
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Testing Database Engines via
Pivoted Query Synthesis

Manuel Rigger and Zhendong Su, ETH Zurich
https://www.usenix.org/conference/osdi20/presentation/rigger

Testing Database Engines via Pivoted Query Synthesis

Manuel Rigger Zhendong Su
Department of Computer Science, ETH Zurich

Abstract
Database Management Systems (DBMSs) are used widely,
and have been extensively tested by fuzzers, which are suc-
cessful in finding crash bugs. However, approaches to finding
logic bugs, such as when a DBMS computes an incorrect
result set, have remained mostly untackled. To this end, we
devised a novel and general approach that we have termed
Pivoted Query Synthesis. The core idea of this approach is to
automatically generate queries for which we ensure that they
fetch a specific, randomly selected row, called the pivot row.
If the DBMS fails to fetch the pivot row, the likely cause is a
bug in the DBMS. We tested our approach on three widely-
used and mature DBMSs, namely SQLite, MySQL, and Post-
greSQL. In total, we found 121 unique bugs in these DBMSs,
96 of which have been fixed or verified, demonstrating that
the approach is highly effective and general. We expect that
the wide applicability and simplicity of our approach will
enable improving the robustness of many DBMSs.

1 Introduction

Database management systems (DBMSs) based on the rela-
tional model [10] are a central component in many applica-
tions, since they allow efficiently storing and retrieving data.
They have been extensively tested by random query gener-
ators such as SQLsmith [45], which have been effective in
finding queries that cause the DBMS process to crash (e.g.,
by causing a buffer overflow). Also fuzzers such as AFL [2]
are routinely applied to DBMSs. However, these approaches
cannot detect logic bugs, which we define as bugs that cause a
query to return an incorrect result, for example, by erroneously
omitting a row, without crashing the DBMS.

Logic bugs in DBMSs are difficult to detect automatically.
A key challenge for automatic testing is to come up with an
effective test oracle, that can detect whether a system behaves
correctly for a given input [21]. In 1998, Slutz proposed to
use differential testing [33] to detect logic bugs in DBMSs,
by constructing a test oracle that compares the results of a

query on multiple DBMSs, which the author implemented
in a tool RAGS [46]. While RAGS detected many bugs, dif-
ferential testing comes with the significant limitation that
the systems under test need to implement the same seman-
tics for a given input. All DBMSs support a common and
standardized language Structured Query Language (SQL) to
create, access, and modify data [8]. In practice, however, each
DBMS provides a plethora of extensions to this standard and
deviates from it in other parts (e.g., in how NULL values are
handled [46]). This vastly limits differential testing, and also
the author stated that the small common core and the dif-
ferences between different DBMSs were a challenge [46].
Furthermore, even when all DBMSs fetch the same rows,
it cannot be ensured that they work correctly, because they
might be affected by the same underlying bug.

To efficiently detect logic bugs in DBMSs, we propose
a general and principled approach that we termed Pivoted
Query Synthesis (PQS), which we implemented in a tool
called SQLancer. The core idea is to solve the oracle problem
for a single, randomly-selected row, called the pivot row, by
synthesizing a query whose result set must contain the pivot
row. We synthesize the query by randomly generating expres-
sions for WHERE and JOIN clauses, evaluating the expressions
based on the pivot row, and modifying each expression to
yield TRUE. If the query, when processed by the DBMS, fails
to fetch the pivot row, a bug in the DBMS has been detected.
We refer to this oracle as the containment oracle.

Listing 1 illustrates our approach on a test case that trig-
gered a bug that we found using the containment oracle in
the widely-used DBMS SQLite. The CREATE TABLE statement
creates a new table t0 with a column c0. Subsequently, an in-
dex is created and three rows with the values 0, 1, and NULL

are inserted. We select the pivot row c0=NULL and construct
the random WHERE clause c0 IS NOT 1. Since NULL IS NOT

1 evaluates to TRUE, we can directly pass the query to the
DBMS, expecting the row with value NULL to be contained
in the result. However, due to a logic bug in the DBMS, the
partial index was used based on the incorrect assumption that
c0 IS NOT 1 implied c0 NOT NULL, resulting in the pivot row

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 667

Listing 1: Illustrative example, based on a critical SQLite bug.
The check symbol denotes the expected, correct result, while
the bug symbol denotes the actual, incorrect one.
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0(c0) VALUES (0), (1), (NULL);

SELECT c0 FROM t0 WHERE c0 IS NOT 1; -- {0} {0,

NULL}

not being fetched. We reported this bug to the SQLite de-
velopers, who stated that it existed since 2013, classified it
as critical and fixed it quickly. Even for this simple query,
differential testing would have been ineffective in detecting
the bug. The CREATE TABLE statement is specific to SQLite,
since, unlike other popular DBMSs, such as PostgreSQL and
MySQL, SQLite does not require the column c0 to be assigned
a column type. Furthermore, both MySQL’s and PostgreSQL’s
IS NOT cannot be applied to integers; they only provide an
operator IS DISTINCT FROM, which provides equivalent func-
tionality. All DBMSs provide an operator IS NOT TRUE, which,
however, has different semantics; for SQLite, it would fetch
only the value 0, and not expose the bug.

To demonstrate the generality of our approach, we imple-
mented it for three popular and widely-used DBMSs, namely
SQLite [49], MySQL [36], and PostgreSQL [40]. In total, we
found 96 unique bugs, namely 64 bugs in SQLite, 24 bugs
in MySQL, and 8 in PostgreSQL, demonstrating that the ap-
proach is highly effective and general. 61 of these were logic
bugs found by the containment oracle. In addition, we found
32 bugs by causing DBMS-internal errors, such as database
corruptions, and for 3 bugs we caused DBMS crashes (i.e.,
SEGFAULTs). One of the crashes that we reported for MySQL
was classified as a security vulnerability (CVE-2019-2879).
78 of the bugs were fixed by the developers, indicating that
they considered our bug reports useful.

Since our method is general and applicable to all DBMSs,
we expect that it will be widely adopted to detect logic bugs
that have so far been overlooked. In fact, after releasing a
preprint of the paper, we received a number of requests by
companies as well as individual developers indicating their
interest in implementing PQS to test the DBMSs that they
were developing. Among these, PingCAP publicly released a
PQS implementation that they have been successfully using
to find bugs in TiDB. For reproducibility and to facilitate
further research on this topic, we have released SQLancer at
https://github.com/sqlancer/. In addition, the artifact
associated with the paper contains SQLancer as well as a
database of all reported bugs [44]. PQS inspired complemen-
tary follow-up work, such as NoREC and TLP, which focus
on finding sub-categories of logic bugs [42, 43]. Despite this,
PQS has notable limitations; it only partly validates a query’s
result, and cannot be used, for example, to test aggregate func-
tions, the size of the result set, or its ordering. Furthermore,
the effort required to implement the technique depends on the

complexity of the operations to be tested, which can be high
for complex operators or functions.

In summary, we contribute the following:

• A general and highly-effective approach to finding bugs
in DBMSs termed Pivoted Query Synthesis (PQS).

• An implementation of PQS in a tool named SQLancer,
used to test SQLite, MySQL, and PostgreSQL.

• An evaluation of PQS, which uncovered 96 bugs.

2 Background

This section provides important background information on
relational DBMSs, SQL, and the DBMSs we tested.
Database management systems. We primarily aim to test
relational DBMSs, that is, those that are based on the re-
lational data model proposed by Codd [10]. Most widely-
used DBMSs, such as Oracle, Microsoft SQL, PostgreSQL,
MySQL, and SQLite are based on it. A relation R in this
model is a mathematical relation R⊆ S1×S2× ...×Sn where
S1, S2, ..., Sn are referred to as domains. More commonly, a
relation is referred to as a table and a domain is referred to
as a data type. Each tuple in this relation is referred to as a
row. SQL [8], a domain-specific language that is based on
relational algebra [11], is the most commonly used language
to interact with the DBMSs. ANSI first standardized SQL
in 1987, and it has since been developed further. In practice,
however, DBMSs lack functionality described by the SQL
standard and deviate from it. In this paper, we assume basic
familiarity with SQL.
Test oracles. An effective test oracle is crucial for automatic
testing approaches [21]. A test oracle assesses whether a given
test case has passed. Manually written test cases encode the
programmer’s knowledge who thus acts as a test oracle. In
this work, we are interested only in automatic test oracles,
which would allow comprehensively testing a DBMS. The
most successful automatic test oracle for DBMSs is based on
differential testing [46]. Differential testing refers to a tech-
nique where a single input is passed to multiple systems that
implement the same language to detect mismatching outputs,
which would indicate a bug. In the context of DBMSs, the
input corresponds to a database as well as a query, and the
systems to multiple DBMSs—when their fetched result sets
mismatch, a bug in one of the DBMS would be detected. How-
ever, SQL dialects vary significantly, making it difficult to use
differential testing effectively. This is also acknowledged by
industry. For example, Cockroach Labs state that they “are
unable to use Postgres as an oracle because CockroachDB
has slightly different semantics and SQL support, and generat-
ing queries that execute identically on both is tricky [...]” [22].
Furthermore, differential testing is not a precise oracle, as it
fails to detect bugs that affect all the systems.

