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Abstract
We design CrossFS, a cross-layered direct-access file sys-
tem disaggregated across user-level, firmware, and kernel
layers for scaling I/O performance and improving concur-
rency. CrossFS is designed to exploit host- and device-level
compute capabilities. For concurrency with or without data
sharing across threads and processes, CrossFS introduces
a file descriptor-based concurrency control that maps each
file descriptor to one hardware-level I/O queue. This design
allows CrossFS’s firmware component to process disjoint ac-
cess across file descriptors concurrently. CrossFS delegates
concurrency control to powerful host-CPUs, which convert
the file descriptor synchronization problem into an I/O queue
request ordering problem. To guarantee crash consistency in
the cross-layered design, CrossFS exploits byte-addressable
nonvolatile memory for I/O queue persistence and designs
a lightweight firmware-level journaling mechanism. Finally,
CrossFS designs a firmware-level I/O scheduler for efficient
dispatch of file descriptor requests. Evaluation of emulated
CrossFS on storage-class memory shows up to 4.87X con-
current access gains for benchmarks and 2.32X gains for
real-world applications over the state-of-the-art kernel, user-
level, and firmware file systems.

1 Introduction

We have finally entered an era where storage access latency is
transitioning from milliseconds to microseconds [3,52,62,68].
While modern applications strive to increase I/O parallelism,
storage software bottlenecks such as system call overheads,
coarse-grained concurrency control, and the inability to ex-
ploit hardware-level concurrency continues to impact I/O
performance. Several kernel-level, user-level, and firmware-
level file systems have been designed to benefit from CPU
parallelism [65, 66], direct storage access [22, 31, 40], or
computational capability in the storage hardware [33, 56].
However, these approaches are designed in isolation and fail
to exploit modern, ultra-fast storage hardware.

Kernel-level file systems (Kernel-FS) satisfy fundamental
file system guarantees such as integrity, consistency, durabil-
ity, and security. Despite years of research, Kernel-FS designs
continue to suffer from three main bottlenecks. First, ap-
plications must enter and exit the OS for performing I/O,
which could increase latency by 1-4µs [31, 68]. Recently
found security vulnerabilities have further amplified such
costs [25, 39, 47]. Second, even state-of-the-art designs en-
force unnecessary serialization (e.g., inode-level read-write
lock) when accessing disjoint portions of data in a file leading
to high concurrent access overheads [48]. Third, Kernel-FS
designs fail to fully exploit storage hardware-level capabilities
such as compute, thousands of I/O queues, and firmware-level
scheduling, ultimately impacting I/O latency, throughput, and
concurrency in I/O-intensive applications [5, 8, 9, 45, 69].

As an alternative design point, there is increasing focus
towards designing user-level file systems (User-FS) for di-
rect storage access bypassing the OS [17, 22, 31, 40, 52, 65].
However, satisfying the fundamental file system guarantees
from untrusted user-level is challenging [33]. While these
designs have advanced the state of the art, some designs
bypass the OS only for data-plane operations (without data
sharing) [17, 31, 52]. In contrast, others provide full direct
access by either sidestepping or inheriting coarse-grained
and suboptimal concurrency control across threads and pro-
cesses [22, 40], or even compromise correctness [65]. Im-
portantly, most User-FS designs fail to exploit the hardware
capabilities of modern storage.

At the other extreme is the exploration of firmware-level
file systems (Firmware-FS) that embed the file system into
the device firmware for direct-access [33, 56]. The Firmware-
FS acts as a central entity to satisfy fundamental file system
properties. Although an important first step towards utiliz-
ing storage-level computational capability, current designs
miss out on benefiting from host-level multi-core parallelism.
Additionally, these designs inherit inode-centric design for re-
quest queuing, concurrency control, and scheduling, leading
to poor I/O scalability.

In summary, current User-FS, Kernel-FS, and Firmware-FS
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designs lack a synergistic design across the user, the kernel,
and the firmware layers, which is critical for achieving di-
rect storage access and scaling concurrent I/O performance
without compromising fundamental file system properties.

Our Approach - Cross-layered File System. To address
the aforementioned bottlenecks, we propose CrossFS, a cross-
layered direct-access file system that provides scalability,
high concurrent access throughput, and lower access latency.
CrossFS achieves these goals by disaggregating the file sys-
tem across the user-level, the device firmware, and the OS
layer, thereby exploiting the benefits of each layer. The
firmware component (FirmFS) is the heart of the file sys-
tem enabling applications to directly access the storage with-
out compromising fundamental file system properties. The
FirmFS taps into storage hardware’s I/O queues, computa-
tional capability, and I/O scheduling capability for improving
I/O performance. The user-level library component (LibFS)
provides POSIX compatibility and handles concurrency con-
trol and conflict resolution using the host-level CPUs (host-
CPUs). The OS component sets up the initial interface be-
tween LibFS and FirmFS (e.g., I/O queues) and converts
software-level access control to hardware security control.

Scalability. File system disaggregation alone is insufficient
for achieving I/O scalability, which demands revisiting file
system concurrency control, reducing journaling cost, and
designing I/O scheduling that matches the concurrency con-
trol. We observe that file descriptors (and not inode) are a
natural abstraction of access in most concurrent applications,
where threads and processes use independent file descriptors
to access/update different regions of shared or private files
(for example, RocksDB maintains 3.5K open file descrip-
tors). Hence, for I/O scalability, in CrossFS, we introduce file
descriptor-based concurrency control, which allows threads
or processes to update or access non-conflicting blocks of a
file simultaneously.

Concurrency Control via Queue Ordering. In CrossFS,
file descriptors are mapped to dedicated hardware I/O queues
to exploit storage hardware parallelism and fine-grained con-
currency control. All non-conflicting requests (i.e., requests
to different blocks) issued using a file descriptor are added
to a file descriptor-specific queue. In contrast, conflicting re-
quests are ordered by using a single queue. This provides an
opportunity for device-CPUs and FirmFS to dispatch requests
concurrently with almost zero synchronization between host
and device-CPUs. For conflict resolution and ordering up-
dates to blocks across file descriptors, CrossFS uses a per-
inode interval tree [7], interval tree read-write semaphore
(interval tree rw-lock), and global timestamps for concur-
rency control. However, unlike current file systems that must
hold inode-level locks until request completion, CrossFS only
acquires interval tree rw-lock for request ordering to FD-
queues. In short, CrossFS concurrency design turns the file
synchronization problem into a queue ordering problem.

CrossFS Challenges. Moving away from an inode-centric
to a file descriptor-centric design introduces CrossFS-specific
challenges. First, using fewer and wimpier device-CPUs for
conflict resolution and concurrency control impacts perfor-
mance. Second, mapping a file descriptor to an I/O queue (a
device-accessible DMA memory buffer) increases the number
of queues that CrossFS must manage, potentially leading to
data loss after a crash. Finally, overburdening device-CPUs
for serving I/O requests across hundreds of file descriptor
queues could impact performance, specifically for blocking
I/O operations (e.g., read, fsync).

Host Delegation. To overcome the challenge of fewer (and
wimpier) device-CPUs, CrossFS utilizes the cross-layered
design and delegates the responsibility of request ordering to
host-CPUs. The host-CPUs order data updates to files they
have access to, whereas FirmFS is ultimately responsible for
updating and maintaining metadata integrity, consistency, and
security with POSIX-level guarantees.

Crash-Consistency and Scheduler. To handle crash consis-
tency and protect data loss across tens and possibly hundreds
of FD-queues, CrossFS uses byte-addressable, persistent
NVMs as DMA’able and append-only FD-queues from which
FirmFS can directly fetch requests or pool responses. CrossFS
also designs low-cost data journaling for crash-consistency of
firmware file system state (§4.4). Finally, for efficient schedul-
ing of device-CPUs, CrossFS smashes traditional two-level
I/O schedulers spread across the host-OS and the firmware
into one FirmFS scheduler. CrossFS also equips the scheduler
with policies that enhance file descriptor-based concurrency.

