
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

A Simpler and Faster NIC Driver Model for
Network Functions

Solal Pirelli and George Candea, EPFL
https://www.usenix.org/conference/osdi20/presentation/pirelli

A Simpler and Faster NIC Driver Model for Network Functions
 Solal Pirelli and George Candea, EPFL

Abstract
The advent of software network functions calls for stronger
correctness guarantees and higher performance at every
level of the stack. Current network stacks trade simplicity
for performance and flexibility, especially in their driver
model. We show that performance and simplicity can co-
exist, at the cost of some flexibility, with a new NIC driver
model tailored to network functions. The key idea behind
our model is that the driver can efficiently reuse packet
buffers because buffers follow a single logical path.

We implement a driver for the Intel 82599 network card
in 550 lines of code. By merely replacing the state-of-the-
art driver with our driver, formal verification of the entire
software stack completes in 7x less time, while the verified
functions’ throughput improves by 160%. Our driver also
beats, on realistic workloads, the throughput of drivers that
cannot yet be formally verified, thanks to its low variability
and resource use.

Our code is available at github.com/dslab-epfl/tinynf.

1. Introduction
The networking world is moving from hardware network
functions to software ones to gain flexibility. This brings
new problems to light in the network stacks of mainstream
operating systems, which were not designed for this use
case. In response to this move, the kernel-bypass model for
software networking appeared, designed for low latency
and high throughput. However, one area of the stack that
remains under-explored is network drivers. We present the
state of network functions, stacks and drivers in Section 2.

Modern network cards contain powerful and complex
hardware offloads, but their core features are conceptually
simple. Network cards fetch requests and return responses
to software using data structures named descriptors. The
main complexity for packet reception and transmission is
the descriptor ownership mechanism. We present the basics
of modern network cards in Section 3.

The current network driver model is too flexible for the
needs of common network functions, which must pay the
complexity costs of modern drivers without reaping their
benefits. This is mainly because the current driver model
allows network functions to process packets out of order, a
powerful feature that is not needed in many of the core
functions making up the Internet’s backbone. We formalize
the current driver model for network cards and propose our
conceptually simplified version in Section 4.

We implement our new driver model for the Intel 82599, a
modern 10 Gb/s Ethernet controller. Our implementation
uses the model's insights and stays as simple as possible: it
is only 550 lines of C code. Its key features are a minimal
number of operations thanks to the driver design and to
modern network card features, as well as some simple but
powerful scheduling algorithms. We present our driver,
which we call “TinyNF”, in Section 5.

This paper’s core hypotheses are that our simpler model
(1) makes network functions easier to formally verify, (2) is
faster than the current most complex driver model that can
be formally verified, (3) provides competitive performance
against the fastest state-of-the-art drivers regardless of
complexity, and (4) is applicable to most network functions
that are deployed today.

We show that hypotheses (1) and (2) hold in Section 6.
Our driver has exponentially fewer code paths than current
drivers and can thus be used to formally verify network
functions in 7x less time than with a state-of-the-art driver
while offering 2.5x the throughput, as well as lower median
and tail latency.

We show that hypothesis (3) holds in Section 7, with the
surprising observation that our driver outperforms the state
of the art using real network functions even though it loses
on a synthetic “no-op” function. This is because our driver
slows down less when running real functions due to having
room to grow in instruction-level parallelism and cache use.

We provide evidence for hypothesis (4) in Section 8,
showing that our model is applicable to most of the low-
level network infrastructure, either running on bare metal
or as virtualized network functions.

We believe that the separation in common use between
“drivers” and other software is blurry, and we argue that it
hinders progress. This situation is worse in networking due
to the lack of good baselines for benchmarks, leading to
driver optimizations that increase complexity but may not
increase performance in the real world. Our minimal driver
also highlights opportunities in hardware documentation.
We discuss these issues in Section 9.

In summary, we make the following contributions: (1) a
simplified driver model for network functions that process
packets in order, (2) a formally verified driver based on our
model that is easier to reason about and faster on realistic
workloads than existing drivers, and (3) evidence that the
current standard of benchmarking for network drivers
leads to suboptimal performance in the real world.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 225

https://github.com/dslab-epfl/tinynf

2. Background on network functions
In this section, we introduce network functions: packet-
processing appliances performing tasks such as routing,
rate limiting, access control or caching.

Hardware network functions are the traditional way
to implement network functions for high-traffic networks.
They are physical boxes with custom hardware that are part
of the network, distinct from standard computers.

They are typically robust because fixing hardware bugs
after deployment is not possible, thus engineers must test
them extensively before deployment. However, they are not
flexible because they cannot be modified after deployment.
Changing a network’s policies can require replacing the
hardware entirely.

Software network functions run on general-purpose
hardware such as x86 and mainstream operating systems
such as Linux, communicating with network cards through
a software stack that includes drivers and implementations
of protocols such as IP and TCP.

The networking world is moving to software network
functions to increase flexibility. Software network functions
are flexible since they have low deployment costs. This
means correctness guarantees, while important, are not a
hard requirement for deployment.

Verifying the correctness of software network functions
is an open problem, with recent work showing it is easier
than the intractable problem of general software verifica-
tion. The Vigor [33] project verifies network functions
without human interaction, but cannot deal with common
optimizations such as parallelism or batch processing.

The other key concern of software network function is
performance. This includes variability, since worst-case
performance determines the guarantees network operators
can offer. These guarantees turn into business concerns
such as Service Level Agreements.

To illustrate how crucial performance is, consider the
time budget for processing a 64-byte packet and its 20-byte
Ethernet header at 10 Gb/s: (64+20) ∗ 8 / (10∗109) = 67.2ns.
This is the same order of magnitude as a memory read; a
network function will exceed its time budget if it needs data
outside the CPU cache.

Software network stacks in modern operating systems
are not adapted to network functions for three reasons.

First, traditional stacks use a push model: hardware uses
interrupts to notify software of packet reception. If packets
are infrequent, this is efficient. But in network functions,
packets are frequent thus interrupt overheads dominate.
The pull model, in which software continuously polls for
packets, better fits network functions because it is efficient
if most polls succeed, as is the case under high load.

Second, traditional stacks only access hardware through
the operating system to provide isolation. Going through
the operating system is an expensive operation, especially
given the low time budget for each packet. But network
functions typically run alone, paying the performance cost
of isolation without the associated benefits. Systems such
as netmap [28] have shown this cost can be amortized by
processing packets in batches.

Third, traditional stacks allow to manage packet buffers
with complete flexibility. This is convenient for general-
purpose programs but hinders optimizations in the network
stack. Network functions have restricted and well-defined
behavior, yet they pay the performance cost of flexibility.
Systems such as Windows Registered I/O [24] have shown
that decreasing flexibility can increase performance.

Kernel-bypass stacks, which allow programs to access
hardware directly instead of going through the operating
system, arose from the need for different tradeoffs. These
stacks also focus on polling instead of interrupts, on tighter
control of packet buffers, and on processing packets in
batches. The de facto standard kernel-bypass stack is DPDK,
the Data Plane Development Kit [5].

Drivers, network or otherwise, have a poor reputation
among software developers because of the challenges of
hardware interactions and the lack of documentation.