668 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/sqlancer/

Table 1: The DBMSs we tested are popular, complex, and
have been developed for a long time.

Popularity Rank

DBMS DB-
Engines

Stack Over-
flow

LOC Released

SQLite 11 4 0.3M 2000
MySQL 2 1 3.8M 1995
PostgreSQL 4 2 1.4M 1996

Tested DBMSs. We focused on three popular and widely-
used open-source DBMSs: SQLite, MySQL, and PostgreSQL
(see Table 1). According to the DB-Engines Ranking [1] and
the Stack Overflow’s annual Developer Survey [38], these
DBMSs are among the most popular and widely-used ones.
Furthermore, the SQLite website speculates that SQLite is
likely used more than all other databases combined; most
mobile phones extensively use SQLite, it is used in most
popular web browsers, and many embedded systems (such as
television sets) [48]. All DBMSs are production-level systems,
and have been maintained and developed for about 20 years.

3 Pivoted Query Synthesis

We propose Pivoted Query Synthesis as an automatic test-
ing technique for detecting logic bugs in DBMSs. Our core
insight is that by considering only a single row at a time, a
conceptually-simple test oracle can be created that can effec-
tively detect logic bugs. Specifically, our idea is to select a
random row, to which we refer as the pivot row, from a set of
tables and views in the database. Subsequently, we randomly
generate a set of boolean predicates, which we then modify
so that they evaluate to TRUE for the values of the pivot row
based on an Abstract Syntax Tree (AST) interpreter. By using
these expressions in WHERE and JOIN clauses of an otherwise
randomly-generated query, we can ensure that the pivot row
must be contained in the result set. If it is not contained, a
bug has been found. Basing the approach on an AST inter-
preter provides us with an exact oracle. While implementing
this interpreter requires moderate implementation effort for
complex operators (such as regular expression operators),
other challenges that a DBMS has to tackle, such as query
planning, concurrent access, integrity, and persistence can be
disregarded by it. Furthermore, the AST interpreter can be
naively implemented without affecting the tool’s performance,
since it only operates on a single record, whereas the DBMS
has to potentially scan through all the rows of a database to
process a query.

3.1 Approach Overview

Figure 1 illustrates the detailed steps of PQS. First, we create
a database with one or multiple random tables, which we fill
with random data (see step 1). We ensure that each table,
and randomly generated view, holds at least one row, to en-
able selecting a random pivot row in step 2 . A pivot row is
only conceptually a row, and can be composed of columns
that refer to rows of multiple tables and/or views. Its purpose
is to use it to derive a test case as well as a test oracle to
validate the correctness of the DBMS. The pivot row shown
in Figure 1 consists of both columns from table t0 and t1.
In the next steps, we proceed by constructing a test oracle
based on the pivot row. To this end, we randomly create ex-
pressions based on the DBMS’ SQL grammar and valid table
column names (see step 3). We evaluate these expressions,
substituting column references by the corresponding values
of the pivot row. Then, we modify the expressions so that
they yield TRUE (see step 4). We use these expressions in
WHERE and/or JOIN clauses for a query that we construct (see
step 5). We pass this query to the DBMS, which returns a
result set (see step 6), which we expect to contain the pivot
row, potentially among other rows. In a final step, we check
whether the pivot row is indeed contained in the result set (see
step 7). If it is not contained, we have likely detected a bug
in the DBMS. For the next iteration, we either continue with
step 2 and generate new queries for a newly-selected pivot
row, or continue with 1 to generate a new database.

Our core idea is given by how we construct the test oracle
(see steps 2 to 7). Thus, Section 3.2 first explains how
we generate queries and check for containment, assuming
that the database has already been created. Section 3.3 then
explains step 1 , namely how we generate the tables and data.
Section 3.4 provides important implementation details.

3.2 Query Generation & Checking

The core idea of our approach is to construct a query for which
we anticipate that the pivot row is contained in the result set.
We randomly generate expressions to be used in WHERE and/or
JOIN clauses of the query, and ensure that each expression
evaluates to TRUE for the pivot row. This subsection describes
how we generate random predicates that we rectify and then
use in the query (i.e., steps 3 to 5).

Random predicate generation. In step 3 , we randomly
generate Abstract Syntax Trees (ASTs) up to a specified maxi-
mum depth by constructing a random expression tree based on
the database’s schema (i.e., the column names and types). For
SQLite and MySQL, SQLancer generates expressions of any
type, because they provide implicit conversions to boolean.
For PostgreSQL, which performs few implicit conversions,
the generated root node must produce a boolean value, which
we achieve by selecting one of the appropriate operators (e.g.,
a comparison operator). Algorithm 1 illustrates how generat-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 669

c1t0

t1

3 TRUE

-5

c0

c0 t0.c1t0.c0 t1.c0

3 TRUE -5

OR

NOT

t0.c1

>

t1.c0 3

 SELECT
 t0.c0, t0.c1, t1.c0
FROM t1, t2
WHERE
 NOT (NOT t0.c1
 OR (t1.c0 > 3))

DBMS

Randomly
select a row
from each table

Rectify the
expressions
to yield TRUE

Generate random
query that uses the
expressions in
WHERE or JOIN
clauses

Evaluate the query
using the DBMS

t0.c1t0.c0 t1.c0

3 TRUE -5

2 TRUE 0

Randomly
generate
tables and rows

1 2 4 5 6

TRUE -5

Generate random
expressions and
evaluate them based
on the selected rows

3

TRUE

FALSE

3-5

FALSE

FALSE

OR

NOT

t0.c1

>

t1.c0 3

TRUE -5

TRUE

NOT

Verify that the
row is contained
in the result set

7

t0.c1t0.c0 t1.c0

3 TRUE -5

2 FALSE ab

t0.c1t0.c0 t1.c0

3 TRUE -5

TRUE

Continue with 1 or 2

Figure 1: Overview of the approach implemented in SQLancer. Dotted lines indicate that a result is generated.

Function generateExpression(int depth):
node_types←{LIT ERAL, COLUMN}
if depth < maxdepth then

node_types← node_types∪{UNARY , . . . }
type← random(node_types)
switch type do

case LITERAL do
return Literal(randomLiteral());

case COLUMN do
return Column-

Value(randomTable().randomColumn());
case UNARY do

return
UnaryNode(generateExpression(depth+1),
UnaryNode.getRandomOperation());

case . . . do. . .
end

Algorithm 1: The generateExpression() function
generates a random AST.

ing the expressions is implemented for MySQL and SQLite.
The input parameter depth ensures that when a specified max-
imum depth is reached, a leaf node is generated. The leaf node
can either be a randomly-generated constant, or a reference
to a column in a table or view. If the maximum depth is not
yet reached, also other operators are considered (e.g., a unary
operator such as NOT). Generating these expressions is depen-
dent on which operators the respective DBMS supports. The
random expression generation by itself is not a contribution
of this paper; random query generators, such as RAGS [46]
and SQLsmith operate similarly [45]. We implemented the
expression generators manually for each DBMS under test,
based on the respective DBMS SQL dialect’s documentation;
as part of future work, we will consider automatically deriving
them based on the SQL dialect’s grammar.

Expression evaluation. After building a random expression
tree, we must check whether the condition yields TRUE for the

pivot row. To this end, every node must provide an execute()
method that computes the node’s result, which needs to be
manually implemented. Leaf nodes directly return their as-
signed constant value. Column nodes are assigned the value
that corresponds to their column in the pivot row. For example,
in Figure 1 step 3 , the leaf node t0.c1 returns TRUE, and the
constant node 3 returns an integer 3. Composite nodes com-
pute their result based on the literals returned by their children.
For example, the NOT node returns FALSE, because its child
evaluates to TRUE (see Algorithm 2). The node first executes
its subexpression, and then casts the result to a boolean; if the
result is a boolean value, the value is negated; otherwise NULL

is returned. Note that our implementation is simpler than AST
interpreters for programming languages [50], since all nodes
operate on literal values (i.e., they do not need to consider
mutable storage). It is also simpler than query engine models,
such as the well-known Volcano-style iteration model [16],
and widely-used models based on it, such as the vectorized
model or the data-centric code generation model, which all
need to consider multiple rows [26]. Since the bottleneck
of our approach is the DBMS evaluating the queries rather
than SQLancer, all operations are implemented naively and
do not perform any optimizations. Some operations require
moderate implementation effort nevertheless; for example,
the implementation of the LIKE regular expression operator
has over 50 LOC in SQLancer.