Evaluation of our CrossFS prototype implemented as a
device-driver and emulated using Intel Optane DC mem-
ory [3] shows significant concurrent access performance gains
with or without data sharing compared to state-of-the-art
Kernel-FS [64, 66], User-FS [31, 40], and Firmware-FS [33]
designs. The performance gains stem from reducing system
calls, file descriptor-level concurrency, work division across
host and device-CPUs, low-overhead journaling, and im-
proved firmware-level scheduling. The concurrent access mi-
crobenchmarks with data sharing across threads and processes
show up to 4.87X gains. The multithreaded Filebench [59]
macrobenchmark workloads without data sharing show up
to 3.58X throughput gains. Finally, widely used real-world
applications such as RocksDB [9] and Redis [8] show up to
2.32X and 2.35X gains, respectively.

2 Background and Related Work

Modern ultra-fast storage devices provide high bandwidth
(8-16 GB/s) and two orders of lower access latency (<
20µsec) [15, 67] compared to HDD storage. The perfor-
mance benefits can be attributed to innovation in faster stor-
age hardware and access interface (e.g., PCIe support), in-
crease in storage-level compute (4-8 CPUs, 4-8 GB DRAM,
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64K I/O queues) [27], fault protection equipped with capac-
itors [57, 58], and evolving support for storage programma-
bility. In recent years, file systems have evolved to exploit
high-performance modern storage devices. However, for ap-
plications to truly benefit from modern storage, file system
support for scalable concurrency and efficient data sharing is
critical [21, 26, 42]. Next, we discuss kernel, user-level, and
firmware-level file system innovations and their implications.

Kernel-level File Systems (Kernel-FS). Several new kernel
file systems have been designed to exploit the capabilities
of modern storage devices [15, 23, 43, 64, 66]. For exam-
ple, F2FS exploits multiple queues of an SSD and employs
a log-structured design [43]. LightNVM moves the FTL
firmware code to the host and customizes request schedul-
ing [15]. File systems such as PMFS [23], DAX [64], and
NOVA [66] exploit NVM’s byte-addressability; they support
block-based POSIX interface but replace block operations
with byte-level loads and stores. To improve concurrent ac-
cess performance, file systems such as ext4 introduce inode-
level read-write semaphores (rw-lock) for improving read
concurrency when sharing files [24]. Alternatively, user-level
storage access frameworks such as SPDK use NVMe-based
I/O command queues to provide direct I/O operations. How-
ever, these frameworks only support simple block operations
as opposed to a POSIX interface [29].

User-level File Systems (User-FS). There is a renewed fo-
cus to bypass the OS and directly access storage hardware
from a user-level library. However, managing a file system
from an untrusted library introduces a myriad of challenges,
which include atomicity, crash consistency, and security chal-
lenges [40, 52, 60]. Some prior designs bypass the OS for
data plane operations but enter the OS for control plane oper-
ations [31, 52, 60]. In contrast, approaches such as Strata [40]
and ZoFS [22] provide direct access for control and data plane
operations by managing data and metadata in a user-level li-
brary. For example, Strata [40] buffers data and metadata
updates to a per-process, append-only log, which is periodi-
cally committed to a shared area using a trusted file system
server. More recently, ZoFS, designed for persistent memory
technologies, uses virtual memory protection to secure ac-
cess to a user-level buffer holding data and metadata updates.
Unfortunately, all these approaches require high-overhead
concurrency control and use coarse-grained locks that do not
scale [31]. For example, in Strata, a process must acquire an
inode lease from the trusted file system server before access-
ing a file [40, 60].

Firmware File Systems (Firmware-FS). After two decades
of seminal work on programmable storage [17, 33, 54, 56],
prior research takes a radical approach of offloading either
the entire file system [33] or a part of it [17, 54] into the de-
vice firmware. The firmware approach allows applications
to bypass the OS for both control and data plane operations.
Firmware-FS acts as a central entity to coordinate updates to

ext4-DAX Strata DevFS CrossFS
21.38% 26.57% 27.06% 9.99%

Table 1: Time spent on inode-level lock.

file system metadata and data without compromising crash-
consistency by using the device-CPUs and the device-RAM
for per-inode I/O queues. For security and permission checks,
systems such as DevFS [33] rely on the host OS to update a
device-level credential table with process permissions. For
crash consistency, the power-loss capacitors could be used
to flush in-transit updates after a system failure. Insider [56]
explores the use of FPGAs for file system design, whereas
other efforts have focused on using FPGAs [70] to accelerate
key-value stores. Unfortunately, both DevFS and Insider han-
dle concurrency using inode-level locks, limiting file system
concurrency and scalability.
File System Scalability. Several kernel-level file sys-
tem scalability designs have been explored in the past.
SpanFS [32] shares files and directories across cores at a
coarse granularity, requiring developers to distribute I/O.
ScaleFS [13] decouples the in-memory file system from the
on-disk file system and uses per-core operation logs to achieve
high concurrency. FLEX [65] moves file operations to a user-
level library and modifies the Linux VFS layer. Fine-grained
locking mechanisms such as CST-semaphore [36] and range
lock [42] are applied to current kernel-level file systems to
improve concurrency. However, all the above approaches
either lack direct access or require inode-level locks and fail
to utilize host and device-level compute capabilities.

3 Motivation

Unfortunately, state-of-the-art Kernel-FS [64, 66], User-
FS [31, 40], and Firmware-FS [33] designs suffer from three
prominent limitations. First, they lack a synergistic design
that could benefit from the combined use of host and device
resources, such as host and device-level CPUs, and thousands
of hardware I/O queues. Second, the use of an inode-centric
design limits concurrent access scalability. Third, for file
sharing across processes, applications must trap into an OS
for control or data plane or both [60].

To briefly illustrate the poor concurrent access scalability
in state-of-the-art file system designs, we conduct an experi-
ment where readers and writers perform random-but-disjoint
block accesses on a 12GB file. For our analysis, we com-
pare User-FS Strata [40], Kernel-FS Linux ext4-DAX [64],
Firmware-FS DevFS [33], and the proposed CrossFS. Fig-
ure 1a shows the aggregate write throughput when multiple
writers concurrently update a shared file. The x-axis varies
the writer thread count. In Figure 1b, we restrict the number
of writers to 4 and increase readers in the x-axis.
Concurrent Write Performance: As shown in Figure 1a,
when sharing files across concurrent writers, the throughput
substantially reduces for all approaches except CrossFS. ext4-
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Figure 1: Concurrent Write and Read Throughput. (a) shows
the aggregated write throughput when concurrent writers update
disjoint random blocks of a 12GB file; (b) shows aggregated read
throughput when there are 4-concurrent writers.

DAX and NOVA use inode-level rw-lock, which prevents
writers from updating disjoint blocks of a file. Strata does not
scale beyond four threads because it uses an inode-level mu-
tex. Additionally, Strata uses a private NVM log to buffer data
and metadata (inode) updates, and the log fills up frequently,
consequently stalling write operations.

Sharing across Reader and Writer Threads: Figure 1b
and Table 1 show the aggregated read throughput and the
execution time spent on an inode-level rw-lock. The read
performance does not scale (in the presence of writers) even
when accessing disjoint blocks, mainly due to the inode-level
rw-lock. For Strata, by the time readers acquire a mutex for
the private log, the log contents could be flushed, forcing
readers to access data using Kernel-FS. We see similar perfor-
mance bottlenecks when using concurrent processes instead
of threads for ext4-DAX and NOVA due to their inode-centric
concurrency control. For Strata, the performance degrades
further; the reader processes starve until writers flush their
private log to the shared area. These issues highlight the
complexities of scaling concurrent access performance in
Kernel-FS and User-FS designs. The observations hold for
other user-level file systems such as ZoFS [22]. Finally, as
shown in Figure 1a and Figure 1b, CrossFS outperforms other
file systems with its fine-grained file descriptor-based concur-
rency. We will next discuss the design details of CrossFS.