Developers can only rely on specifications released by
manufacturers to know how hardware behaves, and these
specifications are not always public. Reverse-engineering
hardware is infeasible without special equipment, unlike
software. Since drivers are often exclusively maintained by
hardware manufacturers, driver developers do not need to
publicly document their code. Bug-finding efforts have
shown that driver code is far from bug-free [21, 25].

These problems lead developers to think of drivers as
mystical black boxes. But drivers are a fundamental part of
the network stack; their correctness and performance are
upper bounds on the entire stack.

As an example of driver complexity, the network drivers
in DPDK, which supports many different types of hardware,
all have at least 1,000 lines of code, as we show in Figure 1,
with the largest one being over 66,000 lines of code.

Emmerich et al. [10] showed that network drivers can
fit in under 1,000 lines of code, though their driver focuses
on educational value and not performance or correctness.

Figure 1. Number of lines of C code in the network drivers
included with DPDK 20.02.

226 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3. Background on network cards
In this section, we summarize the architecture of modern
Network Interface Controllers, or “NICs” for short, which
is necessary to understand network driver design.

While NICs are diverse, the core concepts are similar.
We estimate that, out of the 44 families of physical or virtual
NICs supported by DPDK 20.02, this section applies to 40 of
them. The remaining ones are three FPGA-based cards and
one proprietary virtual NIC.

Communication between CPU and NIC uses three
channels: PCI registers, NIC registers, and RAM.

PCI registers are stored on the NIC and accessed by the
CPU using port-mapped I/O. The CPU only uses them for
the first stage of NIC initialization.

NIC registers are stored on the NIC and accessed by the
CPU using memory-mapped I/O. Their latency is an order
of magnitude higher than RAM [19], making them a perfor-
mance bottleneck.

RAM is the main shared storage. The CPU accesses it as
usual, and the NIC uses Direct Memory Access, or “DMA”
for short, to transfer data into it. RAM holds packet buffers
and metadata. The CPU and the NIC are not notified when
the other has modified RAM; if they want to be aware of
changes, they must poll RAM or use a side channel.

The packet descriptor is the main NIC data structure,
containing a pointer to a data buffer and some metadata.
The metadata typically contains required fields such as the
packet length, and optional fields such as whether to use
advanced hardware offloading features.

Software chooses the total number of descriptors when
initializing hardware. Descriptors are given from the CPU
to the NIC to issue commands, such as packet transmission,
and given by the NIC back to the CPU when the associated
command has finished. Different NICs have different ways
to manage descriptor ownership, such as flags in metadata.

Software can change the buffer pointer before giving a
descriptor to the NIC. This lets developers implement buffer
pools, to reuse descriptors without losing received data.
This is useful for cases such as TCP, where packets must be
kept until an entire message has arrived.

Reception and transmission are the core operations
of network cards, and work in symmetric ways.

To receive packets, the CPU gives descriptors to the NIC
indicating where to deposit packets in memory. The NIC
gives descriptors back when it has received packets. The
NIC sets descriptor metadata to indicate the packet length
and other such information.

To transmit packets, the CPU gives descriptors to the
NIC indicating where packets are in memory, and the NIC
gives descriptors back once it has transmitted packets. The
metadata is set by the CPU, to inform the NIC of the packet
length and other such information.

Descriptor rings are the main mechanism for descriptor
ownership in modern cards. We present here their inner
workings in Intel’s 82599 NIC as a concrete example.

A descriptor ring is composed of a region of memory, a
head pointer, and a tail pointer. The memory is in RAM,
while the pointers are NIC registers. Descriptors between
the head, inclusive, and the tail, exclusive, belong to the
NIC. Other descriptors belong to the CPU. If the head and
tail are equal, the CPU owns all descriptors. We present an
example ring in Figure 2.

Since descriptors start in an unknown state, descriptor
metadata has a “Descriptor Done” flag to let the CPU know
whether a descriptor has been processed by the NIC or was
just never initialized.

The CPU gives descriptors to the NIC by clearing their
“Descriptor Done” flag and incrementing the tail pointer.
Since the tail pointer is a NIC register, the NIC immediately
notices the change. The NIC gives descriptors back to the
CPU by setting the “Descriptor Done” flag in metadata and
incrementing the head pointer. To know when a descriptor
has been given back, the CPU polls the metadata.

The head and tail can only be incremented, though they
can be incremented by more than 1 to give descriptors in
batches. Decrementing is forbidden since it would logically
be an attempt to steal descriptors.

NIC queues are a hardware mechanism to allow for
parallel packet processing. A queue consists of a descriptor
ring and some configuration. The NIC places all received
packets in the first reception queue by default; developers
can configure the NIC to route packets to a queue based on
packet headers, such that packets belonging to the same
logical flow are routed to the same queue.

For transmission, all queues behave in the same way,
without flow tracking: packets added to any transmission
queue are sent to the wire regardless of which queue it is.

Queues allow multiple CPU cores to handle packets
without having to synchronize NIC accesses, increasing
software scalability.

0

1

2

34

5

6

7
Head

Tail

Owned
by HW

Owned
by SW

Figure 2. A descriptor ring with 8 elements; the head is 1
and the tail is 5, thus hardware owns elements 1, 2, 3 and 4.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 227

4. Simplifying the driver model
In this section, we present the existing kernel-bypass driver
model, and our proposed simplification of it for common
network functions.

The driver model in modern frameworks such as
DPDK is based around reusing a fixed set of packet buffers,
in order to avoid the overheads of memory allocation. We
formalize this model as a diagram in Figure 3, where the
overall system is a set of first-in-first-out buffer queues.
Each conceptual “step” of the system is performed by one
of three actors: the NIC, the driver, or the network function.
In the initial state, all buffers are in the “Free” state, which
represents unused buffers in the buffer pool.

The driver typically takes the first steps, by “allocating”
buffers from the pool and giving them to the NIC for recep-
tion. This “allocation” refers to taking buffers from the pool,
not creating new ones. If there are buffers in the “receiving”
state, the NIC can transition them to the “received” state
once it gets data from the network. The network function
typically runs a polling loop to move buffers into the “pro-
cessing” step. From there, the network function can choose
to transmit the buffer, possibly after modifying it. The NIC
will then send out the buffer contents to the network and
move the buffer to the “transmitted” state. The driver moves
transmitted buffers back to the “free” state at well-defined
points, for instance when there are too few free buffers left.
The network function can also choose to keep the buffer for
later, or to “drop” it and return it to the pool. The network
function can also allocate buffers from the pool and process
them like received buffers.

Unlike classical driver models found in mainstream
operating systems and exposed to programmers in libraries
such as BSD sockets [29], the system is closed: none of the
actors can insert buffers into the system from the outside,
such as by asking the operating system for memory. Actors
cannot remove buffers either, though the network function
is allowed to keep buffers indefinitely by using its “keep”
transition to reorder buffers in the “processing” state.

The reason for a closed system is performance: buffer
allocation and deallocation are expensive. This is not only
due to general software issues such as the overheads of
keeping a “free list” of memory blocks, or the cost of asking
the operating system for more memory, but also to an issue
specific to drivers: memory pinning. The driver gives phys-
ical memory addresses to the network card when specifying
buffer addresses. If the operating system were to change
which physical page backs a virtual page used by the driver,
the network card would not see the change and write to the
wrong page. Thus, the operating system has to be informed
of which memory is used for buffers and give it special
treatment. While modern hardware can use I/O memory
management units to allow devices to address virtual
memory, there is a cost to changing I/O memory mappings.