Expression rectification. After generating random expres-
sions, step 4 ensures that they evaluate to TRUE. SQL is
based on a three-valued logic. Thus, when evaluated in a
boolean context, an expression either yields TRUE, FALSE, or
NULL. To rectify an expression to yield TRUE, we use Algo-
rithm 3. For example, in Figure 1 step 4 , we modify the
expression by adding a preceding NOT, so that the expression
evaluates to TRUE. Note that our approach works also for other
logic systems (e.g., four-valued logic), by adjusting this step.
Alternatively, it could be checked that the pivot row is ex-

670 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Method NotNode::execute():
value← child.execute()
switch asBoolean(value) do

case TRUE do
result← FALSE

case FALSE do
result← T RUE

case NULL do
result← NULL

end
return result;

Algorithm 2: The execute() implementation of a NOT

node.

Function rectifyCondition(randexpr):
switch randexpr.execute() do

case TRUE do
result← randexpr

case FALSE do
result← NOT randexpr

case NULL do
result← randexpr ISNULL

end
return result;

Algorithm 3: The expression rectification step applied to
a randomly-generated expression.

pectedly not contained in the result set, by ensuring that the
expression evaluates to FALSE.

Query generation. In step 5 , we generate targeted queries
that fetch the pivot row. Most importantly, the expressions
evaluating to TRUE are used in WHERE clauses, which restrict
which rows a query fetches, and in JOIN clauses, which are
used to join tables. Since the expressions evaluate to TRUE, the
pivot row is guaranteed to be contained in the result set. JOIN
clauses are not treated specially; as we create the clause’s
predicate to yield TRUE for the pivot row, inner, full, left, and
right joins all behave in the same way as a WHERE clause with
respect to the pivot row. SELECT statements typically provide
various keywords to control the query’s behavior, from which
we randomly select applicable options. Specifically, we con-
sidered the following elements:

• DISTINCT clauses, which filter out duplicate rows, while
retaining the guarantee that the pivot row is contained in
the result set;

• GROUP BY clauses that contain all pivot row columns to
guarantee that the pivot row is contained in the result set;

• ORDER BY clauses, which influence only the order of the
result set, which is not validated by PQS;

• aggregate functions, which compute values over multiple
rows, when only a single row is present in a table, which
allows partially testing them;

• DBMS-specific query options, such as the MySQL-
specific FOR UPDATE clause, which must not influence
the result set.

These additional elements are an optional extension to our
core approach, and allowed PQS to find additional bugs by
stressing the DBMSs’ query optimizer. However, they do not
comprehensively test these features.
Checking containment. After using the DBMS to evaluate
the query in step 6 , checking whether the pivot row is part of
the result set is the last step of our approach. While the check-
ing routine could have been implemented in SQLancer, we
instead construct the query so that it checks for containment,
effectively combining steps 6 and 7 . DBMSs provide var-
ious operators to check for containment, such as the IN and
INTERSECT operators. For example, for checking containment
in Figure 1 step 7 , we can check whether the row (3, TRUE

, -5) is contained in the result set using the query shown in
Listing 2, which returns a row if the pivot row is contained.
Checking arbitrary expressions. An extension of the initial
idea of PQS is to use arbitrary expressions to specify which
data to fetch in the query of step 5 , rather than referring to
columns only. For example, rather than referring to t0.c0, we
might want to check whether t0.c0 + 1 evaluates correctly. To
this end, we can generalize the definition of a pivot row to
refer to arbitrary computed values. For example, the pivot row
value for t0.c0 + 1 must be 4, which can be derived based on
the expression evaluation mechanism already explained for
step 2 . In terms of implementation, this thus requires that
first the expressions to be used in step 5 must be generated,
so that they can be evaluated to derive the pivot row values as
part of step 2 .

3.3 Random State Generation
In step 1 , we generate a random database state. Similarly
to the generation of queries, we heuristically and iteratively
select a number of applicable options. The first step is fixed
and consists of creating a number of tables, using the CREATE

TABLE statement. Subsequent statements are chosen heuristi-
cally. Among the applicable options is the INSERT statement,
which allows inserting data rows. By generating Data Def-
inition Language as well as Data Manipulation Language
statements, we can explore a larger space of databases, some
of which exposed DBMS bugs. For example, we implemented
UPDATE, DELETE, ALTER TABLE, and CREATE INDEX commands

Listing 2: Checking containment using the INTERSECT opera-
tor in SQLite.
SELECT (3, TRUE, -5) INTERSECT SELECT t0.c0, t0.c1

, t1.c0 FROM t1, t2 WHERE NOT(NOT(t0.c1 OR (t1
.c0 > 3)));

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 671

for all databases, as well as DBMS-specific run-time options.
A number of commands that we implemented were unique
to the respective DBMS. Statements unique to MySQL were
REPAIR TABLE and CHECK TABLE. The statements DISCARD and
CREATE STATISTICS were unique to PostgreSQL. Since the
statements are chosen heuristically, the database state gen-
eration step might yield an empty database (e.g., because a
DELETE statement might have deleted all rows, or because a
table constraint might make it impossible to insert any rows);
in such a case, the current database is discarded and a new
database is created. The random database generation is not a
contribution of this paper; in fact, many database generation
approaches have been proposed, any of which could be paired
with PQS [5, 6, 17, 20, 27, 37].

3.4 Important Implementation Details

This section explains implementation decisions, which we
consider significant for the outcome of our study.

Error handling. We attempt to generate statements that are
correct both syntactically and semantically. However, gener-
ating semantically correct statements is sometimes impracti-
cal. For example, an INSERT might fail when a value already
present in a UNIQUE column is inserted again; preventing such
an error would require scanning every row in the respective ta-
ble. Rather than checking for such cases, which would involve
additional implementation effort and a run-time performance
cost, we defined a list of error messages that we might expect
when executing the respective statement. Often, we associated
an error message to a statement depending on presence or ab-
sence of specific keywords; for example, an INSERT OR IGNORE

is expected to ignore many error messages that would appear
without the OR IGNORE. If the DBMS returns an expected error,
it is ignored. Unexpected errors indicate bugs in the DBMS.
For example, in SQLite, a malformed database disk image
error message is always unexpected, since it indicates the
corruption of the database.

Performance. We optimized SQLancer to take advantage of
the underlying hardware. We parallelized the system by run-
ning each thread on a distinct database, which also resulted
in bugs connected to race conditions being found. To fully
utilize each CPU, we decreased the probability of SQL state-
ments being generated that cause low CPU utilization (such as
VACUUM in PostgreSQL). Typically, SQLancer generates 5,0000
to 20,000 statements per second, depending on the DBMS un-
der test. Since the DBMSs we tested processed queries much
faster than other statements, SQLancer generates 100,000 ran-
dom queries for each database. We implemented the system
in Java. However, any other programming language would
have been equally well suited, as the performance bottleneck
was the DBMS executing the queries.

Number of rows. We found most bugs by restricting the num-
ber of rows inserted to a low value (10–30 rows). A higher

number would have caused queries to time out when tables
are joined without a restrictive join clause. For example, in
a query SELECT * FROM t0, t1, t2, the largest result set for
100 rows in each table would already be |t0| ∗ |t1| ∗ |t2| =
1,000,000, significantly lowering the query throughput. A
potential concern is that this might prevent PQS from detect-
ing bugs that are triggered only for tables with many rows. We
believe that future work could tackle this by generating tar-
geted queries for which the cardinality of the result is bounded.

Database state. For the generation of many SQL statements,
knowledge of the database schema or other database state is
required; for example, to insert data, SQLancer must deter-
mine the name of a table and its columns. We query such
state dynamically from the DBMS, rather than tracking or
computing it ourselves, which would require additional imple-
mentation effort. For example, to query the name of the tables,
both MySQL and PostgreSQL provide an information table
information_schema.tables and SQLite a table sqlite_master.

Bailouts. For some operators or functions, corner-case behav-
ior (e.g., how an integer operation behaves on an integer over-
flow) might be difficult to implement, and—at least initially—
be less important to test. Unlike the DBMS, the expression
evaluation step in our approach is not required to compute a
result for every possible input; in our implementation, each
operation can bail out during evaluation by throwing an ex-
ception, indicating that a new expression should be generated.
We also use this mechanism to prevent reporting known bugs,
by bailing out when input is encountered that is known to
potentially trigger an already-reported bug.

Value caching. When randomly generating values, SQLancer
stores values in a cache, which are subsequently re-used with
a given probability. Our intuition was that this would more
likely trigger interesting corner cases (e.g., when comparing
the same values such as 3 > 3). Additionally, we expected
this to increase the chance of successfully generating rows
for tables that constraint a column to refer to another table
(i.e., foreign key constraints).

Implementation scope. Each testing implementation that we
realized is extensive, but incomplete. For each DBMS, we im-
plemented at least integer and string data types; for the SQLite
implementation, which is the most complete one, we also sup-
port floating-point numbers and binary data. We implemented
the generation of many common statements, operators, and
functions. Given the size of the implementation, exhaustively
enumerating all supported features is infeasible; the artifact
associated with the paper can be used to investigate which
features are supported. Section 5.3 gives an overview of the
size of each testing implementation.