4 Design of CrossFS

CrossFS is a cross-layered design that disaggregates the file
system to exploit the capabilities of userspace, firmware,
and OS layers. CrossFS also achieves high end-to-end con-
currency in the user-level library, I/O request queues, and
firmware-level file system, with or without file sharing across
threads and processes. Finally, CrossFS reduces system call
cost, provides lightweight crash consistency, and efficient
device-CPU scheduling. We observe that applications that
perform conflicting updates to the same blocks of files, auto-
matically resort to protecting file descriptors with application-
level locking [2, 5, 9]. Hence, for concurrency and file shar-
ing, CrossFS uses file descriptors as a fundamental unit of
synchronization, enabling threads and processes with sepa-
rate file descriptors to update disjoint blocks of files concur-
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Figure 2: CrossFS Design Overview. The host-level LibFS con-
verts POSIX I/O calls into FirmFS commands, manages FD-queues,
and interval tree for checking block conflicts and ordering requests
in FD-queues. FirmFS implements the file system, journaling, and
scheduler and concurrently processes requests across FD-queues.
The OS component is responsible for the FD-queue setup and up-
dates the device credential table with host-level permission informa-
tion. We show a running example of two instances sharing a file;
Op1 to 6 show request execution with global timestamps t1 to t6.
Op6 conflicts with Op2, so Op6 is added to the same FD-queue as
Op2 using an interval tree.

rently. CrossFS assigns each file descriptor a dedicated I/O
queue (FD-queue) and adds non-conflicting (disjoint) block
requests across descriptors to their independent FD-queue,
whereas serializing conflicting block updates or access to a
single FD-queue. Consequently, CrossFS converts the file
synchronization problem to an I/O request ordering problem,
enabling device-CPUs to dispatch requests across FD-queues
concurrently. We outline the design principles and then follow
it up by describing the details of file descriptor-based concur-
rency mechanism, crash consistency support, I/O scheduling,
and security.

4.1 CrossFS Design Principles
CrossFS adapts the following key design principles:

Principle 1: For achieving high performant direct-I/O, disag-
gregate file system across user-level, firmware, and OS layers
to exploit host and device-level computing capabilities.
Principle 2: For fine-grained concurrency, align each file
descriptor to an independent hardware I/O queue (FD-queue),
and design concurrency control focused around the file de-
scriptor abstraction.
Principle 3: To efficiently use device-CPUs, merge software
and hardware I/O schedulers into a single firmware sched-
uler, and design scheduling policies to benefit from the file-
descriptor design.
Principle 4: For crash consistency in a cross-layered design,
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protect the in-transit user data and the file system state by
leveraging persistence provided by byte-addressable NVMs.

4.2 CrossFS Layers

CrossFS enables unmodified POSIX-compatible applica-
tions to benefit from direct storage access. As shown in
Figure 2, CrossFS comprises of a user-level library (LibFS),
a firmware file system component (FirmFS), and an OS com-
ponent.

User-space Library Component (LibFS). Applications are
linked to LibFS, which intercepts POSIX I/O calls and con-
verts them to FirmFS I/O commands. As shown in Figure 2,
when opening a file, LibFS creates an FD-queue by request-
ing the OS to allocate a DMA’able memory region on NVM
and registering the region with FirmFS. Each I/O request is
added to a file descriptor-specific FD-queue when there are
no block-level conflicts. In the presence of block conflicts,
the conflicting requests are serialized to the same FD-queue.
To identify block conflicts, in CrossFS, we use a per-inode
interval tree with range-based locking. The conflict resolu-
tion using the interval tree is delegated to the host-CPU when
sharing data across multiple threads, and for inter-process file
sharing, interval tree updates are offloaded to FirmFS (and
the device-CPUs).

Firmware File System Component (FirmFS). FirmFS is
responsible for fetching and processing I/O requests from
FD-queues. Internally, FirmFS’s design is similar to a tra-
ditional file system with in-memory and on-disk metadata
structures, including a superblock, bitmap blocks, and inode
and data blocks. FirmFS also supports data and metadata jour-
naling using a dedicated journal space on the device, as shown
in Figure 2. FirmFS fetches I/O requests from FD-queues
and updates in-memory metadata structures (stored in the
device-level RAM). For crash-consistency, FirmFS journals
the updates to the storage and then checkpoints them (§4.4).
The mounting process for FirmFS is similar to a traditional
file system: finding the superblock, followed by the root di-
rectory. To schedule requests from FD-queues, FirmFS also
implements a scheduler (§4.5). Finally, FirmFS implements a
simple slab allocator for managing device memory.

OS Component. The OS component is mainly used for set-
ting up FD-queues by allocating DMA’able memory regions,
mounting of CrossFS, and garbage collecting resources. The
OS component also converts process-level access controls to
device-level credentials for I/O permission checks without
requiring applications to trap into the OS (§4.6).

4.3 Scaling Concurrent Access

We next discuss CrossFS’s file descriptor-based concur-
rency design that scales without compromising correctness
and sharply contrasts with prior inode-centric designs.

4.3.1 Per-File Descriptor I/O Queues

Modern NVMe devices support up to 64K I/O queues,
which can be used by applications to parallelize I/O re-
quests. To exploit this hardware-level I/O parallelism fea-
ture, CrossFS aligns each file descriptor with a dedicated I/O
queue (with a configurable limit on the maximum FD-queues
per inode). As shown in Figure 2, during file open (Op1),
LibFS creates an FD-queue (I/O request + data buffer) by
issuing an IOCTL call to the OS component, which reserves
memory for an FD-queue, and registers the FD-queue’s ad-
dress with FirmFS. For handling uncommon scenarios where
the number of open file descriptors could exceed the avail-
able I/O queues (e.g., 64K I/O queues in NVMe), supporting
FD-queue reuse and multiplexing could be useful. For reuse,
CrossFS must service pending requests in an FD-queue, and
clear its data buffers. For multiplexing, CrossFS must imple-
ment a fair queue sharing policy. While CrossFS currently
supports queue reuse after a file descriptor is closed, our fu-
ture work will address the support for FD-queue multiplexing.

4.3.2 Concurrency Constraints

CrossFS provides correctness and consistency guarantees
of a traditional kernel-level file system (e.g., ext4). We first
define the constraints that arise as a part of CrossFS’s file-
descriptor design, and then describe how CrossFS satisfies
these constraints.

• Constraint 1: Read requests (commands) entering a de-
vice at timestamp T must fetch the most recent version
of data blocks, which are either buffered in FD-queues or
stored in the storage. The timestamp refers to a globally
incrementing atomic counter added to an I/O command
in the FD-queues.

• Constraint 2: For concurrent writes to conflicting (same)
blocks across file descriptors, the most recent write at Tj
can overwrite a preceding write at Ti where i < j.

4.3.3 Delegating Concurrency Control to Host-CPUs

Handling conflict resolution across several threads that
concurrently update a shared file could be compute-heavy.
As a consequence, using fewer (or wimpier) device-CPUs
could pose a scalability challenge. Hence, in CrossFS, for
data sharing across multiple threads (a common scenario in
most applications), we exploit our cross-layered design and
delegate concurrency control to host-CPUs without impacting
file system correctness. In the case of data sharing across
processes, for simplicity and security, we offload concurrency
control to FirmFS (discussed in §4.6). We first discuss the
data structure support and then discuss CrossFS support for
concurrent reader and writer threads with host-delegated con-
currency control.

Request Timestamp. Before adding a request to an FD-
queue, LibFS tags each I/O request with a globally incre-
menting hardware TSC-based timestamp. The timestamp is
used to resolve ordering conflicts across writers and fetch the
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most recent data for readers. The use of TSC-based times-
tamp for synchronization has been widely studied by prior
research [35, 38, 46, 55].

Per-Inode Interval Tree. To resolve conflicts across con-
current writers and readers, we use a per-inode interval tree.
An interval tree is an augmented red-black tree, indexed by
interval ranges (low, high) and allows quick lookup for any
overlapping or exact matching block range [7, 28].

In CrossFS, an inode-level interval tree is used for conflict
resolution, i.e., to identify pending I/O requests in FD-queues
that conflict with a newly issued I/O request. The OS allocates
the interval tree in a DMA’able region during file creation
and returns interval tree’s address to LibFS. For each update
request, LibFS adds a new interval tree node indexed by
the request’s block range. The nodes store a timestamp and
a pointer to the newly added I/O request in the FD-queue.
The interval tree’s timestamp (TSC) is checked for following
cases: (1) for writes to identify conflicting updates to block(s)
across different FD-queues; (2) for reads to fetch the latest
uncommitted (in-transit) updates from an FD-queue; and (3)
for file commits (fsync). The interval tree items are deleted
after FD-queue entries are committed to the storage blocks
(discussed in 4.3.6).

Threads that share a file also share inode-level interval
tree. For files shared within a process, interval tree is updated
and accessed just by LibFS. The updates to interval tree are
protected using a read-write lock (rw-lock), held only at the
time request insertion to FD-queue.