This model provides flexibility to network functions:
they can keep buffers aside to reassemble messages from
high-level protocols such as TCP, and can allocate buffers
from the pool in response to non-network events such as
timers indicating a request needs to be retried.

The model also lends itself well to concurrency: the
“free” queue is the central element shared by any number
of reception, transmission or processing queues. A network
function can receive and transmit packets from multiple
NICs, and it can use multiple processing queues that each
communicate with different reception and transmission
queues on the same NIC to process packets concurrently
and increase overall throughput.

But this flexibility comes at a cost: the steps that the
network function can perform besides transmission intro-
duce forks in the path of packet buffers. This requires buffer
management within the “free” queue, including support for
concurrent accesses. It also requires the driver to imple-
ment a policy for buffer freeing and allocation, adding com-
plexity to the overall system.

The model additionally introduces a failure case that is
not fundamental to the concept of a network function. If
there is a state within the processing logic in which any
buffer is kept, and the only way to get out of that state is to
receive new data, the system will only make progress if
there are buffers outside of the processing queue, which is
not guaranteed. Reasoning about the existence of such a
state requires reasoning about the invariants that hold in
the network function code across packets.

This flexibility is not always needed: some of the
network functions that power the backbone of the Internet,
such as IP routers or Ethernet bridges, process packets one
by one, never keep buffers aside, and never allocate buffers.
Overall, they are conceptually simpler than the general case
of a network function, yet they must currently pay the price
of driver flexibility they do not use.

TXing

TXed

RXing

RXed

Proc

NF
drop

NF
transmit

NF
fetch

Driver
free

NIC
transmit

NIC
receive

Free
NF

allocate

NF
keep

Driver
allocate

Figure 3. Diagram of the kernel-bypass driver model. Each
box is a queue, each arrow is a step moving one packet from
one queue to another. Steps are annotated with their actor
and their name. “RX” is reception, “TX” is transmission,
“Proc” is processing, and “NF” is network function.

228 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We propose a new driver model designed for common
network functions that do not need the flexibility provided
by existing models. It is based on two key insights: we can
remove the buffer pool altogether, and we can implement
buffer drops on modern NICs without the theoretical
branch they introduce, minimizing the amount of state that
the driver must keep track of.

Our model is designed to be as simple as possible, thus
improving correctness and performance. Its simplicity
makes it easier to formally or informally reason about and
requires less code and simpler code to implement.

Our model is a subset of the existing model: as shown
in Figure 4: the core differences are that it has no pool of
free buffers, and does not allow network functions to keep
buffers. The driver moves transmitted buffers directly to the
reception queue, and the network function must choose to
either transmit or drop received packets. This simplifies the
driver by giving it only one choice when transmitting a
packet: recycling transmitted buffers to the receiving queue
now or later. Removing the buffer pool also makes progress
easier to reason about: the software can only halt if the
driver does not recycle buffers when the receiving queue is
empty, or if the network function halts. While termination
is impossible to prove in the general case due to the halting
problem [31], network functions have strict performance
requirements, thus their code is unlikely to have loops
whose termination is not obvious because such loops could
be performance bugs.

Our model minimizes state by combining reception,
processing, and transmission into a single logical descriptor
ring containing all buffers, without the need for any other
data structure. While it is implemented using one reception
ring and one transmission ring, the driver mirrors the head
of the transmission ring to the tail of the reception ring,
thus ensuring that buffers that have finished transmitting
are reused for reception without any intermediate steps.

The key hardware feature that allows this is called “null
transmit descriptors”: as its name implies, it allows some
descriptors in a transmission ring to have no effect. Packet
drop is thus a special case of packet transmission, which
removes the fork in buffers’ paths and allows for a regular
buffer flow. For instance, a network card can implement this
by dropping packets whose length in metadata is zero.

The driver’s job consists of three tasks: move buffers
from the “received” queue to the “processing” queue when
the network function asks for a packet, move buffers from
the “processing” queue to the “transmitting” queue when
the network function asks to transmit or drop its current
packet, and recycle buffers from the “transmitted” queue to
the “receiving” queue to ensure the “receiving” queue is
never empty. Since this last operation is not a response to a
specific input, the driver must choose when to perform it,
for instance once every few transmitted packets.

Our model supports multiple outputs by using multiple
transmission rings and making the driver synchronize their
state. That is, the driver must set the tails of all transmission
rings at the same time and use the earliest head in all rings
as the head to mirror to the reception tail. Transmitting a
packet when the driver has multiple outputs conceptually
maps to transmitting it on some outputs and dropping it on
all others; all rings still have a descriptor pointing to the
buffer, but that descriptor is null in some of the rings. This
may cause packet drops if an output link is too slow, in
which case the entire ring will be used for transmission
with no space left for reception. The same could happen in
a traditional model if all buffers in the pool were used for
transmission due to a slow output.

Multiple inputs can be handled concurrently: while
the same processing queue cannot have multiple inputs,
since it is not possible to synchronize the state of reception
rings, the entire system can be duplicated so that there is
one reception queue per input, one associated processing
queue, and any number of synchronized transmission
queues. Modern NICs have hundreds of queues, thus it is
not a problem to use one transmission queue per input.

This does not mean our model requires parallelism: a
single thread of execution can implement many instances,
which are thus concurrent but not parallel.

Our model is amenable to parallelism: multiple
threads of execution can run in parallel, each implementing
any number of instances, without having to synchronize
any state. Only the state of the rings within an instance
needs to be kept in sync. This is similar to existing models.

The key limitation of our model is the flip side of its
strength: since network functions must process buffers one
by one without keep any aside, they cannot reconstruct
multi-packet messages without copying buffers that arrive
out of order. Thus, while core functions such as routing and
network address translation can be implemented with our
model, one cannot terminate TCP connections or otherwise
reassemble fragments without copying buffers, which is an
expensive operation given modern network speeds.

TXing

TXed

RXing

RXed

ProcNF
drop

NF
transmit

NF
fetch

Driver
recycle

NIC
transmit

NIC
receive

Figure 4. Diagram of our proposed driver model. Semantics
are the same as in Figure 3.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 229

5. Implementing our new model
In this section, we describe an implementation of our driver
model for the Intel 82599 NIC [12] which we call “TinyNF”,
short for “Tiny Network Function”.

TinyNF’s goals are to be easy to reason about and fast.
The former is different from “correct” because it is hard to
tell whether a driver operates as expected without hard-
ware schematics, since the data sheet may be incorrect.
However, we want to make it simple enough that it is not a
bottleneck in network function verification efforts.

For simplicity, TinyNF processes buffers one at a time:
there is always at most one buffer in the processing queue.
One key hypothesis in this project was that TinyNF could
be fast without explicitly processing packets in batches.

The keys to TinyNF’s performance the avoidance of any
operation that is not absolutely required, and the use of a
few small but surprisingly effective scheduling algorithms
for synchronizing queue state.

