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Abstract

This paper presents Orchard, a system that can answer queries
about sensitive data that is held by millions of user devices,
with strong differential privacy guarantees. Orchard combines
high accuracy with good scalability, and it uses only a sin-
gle untrusted party to facilitate the query. Moreover, whereas
previous solutions that shared these properties were custom-
built for specific queries, Orchard is general and can accept a
wide range of queries. Orchard accomplishes this by rewrit-
ing queries into a distributed protocol that can be executed
efficiently at scale, using cryptographic primitives.

Our prototype of Orchard can execute 14 out of 17 queries
chosen from the literature; to our knowledge, no other system
can handle more than one of them in this setting. And the
costs are moderate: each user device typically needs only a
few megabytes of traffic and a few minutes of computation
time. Orchard also includes a novel defense against malicious
users who attempt to distort the results of a query.

1 Introduction

When operating a large distributed system, it is often useful
to collect some data from the users’ devices—e.g., to train
models that will help to improve the system. Since this data
is often sensitive, differential privacy [28] is an attractive
choice, and several deployed systems are using it today to
protect the privacy of their users. For instance, Google is using
differential privacy to monitor the Chrome web browser [31],
and Apple is using it in iOS and macOS, e.g., to train its
models for predictive typing and to identify apps with high
energy or memory usage [7, 8]. Other deployments exist, e.g.,
at Microsoft [27] and at Snap [68].

Today, this data is typically collected using local differ-
ential privacy [31]: each user device individually adds some
random noise to its own data and then uploads it to a central
entity, which aggregates the uploads and delivers the final
result. This can be done efficiently at scale, but the final result
contains an enormous amount of noise: as Google notes [14],
even in a deployment with a billion users, it is easy to miss
signals from a million users. Utility can be improved by re-
ducing the amount of noise, but this weakens the privacy
guarantee considerably, to the point where it becomes almost
meaningless [80].

One way to avoid this problem is to collect the data using
global differential privacy instead. In this approach, each de-
vice provides its raw, un-noised data to the central aggregator,
which then adds random noise only once. This clearly pro-
duces results that are more precise, but it also requires a lot
of trust in the aggregator, who now receives the individual
users’ raw data and must be trusted not to look at it. Crypto-
graphic techniques like multiparty computation [84] and fully
homomorphic encryption [38] could theoretically avoid this
problem, but, at least with current technology, scaling either
approach to millions of participants seems implausible.

The recently proposed Honeycrisp system [76] can provide
global differential privacy at scale, with a single, untrusted
aggregator. Instead of fully homomorphic encryption, Hon-
eycrisp uses additively homomorphic encryption, which is
much more efficient. However, the price to pay is that Honey-
crisp can answer only one specific query, namely count-mean
sketches [8] with additional use of the sparse-vector operator.
This query does have important applications (for instance, it
is used in Apple’s iOS), but it is by no means the only query
one might wish to ask: the literature is full of other inter-
esting queries that can be performed with global differential
privacy (e.g., [15,31,40,41,55,64,70,83]). Right now, we are
not aware of any systems that can answer even one of these
queries at scale, using only a single, untrusted aggregator.

In this paper, we show how to substantially expand the va-
riety of queries that can be answered efficiently in this highly
distributed setting. Our key insight is that many differentially
private queries have a lot more in common than at first meets
the eye: while most of them transform, group, or otherwise
process the input data in some complicated way, the heart of
the algorithm is (almost) always a sequence of sums, each
computed over some values that are derived from the users’
input data. This happens to be exactly the kind of computa-
tion that Honeycrisp’s collect-and-test (CaT) primitive can
perform efficiently, using additively homomorphic encryption.
Thus, CaT turns out to be far more general than it may seem:
it can perform the distributed parts of many queries, leaving
only a few smaller computations that can safely be done by
the aggregator, or locally on each user device.

The key challenge is that, for many queries, the connec-
tion to sums over per-user data is far from obvious. Many
differentially private queries were designed for a centralized
setting where the aggregator has an unencrypted data set and
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can perform arbitrary computations on it. Such queries often
need to be transformed substantially, and existing operators
need to be broken down into their constituents, in order to
expose the internal sums. Moreover, a naïve transformation
can result in a very large number of sums—often far more
than are strictly necessary. Thus, optimizations are needed to
maintain efficiency.

We present a system called Orchard that can automatically
perform these steps for a large variety of queries. Orchard
accepts centralized queries written in an existing query lan-
guage, transforms them into distributed queries that can be
answered at scale, and then executes these queries using a gen-
eralization of the CaT mechanism from Honeycrisp. Among
17 queries we collected from the literature, Orchard was able
to execute 14; the others are not a good fit for our highly
distributed setting and would require a different approach.

Our experimental evaluation of Orchard shows that most
queries can be answered efficiently: with 1.3 billion users
(roughly the size of Apple’s macOS/iOS deployment [6]),
most user devices would need only a few megabytes of traffic
and a few minutes of computation time, while the aggregator
would need about 900 cores to get the answer within one
hour. For queries that make use of the sparse-vector operator,
this is competitive with Honeycrisp; for the other queries
we consider, we are not aware of any other approach that is
practical in this setting. In summary, our contributions are:

• the observation that many differentially private queries
can be transformed into a sequence of noised sums (Sec-
tion 2);
• a simple language for writing queries (Section 3);
• a transformation of queries in this language to protocols

that can answer them in a distributed setting, using only
a single, untrusted aggregator (Section 4);
• the design of Orchard, a platform that can efficiently

execute the transformed queries (Section 5);
• a prototype implementation of Orchard (Section 6); and
• an experimental evaluation (Section 7).

We discuss related work in Section 8 and conclude the paper
in Section 9.

2 Overview

Scenario: We consider a scenario—illustrated in Figure 1—
with a very large number of users (millions), who each hold
some sensitive data, and a central entity, the aggregator, that
wishes to answer queries about this data. We assume that
each user has a device (say, a cell phone or a laptop) that can
perform some limited computations, while the aggregator has
access to substantial bandwidth and computation power (say,
a data center).
Threat model: We make the OB+MC assumption from [76]—
that is, we assume that the aggregator is honest-but-curious

Users (millions) Internet Aggregator

How many 
stars of each

color?

Figure 1: Scenario.

(HbC) when the system is first deployed and usually remains
HbC thereafter, but may occasionally be Byzantine (OB) for
limited time periods; for instance, the aggregator could be a
large company that is under public scrutiny and would not vi-
olate privacy systematically, but may have a rogue employee
who might tamper with the system and not be discovered
immediately. For the users, we assume that most of them are
correct (MC) but that a small percentage—say, 2–3%—can be
Byzantine at any given time. This is different from the typical
assumption in the BFT literature, where one often assumes
that up to a third, or even half, of the nodes can be Byzan-
tine. However, BFT systems are typically a lot smaller than
the systems we consider: with 4–7 replicas, compromising a
third of the systems means just one or two nodes, whereas, in
Apple’s deployment with 1.3 billion users, a 3% bound would
mean 39 million malicious users, which is much larger than,
e.g., a typical botnet.
Assumptions: Our key assumptions are (1) that the approx-
imate number of users is known and (2) that the adversary
cannot create and collude with a nontrivial number of Sybils.
For instance, the devices could have hardware support for
secure identities, such as Apple’s T2 chip or Intel’s SGX.
Goals: We have four key goals for Orchard:

• Privacy: The amount of information that either the ag-
gregator or other users can learn about the private data
of an honest user should be bounded, according to the
formulation of differential privacy.
• Correctness: If all users are honest, the answers to

queries should be drawn from a distribution that is cen-
tered on the correct answer and has a known shape;
• Robustness: Malicious users should not be able to sig-

nificantly distort the answers; and
• Efficiency: Most users should not need to contribute

more than a few MB of bandwidth and a few seconds of
computation time per query.