4.3.4 Supporting Concurrent Readers and a Writer

CrossFS converts a file synchronization problem to a queue
ordering problem. Hence, the first step towards concurrent
write and read support for a file is to identify a file descriptor
queue to which a request must be added. To allow concurrent
readers and one writer to share a file, requests are ordered
using a global timestamp.

For each write request, LibFS acquires an inode’s inter-
val tree rw-lock and atomically checks the interval tree for
conflicts. A conflict exists if there are unprocessed prior FD-
queue write requests that update the same block(s). After
detecting a conflict, LibFS adds a global timestamp to the
write request and orders it in the same FD-queue of the prior
request. LibFS also updates the interval tree’s node to point
to the current request and releases the interval tree’s rw-lock.
For example, in Figure 2, for Op6, Thread 2’s write to offset
8k conflicts with Thread 1’s Op2 buffered in fd1’s queue with
an earlier timestamp. Hence, Thread 2’s request is added to
fd1’s FD-queue for ordering the updates.

Note that, while prior systems acquire the inode rw-lock
until request completion, CrossFS acquires inode-level in-
terval tree rw-lock only until a request is ordered to the
FD-queue. This substantially reduces the time to acquire in-
terval tree rw-lock compared to prior inode-centric designs
(see §6). To reduce the latency when reading block(s) from a

file, LibFS uses the interval tree to identify conflicting writes
to the same block(s) buffered in the FD-queue. If a conflict
exists, LibFS (i.e., the host-CPU) returns the requested blocks
from FD-queue, thereby reducing FirmFS work. For example,
as shown in Figure 2, for Thread 1’s Op3, LibFS checks the
file descriptors fd1’s FD-queue for a preceding write to the
same block and returns the read from the FD-queue. Read
operations also acquire interval tree rw-lock before lookup,
and do not race with an on-going write or a FD-queue cleanup
(which also acquires interval tree rw-lock).

4.3.5 Supporting Concurrent Writers

CrossFS supports concurrent writers to share files without
enforcing synchronization between host and device-CPUs.

Non-conflicting Concurrent Writes. When concurrent writ-
ers share a file, non-conflicting (disjoint) writes to blocks
across file descriptors are added to their respective FD-queues,
tagged with a global timestamp, and added to an interval tree
node for the corresponding block range. In Figure 2, non-
conflicting Op2 in fd1 and Op5 in fd2 are added to separate
FD-queues and can be concurrently processed by FirmFS.

Conflicting Concurrent Writes. The number of conflicting
blocks across concurrent writers could vary.
(1) Single-block conflict. A single-block conflict refers to
a condition where a conflict occurs for one block. When a
current writer updates one block (say block k) at a timestamp
(say j), the write request (WjBk) is atomically checked against
the interval tree for preceding non-committed writes. If an
earlier write (say WiBk, where i < j) exists, CrossFS adds the
request (WjBk) to the queue, marks the earlier request (WiBk)
as a no-op, and updates the interval tree to point to the new
request (WjBk), thereby avoiding an extra write operation.
For example, in Figure 2, the later request Op6 is added to
the FD-queue of Op2, and Op2 is made a no-op.

(2) Multi-block Write conflict. CrossFS must handle multi-
block conflicts for correctness, although uncommon in real-
world applications. First, when a writer’s request to update
one block (Wi+1Bk) conflicts with an earlier write that up-
dates multiple blocks (say WiBkBk+1Bk+2), the prior request
cannot be made a no-op. Hence, LibFS adds the new re-
quest (Wi+1Bk) to the same FD-queue of the prior request
(WiBkBk+1Bk+2) and inserts a child node (sub-tree) to the
interval tree (Bk,Bk+2 range) with a pointer to the newly
added FD-queue request. This technique is used even for
a multi-block request that conflicts with a prior single or
multi-block request or when conflicting small writes update
different ranges in the single block. Although this approach
would incur multiple writes for some blocks, it simplifies han-
dling multi-block conflicts that are uncommon. For rare cases,
where multiple blocks of the new request (WiBkBk+1Bk+2)
conflicts with blocks across multiple FD-queues (say WjBk
and WnBk +2 with j and n in different queues), we treat these
as an inode-level barrier operation, which we discuss next.
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(3) Multi-block Concurrent Reads. Concurrent readers al-
ways fetch the most recent blocks for each update using the
interval tree. For blocks with partial updates across requests,
LibFS patches these blocks by walking through the sub-tree
of an interval tree range.

Support for File Appends. Several classes of applications
(e.g., RocksDB [9] evaluated in this paper) extensively use
file appends for logging. In CrossFS, file appends are atomic
operation. To process appends, FirmFS uses an atomic trans-
action to allocate data blocks and update metadata blocks
(i.e., inode). We use and extend atomic transaction support
for O_APPEND from the prior NVM-based file system [23].

4.3.6 File Commit (fsync) as a Barrier

File commit (fsync) operations in POSIX guarantee that a
successful commit operation to a file descriptor commits all
updates to a file preceding the fsync across all file descrip-
tors. However, in CrossFS, requests across file descriptors
are added to their own FD-queue and processed in parallel by
FirmFS, which could break POSIX’s fsync guarantee. Con-
sider a scenario where a fsync request added to an empty
FD-queue getting dispatched before earlier pending writes in
other FD-queues. To avoid these issues, CrossFS treats file
commit requests as a special barrier operation. The fsync
request is tagged as a barrier operation and atomically added
to all FD-queues of an inode by acquiring an interval tree
rw-lock. The non-conflicting requests in FD-queues are con-
currently dispatched by multiple device-CPUs to reduce the
cost of a barrier. We study the performance impact of fsync
operations in §6.

4.3.7 Metadata-heavy Operations

CrossFS handles metadata-heavy operations with a file
descriptor (e.g., close, unlink, file rename) and without a file
descriptor (e.g., mkdir, directory rename) differently. We next
discuss the details.

Metadata Operations with a File Descriptor. Metadata-
heavy operations include inode-level changes, so adding these
requests to multiple FD-queues and concurrently processing
them could impact correctness. Additionally, concurrent pro-
cessing is prone to crash consistency bugs [18, 31, 53]. To
avoid such issues, CrossFS maintains a LibFS-level pathname
resolution cache (with files that were opened by LibFS). The
cache maintains a mapping between file names and the list of
open file descriptors and FD-queue addresses. CrossFS treats
these metadata-heavy operations as barrier operations and
adds them to all FD-queues of an inode after acquiring an in-
terval tree rw-lock. The requests in FD-queues preceding the
barrier are processed first, followed by atomically processing
a metadata request in one queue and removing others.

Metadata Operations without a File Descriptor. For
metadata operations without a file descriptor (e.g., mkdir),
CrossFS uses a global queue. Requests in the global queue
are processed in parallel with FD-queue requests (barring

some operations). Similar to kernel file systems, FirmFS
concurrently processes non-dependent requests fetched from
the global queue without compromising ordering. However,
for complex operations such as a directory rename prone to
atomicity and crash consistency bugs, CrossFS uses a system-
wide ordering as used in traditional file systems [48]. Our
current approach is to add a barrier request across all open
FD-queues in the system. However, this could incur high
latency when there are hundreds of FD-queues. Thus, we
only add the rename request to the global queue and maintain
a list of global barrier timestamps (barrier_TSC). Before dis-
patching a request, a device-CPU checks if request’s TSC <
barrier_TSC; otherwise, delays processing the request until
all prior requests before the barrier are processed and com-
mitted. CrossFS is currently designed to scale data plane
operations and our future work will explore techniques to
parallelize non-dependent metadata-heavy operations.

4.3.8 Block Cache and Memory-map Support.

For in-memory caching, CrossFS uses FD-queue buffers
(in NVM) as data cache for accessing recent blocks but does
not yet implement a shared main memory (DRAM) cache. We
evaluate the benefits of using FD-queue as data buffer in §6.
Implementing a shared page cache could be beneficial for
slow storage devices [23, 37]. Similarly, our future work will
focus on providing memory-map (mmap) support in CrossFS.

4.4 Cross-Layered Crash Consistency
A cross-layered file system requires a synergistic

lightweight crash consistency support at the host (LibFS)
and the device (FirmFS) layers. We describe the details next.