TinyNF avoids unneeded work, even metadata copy.
Because each buffer always belongs to exactly one queue,
and because queues are ordered, it is enough to set the
buffer pointers at initialization time and never change them
afterwards. Moving a buffer from one queue to another only
requires writing to the source head and destination tail.

There are fewer delimiters in practice than in theory
since some of them are implicit, as shown in Figure 5. The
“transmitted” head and tail are the “receiving” tail and
“transmitting” head, respectively. Similarly, the “received”
head and tail are the “processing” tail and “receiving” head.
While there is technically a “processed” queue that does not
exist in the conceptual model, its head and tail are the
“transmitting” tail and “processing” head respectively. The
“processing” tail does not need explicit tracking, because it
is always either one buffer ahead of the head or equal to it,
due to the one-packet-at-a-time constraint.

TinyNF avoids reading from NIC registers entirely after
initialization. To check for received buffers, the “descriptor
done” metadata flag of the descriptor at the processing tail
is enough. To check for transmitted buffers, the 82599 NIC
provides a “transmit head write-back” feature: software can
request hardware to write the transmit head to RAM after
hardware has finished transmitting a buffer.

TinyNF cannot avoid updating the receive and transmit
tails, which are NIC registers and thus slower than RAM,
but it can avoid doing so after every packet. Updating the
receive tail, which moves buffers to the “receiving” queue,
is only necessary once every few transmitted buffers since
reception continues working as long as there are buffers in
the queue, even if there are less than there theoretically
could be. Updating the transmit tail is necessary for buffers
to be transmitted to the network, but this can be done once
every few transmissions, or when there are no packets to
receive and thus no other work to do.

TinyNF carefully schedules operations to minimize the
amount of communication between software and hardware.
This improves overall latency and reduces the fraction of
PCIe throughput used for metadata.

Two operations can be scheduled together: asking the
NIC to update the transmission tail and checking for such
updates to recycle buffers. The request is made with a bit in
transmission metadata, and the check is made by reading
the value that the NIC wrote to RAM via DMA. TinyNF
schedules both operations once every 64 packets. The check
will thus see the update that was requested 64 packets ago.

The most important scheduling decision is updating the
transmission tail: frequent updates decrease latency by
making the NIC aware of packets sooner, but they increase
throughput by performing less book-keeping. Networking
stacks such as DPDK solve this with adaptive batching: they
check for multiple received buffers at a time up to a limit,
let the network function process them all, then update the
transmission tail. This theoretically allows drivers to make
better scheduling decisions because they have more data:
they know how many packets have arrived, rather than
whether there is at least one packet.

TinyNF’s one-packet-at-a-time model is incompatible
with batching, thus we chose an algorithm based on past
data instead. TinyNF updates the transmission tail either
once every few transmitted packets, or as soon as there are
no packets to receive since this likely indicates there is time
to perform this expensive operation. This keeps the period
short under low load, avoiding latency spikes, but allows
for longer periods under high load, avoiding throughput
drops, without looking at packets beyond the current one.

Overall, TinyNF is around 550 lines of C code, and its
only dependency is a 300-line environment abstraction. It
runs entirely in user mode, without kernel dependencies.

TX head

RX
tail

Proc
head

Proc tail

TX
tail

RX
head

0

1

2

34

5

6

7

Figure 5. Logical ring composed of reception, processing
and transmission queues. “In progress” queues are light,
“done” ones are dark and shaded. Heads and tails refer to
“in progress” queues, but implicitly delimit the others.

230 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6. Evaluation: TinyNF for verification
In this section, we evaluate two hypotheses about TinyNF:
its simplicity should (1) make it easier to reason about and
(2) make it faster than other verified drivers.

We evaluate TinyNF by using it in the formally verified
network functions of the Vigor [33] project. Vigor verifies
the entire software stack, including the network function
code and the network card driver.

Vigor does not need DPDK’s flexibility: it is focused on
network functions that form the Internet’s backbone, such
as Ethernet bridges and IP load balancers. This makes Vigor
network functions good candidates to evaluate TinyNF.

Vigor uses DPDK for performance, but it cannot take
full advantage of DPDK’s optimizations either. Vigor’s use
of DPDK allows its network functions to outperform those
written using traditional networking APIs that go through
the kernel to receive and transmit packets. However, some
DPDK optimizations such as batching and vectorization are
currently out of the reach of automated formal verification.
Thus, the driver formally verified by Vigor is the subset of
the DPDK driver that can be automatically verified, not all
of the driver.

TinyNF makes Vigor network functions 8x faster
to verify, as we show in Table 1. We ran verification on
two Intel Xeon E5-2690 CPUs at 2.90 GHz, totaling 32 cores.

Vigor verification has two steps: first Vigor symbolically
executes the network function code to find all paths, then it
validates each path using a theorem prover, which can be
done in parallel. Both parts of Vigor verification are faster
with TinyNF for the same main reason: symbolic execution
does not need to explore DPDK’s complex stack, thus it
takes 1/5th the time and yields 1/7th the number of paths.
Individual paths are also faster to validate since they have
less code, though this is less pronounced since validation
focuses on network function code, not driver code.

The most drastic change is in the load-balancer, due to
its more complex paths that involve more data structures:
its total verification time on our machine goes down from
~1h45min to ~14min. This allows full-stack verification to
be used as part of development, such as verifying every
code change, as opposed to being for special occasions.

TinyNF is 1/11th the code of the DPDK driver and has
exponentially fewer paths, as we show in Table 2, which
explains why the improvements in verification time are so
drastic. We measured the code complexity of TinyNF and of
the verified subset of DPDK’s driver. We manually counted
paths, so that we could define them in terms of the public
parameters: the arguments passed in the code, and the
choices made at DPDK build time when picking a data
structure implementation. Automating this using symbolic
execution would have only found the number of paths
given a concrete configuration. When counting paths, we
assume that NIC hardware behaves as per its data sheet.

To show the effect of a change in driver model and not
only in implementation, we also included the “Ixy” driver
by Emmerich et al. [10], a simplified implementation of
DPDK’s design for educational purposes that does not aim
for comparable performance. As expected, TinyNF and Ixy
use similar amounts of code to initialize, since they both use
a limited set of NIC hardware features. However, TinyNF
has less code and exponentially fewer paths than Ixy in the
reception and transmission functions that form the core of
the driver, providing more evidence in favor of our model.

We note that the number of paths can change based on
programmer decisions: using Boolean expressions rather
than conditionally executed code can lower the number of
paths, such as writing x = c ? y : x; instead of if (c) { x = y; }
in C. We could have used this to bring down the number of
paths in TinyNF’s transmission function to 4, without any
exponent regardless of the number of output links, but
chose not to as such code is compiled to conditional move
instructions which have poor tail latency on our machines.

 Init. Reception Transmission

 #funs #LoCs #funs #LoCs #paths #funs #LoCs #paths

DPDK 115 3204 5 136 1 + AF + 288AS 5 122 (8 + 14(FFT + P((FS + FF)T – FFT))O

Ixy 14 279 1 63 1 + AF + AS 1 53 14O

TinyNF 4 245 1 17 3 1 29 2 + 2O
AS, AF and FS, FF: Number of success and failure paths in packet allocation and freeing respectively; Ixy’s freeing cannot fail
P: Number of paths in the “put buffers back” operation of the DPDK memory pool in use
T: DPDK parameter for the transmit descriptors write-back threshold, must be >0 O: Number of output links

Table 2. Number of functions, lines of code and paths in DPDK, Ixy and TinyNF drivers for the Intel 82599.