672 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Evaluation

We evaluated whether the proposed approach is effective in
finding bugs in DBMSs. We expected it to detect logic bugs,
which cannot be found by fuzzers, rather than crash bugs.
This section overviews the experimental setup, bugs found,
and characterizes the SQL statements used to trigger the bugs.
We then present a DBMS-specific bug overview, where we
present interesting bugs and bug trends. To put these findings
into context, we measured the size of SQLancer’s components
and the coverage it reaches on the tested DBMSs.

4.1 Experimental Setup
To test the effectiveness of our approach, we implemented
SQLancer and tested SQLite, MySQL, and PostgreSQL in a
period of about three months. We conducted all experiments
using a laptop with a 6-core Intel i7-8850H CPU at 2.60 GHz
and 32 GB of memory running Ubuntu 19.04. Typically, we
enhanced SQLancer to test a new operator or DBMS feature,
let the tool run for several seconds up to a day, and inspected
the bugs found during this process. We automatically reduced
test cases to minimal versions [41], and reduced them further
manually when this helped to better demonstrate the under-
lying bug. Finally, we reported any new bugs found during
this process. Where possible, we waited for bug fixes before
continuing testing and implementing new features.
Baseline. There is no applicable baseline to which we could
compare our work. RAGS [46], which was proposed more
than 20 years ago, would be the closest related work, but
is not publicly available. Due to the small common SQL
core, we would expect that RAGS could not find most of
the bugs that we found. Khalek et al. worked on automating
testing DBMSs using constraint solving [3, 27], with which
they found a previously unknown bug. Also their tool is not
available publicly. SQLsmith [45], AFL [2] as well as other
random query generators and fuzzers [39] only detect crash
bugs in DBMSs. Thus, the only potential overlap between
these tools and SQLancer would be the crash bugs that we
found, which are not the focus of this work.
DBMS versions. For all DBMSs, we started testing the lat-
est release version, which was SQLite 3.28, MySQL 8.0.16,
and PostgreSQL 11.4. For SQLite, we switched to the latest
trunk version (i.e., the latest non-release version of the source
code) after the first bugs were fixed. For MySQL, we also
tested version 8.0.17 after it was released. For PostgreSQL,
we switched to the latest beta version (PostgreSQL Beta 2)
after opening duplicate bug reports. Eventually, we continued
to test the latest trunk version.
Bottleneck. We found that duplicate bugs were a significant
factor that slowed down our testing. After reporting a bug,
we typically waited for bug fixes before continuing our bug-
finding efforts; for bugs that were not quickly fixed, we at-
tempted to avoid generating bug-inducing test cases that trig-

Table 2: Total number of reported bugs and their status.
Closed

DBMS Fixed Verified Intended Duplicate

SQLite 64 0 4 2
MySQL 17 7 2 4
PostgreSQL 5 3 7 6

gered known bugs. For SQLite, the developers reacted to most
of our bug reports shortly after reporting them, and fixed is-
sues typically within a day. Consequently, we focused our
testing efforts on this DBMS. For SQLite, we also tested
VIEWS, non-default COLLATEs (which define how strings are
compared), floating-point support, and aggregate functions,
which we omitted for the other DBMSs. For MySQL, bug re-
ports were typically verified within a day by a tester. MySQL’s
development is not open to the general public. Although we
tried to establish contact with MySQL developers, we could
not obtain any information that went beyond what is visible
on the public bug tracker. Thus, it is likely that some of the
verified bug reports will subsequently be considered as dupli-
cates or classified to work as intended. Furthermore, although
MySQL is available as open-source software, only the code
for the latest release version is provided, so any bug fixes
could be verified only with the subsequent release. This was a
significant factor that restricted us in finding bugs in MySQL;
due to the increased effort of verifying whether a newly found
bug was already reported, we invested limited effort into test-
ing MySQL. For PostgreSQL, we received feedback to bug
reports within a day, and it typically took multiple days or
weeks until a bug was fixed, since possible fixes and patches
were discussed intensively on the mailing list. As we found
fewer bugs for PostgreSQL overall, the response time did not
restrict our testing efforts. Note that not all confirmed bugs
were fixed. For example, for one reported bug, a developer
decided to “put this on the back burner until we have some
consensus how to proceed on that”; from the discussion, we
speculate that the changes needed to address the bug properly
were considered too invasive.

4.2 Bug Reports Overview

Table 2 shows the number of bugs that we reported (121
overall). We considered 96 bugs as true bugs, as they resulted
in code fixes (78 reports), documentation fixes (8 reports), or
were confirmed by the developers (10 reports). Each such bug
was previously unknown and has a unique fix associated with
it, or has been confirmed by the developers to be a unique bug.
We opened 25 bug reports that we classified as false bugs,
because behavior exhibited in the bug reports was considered
to work as intended (13 reports) or because bugs that we
reported were considered to be duplicates (12 reports).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 673

Table 3: A classification of the true bugs by the bug kind.

DBMS Logic Error SEGFAULT

SQLite 46 16 2
MySQL 14 9 1
PostgreSQL 1 7 0
Sum 61 32 3

Severity levels. Only for SQLite, bugs were assigned a sever-
ity level by the DBMS developers. 14 bugs were classified as
Critical, 8 bugs as Severe, and 16 as Important. For 13 bugs,
we reported them on the mailing list and no entry in the bug
tracker was created. The other bug reports were assigned low
severity levels such as Minor. While the severity level was
not set consistently, this still provides evidence that we found
many critical bugs.
Bug classification. Table 3 shows a classification of the true
bugs. The containment oracle, which found all logic bugs,
accounts for most of the bugs that we found, which is expected,
since our approach mainly builds on this oracle. Perhaps
surprisingly, encountering unexpected errors also allowed us
to detect a large number of bugs. For PostgreSQL, we even
found 7 unexpected-error bugs, while finding only 1 logic
bug. We believe that this observation could be used when
using fuzzers to test DBMSs, for example, by checking for
specific error messages that indicate database corruptions.
Our approach also detected a number of crash bugs, one of
which was considered a security vulnerability in MySQL
(CVE-2019-2879). These bugs are less interesting, since they
could also have been found by traditional fuzzers. In fact, a
duplicate bug report was reported for PostgreSQL, based on
a SQLsmith finding, shortly after we found and reported it.

4.3 SQL Statements Overview
Test case length. Our automatically and manually reduced
test cases—which comprise both the statements used to gen-
erate the state, as well as the bug-inducing query—typically
comprised only a few SQL statements (3.71 LOC on average).
For 13 test cases, a single line was sufficient. Such test cases
were either SELECT statements that operated on constants, or
operations that set DBMS-specific options. The maximum
number of statements required to reproduce a bug was 8.
A PostgreSQL crash bug that had already been fixed when
we reported it required even 27 statements to be reproduced.
Overall, the small number of statements required to repro-
duce a bug suggests that statements and queries could be
systematically generated to efficiently, rather than randomly,
explore the space (e.g., such as the bounded black-box testing
approach implemented in ACE [35]).
Statement distribution. Figure 2 shows the distribution of
statements. Note that for some bug reports, we had to se-

lect the simplest test case among multiple failing ones, which
might skew these results. The CREATE TABLE and INSERT state-
ments are part of most bug reports for all DBMSs, which is
expected, since only few bugs can be reproduced without ma-
nipulating or fetching data from a table. 91.0% of the bug
reports included only a single table. The SELECT statement
also ranks highly, since the containment oracle relies on it.
In all DBMSs, the CREATE INDEX statements rank highly; es-
pecially for SQLite, we reported a number of bugs where
creating an index resulted in a malformed database image or
in a row not being fetched. We found that statements that com-
pute or recompute table state were error-prone, for example,
REPAIR TABLE and CHECK TABLE in MySQL, as well as VACUUM

and REINDEX in SQLite and PostgreSQL. DBMS-specific op-
tions, such as SET in MySQL and PostgreSQL, and PRAGMA in
SQLite also resulted in bugs being found. For PostgreSQL,
some test cases contained ANALYZE, which gathers statistics to
be used by the query planner.

Column constraints. Column constraints, which can be used
to restrict the values stored in a column, were often part of test
cases. The most common constraint was UNIQUE(appearing
in 21.9% of the test cases). Also PRIMARY KEY columns were
frequent (16.7%). Typically, the DBMSs enforce UNIQUE and
PRIMARY KEY by creating indexes; explicit indexes, created by
CREATE INDEX were more common, however (27.1%). Other
constraints were uncommon, for example, FOREIGN KEYs ap-
peared only in 1.0% of the bug reports.

5 Interesting Bugs

In this section, we present bugs that we found using PQS. We
chose bugs that we considered to be interesting, meaning that
the selection is necessarily subjective.

5.1 Containment Bugs

We consider bugs found by the containment oracle to be the
most interesting, and we designed PQS to specifically find
these kind of bugs.