2.1 Differential privacy
Differential privacy [28] is a property of randomized queries
that take a database as input and return an aggregate output.
Informally, a query is differentially private if changing any
single row in the input database results in “almost no change”
in the output. If each row represents the data of a single indi-
vidual, this means that any single individual has a statistically
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Query Support
Decision-tree learning (ID3) [34] Yes
k-means [15] Yes
Perceptron [15] Yes
Principal Component Analysis (PCA) [15] Yes
Logistic regression [2] Yes
Naïve Bayes [86] Yes
Neural Network training (Grad. Descent) [2] Yes
Histograms [83] Yes
k-Medians [40] Yes
Cumulative Density Functions [55] Yes
Range queries [45] Yes
Bloom filters (RAPPOR) [31] Yes
Count Mean Sketch [8] Yes
Sparse vector (Honeycrisp) [76] Yes
Iterative Database Construction [41] No
Teacher Ensembles (PATE) [64] No
Vertex programs (DStress) [63] No

Table 1: Selection of differentially private queries from the
literature, and support by Orchard.

negligible effect on the output. This guarantee is quantified in
the form of a parameter, ε, which controls how much the out-
put can vary based on changes to a single row. Formally, we
say that q is ε-differentially private if, for any two databases
d1 and d2 that differ in a single row, and any set of outputs R,

Pr[q(d1) ∈ R]≤ eε ·Pr[q(d2) ∈ R]

In other words, a change in a single row results in at most a
multiplicative change of eε in the probability of any output,
or set of outputs.

A standard method for achieving differential privacy for nu-
meric queries is the Laplace mechanism [28], which involves
two steps: first calculating the sensitivity, s, of the query—
which is how much the un-noised output can change based
on a change to a single row—and second, adding noise drawn
from a Laplace distribution with scale parameter s/ε; this
results in ε-differential privacy. For queries with discrete val-
ues, the standard method is the exponential mechanism [56],
which defines a “quality score” q(d,x) that measures how well
a value x represents a database d, and then selects value x with

probability proportional to e
εq(d,x)

2s , where s is the sensitivity
of q. This again results in ε-differential privacy.

Differential privacy is compositional, that is, if we evaluate
two queries q1 and q2 that are ε1- and ε2-differentially private,
respectively, then publishing the results from both queries is
at most (ε1 + ε2)-differentially private. This property is often
used to keep track of the amount of private information that
has already been released: we can define a privacy budget
εmax that corresponds to the maximum loss of privacy that the
subjects are willing to accept, and then deduct the “cost” of
each subsequent query from this budget until it is exhausted.
For a detailed discussion of εmax, see, e.g., [46].

By now, there is a rich literature on differential privacy
proposing many different forms of queries for many different
use cases. We have done a careful survey to collect examples
that would make sense in our highly distributed setting; Ta-
ble 1 contains the queries we found, which will also be used
in our evaluation (Section 7.1).

2.2 Alternative approaches

Local differential privacy (LDP): As discussed earlier, an-
other way to avoid trusting the aggregator is to use LDP [31]—
that is, for each user to add noise to his or her data individually,
before uploading it to the aggregator, instead of noising just
the final result. However, there are two important challenges.
The first is that the noise in the final result now grows with the
number of users: for instance, a sum of values from N users
now contains N draws from a Laplace distribution L( s

e ), in-
stead of just one! The effective error grows a bit more slowly,
with Θ(

√
N) [29, §12.1], but still, with N = 109 and ε = 0.1,

the median error will be approximately 300,000 with LDP
and only 10 with GDP—a difference of several orders of
magnitude, which can be severely limiting in practice [14].
The second challenge is that the noise is added by the users
and not by the aggregator; thus, even a very small number of
malicious users can, by using large, correlated values as their
“noise” terms, severely distort the final result [22]. We will
revisit this problem in Sections 5.3 and 7.3.

Multiparty computation (MPC): In principle, the data
could also be aggregated using MPC [84], a cryptographic
technique that enables a group of participants to jointly evalu-
ate a function f such that each participant only learns the final
output of f , but not the inputs of each participant. It may seem
that all we need to do is set f := q ◦ L( s

e ), where q is the query
and L is a draw from an appropriate Laplace distribution. The
problem, however, is efficiency: generic MPC scales poorly
with the number of participants. While there are very efficient
solutions for two parties (e.g., [49]) and reasonably efficient
ones for a few dozen parties (e.g., [82]), we are not aware of
a technique that would be practical with millions or billions
of participants.

Fully homomorphic encryption (FHE): With FHE [38],
users could encrypt their data with a public key and upload
them to the aggregator, who could run the query on the cipher-
texts, add noise, and then decrypt only the final result using a
private key. As with MPC, this approach works for arbitrary
queries, and it has the advantage that most of the work is done
by the aggregator. However, if the aggregator has the private
key, it can also decrypt the users’ individual uploads—and
even if this problem were solved somehow, computation on
FHE ciphertexts is still many orders of magnitude slower than
computation on plaintexts, so, with a billion participants, this
approach does not seem realistic.
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Figure 2: CaT workflow.

2.3 Honeycrisp
Honeycrisp [76] can efficiently answer one specific query
(namely count-mean sketches) in our setting. As in the hypo-
thetical FHE approach, users encrypt their private data and
upload only the ciphertexts to the aggregator; however, there
are two critical differences. The first is that Honeycrisp uses
additively homomorphic encryption, which is orders of mag-
nitude faster than FHE and can be done efficiently at scale.
The second is that, to prevent the aggregator from decrypting
individual ciphertexts, Honeycrisp delegates key generation
and decryption to a small committee of 20–40 randomly se-
lected user devices, which uses MPC to perform these (small)
tasks. As before, this enables the aggregator to do all of the
“heavy lifting” (collecting and aggregating ciphertexts) with-
out ever seeing unencrypted data from individual users; thus,
the aggregator does not need to be trusted.

The main drawback of Honeycrisp is that it only supports
a single query. Internally, it uses a primitive called Collect-
and-Test (CaT), which works roughly as follows (see also
Figure 2): each user device computes a vector of numbers,
encrypts it with a public key that was generated by the com-
mittee, and uploads it to the aggregator, which sums up the
ciphertexts using the additive homomorphism. The aggregator
then proves to the users that it has computed the sum correctly
(which the aggregator, in its Byzantine phases, may not nec-
essarily do); if so, the committee noises and decrypts the final
result. This is the primitive that we leverage for Orchard.

Notice that CaT aggregates vectors, not just individual num-
bers. For additively homomorphic encryption, Honeycrisp
uses Ring-LWE, which has large ciphertexts that can be sub-
divided into many smaller fields; these can then be aggregated
in parallel. The choices from [76] yield 4,096 counters with
about 50 bits each; thus, a single invocation of CaT can effi-
ciently sum up vectors with thousands of elements. We will
leverage this fact for our query optimizations (Section 4.5).

2.4 Approach and roadmap
Our key insight is that CaT is far more general than it might
appear: indeed, the sums it can compute are at the heart of
a wide range of differentially private queries. (This is not a
coincidence: in fact, a common way to certify differential
privacy—e.g., in [10,25,36,42,72,85]—is to use a linear type

system to track how much a change in a single user’s data
can affect a given sum or count.) Thus, by rewriting queries
to take advantage of CaT, we can considerably expand the
range of queries that can be answered at scale. At a high level,
Orchard works as follows:

1. The analyst submits her query as a centralized program
that computes the desired answer based on a (hypothet-
ical) giant database that contains data from all users.
Orchard verifies that the query is differentially private
(Section 3).