 DPDK TinyNF

 Sym. ex. Validation Sym. ex. Validation

NAT 337s 149 × 83s 63s 20 × 73s

Bridge 527s 312 × 89s 104s 39 × 77s

LB 731s 297 × 620s 161s 51 × 425s

Policer 392s 190 × 90s 75s 25 × 76s

FW 323s 140 × 83s 61s 20 × 68s

Table 1. Verification time statistics for the Vigor network
functions using DPDK and TinyNF.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 231

TinyNF makes fewer assumptions on its environment
than DPDK. Vigor makes assumptions about the behavior
of two components: DPDK data structures and operating
system functions.

One fundamental issue with DPDK’s driver, even in the
verified version, is its need for a data structure to hold free
packet buffers. This leaves two options for verification: use
a simpler but slower data structure that can be verified or
assume that a faster but unverified data structure is correct.
Unlike DPDK and TinyNF, there is no evidence that simpler
data structures can match their more complex counterparts
in performance. In fact, the opposite is true: data structure
contracts are already simple yet popular implementations
become more complex with time, such as a 2500-line
change in Java 8 to make the hash map more resilient to
collisions [15]. By comparison, Vigor’s verified map has less
than 300 lines of code in its entirety.

Another issue with DPDK’s driver is in the amount of
assumptions it makes about operating system functions.
When verifying network functions running on Linux, Vigor
replaces these functions during symbolic execution with
custom models. This ensures DPDK calls operating system
functions correctly according to Linux’s documentation,
such as by validating the order and arguments of function
calls. The models then return symbolic values that cover the
range of documented behaviors. But there is no formal
specification for these functions, much less a formal proof
that the Linux implementation is correct. Thus, Vigor needs
to assume the correctness of dozens of models for its proof
on Linux. This can be avoided by using a custom operating
system, at the cost of losing Linux tools and features such
as multitenancy and scheduling. TinyNF needs much less
from its environment, drastically reducing the number of
assumptions even on Linux.

TinyNF is easier to analyze than DPDK, since it only
needs standard C. DPDK uses non-standard extensions to
give hints to the CPU and compiler, such as prefetching
memory and vectorizing loops. TinyNF does not need any
such hints; the driver does not even use the standard library
directly, going through a small environment abstraction
layer instead.

This standards compliance makes TinyNF analyzable
“out of the box” with most tools and allows future tools to
support TinyNF without special treatment. This includes
symbolic execution engines such as KLEE [4], which Vigor
uses and extended to support DPDK code, and manual
provers such as VeriFast [14], also used by Vigor. We think
this will accelerate networking research in drivers and
functions by making it easier to develop new techniques
and tools. For instance, TinyNF’s simplicity and small size
makes it amenable to a proof of functional correctness
given a hardware specification, which would improve upon
Vigor’s proof of memory safety through hardware models.

TinyNF improves the throughput of Vigor network
functions by 160%, with 2% less median latency, as we
show in Table 3. 99th percentile latency decreases by 7%.

To measure performance, we used two machines in a
setup based on RFC 2544 [26], with a “device under test”
running a network function and a “tester” running the
MoonGen packet generator [9], which can measure latency
using NIC timestamps. Both machines run Ubuntu 18.04 on
two Intel Xeon E5-2667 v2 CPUs at 3.60GHz with power-
saving features disabled and have two Intel 82599ES NICs,
using only one port per card to ensure PCIe bandwidth is
not a bottleneck. We measure throughput using minimally
sized packets. Our workload fills the internal flow table of
the network functions to 90% of their capacity. Measuring
latency with MoonGen instead of on the device under test
allows us to capture the latency of NIC register writes as
well as the effects of drivers’ NIC configuration. This setup
is similar to the one used to originally evaluate Vigor, and
can replicate Intel’s DPDK performance numbers [7].

We replicate Vigor’s benchmark setting: measuring the
max throughput that a Vigor network function can achieve
with less than 0.1% loss, in a single direction, as well as the
latency with 1 Gb/s of background load.

Vigor’s NAT gets the lowest throughput improvement;
this is because its bottleneck is not the driver but computing
packet checksums since it has to modify packet headers. To
confirm this, we tried modifying the DPDK version of the
NAT to use batching: this results in the same throughput as
the TinyNF version of the NAT, confirming that the driver
is unlikely to be the bottleneck.

In summary, both of our hypotheses are validated:
TinyNF is easier to reason about in terms of code quantity
and code complexity, and network functions using TinyNF
are faster than the same functions using DPDK’s verified
subset. Thus, TinyNF allows developers to formally verify
their network functions in less time, get more correctness
guarantees, more than double the functions’ throughput,
and lower the functions’ median and tail latency.

DPDK TinyNF

Tput Latency (μs) Tput Latency (μs)
(Gb/s) 50% 99% (Gb/s) 50% 99%

NAT 1.99 4.04 4.77 3.69 3.92 4.25

Bridge 2.65 3.97 4.50 5.82 3.93 4.23

LB 2.22 4.01 4.63 6.66 3.90 4.24

Policer 2.96 3.88 4.32 9.53 3.83 4.24

FW 2.65 3.97 4.49 8.14 3.88 4.24

Table 3. Single-link throughput and latency with 1 Gb/s
background load of Vigor functions on DPDK and TinyNF.

232 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7. Evaluation: TinyNF in general
In this section, we compare the performance of TinyNF and
DPDK for general purpose network functions, regardless of
verifiability.

We use the same benchmark setup as in the previous
section, but this time use both directions for throughput, for
a maximum of 20 Gb/s. We keep throughput symmetric
during the benchmarks, i.e., if a function cannot handle a
given load, we reduce the load of both directions by the
same amount and retry. We then measure the latency at
load increments of 1 Gb/s to paint a clear picture of the
function’s overall performance profile.

TinyNF can outperform a fully optimized DPDK
setup, as we show in Figures 6 and 7 using a traffic policer
as an example. We compare the Vigor policer using TinyNF
as its driver to the same code using either “unbatched”
DPDK, which is the simpler version used by Vigor, or
“batched” DPDK, which is the standard way to use DPDK
that enables optimizations such as adaptive batching and
vectorization. We also implemented a 2-core parallelization
of the policer for all three variants. We chose the policer
because, by design, traffic in one direction is independent
of traffic in the other, which means it admits a trivial 2-core
parallelization for our experiments. We are not proposing a
new way to parallelize network functions, but merely
showing that TinyNF can be parallelized in a similar way to
existing drivers. This also shows how much improvement
parallelization can bring compared to batching.

Using TinyNF, the policer achieves better throughput
than using batched DPDK, with an even starker difference
when using two cores. The bottleneck that prevents the
dual-core TinyNF version of the policer from reaching line
rate is the frequent reads from the CPU time, which it needs
for flow expiration.