First SQLite bug. Listing 3 shows a test case for the first bug
that we found with our approach, and where SQLite failed to
fetch a row. The COLLATE NOCASE clause instructs the DBMS
to ignore the casing when comparing strings; in this test case,
it unexpectedly caused the upper-case 'A' to be omitted from
the result set. The bug was classified as Severe and goes
back to when WITHOUT ROWID tables were introduced in 2013.
It is a typical bug that we found in SQLite, since it relies
on multiple features. As with this bug, 17 of our SQLite bug
reports included indexes, 11 included COLLATE sequences, and
5 WITHOUT ROWID tables.

SQLite skip-scan optimization bug. A number of SQLite
bugs stem from incorrect optimizations, such as the one in

674 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mysql postgres sqlite

0.0 0.2 0.4 0.6 0.8 0.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4 0.6 0.8
DROP INDEX

TRANSACTION
CREATE VIEW

VACUUM
REINDEX
ANALYZE

OPTION
UPDATE

ALTER TABLE
CREATE INDEX

INSERT
SELECT

CREATE TABLE

CREATE STATS
DISCARD
VACUUM
REINDEX
ANALYZE

OPTION
UPDATE

ALTER TABLE
CREATE INDEX

INSERT
SELECT

CREATE TABLE

REPAIR/CHECK TABLE
DROP/CREATE/USE DB

OPTION
UPDATE

ALTER TABLE
CREATE INDEX

INSERT
SELECT

CREATE TABLE

percentage of test cases that included this statement to reproduce the bug

legend
logic
error
segfault
not triggering

Figure 2: The distribution of the SQL statements used in the bug reports to reproduce the bug. A non-white filling indicates that a
statement of the respective category triggered the bug, which was exposed by the test oracle as indicated by the filling (i.e., it was
the last statement in the bug report).

Listing 3: The first bug that we found with our approach
involved a COLLATE index, and a WITHOUT ROWID table.
CREATE TABLE t0(c0 TEXT PRIMARY KEY)

WITHOUT ROWID;
CREATE INDEX i0 ON t0(c0 COLLATE NOCASE);
INSERT INTO t0(c0) VALUES ('A');
INSERT INTO t0(c0) VALUES ('a');

SELECT * FROM t0; -- {'a'} {'A', 'a'}

Listing 4: SQLite’s skip-scan optimization was implemented
incorrectly for DISTINCT.
CREATE TABLE t0(c0, c1, c2, c3, PRIMARY KEY (c3,

c2));
INSERT INTO t0(c2) VALUES (0) ,(0) ,(0) ,(0) ,(0),

(0) ,(0) ,(0) ,(0) ,(0),(NULL) ,(1) ,(0);
UPDATE t0 SET c1 = 0;
INSERT INTO t0(c0) VALUES (0), (0), (NULL), (0),

(0);
ANALYZE t0;
UPDATE t0 SET c2 = 1;
SELECT DISTINCT * FROM t0 WHERE c2 = 1; -- {NULL

|0|1|NULL} {NULL|0|1|NULL , 0|NULL|1|NULL ,

NULL|NULL|1|NULL}

Listing 4. For the query in this test case, the skip-scan op-
timization, where an index is used even if its columns are
not part of the WHERE clause, was implemented incorrectly for
DISTINCT queries. The bug was classified as Severe.

SQLite unexpected type. Listing 5 shows a bug where an
optimization for the LIKE operator was implemented incor-
rectly when applied to INT values. The operator was expected
to fetch the row, since it checks for an exact string match, but
omitted the row from the result set. While this is a minor bug,
it is nevertheless interesting, considering that only SQLite
allows storing a value of a type that does not match the col-
umn declaration. We found this feature to be error-prone, and
discovered 8 bugs related to it.
MySQL engine-specific bug. Unlike the other DBMSs we
tested, MySQL provides various engines that can be assigned
to tables. Listing 6 demonstrates one bug where a row was not

Listing 5: We discovered 4 bugs in a LIKE optimization, one
demonstrated by this test case.
CREATE TABLE t0(c0 INT UNIQUE COLLATE NOCASE);
INSERT INTO t0(c0) VALUES ('./');

SELECT * FROM t0 WHERE c0 LIKE './'; -- {}

{'./'}

Listing 6: We found 5 bugs using non-default engines in
MySQL.
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 INT) ENGINE = MEMORY;
INSERT INTO t0(c0) VALUES(0);
INSERT INTO t1(c0) VALUES(-1);
SELECT * FROM t0, t1 WHERE CAST(t1.c0 AS

UNSIGNED) > IFNULL("u", t0.c0); -- {} {0|-1}

Listing 7: Custom comparison operator results in incorrect
result.
CREATE TABLE t0(c0 TINYINT);
INSERT INTO t0(c0) VALUES(NULL);
SELECT * FROM t0 WHERE NOT(t0.c0 <=> 2035382037);

-- {} {NULL}

fetched when using the MEMORY engine. This was one of 5 bugs
that were triggered only when using a non-default engine.
This test case is also interesting, as it is one of 4 MySQL test
cases that relies on a cast to an unsigned integer, a type that is
not provided by the other DBMSs we tested.
MySQL value range bug. We found bugs in MySQL where
queries were handled incorrectly depending on the magnitude
of an integer or floating-point number. For example, Listing 7
shows a bug where the MySQL-specific <=> inequality opera-
tor, which yields a boolean value even when an argument is
NULL, yielded FALSE when the column value was compared
with a constant that was greater than what the column’s type
can represent.
MySQL double negation bug. Listing 8 shows an interest-
ing optimization bug that we found in MySQL. MySQL op-
timized away the double negation, which appears to be cor-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 675

Listing 8: Double negation bug in MySQL.
CREATE TABLE t0(c0 INT);
INSERT INTO t0(c0) VALUES(1);
SELECT * FROM t0 WHERE 123 != (NOT (NOT 123)); --

{} {1}

Listing 9: Table inheritance bug in PostgreSQL.
CREATE TABLE t0(c0 INT PRIMARY KEY, c1 INT);
CREATE TABLE t1(c0 INT) INHERITS (t0);
INSERT INTO t0(c0, c1) VALUES(0, 0);
INSERT INTO t1(c0, c1) VALUES(0, 1);

SELECT c0, c1 FROM t0 GROUP BY c0, c1; -- {0|0}

{0|0, 0|1}

Listing 10: This bug report caused the SQLite developers to
disallow double quotes in indexes.
CREATE TABLE t0(c0, c1);
INSERT INTO t0(c0, c1) VALUES ('a', 1);
CREATE INDEX i0 ON t0("C3");
ALTER TABLE t0 RENAME COLUMN c0 TO c3;

SELECT DISTINCT * FROM t0;--{'C3'|1} {'a'|1}

rect on the first sight. However, since MySQL’s flexible type
system allows, for example, integers as argument to the NOT

operator, this optimization is not generally correct. Applying
NOT to a non-zero integer value should yield 0, and negating
0 should yield 1, which is why the predicate in the WHERE

clause must yield TRUE. However, after optimizing away the
double negation, the predicate effectively corresponded to 123

!= 123, which evaluated to FALSE, and omitted the pivot row.
We considered this case as a duplicate, since the underlying
bug that this test case demonstrates seems to have been fixed
already in a version not released to the public. We believe
that the implicit conversions provided by MySQL (and also
SQLite) is one of the reasons that we found more bugs in
these DBMSs than in PostgreSQL.

PostgreSQL inheritance bug. In PostgreSQL, we found
only one logic bug. The bug was related to table inheritance,
a feature that only PostgreSQL provides (see Listing 9). Table
t1 inherits from t0, and PostgreSQL merges the c0 column in
both tables. As described in the PostgreSQL documentation,
t1 does not respect the PRIMARY KEY restriction of t0. This
was not considered when implementing the GROUP BY clause,
which caused PostgreSQL to omit one row in its result set.

SQLite double quote bug. Listing 10 shows a test case, for
which, after the RENAME operation, it is ambiguous whether the
index refers to a string or column. The SELECT fetches C3 as
a value for the column c3, which is incorrect in either case.
SQLite allowed both single quotes and double quotes to be
used to denote strings; depending on the context, either can
refer to a column name. After we reported the bug, a breaking
change that disallowed strings in double quotes when creating
indexes was introduced.