FD-queue Crash Consistency. The FD-queues buffer I/O
requests and data. For I/O-intensive applications with tens
of open file descriptors, providing persistence and crash con-
sistency for LibFS-managed FD-queues could be important.
Therefore, CrossFS utilizes system-level hardware capabil-
ity and uses byte-addressable persistent memory (Intel Op-
tane DC Persistent Memory [3]) for storing FD-queues. The
FD-queues are allocated in NVM as a DMA’able memory.
LibFS adds requests to persistent FD-queues using a well-
known append-only logging protocol for the crash consis-
tency [55,61], and to prevent data loss from volatile processor
caches, issues persistent writes using CLWB and memory
fence. A commit flag is set after a request is added to the FD-
queue. After a failure, during recovery, requests with an unset
commit flag are discarded. Note that the interval tree is stored
in the host or device RAM and is rebuilt using the FD-queues
after a crash. In the absence of NVM, CrossFS uses DRAM
for FD-queues, providing the guarantees of traditional kernel
file systems that can lose uncommitted writes.

Low-overhead FirmFS Crash Consistency. The FirmFS,
which is the heart of the CrossFS design, provides crash
consistency for the file system data and metadata state in
the device memory. FirmFS implements journaling using a
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REDO journal maintained as a circular log buffer to hold data
and metadata log entries [23, 31]. When FirmFS dispatches
an update request, FirmFS initiates a new transaction, ap-
pends both data and metadata (e.g., inode) entries to the log
buffer, and commits the transaction. However, data journal-
ing is expensive; hence most prior NVM file systems only
enable metadata journaling [18, 23, 31]. In contrast, CrossFS
provides lightweight journaling by exploiting the persistent
FD-queues. Intuitively, because the I/O requests and data
are buffered in persistent FD-queues, the FirmFS journal can
avoid appending data to the journal and provide a reference
to the FD-queue buffer. Therefore, CrossFS dedicates a phys-
ical region in NVM for storing all FD-queues and buffers
using our in-house persistent memory allocator. LibFS, when
adding requests (e.g., read or write) to a persistent FD-queue,
tags the request with the virtual address and the relative offset
from the mapped FD-queue NVM buffer. FirmFS uses the off-
set to find the NVM physical address and stores it alongside
the journal metadata. For recovery, the physical address can
be used to recover the data. Consequently, CrossFS reaps the
benefits of data+metadata journaling at the cost of metadata-
only journaling. The journal entries are checkpointed when
the journal is full or after a two-second (configurable) interval
similar to prior file systems [23]. After a crash, during recov-
ery, the FirmFS metadata journal is first recovered, followed
by the data in the NVM FD-queues.

4.5 Multi-Queue File-Descriptor Scheduler
In traditional systems, applications are supported by an I/O

scheduler in the OS and the storage firmware. In CrossFS, ap-
plications bypass the OS and lack the OS-level I/O scheduler
support. As a consequence, when the number of FD-queues
increase, non-blocking operations (e.g., write) could bottle-
neck blocking operations (e.g., read, fsync), further exac-
erbated by the limited device-CPU count. To address these
challenges, CrossFS exploits its cross-layered design and
merges two-level I/O schedulers into a single multi-queue
firmware-level scheduler (FD-queue-scheduler). The FD-
queue-scheduler’s design is inspired by the state-of-the-art
Linux blk-queue scheduler that separates software and hard-
ware queues [14]. However, unlike the blk-queue scheduler,
the FD-queue-scheduler (and FirmFS in general) is agnostic
of process and thread abstractions in the host. Therefore,
FD-queue-scheduler uses FD-queues as a basic scheduling
entity and builds scheduling policies that decide how to map
device-CPUs to serve requests from FD-queues.

4.5.1 Scheduling Policies.

The FD-queue-scheduler currently supports a simple round-
robin policy and an urgency-aware scheduling policy.

Round-robin Scheduling. The round-robin scheduling
aims to provide fairness. We maintain a global list of FD-
queues, and the device-CPUs iterate through the global list
to pick a queue currently not being serviced and schedule an

I/O request from the FD-queue’s head. To reduce schedul-
ing unfairness towards files with higher FD-queue count, the
round-robin scheduler performs two-level scheduling: first to
pick an unserviced inode, and then across the FD-queues of
the inode.
Urgency-aware Scheduling. While the round-robin sched-
uler increases fairness, it cannot differentiate non-blocking
(e.g., POSIX write, pwrite return before persisting to disk)
and latency-sensitive blocking (e.g., read, fsync) I/O oper-
ations. In particular, non-blocking operations such as write
incur additional block writes to update metadata and data
journals in contrast to read operations. Hence, in FirmFS, we
implement an urgency-aware scheduling policy that priori-
tizes blocking operations without starving non-blocking op-
erations. The device-CPUs when iterating the FD-queue list,
pick and schedule blocking requests at the head. Optionally,
LibFS could also tag requests as blocking and non-blocking.
To avoid starving non-blocking operations, non-blocking I/O
requests from FD-queues that are either full or delayed be-
yond a threshold (100µsec by default, but configurable) are
dispatched. Our evaluation in §6 shows that urgency-aware
policy improves performance for read-heavy workloads with-
out significantly impacting write performance.

4.6 Security and Permission Checking
CrossFS matches the security guarantees provided by tra-

ditional and state-of-the-art user-level file systems [31, 40] by
satisfying the following three properties. First, in CrossFS,
the filesystem’s metadata is always updated by the trusted
FirmFS. Second, data corruptions are restricted to files for
which threads and processes have write permission. Third,
for files shared across processes, CrossFS allows only legal
writers to update a file’s data or the user-level interval tree.
File System Permissions. CrossFS aims to perform file
permission checks without trapping into the OS for data plane
operations. For permission management, CrossFS relies on
trusted OS and FirmFS. The FirmFS maintains a credential
table that maps a unique process ID to its credentials. During
the initialization of per-process LibFS, the OS generates a
random (128-bit) unique ID [1, 6] for each process and up-
dates the firmware credential table with the unique ID and the
process credentials [4] and returns the unique ID to LibFS.
FirmFS also maintains a FD-queue to per-process unique ID
mapping internally. When LibFS adds a request to its pri-
vate FD-queue, it also adds the request’s unique ID. Before
processing a request, FirmFS checks if a request’s unique ID
matches FD-queue’s unique ID (stored internally in FirmFS),
and if they match, the I/O request’s permission (e.g., write
access) is checked using the credentials in the firmware table.
Any mismatch between an I/O request and FD-queue IDs are
identified and not processed by FirmFS. As a consequence,
accidental (unintended) writes to FD-queue could be identi-
fied by FirmFS. Further, a malicious process that succeeds in
forging another process’s unique ID cannot use the ID in its
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own FD-queue.

FD-queue Protection. First, FD-queues are privately
mapped to a process address space and cannot be updated by
other processes. Second, an untrusted LibFS with access per-
mission to a file could reorder or corrupt FD-queue requests,
but cannot compromise metadata. Finally, a malicious reader
could add a file update request to FD-queue, but would not
be processed by FirmFS.

Interval Tree. To reduce work at the device-CPUs, CrossFS
uses LibFS (and host-CPUs) to manage inode-level interval
tree and concurrency control. Because the interval tree is
shared across writers and readers, an issue arises where a
reader process (with read-only permission to a file) could
accidentally or maliciously corrupt updates in the interval
tree by legal writers (e.g., inserting a truncate("file", 0)).

To overcome such security complications, for simplicity,
CrossFS provides two modes of interval tree updates: (a)
FirmFS mode, and (b) LibFS delegation mode. In the FirmFS
mode (enabled by default), the host-CPUs add I/O requests
to FD-queues, but FirmFS and device-CPUs are responsi-
ble for updating the per-inode interval tree and managing
concurrency control. This mode is specifically useful for
cases where files are shared across multiple processes. As a
consequence, file updates (e.g., truncate("file", 0)) by a ma-
licious process with read-only access would be invalidated
by the trusted FirmFS. This approach marginally impacts per-
formance without compromising direct-I/O. In contrast, the
LibFS delegation mode (an optional mode, which can be en-
abled when mounting CrossFS) allows the use of host-CPUs
for interval tree updates but does not allow inter-process file
sharing. We observe that most I/O-intensive applications
(including RocksDB analyzed in the paper) without file shar-
ing could benefit from using host-CPUs. We evaluate the
trade-offs of both designs in §6.

Security Limitations. We discuss security limitations com-
mon to most User-FS designs [22, 33], and CrossFS.