 TinyNF leads to better latency at low and high loads but
worse latency in the middle, especially the 99th percentile
latency. Looking at individual data points, which we show
in Figure 8, the TinyNF-based policer has lower latency in
some cases, but this advantage is lost in the tail latency. We
believe this is a case where DPDK’s batching shines: it can
detect “gaps” between packets, in which updates to the
transmission tail do not compete with packet processing, by
looking at how many packets there are in the queue.

Finally, since we had to modify the policer code to use
TinyNF, we wanted to see whether the same performance
benefits could be obtained without code changes. We wrote
a compatibility layer that implements some of the DPDK
API on top of TinyNF. The layer cannot implement all of the
DPDK API, by design, but can replace DPDK for functions
that fit the TinyNF model by changing an environment var-
iable at compile time. The compatibility layer allows for 1%
more maximum throughput than batched DPDK, at the cost
of increased latency.

Figure 6. Throughput and median latency of a traffic policer
using DPDK with and without batching, TinyNF, and 2-
core versions of all three.

Figure 7. 99th percentile latency version of Figure 6.

Figure 8. Complementary cumulative latency distributions
of a traffic policer using the same alternatives as Figure 6,
with 1 Gb/s background load.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 233

A no-op function can handle more throughput with
DPDK than with TinyNF, even though the opposite holds
with real functions. We reached this surprising conclusion
by benchmarking DPDK’s “testpmd” built-in application,
which DPDK developers use in performance reports [7] to
benchmark driver speed. We configured testpmd to update
packets’ MAC address to provide some realism. Using our
setup, both TinyNF and DPDK in its batched mode could
saturate two 10 Gb/s links, as we show in Figure 9. We also
included the Ixy driver [10], which performed admirably
given its educational purpose but could not sustain line rate
even with batching.

Since our setup was bottlenecked by link capacity, we
chose to lower the CPU frequency to 2 GHz and re-run the
benchmark. In this setup, DPDK can reach 97.5% of line rate
while TinyNF peaks at around 92.5% of line rate, as we show
in Figure 10, though its latency is lower.

We believe the bump around 11 Gb/s is due to hardware
issues, since it appears in three independently written
drivers and in both a no-op and a nontrivial function.

This result is interesting, since the no-op benchmark is
the one used by DPDK developers to measure their progress
when optimizing DPDK’s performance. If this benchmark
does not accurately represent driver performance on real
network functions, the DPDK developers may believe they
are improving DPDK’s performance but do the opposite.

To explain this finding, we started by plotting the no-op
function’s latency in more detail. We did this because of an
observation we made while running the other benchmarks:
TinyNF’s performance appeared more stable than DPDK’s,
yielding more consistent results across runs, such as never
dropping packets under high loads whereas DPDK would
sometimes drop a few packets per million.

As expected, TinyNF has a more stable latency profile
than DPDK: without background load, TinyNF’s latency
remains low up until the 99.9th percentile, whereas DPDK’s
latency starts jittering before this, as show in Figure 11. We
stop at the 99.99th percentile because Primorac et al. showed
that NIC timestamping is not accurate after that point [23].

This measurement highlights a key issue with DPDK’s
driver model: the driver has to manage buffers explicitly
instead of merely moving them from one queue to the next,
which leads to a distinct bump in latency before the 99th
percentile. The same holds for Ixy, since it uses the same
driver model as DPDK.

We used the toplev microarchitectural measurement
tool [22] to investigate bottlenecks in DPDK’s driver when
running the Vigor policer. While the tool indicates that the
policer is bottlenecked on memory writes, there is no single
write that dominates. Some of the memory writes that take
the most time are fundamental to DPDK’s design, such as
moving buffer pointers to and from the buffer pool, while
others could be removed at the cost of some functionality,
such as writes to packet buffer metadata.

Figure 9. Throughput and median latency of DPDK’s no-op
function with and without batching, a port of it on TinyNF,
and a port of it on Ixy with and without batching.

Figure 10. Same benchmark as Figure 9 but with the CPU
capped to 2 GHz. We do not show Ixy since it could not
sustain line rate even at full CPU speed.

Figure 11. Complementary cumulative latency distributions
of the no-ops from Figure 9 without background load.

234 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

TinyNF slows down less when running real functions
because its instruction-level parallelism has room to
grow and it interferes less with the CPU’s caches. We
reached this conclusion after measuring low-level CPU
counters using libPAPI [30], in particular the number of
cycles, instructions, and cache hits per packet at 20 Gb/s.

Before going further, we must caution against over-
interpreting our results, in particular absolute numbers of
cycles. To measure low-level CPU metrics, we instrumented
network functions with code that copies counter values for
later processing. This has overhead: reading performance
counters uses cycles, and copying their values touches the
CPU caches. Furthermore, due to the out-of-order nature of
modern CPUs, accurately measuring cycle counts requires
inserting serializing instructions to ensure past instructions
have completed. Thus, measuring the cycle count increases
it as it prevents the CPU from reordering some instructions.
The measurement overhead is stable, so we measure it and
subtract it from the measurements, but we cannot fully
account for cache changes due to storing counter values, or
for the effects of serialization. Because of this, cycle counts
can only be compared to other functions on the same driver.
Instruction counts and cache use can be compared globally.

We collected data by running network functions ten
times collecting ten million packets each time. We intended
to collect data in a single run, but noticed that some runs
have a lower cache miss rate than others, despite using the
same executable run in the same way on a CPU not
otherwise used by the operating system.

We used four functions: a no-op function that does not even
touch packets, one that writes a constant to the destination
MAC address, one that sets the destination MAC address
using a lookup table based on the source MAC address, and
the Vigor policer. In our setup, the write function is faster
on DPDK but the lookup one is faster on TinyNF. We report
the measured cycles, instructions and cache hits in Table 4.
We do not report main memory hits as they are negligible,
around one in a million packets.

Two results stand out: the increase in instructions per
cycle for TinyNF when running more realistic functions,
and TinyNF’s low cache use compared to DPDK.

TinyNF has low instruction-level paralelism in a no-op
because the CPU is waiting for operations on descriptors
and NIC registers, which cannot be executed out of order.
On a more realistic function, the CPU executes the function
instructions out of order, increasing efficiency, thus the
slowdown is not linear. This is consistent with TinyNF’s
low latency in the reduced frequency benchmark: the
frequency makes little difference when waiting for the NIC.

Batched DPDK, on the other hand, can execute multiple
instructions per cycle even in no-ops, due to instructions
for metadata and buffer management. Its use of vector
instructions also helps keep a high instruction count per
cycle by waiting for multiple descriptors in parallel without
reordering. The slowdown when executing a real function
is thus linear in the number of instructions, unlike TinyNF.

TinyNF also has a lower memory footprint than DPDK,
thus realistic functions have fewer cache misses, an effect
that cannot be observed in no-ops.

