symbolic interpreter provides semantics for the majority
of the P416 language constructs, we currently do not generate
programs that contain several P416 language features: extern
calls, method overloading, type definitions, variable bit vec-
tors, run-time indices, match types such as longest prefix or
ternary matches, type-inference for generic types in function
bodies, annotations, and various custom table properties. We
expect that adding most of these will be conceptually straight-
forward, although adding each language construct is a fair
amount of additional engineering. One particular construct
that we anticipate being hard to support is externs. While our
interpreter includes an extension model to add custom seman-
tics for each extern, extern behavior is very back-end-specific.
It is hard to develop accurate semantics for these externs with-
out detailed hardware knowledge of each target. We also do
not track how much of the compiler source code we actually
cover with our program generator. For future work, we would
like to measure the compiler code coverage of a generated P4
program with gcov to understand avenues for improvement.

9 Related Work

P4K [38] was an effort to formalize the P4 language using the
K-framework [56]. In the process of defining these semantics,
the authors found several issues in the P4 specification. P4K
supports the use of translation validation similar to our tool.
netdiff [23] uses symbolic execution to verify the equiva-
lence of data planes, such as those written in P4. They do
so by converting P4 and other data plane programs into the
SEFL language [69], which in turn can be converted to Z3.
The Z3 expressions corresponding to different data planes
can then be compared for equality. netdiff’s equivalence
checking technique is comparable to our translation validation
technique. However, neither P4K nor netdiff were explic-
itly designed for finding compiler bugs. To enable such bug
finding, we need both a source of random P4 programs and
a translation validation technique to compare intermediate
versions of these programs. Further, for some back ends such
as the Tofino compiler, translation validation is insufficient,
requiring us to use model-based testing instead.

p4pktgen [49] is a P4 test-case generation tool, similar
to our model-based testing technique. p4pktgen parses the
JSON file generated by the BMv2 back end and outputs a Z3
formula, which it uses to create test cases. Using p4pktgen,
the authors were able to find several bugs in how BMv2
executes JSON files. However, because it operates on out-
put JSON instead of the input P4 program, unlike Gauntlet,
p4pktgen can not find bugs in intermediate compiler passes.

petr4 [21] is a project with the goal of providing indepen-
dent and complete formal foundations for the P416 language.
petr4 is complementary to our work. While we are explic-

itly targeting the official P416 compiler and specialized our
tools to find bugs during compilation, petr4 aims to find in-
consistencies and mistakes in the official P416 specification
and type system. petr4 provides an interpreter that aims to
establish unambiguous semantics for a given P416 program.
This semantic interpretation can potentially be used to guide
the development of our own interpreter semantics.

10 Conclusion

This paper presented Gauntlet, a tool for finding bugs in
packet-processing compilers for languages such as P4. Gaunt-
let combines random program generation, translation valida-
tion, and model-based testing to find both crash and semantic
bugs in P4 compilers. It has been highly effective, uncovering
96 new and confirmed bugs. 54 of these have been fixed and
the rest have been assigned to a compiler developer. We have
open sourced Gauntlet at p4gauntlet.github.io and it now
runs as part of the CI infrastructure of P4C.

While we developed Gauntlet for P4, we believe the core
technique that makes Gauntlet effective is much more general.
In particular, Gauntlet exploits the fact that P4 is a DSL with
significant restrictions such as the lack of loops. These restric-
tions allow us to revive and simplify prior techniques such
as translation validation and take them much further in the
context of a DSL. For example, to our knowledge, Gauntlet is
the first instance of translation validation running as part of a
compiler’s CI infrastructure. We believe this ability to exploit
domain specificity for more effective compiler bug finding
will increasingly be applicable to other DSLs beyond P4.
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