Shared Data Structure Corruption. Sharing data
and data-structures using untrusted user-level library makes
CrossFS and other user-level file systems vulnerable to ma-
licious/buggy updates or even DoS attacks. For example, in
CrossFS, a user-level thread could corrupt the inode inter-
val tree, impacting data correctness. Prior byte-addressable
NVM designs such as ZoFS use hardware support such as
Intel MPK ( [22, 50]) to isolate memory regions across the
file system library and application threads. Unfortunately, the
isolation only protects against accidental corruption but not
malicious MPK use [19].

Denial of Service (DoS) Attacks. CrossFS and most user-
level designs do not handle DoS attacks, where a malicious
LibFS could lock all intervals in the interval tree, perform
many small updates to blocks, or force long interval tree
merges for reads to those ranges. Recent studies have shown
that lock-based attacks are possible for kernel file systems

too [51]. One approach in CrossFS could be to use OS-level
monitors to revoke threads that hold interval tree locks beyond
a threshold (e.g., Linux hard/soft-lockup detector). However,
a more thorough analysis is required, which will be the focus
of our future work.

5 Implementation

Due to the lack of programmable storage hardware, we im-
plement and emulate CrossFS as a device driver. CrossFS is
implemented in about 13K lines of code spread across LibFS
(2K LOC), FirmFS with scheduler and journaling (9K LOC),
and the OS (300 LOC) components. For storage, we use Intel
Optane DC Persistent Memory attached to the memory bus.
To emulate device-CPUs, we use dedicated CPU cores, but
also consider related hardware metrics such as device-level
CPU speed, PCIe latency, and storage bandwidth (see §6).
For direct-I/O, unlike prior systems that use high-overhead
IOCTLs [33], the persistent FD-queues are mapped as shared
memory between LibFS and the driver’s address space.

LibFS. In addition to the details discussed in §4, LibFS
uses a shim library to intercept POSIX operations and con-
vert them to FirmFS compliant commands. We extend the
NVMe command format that supports simple block (read
and write) operations to support file system operations (e.g.,
open, read, write). The I/O commands are allocated using
NVM, and LibFS issues the commands and sets a doorbell
flag for FirmFS to begin processing. FirmFS processes a
command and sets an acknowledgment bit to indicate request
completion. Finally, for each file descriptor, LibFS main-
tains a user-level file pointer structure with a reference to
the corresponding FD-queue, the file name, the interval tree,
and information such as file descriptor offset. For persisting
FD-queues, as described in §4.4, data updates are appended
to NVM log buffers and persisted using CLWB and memory
fence instructions.

FirmFS. The device-CPUs are emulated using dedicated
(kernel) threads pinned to specific CPUs, whereas FirmFS
block management (superblock, bitmaps, inodes, and data
block management) and journaling structures implemented by
extending PMFS [23] ported to Linux 4.8.2 kernel. FirmFS
extends PMFS’s inode and dentry with a simplified dentry
structure and dentry cache for path resolution. In our file
descriptor-based design, path resolution involves mapping
a path to an inode containing a list of all FD-queues. For
FirmFS data + metadata journaling, we use REDO logs and
substitute actual data with the physical address of data in
NVM FD-queues.

OS Component. We primarily extend the OS for FD-queue
setup and credential management. For FD-queue setup, we
implement an IOCTL in the OS to allocate contiguous DMA-
able memory pages using NVM memory, mapping them to
process and FirmFS device driver address spaces. The OS
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component also cleans up FD-queues after a file is closed.
Next, for credential management, we modify Linux process
creation mechanism in the OS to generate a per-process
unique ID. The OS also updates the firmware-level credential
table with this information.

6 Evaluation

We compare CrossFS with state-of-the-art User-FS, Kernel-
FS, and Firmware-FS using microbenchmarks, macrobench-
marks, and real-world applications to answer the following
questions.

• How effective is CrossFS in exploiting the cross-layered
design and file descriptor-based concurrency?

• How effective is CrossFS’s FD-queue scheduler?
• What is the impact of host configuration such as FD-

queue depth and device configurations such as storage
bandwidth, device-CPU frequency, and PCIe latency?

• Can CrossFS’s cross-layered design scale for metadata-
intensive workloads with no data sharing across threads?

• Does CrossFS benefit real-world applications?

6.1 Experimental Setup
We use a dual-socket, 64-core, 2.7GHz Intel(R) Xeon(R)

Gold platform with 32GB memory and a 512GB SSD. For
storage and FD-queues, we use a 512GB (4x128GB) Optane
DC persistent memory with 8GB/sec read and 3.8GB/sec
rand-write bandwidth [30]. To emulate the proposed cross-
layered file system, we reserve and use 2GB of DRAM for
maintaining FirmFS in-memory state.

Besides, to study the implications of CrossFS for different
storage bandwidths, PCIe latency, and device-CPU speeds,
we use a CloudLab-based Intel(R) Xeon(R) CPU E5-2660
server that allows memory bandwidth throttling. We reserve
80GB memory mounted in a NUMA node for an emulated
NVDIMM and vary bandwidth between 500MB/s to 10GB/s.
To emulate PCIe latency, we add a 900ns software delay [49]
between the time a request is added to the host’s FD-queue
and the time a request is marked ready for FirmFS processing.
To emulate and vary device-CPU speeds, we apply dynamic
voltage frequency scaling (DVFS). We enable persistence
of NVM-based FD-queues and our proposed FirmFS data +
metadata journaling that uses REDO logging.

For analysis, we compare CrossFS against state-of-the-art
file systems in three different categories: User-FS Strata [40]
and SplitFS [31], Kernel-FS ext4-DAX [64] and NOVA (a log
structure NVM file system [66]), and finally, Firmware-FS
DevFS [33]. To understand the benefits of avoiding system
calls, for CrossFS, we compare an IOCTL-mode implementa-
tion with kernel traps but without VFS cost (CrossFS-ioctl)
and a direct-mode without both kernel traps and VFS cost
(CrossFS-direct).

6.2 Microbenchmarks
We first evaluate CrossFS using two microbenchmarks and

then provide an in-depth analysis of how the host-side and
the device-side configurations affect CrossFS performance.

6.2.1 Concurrency Analysis

In Figure 3a and Figure 3b, we vary the number of concur-
rent readers in the x-axis setting the concurrent writer count
to four threads. For this multithreaded micro-benchmark, we
use LibFS-level interval tree updates. We compare CrossFS-
ioctl and CrossFS-direct against ext4-DAX, NOVA, DevFS,
SplitFS, and Strata, all using Intel Optane DC persistent mem-
ory for storage.

ext4-DAX. First, ext4-DAX, a Kernel-FS, suffers from high
system call and VFS cost, and locking overheads [31,63]. The
inode rw-lock (read-write semaphore) contention between
writers and readers increases with higher thread count. For
the four concurrent reader-writer configuration, the time spent
on locks is around 21.38%. Consequently, reader and writer
throughputs are significantly impacted (see Figure 3b).

NOVA. Second, NOVA, also a Kernel-FS, exploits per-CPU
file system data structures and log-structured design to im-
prove aggregated write throughput compared to ext4-DAX.
However, the use of inode-level rw-lock and system call costs
impact write and read scalability.

DevFS. DevFS, a Firmware-FS, provides direct-access and
avoids system calls, but uses per-inode I/O queues and inode-
level rw-lock. Further, DevFS uses two levels of inode syn-
chronization: first, when adding requests to an inode’s I/O
queue; second, when dispatching requests from the I/O queue
for Firmware-FS processing. Consequently, the throughput
does not scale with increasing thread count.

SplitFS. SplitFS, a User-FS, maps staging files to a process
address space and converts data plane operations like read(),
write() in the user-level library to memory loads and stores.
Therefore, SplitFS avoids kernel traps for data plane operation
(although metadata is updated in the kernel). As a result,
SplitFS shows higher read and write throughputs over ext4-
DAX, NOVA, and DevFS. However, for concurrent readers
and writers, SplitFS gains are limited by inode-level locks.

Strata. Strata’s low throughput is because of the following
reasons: first, Strata uses an inode-level mutex; second, Strata
uses a per-process private log (4GB by default as used in [40]).
When using concurrent writers, the private log frequently fills
up, starving readers to wait until the logs are digested to a
shared area. The starvation amplifies for concurrent reader
processes that cannot access private writer logs and must wait
for the logs to be digested to a shared area.