Listing 11: We found 4 malformed database errors in SQLite
using the error oracle, such as this one.
CREATE TABLE t1 (c0, c1 REAL PRIMARY KEY);
INSERT INTO t1(c0, c1) VALUES (TRUE,

9223372036854775807), (TRUE, 0);
UPDATE t1 SET c0 = NULL;
UPDATE OR REPLACE t1 SET c1 = 1;
SELECT DISTINCT * FROM t1 WHERE c0 IS NULL;--

Error: database disk image is malformed

Listing 12: Unexpected null value bug in PostgreSQL.
CREATE TABLE t0(c0 TEXT);
INSERT INTO t0(c0) VALUES('b'), ('a');
ANALYZE;
INSERT INTO t0(c0) VALUES (NULL);
UPDATE t0 SET c0 = 'a';
CREATE INDEX i0 ON t0(c0);
SELECT * FROM t0 WHERE 'baaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa' > t0.c0; -- Error: found

unexpected null value in index "i0"

5.2 Error Bugs
While finding error bugs was not the main goal of our work,
they were common, which is why we discuss two such cases.
SQLite database corruption. Listing 11 shows a test case
where manipulating values in a REAL PRIMARY KEY column
resulted in a corrupted database. We found 4 such cases, as
indicated by malformed database schema errors. This specific
bug was introduced in 2015, and went undetected until we
reported it in 2019; it was assigned a Severe severity level.
PostgreSQL multithreaded error. Listing 12 shows a bug
that was triggered only when another thread opened a trans-
action, holding a snapshot with the NULL value. In order to
reproduce such bugs, we had to record and replay traces of
all executing threads. 4 reported PostgreSQL bugs (includ-
ing closed/duplicate ones) could be reproduced only when
running multiple threads.

5.3 Implementation Size and Coverage
Implementation effort. It is difficult to quantify the effort
that we invested in implementing support for each DBMS,
since, for example, we got more efficient in implementing
support over time. The LOC of code of the individual testing
components (see Table 4) reflects our estimates that we in-
vested the most effort to test SQLite, then PostgreSQL, and
then MySQL. The code part shared by the components is
rather small (918 LOC), which provides evidence for the dif-
ferent SQL dialects that they support. We believe that the
implementation effort for SQLancer is small when compared
to the size of the tested DBMSs. The LOC in this table were
derived after compiling the respective DBMS using default
configurations, and thus include only those lines reachable in
the binary. Thus, they are significantly smaller than the ones
we derived statically for the entire repositories in Table 1.

676 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 4: The size of SQLancer’s components specific and
common to the tested databases.

LOC Coverage

DBMS SQLancer DBMS Ratio Line Branch

SQLite 6,501 49,703 13.1% 43.0% 38.4%
MySQL 3,995 707,803 0.6% 24.4% 13.0%
PostgreSQL 4,981 329,999 1.5% 23.7% 16.6%

Coverage. To estimate how much code of the DBMSs we
tested, we instrumented each DBMS and ran SQLancer for
24 hours (see Table 4). The coverage appears to be low (less
than 50% for all DBMSs); however, this is expected, because
we were only concerned about testing data-centric SQL state-
ments. MySQL and PostgreSQL provide features such as
user management, replication, and maintenance functionali-
ties, which we did not test. Furthermore, all DBMSs provide
consoles to interact with the DBMS and programming APIs.
We currently do not test many data types, language elements
such transaction savepoints, many DBMS-specific functions,
configuration options, and operations that might conflict with
other threads running on a distinct database. The coverage
for SQLite is the highest, reflecting that we invested the most
effort in testing it, but also that it provides fewer features in
addition to its SQL implementation.

6 Discussion

Number of bugs and code quality. The number of bugs
that we found in the respective DBMSs depended on many,
difficult-to-quantify factors. We found most bugs in SQLite.
A significant reason for this is that we focused on this DBMS,
because the developers quickly fixed all bugs. Furthermore,
while the SQL dialect supported by SQLite is compact, we
perceived it to be the most flexible one; for example, column
types are not enforced, leading to bugs that were not present
in PostgreSQL, and to a lesser degree in MySQL. MySQL’s
release policy made it difficult to test it efficiently, limiting the
number of bugs that we found in this DBMS. In PostgreSQL,
we found the least number of bugs, and we believe that a
significant reason for this is that the SQL dialect support is
strict, and few implicit conversions are performed.

False positives. In principle, PQS does not report false posi-
tives; that is, bugs found by PQS are always real bugs. Never-
theless, false positives can be due to a limited understanding
of the DBMS operator’s expected behavior when implement-
ing the operator’s execute() method. Consequently, the 13
bug reports that were considered to work as intended were
either due to (1) an incorrect implementation of an operator
in PQS, or (2) a bug found by the error oracle where the
error was expected. False bug reports allowed us to refine our
implementation based on the DBMS developer’s feedback. In

8 cases, bug reports also led to documentation enhancements
or fixes.

Common bugs. Common bugs that we found among all
DBMSs were optimization bugs (i.e. where a performance
optimization caused correctness issues). Often, these were
related to indexes created either explicitly (i.e. using CREATE

INDEX) or implicitly (e.g., using a UNIQUE constraint), as de-
scribed in Section 4.3. A number of bugs were related to the
handling of NULL, which seems to be difficult to reason about
for DBMS developers. Most of the other bugs we found were
unique to the respective DBMS.

Existing test efforts. All three DBMSs are extensively tested.
For example, SQLite, for which we found most bugs, has 662
times as much test code and test scripts than source code [47].
The core is tested by three separate test harnesses. The TCL
tests comprise 45K test cases, the TH3 proprietary test har-
ness contains about 1.7 million test instances and provides
100% branch test coverage and 100% MC/DC test cover-
age [25], and the SQL Logic Test runs about 7.2 million
queries based on over 1 GB of test data. SQLite uses various
fuzzers such as a random query generator called SQL Fuzz,
a proprietary fuzzer dbsqlfuzz, and it is fuzzed by Google’s
OSS Fuzz project [14]. Other kinds of tests are also applied,
such as crash testing, to demonstrate that the database will not
go corrupt on system crashes or power failures. Considering
that SQLite and other DBMSs are tested this extensively, we
believe that it is surprising that SQLancer could find any bugs.

Deployment. One question is how DBMS developers would
use PQS during development. Similarly to fuzzers, dynamic
testing approaches like PQS cannot provide any guarantees
in terms of bug-finding outcomes. Consequently, it is also
unclear on how long SQLancer should be run to find all bugs
it would be able to find. In practice, it might be useful to
run SQLancer similarly to fuzzers, for example, either for a
limited period as part of an overnight continuous integration
process, or constantly to maximize the chances of finding new
bugs. Future work might investigate the systematic enumera-
tion of queries, while also pruning the infinitely large space
of possible queries, to give bounded guarantees.

Specification. In order to implement the expression evalua-
tion, we implemented AST interpreters that evaluate the oper-
ators based on the pivot row. This evaluation step essentially
encodes the specification against which the DBMS is checked.
We implemented the expression evaluation primarily based on
each DBMS’ documentation. Where we deemed the documen-
tation to be insufficient, we used a trial-and-error approach
to implement the correct semantics. In contrast to differen-
tial testing, where a difference in the semantics between two
DBMSs’ SQL dialect would result in repeated false positives,
diverging behavior in an implementation of PQS (e.g., caused
by implementation errors) can be addressed by code fixes. In
fact, this observation can be used to effectively test the PQS
implementation, by running it against the DBMS under test,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 677

rather than—or in addition to—using manually-written unit
tests.
Limitations. PQS has a number of limitations in terms of
what logic bugs it can find. PQS only partly validates a query’s
result, and thus, in general, is inapplicable to, for example,
check the correct insertion or deletion of records, detect con-
currency bugs, bugs related to transactions, or bugs in the
access control layer of DBMSs [19]. Conceptually, PQS can-
not detect duplicate rows that are mistakenly omitted from or
included in the result set, since duplicate records are indistin-
guishable for PQS. Consequently, it also cannot be used to
validate the cardinality of a result set, even when each of its
rows is once selected as a pivot row. PQS is not suited for test-
ing the OFFSET and LIMIT clauses, since they might exclude the
pivot row from the result set. Although PQS has found 3 bugs
in aggregate functions, it can only do so in corner cases, such
as when aggregate functions are used in a view that is queried,
or when a table contains only a single row, in which case the
result of the aggregate function can be determined easily. Sim-
ilarly, PQS cannot find bugs in window functions, which also
compute their result over multiple rows in a window. While
SQLancer generates ORDER BY clauses, PQS cannot validate
the result set’s ordering. Similarly, for GROUP BY clauses, PQS
cannot confirm that all duplicate values are grouped. PQS
cannot be used to test NOT EXISTS predicates that reference
tables (i.e., semi-joins), since the approach cannot ensure that
a row is not contained based on only the pivot row. Similarly,
while PQS can be used to test joins, it can only test for com-
binations where a JOIN clauses matches rows on both the left
and right side of a join; for example, for a LEFT JOIN, it is in-
applicable to test cases where only values for the left table are
fetched, but not the right one. PQS is unable to test the results
of ambiguous queries and queries that rely on nondetermin-
istic functions (such as used to generate random numbers),
since it is based on the assumption that the result set is unam-
biguous. It is also unable to test user-provided functions or
operators, unless they are re-implemented in PQS. Supporting
these makes interesting future work. PQS, as the first practical
technique for finding logic bugs in DBMSs, has demonstrated
its effectiveness by finding a wide variety of bugs such as in
operator implementations and optimizations.