2. Orchard transforms this program into a distributed com-
putation that relies on CaT, using several optimizations—
such as vectorization—to ensure efficiency (Section 4).

3. Orchard executes the distributed program, using proto-
cols from Honeycrisp with some additional steps, and
returns the answer to the analyst (Section 5).

3 Query language

There are several existing programming languages (e.g., [10,
26, 36, 42, 57, 59, 85, 86]) that can certify differential privacy.
Rather than proposing yet another, we adopt an existing lan-
guage, Fuzz [42]. Fuzz is a functional language, which sim-
plifies our transformations, and its privacy analysis is driven
by lightweight type annotations, which is convenient for the
analyst. However, the choice is not critical; other languages
could be used as well.

3.1 Running example: k-means
To conserve space, we introduce the Fuzz language through
an example: the widely used k-means clustering algorithm,
shown in Figure 3, which will also be our running example
for the rest of this paper. For a more complete description of
Fuzz, please see [77, §A].

The k-means algorithm divides a given set of points (the
input data) into k clusters and returns a centroid for each
cluster. It proceeds in several iterations; for clarity, the figure
shows only the iteration step, with k hard-coded to 3. The
step function is given the current estimates of the centroid
positions, c1, c2, and c3, and the set of points pts; it first
assigns each point to the closest centroid, based on the l2 dis-
tance (assign), and then partitions the set of points into three
subsets, one for each centroid. Finally, it produces three new
centroid positions c1’–c3’ for the next iteration by averag-
ing the coordinates of the points in each subset. This is done
by first summing up the coordinates in each partition, and
by counting the points; then the lap primitive adds Laplace
noise to the sums and counts, and then performs the division.

3.2 Language features
In most ways, Fuzz is a conventional functional language;
just two special features are relevant here. One is that it has
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a linear type system, described in [72], that certifies an up-
per bound on the sensitivity of all operations on private data;
when a noising primitive such as lap (for the Laplace dis-
tribution) or em (for the exponential mechanism) is invoked,
the parameter s (Section 2.1) is known, and the noise can be
drawn from the correct distribution. The other feature is a
probability monad that ensures that no private data can “es-
cape” from the program without having passed through lap
or em first. Together, these features ensure that, as long as the
top-level program has a type of a certain form, it is guaranteed
to be differentially private.

Fuzz encapsulates private data in variables of a special
type, bag, which represents a set with one element for each
individual who contributed data. There are several primitives
that operate on bags: bmap applies a given function to each
element of a bag, bfilter removes elements for which a
given predicate returns false, and bpartition splits a bag
into several sub-bags, based on the value a given function
returns for each element. All of these primitives take bags as
arguments and produce new bags, so the private data remains
confined in bags. The final bag primitive is bsum, which adds
up the elements of a bag.

3.3 Alternative languages
Using a language other than Fuzz should not be difficult be-
cause the key to Orchard, the basic structure of summing
followed by a release mechanism, is present in many other
languages for differential privacy. Notice that, in Fuzz, sum-
ming via bsum is the only way to turn bags into data values
that can potentially be released. A similar structure is present,
e.g., in PINQ [57], which has three aggregation primitives,
of which one (NoisySum) is equivalent to bsum followed by
lap; the other two (NoisyAvg and NoisyMed) are equiva-
lent to bsum followed by em. Another imperative example,
Fuzzi [86], supports the addition of new aggregation primi-
tives through an extension mechanism, but the information we
need could be specified as part of the extension. The critical
features Orchard needs are 1) a sensitivity analysis and 2) a
way to recognize the aggregation primitives in the code.

Another possible approach would be to embed Fuzz as a
library into a more traditional data analytics language, such as
Python3. This embedded-language approach has already seen
success in Deep Learning frameworks, such as TensorFlow [1]
and PyTorch [66].

4 Query transformation

Next, we describe how Orchard transforms centralized Fuzz
queries so that they can be executed in a distributed setting.

4.1 Program zones
We begin by observing that, if a Fuzz program is differentially
private, it necessarily has a very specific structure and can be

assign c1 c2 c3 pt =
let d1 = sqdist c1 pt

d2 = sqdist c2 pt
d3 = sqdist c3 pt

in if d1<d2 and d1<d3 then 0 else
if d2<d1 and d2<d3 then 1 else 2

noise totalXY size = do
let (x, y) = totalXY
in do x’ ← lap 1.0 x

y’ ← lap 1.0 y
size’ ← lap 1.0 size

return (x’/size’, y’/size’)

totalCoords pts =
let ptxs = bmap fst pts

ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =
bsum 1.0 (bmap (\pt → 1) pts)

step c1 c2 c3 pts =
let [p1, p2, p3] =

bpartition 3 (assign c1 c2 c3) pts
p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2
p2Size = countPoints p2
p3TotalXY = totalCoords p3
p3Size = countPoints p3

in do
c1’ ← noise p1TotalXY p1Size
c2’ ← noise p2TotalXY p2Size
c3’ ← noise p3TotalXY p3Size

return (c1’, c2’, c3’)

Figure 3: One step of the k-means algorithm, written in Fuzz.
The colors represent the “zones” of computation.

broken into three different “zones” (which we color-code in
our example in Figure 3):

• Red zone computations run directly on the data of an
individual user—here, the assign function, which finds
the closest centroid for each user’s data point.
• Orange zone computations are performed on user data

that has been aggregated but not yet noised—here, the
lap operators, which add Laplace noise to the sums.
• Green zone computations involve only noised data and

constants—here, the final divisions in noise and the
parts of iter that set up the rest of the computation.

The Fuzz type system enforces clear boundaries between
these zones: data can only pass from red to orange by ag-
gregation (via bsum), and aggregate data can only pass from
orange to green by noising (via lap or em). Moreover, red-
zone code always operates on an individual element of a
bag—that is, on data from a a single user. And lastly, none
of the operations producing bags offer any way to combine
multiple elements of one bag when computing an element of
another bag; in other words, every element of every bag that
can ever exist is derived (by filtering, partitioning, or map-
ping) from some single element of some bag that was initially
provided as input to the top-level program.
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This stratification allows us to map Fuzz programs to
Honeycrisp-like computations by mapping the zones to the
different parties in Figure 2. Red-zone code is executed di-
rectly by user devices; computations in this zone only need
the data of one user at a time, so each user device can run
it without sending any secrets anywhere. The summation at
the red-to-orange boundary can be done as in Honeycrisp, by
users encrypting their red-zone outputs and sending them to
the aggregator, who adds them up using homomorphic ad-
dition and then passes the encrypted sum to the committee.
Orange-zone code can be executed by the committee, using
MPC, and the members of the committee will be able to de-
crypt the encrypted sums only after appropriate noise is added.
Data that passes from orange to green zones must first pass
through a release mechanism (lap or em) and be thus noised
appropriately, so green-zone code can be safely executed “in
the clear” by the aggregator itself.

The Orchard compiler uses a special operator to coordinate
the mapping, summing, and releasing steps among red, orange
and green zones. We call this operator bmcs (broadcast, map,
clip and sum), and introduce it in the following subsection.