CrossFS. In contrast, the proposed CrossFS-ioctl and
CrossFS-direct’s cross-layered designs with file descriptor
concurrency allow concurrent read and write across FD-
queues. Even though fewer than 1% of reads are fetched
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Figure 3: Microbenchmark. Throughput of concurrent readers and 4 writers sharing a 12GB file. For CrossFS and DevFS, 4 device-CPUs
are used. CrossFS-ioctl uses IOCTL commands bypassing VFS but with OS traps, whereas CrossFS-direct avoids OS traps and VFS. Figure 3a
and Figure 3b are random accesses. Figure 3c shows the impact on performance when varying the commit frequency with 4 concurrent writers.
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Figure 4: Process Sharing. Results show aggregated read through-
put (MB/s) of 8 reader processes when sharing a file varying number
of writer processes. CrossFS-direct-user-tree refers to using user-
level interval tree, and CrossFS-direct-firm-tree refers to FirmFS
managed interval tree, as discussed in §4.6.

directly from the FD-queue, the performance gains are high.
CrossFS-ioctl incurs kernel traps but avoids VFS overheads
and low overhead journaling, resulting in 3.64X and 2.34X
read performance gains over DAX and Strata, respectively.
CrossFS-direct also avoids kernel traps achieving 3.38X and
4.87X write and read throughput gains over ext4-DAX, re-
spectively. The read gains are higher because, for writes, the
inode-level interval tree’s rw-lock must be acquired (only)
for FD-queue ordering. In our experiments, this accounts for
only 9.9% of the execution time. Finally, as shown in Ta-
ble 2, CrossFS not only improves throughput but also reduces
latency for concurrent access.

6.2.2 Multi-Process Performance

Figure 4 shows CrossFS performance in the presence of
multiple writers and readers processes. We use the same
workload used earlier in Figure 3. For CrossFS-direct ap-
proach, we evaluate two cases: first, as discussed in §4.6,
with CrossFS-direct-user-tree, we maintain a shared interval
tree in the user-level, and LibFS updates the interval tree.
While this approach reduces work for device-CPUs, a buggy
or corrupted reader could accidentally or maliciously corrupt
interval tree updates. In contrast, the CrossFS-direct-firm-
tree approach avoids these issues by using FirmFS to update
the interval tree, without impacting direct-I/O. As the fig-
ure shows, both approaches provide significant performance

ext4-DAX NOVA DevFS CrossFS-ioctl CrossFS-direct
Readers 5.72 4.68 2.91 1.93 1.27
Writers 3.86 2.48 2.31 1.89 1.15

Table 2: Latency. Average per-thread random write and read la-
tency (µs) with 4 concurrent readers and writers.

2 4 8 16
1000

2000

3000

4000

# of writers (w/ equal # of readers)

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

(a) Aggregated read throughput.

2 4 8 16
1000

2000

3000

4000

# of writers (w/ equal # of readers)

T
h
ro

u
g
h
p
u
t 
(M

B
/s

) Round Robin Scheduling

Urgency-aware Scheduling

(b) Aggregated write throughput.
Figure 5: Urgency-aware Scheduler Impact. Results show aggre-
gated throughput for reader and writer threads. The x-axis varies the
number of reader and writer threads.

gains compared to other state-of-the-art designs. Besides,
CrossFS-direct-firm-tree shows only a marginal reduction in
performance due to an increase in device-CPU work.

6.2.3 Commit Frequency

To study the performance of CrossFS’s barrier-based com-
mits, in Figure 3c, we evaluate fsync performance by running
the random write benchmark with 4 concurrent writers. In
the x-axis, we gradually increase the interval between suc-
cessive fsyncs. As shown, compared to ext4-DAX, CrossFS
delivers 2.05X and 2.68X performance gains for fsyncs is-
sued at 4 write (worst-case) and 16 write (best-case) intervals,
respectively. Although CrossFS adds a commit barrier to all
FD-queues of an inode, device-CPUs can concurrently dis-
patch requests across FD-queues without synchronizing until
the barrier completion. Additionally, CrossFS avoids system
call cost for both fsync and write operations.

6.2.4 Urgency-aware Scheduler

CrossFS’s cross-layered design smashes traditional OS-
level I/O and firmware scheduler into a single firmware-level
scheduler. To understand the implication of a scheduler, we
evaluate two scheduling policies: (a) round-robin, which
provides fairness, and (b) urgency-aware, which prioritizes
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Figure 6: CrossFS Incremental Performance Breakdown. Re-
sults show aggregated throughput breakdown for 16 readers and 4
writers performing random access on a 12GB file. The baseline
CrossFS approach (CrossFS-ioctl-lock) uses IOCTLs and coarse-
grained inode-level lock.

blocking operations (e.g., read). We use the random-access
micro-benchmark (discussed earlier) with an equal number
of readers and writers performing random access on a shared
12GB file. Figure 5a and 5b show aggregated throughput
for concurrent writers and readers, while varying the reader
and writer count on the x-axis. First, the round-robin policy
does not differentiate blocking reads and non-blocking writes;
hence, it dispatches read and write requests with equal prior-
ity. Consequently, with 4 device-CPUs and the use of interval
tree rw-lock, blocking reads are delayed. The write through-
put does not scale beyond 8 threads. In contrast, CrossFS’s
urgency-aware scheduling prioritizes blocking reads without
starving writes beyond a threshold, thereby accelerating reads
by 1.22X.

6.2.5 CrossFS Performance Breakdown.

To decipher the source of CrossFS-direct performance
gains, in Figure 6, we show the throughput breakdown of
4 writers, 16 readers configuration. CrossFS-ioctl-lock repre-
sents the CrossFS baseline that suffers from IOCTL (system
call) cost and uses a coarse-grained inode rw-lock. Replacing
the inode-level lock with fine-grained FD-queue concurrency
(shown as Scalability Design) and eliminating system call
cost (Kernel Bypass) provides significant performance bene-
fits over the baseline. The urgency-aware scheduler improves
the read throughput further.

6.2.6 Sensitivity Analysis - Host-side Configuration

We next study the performance impact of host-side con-
figurations, which includes: (a) FD-queue depth (i.e., queue
length), (b) read hits that directly fetch data from FD-queue,
and (c) write conflicts with in-transit FD-queues requests.
The values over the bars in Figure 7a and 7b show read hits
and write conflicts (in percentage), respectively.
Read Hits. To understand the performance impact of FD-
queue read hits, we mimic sequential producer-consumer
I/O access patterns exhibited in multithreaded I/O-intensive
applications such as Map-Reduce [20] and HPC "Cosmic
Microwave Background (CMB)" [16]. The concurrent writ-
ers (producers) sequentially update specific ranges of blocks
in a file, whereas the consumers sequentially read from spe-
cific ranges. Note that both producers and consumers use

separate file descriptors. The consumers start at the same
time as producers. In Figure 7a, for CrossFS, we vary FD-
queue depths to 32 (CrossFS-direct-QD32, the default depth)
and 256 (CrossFS-direct-QD256) entries. For simplicity, we
only show the results for CrossFS-direct, which outperforms
CrossFS-ioctl. As expected, increasing the queue depth from
32 to 256 increases the read hit rate, enabling host threads to
fetch updates from FD-queues directly. Consequently, read
throughput for CrossFS-direct-QD256 improves by 1.12X
over CrossFS-direct-QD32, outperforming other approaches.

Write Conflicts. A consequence of increasing the queue
depth is the increase in write conflicts across concurrent
writers. To illustrate this, we only use concurrent writers
in the above benchmark, and the writers sequentially up-
date all blocks in a file. As shown in Figure 7b, an increase
in queue-depth increases write conflicts (27% for CrossFS-
direct-QD256 with 8 threads), forcing some requests to be
ordered to the same FD-queue. However, this does not ad-
versely impact the performance because of our optimized
conflict resolution and fewer host-CPU stalls with 256 FD-
queue entries.

6.2.7 Sensitivity Analysis - Device Configuration

A cross-layered file system could be deployed in storage
devices with different bandwidths, incur PCIe latency for host
and device interaction, and use wimpier CPUs. To under-
stand CrossFS’s performance sensitivity towards these device
configurations, we decipher the performance by varying the
storage bandwidth, adding PCIe latency, and reducing the
frequency of device-CPUs.