 IPC Cycles Instrs L1d hits L2 hits L3 hits

 50% 50% 99% 50% 99% 50% 99% 50% 99% 50% 99%

DPDK unbatched

 No-op 0.39 664 2140 258 3780 101 1300 8.94 103 1.00 82.0

 MAC write 0.37 725 2220 267 3790 107 1300 10.3 102 2.00 85.0

 MAC lookup 0.39 746 2180 287 3810 116 1310 10.4 96.1 3.00 96.0

 Policer 0.66 866 2540 669 4130 331 1500 4.94 94.4 3.00 95.0

DPDK batched

 No-op 1.70 58.1 64.3 99.0 99.1 32.3 33.0 4.81 5.83 1.41 2.50

 MAC write 1.68 63.9 70.1 107 107 36.3 37.0 4.74 5.65 2.66 3.62

 MAC lookup 1.53 84.4 93.1 129 129 46.6 47.3 5.01 6.07 5.12 5.94

 Policer 1.65 298 333 511 512 265 269 4.33 5.52 4.47 5.53

TinyNF

 No-op 0.12 289 683 35.0 53.0 7.87 16.7 4.51 11.0 0.00 1.00

 MAC write 0.13 339 717 45.0 63.0 13.8 22.2 5.11 12.8 1.00 3.00

 MAC lookup 0.18 360 734 65.0 83.0 19.7 29.7 8.99 14.9 2.00 4.00

 Policer 0.49 490 883 297 308 125 144 11.0 23.0 2.00 4.00

Table 4. Low-level metrics. IPC is Instructions Per Cycle. Cycles and IPC are only comparable within the same driver, as
explained in the main text. DPDK batched uses batches of size 32. Main memory hits are negligible and not shown.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 235

8. Applicability
In this section, we evaluate the applicability of our model
to real-world network function deployment. Did we strike
a good tradeoff choosing not to support some functions to
simplify the model? And is our model useful in the context
of network function virtualization?

As previously explained, the core limitation of our
driver model is that network functions cannot keep buffers
aside for later use. For instance, they cannot reconstruct
messages in TCP or other higher-level protocols. Our model
targets network functions that do not need to do so because
they logically handle packets one at a time.

Our model supports many well-known functions,
though there is no standard list of network functions.
Despite their increased importance in modern networking,
there is no consensus on what is a “network function” and
what is not. There have been attempts such as RFC
3234 [27] to classify “middleboxes”, which are functions
that are not crucial to the network, but to the best of our
knowledge there is no commonly accepted list of network
functions. We chose to use the list of functions from the
ClickOS [18] paper, which were also used by the authors of
Vigor [33] to estimate the applicability of their verification
technique. We complement this list with our own
knowledge, for lack of a more standard source.

Our driver model supports 13 of the 14 types of network
functions listed in ClickOS: load balancing, DPI, NAT, fire-
walls, tunnel, multicast, BRAS, monitoring, DDoS preven-
tion, IP proxies, congestion control, IDS, and IPS. The only
one that our model cannot support without compromises is
a traffic shaper, because shaping requires keeping packets
to send them later in the desired traffic shape. Among the
network functions not mentioned by ClickOS, our model
can be used for Ethernet bridges, ARP clients and servers,
DNS proxies, statistics collectors, traffic policers, and
Google’s Maglev [8] load-balancer.

However, our driver model cannot efficiently support
functions based on entire TCP messages, since this requires
keeping IP packets around to reorder and merge them into
logical messages. Such functions include proxies and HTTP
servers. While one could implement reordering by copying
buffers before giving descriptors back to the hardware, this
would hinder performance.

We believe our model is a good fit for network functions
that form the backbone of networks, such as routing, load-
balancing, NAT and DNS, access control and statistics.
However, it is not suited to high-level functions that deal
with entire connections or protocols that fragment packets.

Some requirements are orthogonal to our model. For in-
stance, offloading checksums to hardware would remove
the main bottleneck in the NAT we benchmarked. Any such
feature that can be used by providing metadata to the NIC
can be implemented in a driver using our model.

TinyNF can be used for virtualization, which is a key
tool for the practical deployment of network functions [35].
Virtualization allows operators to deploy multiple network
functions on the same physical machine, instead of having
to dedicate an entire machine to a single function. They also
provide an easier way to manage network functions, in the
same way virtual machines ease software management.

We experimented with virtualization using Single-Root
I/O Virtualization, or “SR-IOV” for short, a PCIe standard
with which network cards can expose virtual network cards
with the same packet-processing features as the physical
card. The virtual machine monitor can let virtual machines
access virtual devices directly, without surrendering control
over the physical card. The physical card includes hardware
to route packets to virtual cards based on packet headers,
for instance by Ethernet address. The physical card can limit
the rate at which each virtual card transmits packets and
can prevent virtual cards from transmitting packets with a
different source address than their own. Virtual machines
thus gain the benefits of direct access without the ability to
monopolize the link or lie about their network identity.

The Intel 82599’s virtual cards do not support some of
the physical features. Notably, using transmit head write-
back causes virtual cards to hang, a problem not mentioned
in the card’s data sheet but already reported by the authors
of Arrakis [20]. Another missing feature is legacy packet
descriptors, which are simpler to use, though the data sheet
calls this out. We wrote a version of TinyNF that does not
use these features, making it slightly slower. The Arrakis
authors estimated that the lack of transmit head write-back
causes a 5% performance penalty

We used the same physical setup as before, but with 16
virtual functions on each of the two network cards, for a
total of 32 virtual cards. Each virtual card has an Ethernet
address, and physical cards route packets to virtual cards
based on these addresses. The only code changes are due to
the missing features mentioned above, as well as a few
dozen lines of configuration. The functions forward each
packet using a virtual card on the physical card opposite the
one whose virtual card received the packet.

The Vigor policer handles 12.2 Gb/s of minimally-sized
packets without loss when using TinyNF in this setup. A
no-op function reaches 14 Gb/s. Both are bottlenecked by
reading packet descriptors for packet fetches, as the data
from packets and descriptors no longer fits in the L2 cache.

This experiment is only intended to show that our driver
model is applicable to virtualized environments. With this
number of devices, other concerns arise such as load skew
across devices and non-uniform memory accesses, which
we do not capture here. We believe TinyNF is as sensitive
to these concerns as other stacks. In particular, the order in
which the function checks virtual cards for packets matters.
For instance, if packets mostly arrive on one card, checking
the other cards for packets will limit performance.

236 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

9. Discussion
In this section, we present our main takeaways from this
project, in the form of actionable recommendations for both
researchers and practitioners.

Drivers are not a special category of software, and
the line currently drawn between drivers and other kinds
of software is neither well-defined nor helpful. Drivers
should be considered just another kind of software system,
one that is more focused on hardware than usual. The same
techniques used in systems that handle requests can and
should be scaled down to “drivers”, instead of creating new
vocabulary for one kind of software.

The common meaning of “driver” is a piece of code that
has exclusive access to hardware and exposes a software
API to programs who want to use it. However, software that
does this is not always called a driver. Operating systems
allows programs to access CPUs, including isolation and
high-level APIs to access features such as clocks, but they
are not commonly referred to as “CPU drivers”, with the
notable exception of Barrelfish [1]. The same can be said of
higher-level frameworks such as Java or .NET, which offer
an abstraction over low-level CPU details yet are not called
drivers. This applies to other kinds of devices as well: code
that lets programs run GPU shaders is called a driver, but
code that lets programs to draw windows and buttons on
the screen is not, even though it is also a way for programs
to draw. The internal architecture of some systems does rely
on “drivers” as an indirection to access hardware, but this
is not relevant from users’ point of view.