4.2 The bmcs operator
The operator bmcs (b,m,c,r) takes four parameters and be-
haves as follows:

• first, it broadcasts some public state b from the aggrega-
tor to the user devices;
• on each user device i, it maps the local private data di

to a private vector vi := m(b,di) using the provided map
function m (which can use the public state in its compu-
tation);
• on each user device, it clips the elements of vi such that
|vi,k| ≤ ck; and finally
• it sums all these private vectors from all client devices

through homomorphic addition to compute v := ∑i vi
and returns r(v) using the provided release function r.

The bmcs operator captures the workflow of a single “round”
of the distributed protocol; m is the red-zone computation for
that round; r is the orange-zone computation. The clipping
vector c is needed to guarantee privacy (see Section 5.3).

By rewriting a given Fuzz program to use only bmcs rather
than the individual bag operations bmap, bfilter, bsum, and
bpartition, we make its “phase-structure” explicit so that
we can directly evaluate it on a Honeycrisp-like distributed
platform. We next describe how Orchard does this.

4.3 Extracting dependencies
When the analyst submits a Fuzz program to Orchard, Orchard
begins by reducing complex bag operations (bpartition
and bfilter) into combinations of the two fundamental bag
operations—bmap and bsum. A bpartition that splits a bag

into k partitions is reduced into a bmap that first maps each
value in the bag to a partition index, followed by k bfilter

operations that filters out each of the individual partitions.
A bfilter operation is reduced into a bmap operation that
maps each value v in the bag to an optional value v′—when
the filter predicate evaluates to true on v, the optional value
v′ := Somev, otherwise v′ := None.

Orchard then normalizes the program to ensure that all
variable names are unique, and that each variable is either the
result of a bag operation or the result of a release mechanism
(lap or em). To achieve this, Orchard freshens all variable
names, and performs aggressive inlining to eliminate all other
variables. Conversely, if a bag operation was originally part
of an expression and did not have a name, it is given one. In
the resulting normal form, programs make explicit relations
between the input database, the intermediate bags and released
values, and the output of the program.

Next, Orchard infers dependencies between variables by
building a graph with a vertex for each unique program vari-
able. Two vertices (u,v) are connected with a directed and
labeled edge f if v is the result of running the bag operation
f over u. Since the normalized program only contains two
simple bag operations, the label f is either the map function
supplied to some bmap, or the clip bound supplied to some
bsum. Since Fuzz forbids unbounded loops over private data,
this graph is acyclic. Furthermore, since both bmap and bsum

take one bag variable as input and produce another bag vari-
able as output, there is at most one edge between any two
vertices in this graph. This implies the graph is in fact a di-
rected tree, and at the root of this tree is the input bag.

This tree is a complete snapshot of the red zone compu-
tations encoded in the normalized Fuzz program. Since the
dependency tree tells us how to compute any bag value given
the bag variable name, we only need to keep bag variable
names at their use sites. So we remove all bag operations
from the normalized Fuzz program, and use the dependency
tree as a reference for emitting code when a bag variable is
used. We call the remaining normalized program the “core”.

The core contains a mixture of orange zone and green zone
computations. Since Orchard eliminates all other program
variables in an earlier pass, the variables in the core must
either be the result of a bag computation, or the result of a
release mechanism. In particular, we call the variables that
are results of bag computations “exit vertices” in the tree.
(These vertices are scalar numbers, and thus cannot contain
any outgoing edges, because no bag operations take scalar
numbers as inputs.) By analyzing the core and inspecting the
path from the input database to exit vertices, we can emit code
in the bmcs form.

4.4 Transformation to bmcs form

The next step traverses the core in a forward pass, while
maintaining a intermediate set S of variables. The set S is the
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set of variables that are results of release mechanisms at the
current program position during the forward pass.

When the traversal encounters a release mechanism (lap
or em), it first compares the set of variables used in this release
mechanism against S. If the set of used variables is a subset
of S, then this release mechanism only adds further noise to
already released data, and there is no need to invoke bmcs.

On the other hand, if a variable v is used in the release
mechanism but is is not a member of S, then v must be the
result of some bag operation. In this case, we must invoke
bmcs to compute v and release.

Let p be the path from the input database to the variable v.
Orchard now computes a map function mp and a clip value cp
as follows. It initializes mp := id and cp :=∞, then it traverses
p starting from the input database. When it encounters a bmap
f, it updates mp := mp ◦ f ; and when it encounters a bsum c,
it updates cp := c.

In general, a release mechanism may refer to multiple vari-
ables v1, . . . ,vi that are results of bag operations. For each
vi, Orchard walks its corresponding path pi to compute mpi

and cpi . It then fuses these map functions and clip bounds
into a new map function mdb = (mp1 db, . . . ,mpi db) and a
new clip bound c = cp1++ . . .++cpi , where ++ represents
vector concatenation.

Finally, if f (v1, . . . ,vi) is the release mechanism that uses
program variables v1, . . . ,vi, we build the release function
r sum= f (prj1 sum, . . . ,prji sum). Here, sum is the aggregated
vector, and each prji projects the corresponding value for vi
out of the aggregated vector sum.

4.5 Optimizations

The transformation process that has been described so far
will calculate the correct result, but in general it will produce
many redundant bmcs operations because it walks the core
in a forward pass and emits one bmcs call for each release
mechanism that uses private data. We can do better by ob-
serving that release mechanism calls often do not depend on
each other (such as the three calls to noise in the k-means
example) and can in fact be fused into one bmcs call.

Orchard exposes these optimization opportunities to the
code transformation process through a simple source code
rewriting step. After Orchard has inlined and normalized the
input Fuzz program, but before code transformation into bmcs,
Orchard performs local dependency analysis on release mech-
anism calls, using a marker combinator par to combine release
mechanisms that have no dependency relations.

For example, the three lap calls in the noise function for
the kmeans example will be rewritten into:

((x’, y’), size ’) ←
par (par (lap 1.0 x) (lap 1.0 y))

(lap 1.0 size)

Since Orchard inlines the noise function, in fact all nine lap

calls in the step function for the k-means example will be

combined through the marker par combinator (there are three
lap calls in each noise call, and there are three noise calls).

The purpose of the par combinator is to allow code trans-
formation to fuse release mechanisms together just by look-
ing at the syntax of the program under analysis. In the last
phase of code transformation, when Orchard encounters a
par combinator, it first recursively emits the map and release
functions for the two arguments to par. Let us call these
map functions m1 and m2, and the release functions r1 and
r2. Next, Orchard fuses them together by creating a new map
function m db = (m1 db,m2 db), and a new release function
r sum = (r1 sum,r2 sum). The clip bounds are concatenated
to produce a fused clip bound. The code transformation recur-
sively fuses the release mechanisms combined with nested par

combinators, until finally only a single bmcs call is emitted
for all of the combined release mechanisms.

4.6 Limitations

Our implementation currently insists that all loops in the red
and orange zones terminate after a finite number of rounds,
and it disallows unbounded recursion in these zones. Finite
loop bounds are common in the differential privacy litera-
ture because they simplify the reasoning about the privacy
cost; queries with unbounded loops, such as the PrivTree al-
gorithm [87], tend to require more sophisticated reasoning,
and thus cannot be verified by most automatic checkers. If
necessary, the limit in the red zone could be replaced with
timeouts and default values [42]. Notice that we do allow
unbounded loops in the green zone, so we can still use dy-
namic predicates to check for convergence, e.g., in k-means
clustering.

Orchard’s front end relies on an existing programming
language and type system, and it inherits their limitations.
In particular, if a query is differentially private but the Fuzz
type system cannot prove it, Orchard will reject it, and if a
query’s real sensitivity is s1 but Fuzz only derives a sensitivity
value s2 > s1, Orchard will use s2. These limitations could
be removed by using a different source language – e.g., one
with a more advanced type system, such as DFuzz [36], or
one that allows the analyst to help with the privacy proofs,
such as apRHL [4].