Implementation effort. Since the supported SQL dialects
differ vastly between DBMSs, we had to implement DBMS-
specific components in SQLancer. It could be argued that the
implementation effort is too high, especially when the full sup-
port of a SQL dialect is to be tested, which could arguably be
similar to implementing a new DBMS. Indeed, we could not
test complex functions such as SQLite’s printf, which would
have required significant implementation effort. However,
we still argue that the implementation effort is reasonably
low, and allows testing significant parts of a DBMS. Speci-
ficially, based on our experiments, implementing sargable
predicates (e.g. those predicates for which the DBMS can use
an index), already allows finding the majority of optimiza-

tion bugs. Furthermore, our approach effectively evaluates
only literal expressions, and does not need to consider mul-
tiple rows. This obviates the need of implementing a query
planner, which typically is the most complex component of a
DBMS [13]. Furthermore, the performance of the evaluation
engine is insignificant; the performance bottleneck was the
DBMS evaluating the queries, rather than SQLancer. Thus,
we also did not implement any optimizations, which typically
require much implementation effort in DBMSs [15]. Finally,
we did not need to consider aspects such as concurrency and
multi-user control as well as integrity [53].

7 Related Work

Testing of software systems. This paper fits into the stream
of testing approaches for important software systems. Dif-
ferential testing [33] is a technique that compares the results
obtained by multiple systems that implement a common lan-
guage; if results deviate, one or multiple of the systems are
likely to have a bug. It has been used as a basis for many
approaches, for example, to test C/C++ compilers [51, 52],
symbolic execution engines [24], and PDF readers [30]. Meta-
morphic testing [9], where the program is transformed so that
the same result as for the original program is expected, has
been applied to various systems; for example, equivalence
modulo inputs is a metamorphic-testing-based approach that
has been used to find over one thousand bugs in widely-used
compilers [31]. As another example, metamorphic testing
has been successfully applied to test graphic shader com-
pilers [12]. We present PQS as a novel approach to testing
DBMSs, which solves the oracle problem in a novel way,
namely by checking whether a DBMS works correctly for
a specific query and row. We believe that our approach can
also be extended to test other software systems that have an
internal state, of which a single instance can be selected.

Metamorphic testing of DBMSs. PQS inspired two follow-
up testing approaches, namely Non-Optimizing Reference
Engine Construction (NoREC) [42] and Ternary Logic Par-
titioning (TLP) [43], both of which were implemented in
SQLancer. Conceptually, NoREC translates a query that is
potentially optimized by the DBMS (called the optimized
query) to a query that cannot effectively be optimized, thus de-
tecting optimization bugs—which are a subcategory of logic
bugs—when the two query’s result sets differ. TLP translates
a given query to multiple so-called partitioning queries, each
of which computes a part of the result, whose combined result
is then compared with the given query’s result sets. Both are
metamorphic testing approaches. Thus, the effort required
for implementing them is negligible; however, they cannot
establish a ground truth, which PQS can. NoREC could find
only 52.7% of the bugs detected by PQS, which is expected
due to its narrower scope [42]. Considering that our PQS
implementation could also check for non-containment, which

678 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is a straightforward implementation enhancement, it could
have detected 82.4% of the NoREC bugs. The remaining bugs
found only by NoREC are due to bugs in the implementation
of the SUM() and COUNT() aggregate functions, which NoREC
uses for a more efficient implementation of the test oracle; it
does not provide testing support for aggregates in general.

Differential testing of DBMSs. Slutz proposed an approach
RAGS for finding bugs in DBMSs based on differential test-
ing [46]. In RAGS, queries are automatically generated and
evaluated by multiple DBMSs. If the results are inconsistent,
a bug has been found. As acknowledged by the author, the
approach was very effective, but applies to only a small set
of common SQL statements. In particular, the differences
in NULL handling, character handling, and numeric type co-
ercions were mentioned as problematic. Our approach can
detect bugs also in SQL statements unique to a DBMS, but
requires separate implementations for each DBMS.

Database fuzzing. SQLsmith is a popular tool that randomly
generates SQL queries to test various DBMSs [45]. SQLsmith
has been highly successful and has found over 100 bugs in
popular DBMSs such as PostgreSQL, SQLite and MonetDB
since 2015. However, it cannot find logic bugs found by our
approach. Similarly, general-purpose fuzzers such as AFL [2]
are routinely applied to DBMSs, and have found many bugs,
but also cannot detect logic bugs.

Consistency checking. Kingsbury has developed Jepsen, a
framework to test safety properties of distributed systems
(such as violations of consistency models), which found many
critical bugs in distributed DBMSs [28]. As part of Jepsen,
Kingsbury et al. proposed Elle [29], which is a transactional
consistency checker. In contrast to PQS, Jepsen aims to find
logic bugs primarily in the transaction processing of a DBMS.

Queries satisfying constraints. Some approaches improved
upon random query generation by generating queries that
satisfy certain constraints, such as cardinalities or coverage
characteristics. The problem of generating a query, whose
subexpressions must satisfy certain constraints, has been ex-
tensively studied [7, 34]; since this problem is complex, it is
typically tackled by an approximate algorithm [7, 34]. An al-
ternative approach was proposed by Bati et al. where queries
are selected and mutated based on whether they increase the
coverage of rarely executed code paths [4], increasing the
coverage of the DBMS component under test. Rather than
improved query generation, Lo et al. proposed an approach
where a database is generated based on specific requirements
on test queries [32]. While these approaches improve the
query and database generation, they do not help in automati-
cally finding errors, since they do not propose an approach to
automatically verify the queries’ results.

DBMS testing based on constraint solving. Khalek et al.
worked on automating testing DBMSs using constraint solv-
ing [3, 27]. Their core idea was to use a SAT-based solver
to automatically generate database data, queries, and a test

oracle. In their first work, they described how to generate
query-specific data to populate a database and enumerate the
rows that would be fetched to construct a test oracle [27].
They could reproduce previously-reported and injected bugs,
but discovered only one new bug. In follow-up work, they
also demonstrated how the SAT-based approach can be used
to automatically generate queries [3]. As with our approach,
they provide a test oracle, and additionally a targeted data
generation approach. While both approaches found bugs, our
approach found many previously undiscovered bugs. Further-
more, we believe that the simplicity of our approach could
make it wider applicable.

Testing other aspects. Rather than trying to improve the cor-
rectness of DBMSs, several approaches were proposed to test
other aspects of DBMSs. Poess et. al proposed a template-
based approach to generating queries suitable to benchmark
DBMSs, which they implemented in a tool QGEN [39]. Simi-
larly to random query generators, QGEN could also be used to
test DBMSs. Gu et al presented an approach to quantify an op-
timizer’s accuracy for a given workload by defining a metric
over different execution plans for this workload, which were
generated by using DBMS-specific tuning options [18]. Jung
et al. found performance bugs based on several versions of a
given DBMS [23]. Zheng et al. tested the ACID properties
provided by the DBMS in the presence of power faults [53].
These approaches, however, cannot be used to find logic bugs.

8 Conclusion

We have presented an effective approach for detecting bugs
in DBMSs, which we implemented in a tool SQLancer, with
which we found over 96 bugs in three popular and widely-
used DBMSs. The effectiveness of SQLancer is surprising,
considering the simplicity of our approach, and that we only
implemented a small subset of features that current DBMSs
support. There are a number of promising directions that
could help uncover additional bugs or improve PQS otherwise,
which we regard as future work. SQLancer generates tables
with a low number of rows to prevent timeouts of queries
when multiple tables are joined with non-restrictive condi-
tions. By generating targeted queries with conditions based
on table cardinalities [7, 34], we could test the DBMSs for a
large number of rows, better stressing the query planner [13].
A disadvantage of PQS is that it needs to be implemented
for every DBMS to be tested. As part of future work, this
effort could be reduced, for example, by providing common
building blocks that could be combined to implement oper-
ators and functions more efficiently. Finally, PQS could be
extended to also test for rows that are incorrectly fetched by
selecting a pivot row, ensuring that the randomly-generated
predicates evaluate to FALSE or NULL for it, and then check
that the pivot row is not contained in the result set.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 679

Acknowledgements

We thank the anonymous reviewers and our shepherd,
Yuanyuan Zhou, for their insightful feedback. We want to
thank all the DBMS developers for responding to our bug re-
ports as well as analyzing and fixing the bugs we reported. We
especially want to thank the SQLite developers, D. Richard
Hipp and Dan Kennedy, for taking all bugs we reported seri-
ously and fixing them quickly. Furthermore, we are grateful
for the feedback received by our colleagues at ETH Zurich.

References

[1] DB-Engines Ranking (December 2019), 2019. https:
//db-engines.com/en/ranking.

[2] american fuzzy lop, 2020. https://github.com/
google/AFL.