For varying the storage bandwidth, we use DRAM as a stor-
age device and vary the storage bandwidth between 0.5GB/s
to 10GB/s using thermal throttling. We use DRAM because
Optane NVM cannot be thermal-throttled, and its bandwidth
cannot be changed. In Figure 7c, we compare three CrossFS
approaches: (1) CrossFS-noPCIeLat-HighFreq - the default
approach without PCIe latency and high device-CPU fre-
quency (2.7GHz); (2) CrossFS-PCIeLat-HighFreq - an ap-
proach that emulates Gen 3 x8 PCIe’s latency of 900ns [49]
by adding software delays between the time a request is added
to a FD-queue and the time when the request is processed
by FirmFS; and finally, (3) CrossFS-PCIeLat-LowFreq - an
approach that reduces device-CPU frequency to 1.2GHz (the
minimum frequency possible) using DVFS [41] in addition to
added PCIe latency. The results show random write through-
put when four concurrent writers and readers share a 12GB
file. We also compare ext4-DAX, NOVA, and DevFS without
reducing CPU frequency or PCIe latency.

At lower storage bandwidths (e.g., 500MB/s), as expected,
CrossFS’s gains are limited by storage bandwidth. However,
even at 2GB/s bandwidth, CrossFS-noPCIeLat-HighFreq
shows 1.96X gains over ext4-DAX. Next, the impact of 900ns
PCIe latency (CrossFS-PCIeLat-HighFreq) is overpowered
by other software overheads such as file system metadata and
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Figure 7: Performance Sensitivity towards Host and Device Configuration. Figure 7a and Figure 7b host configuration (FD-queue depth)
sensitivity. Figure 7a shows read throughput with increasing in read hit rate for 32 and 256 entry FD-queue depth. Figure 7b shows write
throughput and write conflict (%) when varying FD-queue depth across concurrent writers sequentially updating a file. Figure 7c shows device
configuration sensitivity. The x-axis varies the storage bandwidth, and the graph shows write throughput for 4 concurrent writers when adding
PCIe latency and reducing device-CPU frequency.
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Figure 8: Filebench Throughput. The evaluation uses 4 device-CPUs.

data management, journaling, and scheduling. While higher
CPU frequency, storage bandwidth, and low PCIe latency
would maximize gains when using a programmable storage,
even when using 2.5x slower CPUs and 900ns PCIe latency,
our cross-layered and concurrency-centric design provides
1.87X, 1.97X, 1.35X over ext4-DAX, NOVA, and DevFS
that use high-frequency CPUs without PCIe latency, respec-
tively.

6.3 Macrobenchmark: Filebench
Does CrossFS’s cross-layered design benefit multithreaded

workloads without file sharing? To understand the per-
formance, we evaluate well-known Filebench’s Varmail
(metadata-heavy), Fileserver (write-heavy), and Webserver
(read-heavy) workloads that represent real-world work-
loads [22, 23, 66]. The workloads are metadata-intensive
and perform operations such as file create, delete, directory
update, which contributes to 69%, 63%, and 64% in Var-
mail, Fileserver, and Webserver, respectively, of the overall
I/O. The data read to write ratios are 1:1, 1:2, and 10:1 in
Varmail, Fileserver, and Webserver, respectively.

We compare CrossFS-ioctl and CrossFS-direct against
ext4-DAX, NOVA, and DevFS. SplitFS does not yet sup-
port Filebench and RocksDB. Figure 8 shows the throughput
for three workloads. The x-axis shows the throughput when
increasing Filebench’s thread count. Without file sharing
across threads, DevFS (without system calls) performs better

than NOVA and ext4-DAX. In contrast, CrossFS-direct, for
Varmail and Fileserver, outperforms other approaches and
provides 1.47X and 1.77X gains over NOVA, respectively.
Varmail is metadata-intensive and (with 1:1 read-write ratio
for data operations), and fileserver is highly write-intensive.
For both these workloads, CrossFS-direct avoids system calls,
reduces VFS cost, and provides fast metadata journaling at
the cost of data journaling (aided by NVM-based FD-queues).
With just 4 device-CPUs and a metadata I/O-queue for op-
erations without file descriptors, CrossFS-direct gains flat-
ten. Finally, Webserver has a significantly higher read ratio.
While CrossFS-direct improves performance, the throughput
gains (1.71X) are restricted. First, blocking reads stress the
available four device-CPUs. Second, we notice OS sched-
uler overheads as a side-effect of emulating device-CPUs
with Linux kernel threads. The kernel threads in Linux pe-
riodically check and yield to the OS scheduler if necessary
(i.e., need_resched()); the periodic yields negatively impact
blocking random read operations for CrossFS and DevFS.

6.4 Real-World Applications

RocksDB. RocksDB [9] is a widely used LSM-based NoSQL
database used as a backend in several production systems and
frameworks [11, 12, 44]. RocksDB is designed to exploit
SSD’s parallel bandwidth and multicore parallelism. As dis-
cussed earlier, we observe around 40% of I/O accesses to
shared files across RocksDB’s foreground threads that share
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Figure 9: Application throughput. Figure 9a and Figure 9b show random write and read performance for RocksDB by varying threads in
DBbench workload. RocksDB internally creates background compaction threads. Figure 9c shows the SET benchmark for Redis by varying
the number of Redis instances.

log files and background threads that compact in-memory data
across LSM levels in the SST (string sorted) files [34]. How-
ever, conflicting block updates are negligible. In Figure 9a
and Figure 9b, we vary the number of application (foreground)
threads along the x-axis and set the device-CPU count to four.
We compare ext4-DAX, NOVA, DevFS, CrossFS-ioctl, and
CrossFS-direct’s throughput for random write and read opera-
tions. Note that RocksDB, by default, uses three background
parallel compaction threads, which increases with increas-
ing SST levels [10]. We use widely used DBbench [2], with
100B keys, 1KB values, and a 32GB database size. We set
RocksDB’s memory buffer to 128MB [44].

CrossFS-direct and CrossFS-ioctl show up to 2.32X and
1.15X write and read throughput gains over ext4-DAX, re-
spectively. The read and write performance benefits over
DevFS are 1.33X and 1.21X, respectively. We attribute these
gains to the following reasons. First, RocksDB threads do
not update the same block (lower than 0.1% conflicts); hence,
unlike other approaches, CrossFS-ioctl and CrossFS-direct
avoid inode-level locks. Second, both CrossFS-ioctl and
CrossFS-direct avoid VFS overheads. Additionally, CrossFS-
direct also avoids system call costs. When increasing appli-
cation threads, the burden on four device-CPUs increases,
impacting performance for the 16 application thread config-
uration. The blocking reads are impacted due to the use of
kernel threads for device-CPU emulation (see §6.3).

Redis. Redis is a widely used storage-backed in-memory
key-value store [8], which logs operations to append-only-
files (AOF) and checkpoints in-memory key-values asyn-
chronously to backup files called RDB [40]. We run multiple
Redis instances and the instances do not share AOF or RDB
files. We use background write mode for Redis instances that
immediately persist key-value updates to the disk. Figure 9c
shows the Redis performance.

First, when increasing Redis instances, the number of con-
current writers increases. The server and the client (bench-
mark) instances run as separate processes, which increases
inter-process communication, system call, and VFS costs. Al-
though instances do not share files, CrossFS-direct provides
considerable performance gains mostly stemming from direct
storage access, avoiding VFS overheads, and lowering jour-

naling cost. Consequently, CrossFS provides 2.35X higher
throughput over ext4-DAX.

7 Conclusion

This paper proposes CrossFS, a cross-layered file system
design that provides high-performance direct-I/O and concur-
rent access across threads and applications with or without
data sharing. Four key ingredients contribute to CrossFS’s
high-performant design. First, our cross-layered approach
exploits hardware and software resources spread across the
untrusted user-level library, the trusted OS, and the trusted
device firmware. Second, the fine-grained file descriptor con-
currency design converts a file synchronization problem to the
I/O queue ordering problem, which ultimately scales concur-
rent access. Third, our lightweight data + metadata journaling
aided by NVM reduces crash consistency overheads. Finally,
our unified firmware-level scheduler complements the file de-
scriptor design, reducing I/O latency for blocking operations.
Our detailed evaluation of CrossFS against state-of-the-art
kernel-level, user-level, and firmware-level file system shows
up to 4.87X, 3.58X, 2.32X gains on microbenchmarks, mac-
robenchmarks, and applications.
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