Orchard’s optimization for fusing independent release
mechanisms only recognizes fusion opportunities for release
mechanisms that are syntactically next to each other. Due to
this simplistic nature, Orchard may miss opportunities for
fusion of release mechanisms that are only revealed through
a more global dependency analysis. However, in our experi-
ments, we find that this limitation does not prevent us from
emitting code with the optimal number of bmcs calls. We plan
on improving the fusion analysis in future work.
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5 Query execution

Next, we describe the platform Orchard uses to execute dis-
tributed queries once they have been transformed using the
method from the previous section.

5.1 Overall workflow

Orchard implements bmcs using the CaT primitive from Hon-
eycrisp [76], with three important additions: Orchard supports
more than one round, it adds the broadcast step (which was
not needed for Honeycrisp’s one hard-coded query), and it
supports more general computations on the user devices and
within the committee’s MPC (which Orchard needs for the
red and orange zones). Protocols for sortition and verifiable
aggregation (discussed below) are used verbatim, so the cor-
rectness proofs from [76] still apply. The platform consists of
two components: a server, which runs in the aggregator’s data
center, and a client, which runs on each user’s device (e.g.,
phone or laptop). These components operate as follows.

Setup: When an analyst wants to ask a query, she formulates
it in the language from Section 3 and submits it to the server.
The server typechecks the query, to verify that it is differen-
tially private; if not, it aborts. The server then transforms the
query as described in Section 4, but keeps only the code for
the green zone. The server then triggers a sortition protocol
that causes a very small, random committee of user devices
to be elected. (As in Honeycrisp, a typical committee size is
about 30–40, out of perhaps 109 devices.) The server sends
the query to the committee, whose members perform the same
transformation as the server but keep only the code for the
orange zone of each bmcs operation, as well as the associated
privacy costs εi. The committee runs an MPC to generate
a keypair for an additively homomorphic cryptosystem, and
each committee member keeps a share of the private key.
The server then executes the prefix (if any) of the green-zone
computation that does not involve private data.

Broadcast: When the server encounters the ith bmcs opera-
tion, it sends the sequence number i to the committee. The
committee deducts εi from the privacy budget εmax and, if this
succeeds, signs an execution certificate that contains the query,
the public key, and the sequence number i of the bmcs, and
returns the certificate to the server. This certificate is needed
to convince the clients that the server has “paid” the privacy
cost εi for the specific step they are about to execute; the se-
quence number prevents query reexecution without charging
the privacy budget again.

Map and clip: The server now distributes the certificate,
along with any broadcast state in the bmcs, to the clients.
Each client (1) verifies that the committee was elected prop-
erly, that the execution certificate is signed by the committee,
and that the certificate is not a duplicate; (2) transforms the
query to obtain the red-zone computation for the ith bmcs
operation; (3) executes the red-zone code on its local data; (4)

encrypts the result with the public key from the certificate;
and (5) uploads the result to the server, along with a zero-
knowledge proof that (a) the local input was in the correct
range; (b) the red zone was executed correctly; and, if i > 1,
that (c) the client has not changed its local input since the first
bmcs in the current query.

Sum: The server aggregates all the uploads using homomor-
phic addition and then publishes a Honeycrisp-style summa-
tion tree, so the clients can verify that it has included each
user’s data exactly once; if not, they can report the aggregator.
Next, the committee performs another MPC to execute the
orange-zone code (which noises and decrypts the computed
aggregate) and then sends the plain-text result to the server,
which uses it as the result of the bmcs operation and contin-
ues executing the green-zone code. If the server encounters
further bmcs operations, it repeats the broadcast, map, clip,
and sum steps for each of them.

5.2 Security: Aggregator
One key difference from Honeycrisp is that Orchard’s red-
and orange-zone computations are not hard-coded and must
be compiled from the query instead. A naïve approach could
have been to have only the server perform the transformation
and to have it provide the red- and orange-zone code to the
committee and to the clients, respectively. However, in this
case it would have been easy for the server to, say, replace
the orange zone with the identity function (to disable noising)
and/or to replace the red zone with “if the user is Alice, return
data ×109, else 0” (without proper clipping).

Orchard avoids this issue by (1) having the committee and
the clients compile the red and orange zones directly from the
original query and by (2) including the query in the execution
certificate, so that all correct participants can be sure they are
part of the same query. Since a correct client or committee
member would perform the compilation as specified, it would
(correctly) reject any proposed query that was not differen-
tially private, and it would include all the necessary elements,
such as clipping and noising. A dishonest server still has con-
trol over the green zone and can run any arbitrary code there.
However, it can only hurt itself by doing this: the users’ pri-
vacy is guaranteed by the red and orange zones, and any data
that reaches the green zone is already properly declassified.

Of course, the aggregator can misbehave in several other
ways, but the compilation attack is the only one that is specific
to Orchard; the others were already possible in Honeycrisp,
and the defenses from Honeycrisp continue to apply. For
completeness, we briefly review some key defenses below;
for a complete description, please see [76, §3].

Privacy budget: A malicious aggregator could try to run
more queries than the privacy budget allows. To prevent this,
the budget balance is maintained by the committee. In each
round, the committee checks whether the remaining privacy
budget is sufficient to execute the query; if so, it signs a query
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authorization certificate that includes, among other things, the
remaining budget and the current round number. This certifi-
cate is sent to all user devices, which check it before uploading
their responses. If the committee changes, the new members
rely on the budget from the previous round’s certificate.

Targeting individuals: A malicious aggregator could try to
learn the private data of specific users by performing the
aggregation incorrectly – perhaps by leaving out data from
certain users, or by multiplying the encrypted data from other
users with a large constant (which is possible in an additively
homomorphic cryptosystem), or even by pretending that a
single user’s data is the result of the entire aggregation. To
prevent this, Orchard requires the aggregator to construct a
summation tree to prove that it has computed the aggregation
correctly. Each user device checks a small portion of this tree.

Reporting channel: We assume that there is an external chan-
nel that devices can use to report the aggregator, if they should
discover that the aggregator has misbehaved. Like Honeycrisp,
Orchard produces evidence that the devices can use to sub-
stantiate such a report; for instance, this evidence could be
posted in an online forum (Twitter, Wikipedia, ...) or it could
be given to the press. In a large-scale deployment, the aggre-
gator would typically be a large entity with a reputation to
lose, so this mechanism should provide an incentive for the
aggregator to follow the protocol correctly.

Collusion: If the aggregator is also the manufacturer of the
user devices (which would be the case, e.g., in a deployment
by Apple or Google), a malicious aggregator could try to
roll out a backdoored OS version or manufacture a large
number of additional devices, with which it could then collude.
Here, our assumption that the aggregator is Byzantine only
occasionally (the OB in our OB+MC assumption) is critical,
because it limits the potential impact of such misbehavior.

Committee tampering: For a committee of size C, Orchard
requires that 2C

5 committee members are honest. With 2–3%
Byzantine users, as we have assumed in Section 2, the chances
of randomly sampling a committee with too many Byzantine
users are miniscule; with C = 40, the chances of ever encoun-
tering it during a period of ten years, with one round every
day, would be about 0.001%. However, a malicious aggrega-
tor could try to increase this probability by preventing honest
users from participating in the sortition. To defend against
this, the aggregator must maintain a Merkle tree of all the
users, so that the results of the election are verifiable by all
devices.