[3] Shadi Abdul Khalek and Sarfraz Khurshid. Automated
sql query generation for systematic testing of database
engines. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, pages 329–332, 2010.

[4] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Alek-
sandras Surna. A genetic approach for random testing
of database systems. In Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB
’07, pages 1243–1251. VLDB Endowment, 2007.

[5] Carsten Binnig, Donald Kossmann, Eric Lo, and
M. Tamer Özsu. Qagen: Generating query-aware test
databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’07, page 341–352, New York, NY, USA, 2007.
Association for Computing Machinery.

[6] Nicolas Bruno and Surajit Chaudhuri. Flexible database
generators. In Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB ’05, page
1097–1107. VLDB Endowment, 2005.

[7] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas.
Generating queries with cardinality constraints for dbms
testing. IEEE Trans. on Knowl. and Data Eng.,
18(12):1721–1725, December 2006.

[8] Donald D. Chamberlin and Raymond F. Boyce. Sequel:
A structured english query language. In Proceedings of
the 1974 ACM SIGFIDET (Now SIGMOD) Workshop
on Data Description, Access and Control, SIGFIDET
’74, pages 249–264, 1974.

[9] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu.
Metamorphic testing: a new approach for generating
next test cases. Technical report, Technical Report
HKUST-CS98-01, Department of Computer Science,
Hong Kong, 1998.

[10] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, June 1970.

[11] E.F. Codd. Relational Completeness of Data Base Sub-
languages. Research report // San José Research Labo-
ratory: Computer sciences. IBM Corporation, 1972.

[12] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu,
and Paul Thomson. Automated testing of graph-
ics shader compilers. Proc. ACM Program. Lang.,
1(OOPSLA):93:1–93:29, October 2017.

[13] Leo Giakoumakis and César A Galindo-Legaria. Testing
sql server’s query optimizer: Challenges, techniques and
experiences. IEEE Data Eng. Bull., 31(1):36–43, 2008.

[14] Google. Announcing oss-fuzz: Continu-
ous fuzzing for open source software, 2016.
https://testing.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.
html.

[15] Goetz Graefe. Query evaluation techniques for large
databases. ACM Comput. Surv., 25(2):73–169, June
1993.

[16] Goetz Graefe and William J. McKenna. The volcano
optimizer generator: Extensibility and efficient search.
In Proceedings of the Ninth International Conference
on Data Engineering, page 209–218, USA, 1993. IEEE
Computer Society.

[17] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken
Baclawski, and Peter J. Weinberger. Quickly generat-
ing billion-record synthetic databases. SIGMOD Rec.,
23(2):243–252, May 1994.

[18] Zhongxian Gu, Mohamed A. Soliman, and Florian M.
Waas. Testing the accuracy of query optimizers. In Pro-
ceedings of the Fifth International Workshop on Testing
Database Systems, DBTest ’12, pages 11:1–11:6, 2012.

[19] Marco Guarnieri, Srdjan Marinovic, and David Basin.
Strong and provably secure database access control. In
Proceedings of the 1st IEEE European Symposium on
Security and Privacy, pages 163–178. IEEE, 2016.

[20] Kenneth Houkjær, Kristian Torp, and Rico Wind. Simple
and realistic data generation. In Proceedings of the 32nd
International Conference on Very Large Data Bases,
VLDB ’06, page 1243–1246. VLDB Endowment, 2006.

[21] William E. Howden. Theoretical and empirical studies
of program testing. In Proceedings of the 3rd Inter-
national Conference on Software Engineering, ICSE
’78, pages 305–311, Piscataway, NJ, USA, 1978. IEEE
Press.

680 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://github.com/google/AFL
https://github.com/google/AFL
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

[22] Matt Jibson. SQLsmith: Randomized sql testing in cock-
roachdb, 2019. https://www.cockroachlabs.com/
blog/sqlsmith-randomized-sql-testing/.

[23] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and
Woonhak Kang. Apollo: Automatic detection and diag-
nosis of performance regressions in database systems.
Proc. VLDB Endow., 13(1):57–70, September 2019.

[24] Timotej Kapus and Cristian Cadar. Automatic testing
of symbolic execution engines via program generation
and differential testing. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017, pages 590–600, Piscat-
away, NJ, USA, 2017. IEEE Press.

[25] Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J.,
and Rierson Leanna K. A practical tutorial on modified
condition/decision coverage. Technical report, 2001.

[26] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas
Neumann, Andrew Pavlo, and Peter Boncz. Everything
you always wanted to know about compiled and vector-
ized queries but were afraid to ask. Proc. VLDB Endow.,
11(13):2209–2222, September 2018.

[27] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khur-
shid. Query-aware test generation using a relational
constraint solver. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE ’08, pages 238–247, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[28] Kyle Kingsbury. Jepsen, 2020. https://github.com/
jepsen-io/jepsen.

[29] Kyle Kingsbury and Peter Alvaro. Elle: Inferring isola-
tion anomalies from experimental observations, 2020.

[30] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin
Tan, and Cristian Cadar. On the correctness of electronic
documents: Studying, finding, and localizing inconsis-
tency bugs in pdf readers and files. Empirical Softw.
Engg., 23(6):3187–3220, December 2018.

[31] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler
validation via equivalence modulo inputs. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
’14, pages 216–226, 2014.

[32] Eric Lo, Carsten Binnig, Donald Kossmann,
M. Tamer Özsu, and Wing-Kai Hon. A frame-
work for testing dbms features. The VLDB Journal,
19(2):203–230, Apr 2010.

[33] William M McKeeman. Differential testing for software.
Digital Technical Journal, 10(1):100–107, 1998.

[34] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte.
Generating targeted queries for database testing. In Pro-
ceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’08, pages
499–510, 2008.

[35] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
crash-consistency bugs with bounded black-box crash
testing. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pages 33–
50, Carlsbad, CA, October 2018. USENIX Association.

[36] MySQL. Mysql homepage, 2020. https://www.
mysql.com/.

[37] Andrea Neufeld, Guido Moerkotte, and Peter C. Locke-
mann. Generating consistent test data: Restricting the
search space by a generator formula. The VLDB Journal,
2(2):173–214, April 1993.

[38] Stack Overflow. Developer survey results 2019, 2019.

[39] Meikel Poess and John M. Stephens, Jr. Generating
thousand benchmark queries in seconds. In Proceedings
of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, VLDB ’04, pages 1045–1053.
VLDB Endowment, 2004.

[40] PostgreSQL. Postgresql homepage, 2019.

[41] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case reduction
for c compiler bugs. page 335–346, 2012.

[42] Manuel Rigger and Zhendong Su. Detecting optimiza-
tion bugs in database engines via non-optimizing refer-
ence engine construction. In Proceedings of the 2020
28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, 2020.

[43] Manuel Rigger and Zhendong Su. Finding bugs in
database systems via query partitioning. Proc. ACM
Program. Lang., 4(OOPSLA), 2020.

[44] Manuel Rigger and Zhendong Su. OSDI 20 Artifact
for "Testing Database Engines via Pivoted Query Syn-
thesis", 2020. https://doi.org/10.5281/zenodo.
4005704.

[45] Andreas Seltenreich. SQLSmith, 2020. https://
github.com/anse1/sqlsmith.

[46] Donald R Slutz. Massive stochastic testing of sql. In
VLDB, volume 98, pages 618–622, 1998.

[47] SQLite. How SQLite is tested, 2020. https://www.
sqlite.org/testing.html.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 681

https://www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/
https://www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://www.mysql.com/
https://www.mysql.com/
https://doi.org/10.5281/zenodo.4005704
https://doi.org/10.5281/zenodo.4005704
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html

[48] SQLite. Most widely deployed and used database
engine, 2020. https://www.sqlite.org/
mostdeployed.html.

[49] SQLite. SQLite homepage, 2020. https://www.
sqlite.org/.

[50] Thomas Würthinger, Christian Wimmer, Andreas Wöß,
Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor
Richards, Doug Simon, and Mario Wolczko. One vm
to rule them all. In Proceedings of the 2013 ACM In-
ternational Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward!
2013, pages 187–204, 2013.

[51] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. In

Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’11, pages 283–294, 2011.

[52] Qirun Zhang, Chengnian Sun, and Zhendong Su. Skele-
tal program enumeration for rigorous compiler testing.
In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2017, pages 347–361, 2017.

[53] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin,
Mark Lillibridge, Elizabeth S. Yang, Bill W Zhao, and
Shashank Singh. Torturing databases for fun and profit.
In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), pages 449–464,
Broomfield, CO, October 2014. USENIX Association.

682 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/
https://www.sqlite.org/

	Introduction
	Background
	Pivoted Query Synthesis
	Approach Overview
	Query Generation & Checking
	Random State Generation
	Important Implementation Details

	Evaluation
	Experimental Setup
	Bug Reports Overview
	SQL Statements Overview

	Interesting Bugs
	Containment Bugs
	Error Bugs
	Implementation Size and Coverage

	Discussion
	Related Work
	Conclusion