5.3 Security: Malicious clients

Another key difference from Honeycrisp is that there can be
more than one bmcs invocation and that clients can poten-
tially learn some information about the result of previous
invocations from the broadcast step. This is not a privacy
issue because the type system ensures that any broadcast state

has been properly noised, but a group of malicious clients
could potentially use this information in a targeted attack.

As a concrete example, suppose a large online retailer uses
the k-means algorithm from Figure 3 to calculate the positions
for k new shipping centers, based on the locations of their
current customers; suppose, further, that a small group of users
wishes to ensure that one of the centers is built in their home
town. Notice that each bmcs broadcasts the set of centroids
from the previous round. In the last round, the attackers can
use this information to calculate exactly (modulo noise) what
their locations would need to be to move the nearest centroid
to their town and then change their inputs accordingly.

To prevent adaptive attacks like this, Orchard can optionally
use verifiable computation (VC) [65] on the client side. When
this is enabled, clients must upload a cryptographic commit-
ment to their local data along with their first bmcs response,
and they must include, with each response, a zero-knowledge
proof that (a) they have executed the red-zone code correctly
and (b) their initial commitment opens to the input they used
in the current round. With this defense, the attackers can only
choose their initial inputs. As we will show in Section 7.3,
this makes a successful attack much harder.

5.4 Handling churn

A third difference is that Orchard computations with mul-
tiple bmcs rounds can take much longer than Honeycrisp’s
single-round computation. This raises two concerns: (1) the
workload of the committee is somewhat higher, and (2) de-
vices are more likely to go offline during the computation.

To address the first concern, Orchard can optionally choose
a fresh committee after a few bmcs rounds. This requires a few
more devices to serve on committees, and it adds a bit more
work for the overall system because each new committee has
to generate a fresh keypair, but it is safe, and it limits the work
that any given committee member has to perform. To address
churn in the committee, Orchard uses Shamir secret sharing to
ensure that the committee can reconstruct the private key even
if it has lost a few of the shares because the corresponding
committee members have gone offline.

This leaves the concern that some user devices will leave
(and others join) between rounds. This does not affect cor-
rectness, since the red zone retains no state between rounds,
but it does mean that the bmcs sums could be computed over
data from slightly different sets of users. Almost by definition,
differential privacy cannot release anything that is specific
to particular users, so the overall impact of individual user
arrivals or departures should be small [29, §2.3.2]. The effect
of higher levels of churn depends on the algorithm and on
the kinds of users that are joining or leaving. For instance,
consider the effect that a major power outage in a large geo-
graphic region – say, the 2003 blackout in the Northeastern
U.S. [33] – would have on a query that was already in progress.
If the query was choosing facility locations within the United
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States, the results would be severely distorted, since it would
suddenly appear as if there were no users in the Northeast at
all. If, however, the query was measuring the age distribution
of the users, the impact would be small, since the age distri-
bution in the Northeast would be roughly comparable to the
age distribution elsewhere.

6 Implementation

For our experiments, we built a prototype of Orchard. We
used Haskell to implement the Fuzz frontend and the transfor-
mations, and Python for the backend. Our prototype generates
and runs the actual red-zone and orange-zone code; for the
aggregation (which would be done with millions of users in
a real deployment), we benchmark the individual steps and
then extrapolate the cost. Overall, our prototype consists of
about 10,000 lines of code, and is publicly available [62].

Encryption: For additively homomorphic encryption, we use
the Ring-LWE scheme [54]. This works over a polynomial
ring Rp := Zp[x]/(xn + 1), where p is a prime and n is a
power of 2. The secret key is a random polynomial s(x) ∈
Rp, and the public key is a pair generated by sampling a
random a ∈ Rp and setting the public key to be (a,b) ∈ R2

p,
where b := a · s+ e ∈ Rp, for some “error” e ∈ Rp chosen
from an appropriate error distribution. The plaintext space
is Zl

q, where q, l ∈ Z, l ≤ n, q� p and |p mod q| � q. To
encrypt a vector z ∈ Zl

q, the encryptor generates a random
r ∈ Rp, and computes the ciphertext (u,v) := (a · r+e1,b · r+
bp/qe · z) ∈ R2

p. Decryption is then simply z = round(v−u ·
s,bp/qe)/bp/qe, where round(x,y) rounds each coefficient
of x to the nearest multiple of y. (We assume the errors e, e1,
e2 are sufficiently small relative to p/q.)

This encryption scheme allows us to represent our key gen-
eration and decryption protocols with a small constant number
of additions and one multiplication in the polynomial ring.
Moreover, it allows us to pack many ’slots’ of ciphertexts into
one large ciphertext, with almost no additional cost. Given
our security parameter choices, this scheme yields up to 4,096
counters, each with a capacity of roughly 50 bits.

MPC: We use the SCALE-MAMBA framework [50] to im-
plement the MPC operations for key generation and for the
orange zones (Section 5.1). For key generation and decryption
we used code we obtained from the authors of [76]. SCALE-
MAMBA supports an arbitrary number of parties and is secure
in the fully-malicious model. Operations are performed in
a finite field modulo a configurable prime p, which allows
for the support of both integers and floating points. This is a
natural fit for our Ring-LWE encryption scheme, which also
requires an integer modulus, and thus no additional modular
arithmetic needs to be implemented within the MPC. In Ring-
LWE, the additive homomorphism of plaintexts is modulo
some integer q, where |p mod q| � q; ideally, p = 1 mod q.

Secret sharing: SCALE-MAMBA also supports Shamir se-
cret sharing [78]. We use this to shard the private key among
the k committee members in such a way that any subset of
t + 1 members can reconstruct the entire key. At the same
time, t dishonest nodes cannot learn anything about the key,
and t + 1 honest nodes can detect any errors introduced by
dishonest nodes. This enables Orchard to tolerate the loss
of a few committee members. We modified the open-source
SCALE-MAMBA source code to reconstruct the secret key
automatically, if needed, using the remaining shares.
Verifiable computation: We use the zk-SNARK proto-
col [11] to enable clients to prove, in zero knowledge, that
they have done the red-zone computation correctly, with con-
sistent inputs (Section 5.3). For benchmarking, we used the
implementation from the Pequin toolchain [67].
Security parameters: We use the LWE-estimator tool [53]
of Albrecht et al. [5] to obtain concrete parameters that pro-
vide sufficient security based on the best known attacks on
LWE. We chose dimensionality n = 4096, a 128-bit prime
p, and a Gaussian error distribution with σ =

√
2

2 (which we
approximate as the centered binomial distribution with N = 2
trials) in each dimension, which gives over 128 bits of secu-
rity. For the verifiable aggregation, we use the same choices
as Honeycrisp, namely SHA-256 hashes and RSA-2048 sig-
natures.

7 Evaluation
Our experimental evaluation is designed to answer four high-
level questions: (1) How many private queries can Orchard
support? (2) How well do Orchard’s optimizations work?
(3) How effective are Orchard’s defenses against malicious
clients? And (4) what are the costs of Orchard?

7.1 Coverage
To get a sense of how many (private) queries Orchard can
support, we did a careful survey of the differential privacy
literature to find queries that are plausible candidates for our
highly distributed setting. We collected as many different
kinds of queries we could find; we excluded only a) queries
that were substantially similar to ones we already had (e.g.,
different variants of computing CDFs), and b) queries where
we simply could not imagine the data being distributed across
lots of individual devices.

Table 1 (in the Overview section) shows the queries we
found, as well as the papers we found them in. We then imple-
mented each query in Fuzz, taking care to write the queries as
they were presented in the papers, and not in a way that would
be convenient for Orchard (e.g., with computations already
grouped the way bmcs would require them).

We found that, out of the 17 queries we found, 14 (82%)
were accepted by Orchard. The three queries that did not
work were PATE [64], IDC [41], and DStress [63]. These
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Query Naïve Optimized
ID3 2md m+1
k-means 3m m+1
Perceptron 2md m+1
PCA d2 +d 1
Logistic regression d +1 2
Naïve Bayes 2d 2
Neural Network 2m(d +1) m+1
Histograms b 1
k-Medians 3m m
CDF b 1
Range queries b 1
Bloom filters d 1
Count Mean Sketch d 1
Sparse vector 1 1

Table 2: bmcs rounds needed for each query, with and without
optimizations. d is the input vector length, m the number of
iterations, and b the number of buckets (see Section 7.4).

queries are not a good fit for our model. DStress operates on
graphs, whereas we assume a set of per-user records. IDC is
a “template algorithm” with an oracle function U , and good
choices for U require functions beyond simple bag operations.
PATE requires training private (un-noised) “teacher” models
and then training a “student” model with noisy labels provided
by the teachers. In our model, only the aggregator could play
the role of PATE’s teachers, but we do not trust it to see
sensitive data in the clear, so we cannot express this algorithm.

Overall, our data suggests that Orchard is able to execute
a wide variety of differentially private queries—even though
these queries were designed for the centralized model.

7.2 Optimizations

A naïve translation of a centralized query typically results in
a lot more bmcs invocations than necessary. To estimate how
much our optimizations can help with this, we compiled each
query twice, once with the full transformation and once with
optimizations disabled; we then counted the bmcs operations
in the resulting programs.

Table 2 shows our results. In most cases, our optimizations
substantially reduced the number of bmcs rounds that were
needed. (The exact reduction depends on the parameters.)
Since the rounds are done sequentially (the bmcs calls in the
green-zone code are “blocking”), and since bmcs accounts
for almost all of a typical query’s runtime, this means a much
lower processing time.

We manually inspected the optimized code, looking for op-
portunities to further reduce the number of rounds, but could
not find any. In principle, Orchard’s optimizations could miss
opportunities for fusing release mechanisms (Section 4.6),
but this did not occur for any of the queries we tried.
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Figure 4: Impact of malicious users.

7.3 Robustness to malicious users

To examine how much Orchard’s defenses help against ma-
licious users, we implemented the attack scenario from Sec-
tion 5.3. Recall that this involves an online retailer using
k-means to find locations for k = 3 new shipping centers and
a group of attackers trying to cause one of the centers to be
built in their home town. We randomly sampled latitudes and
longitudes for N = 104 honest users from a rectangle that in-
cludes the lower 48 U.S. states, and we used Seattle, Houston,
and New York as reasonable guesses to initialize the centroid
positions. We then simulated the behavior of Orchard, as well
as four hypothetical alternatives: (1) local differential privacy
(LDP); (2) global differential privacy (GDP) with a trusted
aggregator; (3) GDP with input clipping (IC), which rejects
coordinates outside the valid range and was implemented
in [76]; and (4) LDP with output clipping (OC), which re-
quires users to clip their noised values to 10× the valid range.
The attackers try to move the East Coast centroid (which is
near Richmond, VA without the attack) to Pittsburgh, PA, us-
ing the strategy from Section 5.3; we assume that the attackers
do not have knowledge of any data from previous Orchard
queries (because, if this information was still relevant, the
aggregator would likely have no need to issue a new query).
We vary the number of attackers A, and we assume that the
attackers are able to estimate N but do not know the locations
of the other users. We say that the attack succeeds if the final
East Coast centroid is within 20 miles of Pittsburgh.

Figure 4 shows the distance from Pittsburgh of the result-
ing East Coast centroid for each scenario and with various
values for the parameters; the figure shows medians across
500 independent runs. Without a defense, GDP and LDP suc-
cumb to even a single attacker, who can observe the centroid’s
location in the penultimate round and then calculate an input
(far outside the valid range) that will move the centroid to
Pittsburgh in the final round. The residual error is due to nois-
ing; it decreases as A increases. Notice that GDP’s error is
even lower than LDP’s; this is because GDP adds less noise.

With OC, the attackers can no longer report arbitrary values
and must instead choose the largest value in the right direction
that will be accepted, but the attack still succeeds with about
A = 31 (0.3% of the users). IC further restricts the range;
success now requires A = 500 attackers. With Orchard, the
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attackers cannot adapt, and since they do not know up front
what values to report—reporting, say, Portland, ME, would
risk “overshooting” and moving the centroid away from Pitts-
burgh again—their best strategy is to simply report Pittsburgh
as their location. With this strategy, the attack takes about
A = 20,000—far more than the number of honest users.

7.4 Experimental setup
Next, we used our prototype to measure Orchard’s costs to
users, committee members, and the aggregator. We bench-
marked the client-side software on a laptop with a 2.3 GHz
dual-core processor and 8 GB of RAM running macOS
Catalina. To simulate committee members operating in a
global setting, we used t2.large EC2 instances with 8 GB
of RAM, located in all available geographic regions (includ-
ing the U.S., Europe, Asia, and Brazil), to get realistic laten-
cies. For our aggregator experiments we used eight Power-
Edge R430 servers with 64 GB of RAM, two Xeon E5-2620
CPUs, and 10 Gbps Ethernet; the operating system was Fe-
dora Core 26 with a Linux 4.3.15 kernel. This equipment
seems reasonably close to what a real-world aggregator might
have available in its data center.

Many of our algorithms have parameters that affect the
cost. For k-means and k-medians, we chose m = 5 and k = 3,
because [9] notes that, given proper cluster initialization, the
solution after five rounds is consistently as good or better than
that found by any other method. For Perceptron, we chose
m = 10, because the algorithm is guaranteed to converge
after at most O(1/α2) iterations, where α is the margin in a
linearly separable dataset [75]. With vectors of size 10, we
assume 1-separability to get this guarantee. For ID3, we set
vector dimension d = 100 because we can support estimating
entropy for counters of up to vectors of size 1 million (e.g.,
all possible 6-digit zip codes) with far fewer counters on the
aggregator’s side. For the neural network, we chose m = 20
epochs, for which [44] shows accuracy competitive with SGD.

Since Orchard is a generalization of Honeycrisp, we report
Honeycrisp’s numbers for comparison. We got these numbers
by executing Honeycrisp’s fixed query, which compiles to a
single bmcs, with Orchard’s additions disabled.

7.5 Cost for normal participants
The key costs to a normal Orchard participant are: (1) the
red-zone computation itself; (2) encrypting the value to be
uploaded; (3) generating the zero-knowledge proofs; and (4)
verifying the aggregator’s summation. (The transformations

themselves are cheap; this step never took more than 410 ms
for any of our 14 queries.) To quantify these costs, we bench-
marked the Orchard client while it was executing each of our
14 queries; to get realistic numbers for sum verification, we
emulated a system with N = 1.3 ·109 users for the client to
interact with. We measured the number of bytes sent, as well
as the computation time spent on Orchard operations.

Figure 5 shows our results. Both the bandwidth and the
computation time vary significantly between queries, but they
are largely proportional to the number of bmcs rounds, whose
cryptographic operations dominate the cost. The red-zone
computations themselves are typically trivial (many simply
return a value), so their cost is very small in comparison;
we simply include it with the other protocol overheads in
Figure 5(b). Overall, the bandwidth costs are modest, ranging
from 1 MB to about 25 MB per query. The computation
typically takes at most a few minutes.

The neural-network query is a an outlier; it takes about
25 minutes of computation time, which raises some concerns,
e.g., about battery life on mobile devices. This high cost is
mostly due to the high number of rounds we used (m = 20), to
show what would happen when training on a “hard” problem.
For “easy” lower-dimensional problems, even a single pass
can be statistically optimal [69].

To measure the cost of the defense from Section 5.3, we
selectively disabled the part of the zero-knowledge proof that
concerns input consistency; this typically reduced the proving
time by about 3%. This is because the client already has to
prove that the encrypted value is in the correct range; the
marginal cost of this extra proof obligation is very small.

7.6 Cost for the committee

For each query, Orchard selects a small committee of C user
devices that are expected to participate in the key-generation
MPC, as well as in the per-bmcs MPC that performs decryp-
tion and orange-zone computations. To quantify the cost to
committee members, we set up committees with EC2 in-
stances as described in Section 7.4, triggered each of our
14 queries, and measured the bandwidth and computation
that the two MPCs consume. We report the cost of a single
iteration of each MPC.

Figure 6 shows our results; where queries use two bmcs
rounds per iteration, we report the cost of the more expen-
sive one (indicated with an asterisk). The cost of the key-
generation MPC depends only on the key length, and is thus
identical for all queries; the cost of the orange-zone MPC
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Figure 6: Bandwidth (a) and computation (b) required of each committee member during one round of orange-zone computation.
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Figure 7: Bandwidth (a) and computation (b) required of the aggregator.

varies with the query, but not by much. Overall, decryption
dominates the costs, and, since every bmcs call fits into one
large packed ciphertext, we see the same behavior for all
queries. In absolute terms, these costs are significant; a typi-
cal query with one round of bmcs consumes about 3 GB of
traffic and five minutes of computation time; the total is higher
if additional rounds are required.

Notice that the chances of actually being selected for the
committee are tiny: for N = 1.3 ·109 users, a typical commit-
tee size is about C = 40, so each user is only about 9× more
likely to be chosen than to win the jackpot in Powerball. Nev-
ertheless, it may be useful to excuse resource-limited devices,
such as mobile phones, from committee service and to rely
mostly on devices like desktops and laptops, when possible.

7.7 Cost for the aggregator
Next, we quantify the costs of the aggregator, who must col-
lect the input from each device, verify the zero-knowledge
proofs, sum up the inputs, generate the summation proof, and
distribute this proof to each device. We do not currently have
a large enough deployment of Orchard to run this experiment
end-to-end, so we estimate the costs based on benchmarks of
the individual steps. We set the number of rounds as discussed
in Section 7.4, and we report results for N = 1.3 ·109.

Figure 7 shows the number of bytes the aggregator would
need to send for each query, as well as the number of Xeon
E5-2620 cores it would need to ensure that the computations
do not last for more than one hour. As before, the costs de-
pend mostly on the number of rounds; the cost of the green-
zone computation is insignificant. The most expensive query
(Neural Network) would require 892 cores, or 74 machines
with two E5-2620 CPUs each. It would also involve sending
13,180 TB, which is a lot but actually corresponds to about
10 MB per user. For comparison: the average transfer size
of a web page is about 2 MB [47]; typically, much of this
is offloaded to CDNs, and the same would be possible for
Orchard’s summation proofs.

Scalability: We also ask how well Orchard scales with the
number of participating users N. This is mostly a concern for
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Figure 8: Bandwidth (a) and computation (b) required of the
aggregator, for different system sizes.

the aggregator: the size of the MPCs (and, thus, the cost for
committee members) does not depend on N at all, and the cost
for individual users grows only very slowly, with O(logN),
because of the summation trees. We estimate the costs of the
aggregator as above, but this time we vary N.

Figure 8 shows our results (all scales are logarithmic).
Although the scaling is technically O(N logN) because the
height of the summation trees grows with N and each user
must be sent some paths in the tree for verification, the non-
linear component is small in both figures, which means that
Orchard scales very well with N. This is expected, since Or-
chard is based on Honeycrisp, which scales similarly, and
nothing in Orchard destroys this scalability.

8 Related work

To our knowledge, Orchard is the first general system that can
process a wide variety of queries with (1) a single untrusted
aggregator, (2) global differential privacy, and (3) scalability
to millions of users.

Different trust assumptions: Several other systems re-
quire at least some trust in additional parties. Prochlo [14]
anonymizes the user data using a shuffler, who must not col-
lude with the aggregator; this reduces the privacy cost of LDP
algorithms considerably [30]. Similarly, the crypto service
provider in [37, 60] must not collude with the evaluator, and
the proxy in PDDP [21] and the aggregator in Leontiadis et
al. [51] must not collude with the analyst. UnLynx [35] and
Prio [23] use the anytrust model, that is, a group of servers
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of which at least one must be honest; SecureML [58] uses
a pair of non-colluding servers; and other solutions, such
as [20, 24, 48, 74], use a trusted third party for at least some
steps. These additional trust assumptions yield substantial
benefits, but recruiting parties that will help the aggregator
but are sufficiently trustworthy to users may not be easy.

Some solutions, such as [52] use trusted hardware like In-
tel’s SGX. We avoid this approach in Orchard because current
TEE implementations are not yet sufficiently trustworthy, as
shown, e.g., by the many successful attacks on SGX [61].

Local differential privacy: Google’s RAPPOR [31,32] uses
LDP to aggregate data; similar systems have been deployed,
e.g., by Apple [8], Microsoft [27], and Snap [68]. As discussed
in Section 2.2, LDP requires significantly more noise than
GDP, which can be limiting in practice [14], and it is vulnera-
ble to attacks from small groups of colluding users [19, 22].

Smaller scale: A variety of solutions are available for sys-
tems with at most a few thousand users. For instance, Shi et
al. [79] use a distributed key generation scheme to remove
trust in the aggregator, and [3] use pairwise blinding instead
of encryption, but these approaches do not work well un-
der churn. Some systems have scaled MPC to impressive
sizes – for instance, SEPIA [18] handles hundreds of users,
and Reyzin et al. [73] perform secure aggregation for thou-
sands, by adding homomorphic threshold encryption – but
supporting millions of users with MPC seems unrealistic.
Bonawitz et al. [17] use secret sharing, but, with n users, sev-
eral costs grow with O(n2); Bindschaedler et al. [13] and
Goryczka and Xiong [39] require O(n2) communication; Ras-
togi and Nath [71] use (t,n)-threshold encryption; and Halevi
et al. [43] have O(n) latency, since users must interact with
the aggregator sequentially.

Federated learning: FL [12,16] is another approach to work-
ing with highly distributed data. Most existing systems do not
guarantee differential privacy, and the ones that do typically
rely on LDP, such as [2]. Zhu at al. [88] recently proposed
an interactive protocol with better privacy, specifically for
discovering heavy hitters, but it does trust the aggregator with
one simple task (thresholding). Truex et al. [81] relies on
threshold Paillier, but it is limited to small deployments.

9 Conclusion

Prior to Orchard, it may have seemed that running differen-
tially private queries at scale required either making compro-
mises (on privacy, accuracy, or trust) or custom-building a
cryptographic protocol. Orchard shows that, because of struc-
tural similarities among many queries, general solutions do
exist, even when there is only a single, untrusted aggrega-
tor. There are still types of queries that Orchard does not
support—one interesting example are queries on graphs—but
we speculate that, by finding and exploiting similar structural
patterns, solutions could be built for some of them as well.
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