An example of overly specific vocabulary is “batching”
in network drivers: a feature that improves performance by
amortizing costs. It is really composed of three independent
features: (1) getting multiple packets at a time from the NIC,
gaining information about network load, (2) processing
multiple packets at a time, allowing for vectorized code, and
(3) giving multiple packets at a time to the NIC, amortizing
the cost of NIC register writes. TinyNF shows that only (3)
is required for high throughput, though (1) may be required
to get consistently low latency. In fact, any developer that
uses batching but does not explicitly keep track of network
load or use vector operations is already implicitly aware of
this. Amortizing NIC writes is similar to existing techniques
such as buffering reads and coalescing writes in disk I/O.

The idea that drivers are a special kind of software is
hindering research. Most systems for fast networking, such
as ClickOS [18], DPDK [5], netmap [28], SoftNIC [11], and
IX [2], reuse existing drivers, which are bottlenecks on their
performance. Arrakis [20] uses custom drivers but focuses
on interrupt-driven I/O, which strikes a different tradeoff.
Ixy [10], is the only research driver we know of besides
ours. It is odd to have more research operating systems than
drivers: the former are by definition more complex as they
contain at least one driver.

Isolation is required for low-level performance, just as
modularity is required for high-level correctness. The best-
effort approach of shared caches is no longer enough when
interferences that cause even a low number of cache misses
cause a noticeable performance difference, as is the case
with fast networking.

One way to provide performance modularity is to run
each part of a system on physically separate hardware, as
in TAS [16]. This eliminates interference in per-core caches,
at the cost of increasing resource use. It also increases the
cost of communication between modules, in the same way
protection rings eliminate functional interference between
user and kernel mode at the cost of an expensive boundary
between the two modes.

However, the current way to measure low-level metrics
through special CPU registers cannot be isolated from the
code under measurement. This is not an issue for most code,
because the overhead of measurement is low, but it becomes
an issue with nanosecond-scale code such as TinyNF.

One way to avoid measurement overhead is to use static
instead of dynamic analysis, but this requires a hardware
model. TiML [32] includes performance reasoning in a type
system, and Bolt [13] infers performance metrics from the
source code of network functions written in C. However,
predicting cycle counts requires accurate hardware models.
For instance, Bolt predicts instruction counts within a few
percent of ground truth but is 300% off the true cycle count
for typical workloads. Since hardware optimizations are
considered a competitive advantage, perfectly accurate
hardware models are unlikely to be made publicly available.

Standard benchmarks would improve the state of
network function research. Other areas of research use
benchmarks such as SPEC [3] to measure improvements on
a widely-accepted scale. There is no equivalent for network
functions, not even non-standard ones.

We chose to explore a new point in the design space of
networking code based on our experience with networking
research, but the main threat to this paper’s validity is that
we have no way to validate the usefulness of this design. It
may be that real-world traffic looks more like the one used
to benchmark Arrakis [20], for instance, in which Peter et
al. came to the conclusion that handling operations in user
mode entirely eliminates the need for even transmission tail
update coalescing.

Unlike other domains in which one can substitute
benchmarks with well-known publicly available targets,
such as compiling the compiler itself to show optimization
improvements, network functions are generally not public.

This problem is getting worse as hardware gets faster.
With 100 Gb/s Ethernet becoming more popular, should we
focus on handling minimally sized packets, with a budget
of 6ns per packet, or should we assume that traffic is made
up of packets in the hundreds of bytes, as Pigasus [34] does?
We do not know.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 237

Any benchmark, even if unrealistic, would improve
the situation, which is that both industry and academia
use no-op functions as a de facto standard. DPDK’s
performance reports [6] from Intel, Mellanox, and
Broadcom all exclusively use no-ops, and research such as
netmap [28] or SoftNIC [11] mostly use no-ops. But no-ops
are not representative of either general or specific cases.
Even overly specific benchmark suite would at least result
in systems optimized for a real use case, instead of systems
optimized for no-ops which are not useful to anyone.

Since the performance of infrastructure code interferes
with the performance of application code in non-obvious
ways, extrapolations from no-ops are not representative of
actual performance. We believe that using any real network
function as a standard benchmark would provide a data
point from which one can extrapolate more credibly to
other real functions. The chosen function would be closer
to any other function than a no-op is in terms of how the
infrastructure code influences its performance, regardless
of how close it is in terms of functionality.

We started this project with the goal to close the gap
between unverified and verified performance using the
Vigor network functions as benchmarks. Had we measured
no-op performance for TinyNF first, under the belief that it
was representative, we would have come to the conclusion
that it was worse than DPDK. This could have led us to
make TinyNF more complex to “fix” its no-op performance,
accidentally lowering performance for real functions in the
process.

More formal hardware data sheets could speed up
software development and reduce bugs, without the
need to change the hardware. TinyNF’s complexity mainly
comes from the number of assumptions it makes about
hardware. These are due to missing or incorrect data, which
is a natural consequence of free-form data sheets.

Most of the data sheet errors could be avoided using the
same kind of analysis performed by compilers today. For
instance, the Intel 82599 NIC’s data sheet [12] has typos in
register names and even in the size of some register fields;
these could be caught by consistency checks ensuring all
referenced names are declared and all registers contain the
right number of bits. Some registers are only documented
within the list of registers and not in the explanations of the
operations they are used for, requiring developers to read
the entire data sheet to learn about them; these could be
caught by a check for unused declarations.

It would be unreasonable to expect hardware engineers
to always provide perfect data sheets or design bug-free
hardware, in the same way that it would be unreasonable
to expect software engineers to always write bug-free code.
However, our experience is that most current bugs are low-
hanging fruit that could be caught without inventing new
analysis techniques, if data sheets written in a machine-
readable format first.

Using the basic features of a modern NIC does not
have to be complicated, despite the belief that hardware
has become inherently harder to deal with than in the past.
We examined the oldest driver we could find for a NIC of
the Intel 8259x family, which is the so-called “apricot”
driver [17] for the Intel 82596, released with Linux 1.1 in
1994. It contains 450 lines of code not including debug code,
which is close to TinyNF’s 550.

Most lines of code in TinyNF come from unused features
that must be initialized anyway. For instance, software must
clear packet filters and virtualization-related registers after
resetting the hardware, unlike some other features that are
left in a clean state by the hardware reset. This kind of issues
is not a fundamental source of complexity but a hardware
implementation detail. If the hardware could be fully reset
in a single operation, TinyNF would have fewer lines of
code than the old “apricot” driver. This overhead is not as
visible in a driver such as DPDK’s, whose complexity comes
from the amount of features it supports.

We hope this paper serves as evidence that developing
code that interacts with network cards is both interesting
and rewarding, and that it is not as complex or difficult as
is often believed. On the contrary, we found that developing
our own driver made the development and verification of
network functions easier, by removing all dependencies on
complex external stacks and kernel-mode drivers.

Acknowledgements
We thank our shepherd Simon Peter for his useful feedback
and guidance; the anonymous reviewers for their useful
and detailed reviews; the anonymous artifact evaluators for
their useful feedback on the code and experiments; Arseniy
Zaostrovnykh, Akvilė Valentukonytė, Blagovesta Kostova,
Katerina Argyraki, Lei Yan, Rishabh Iyer, Samuel Chassot,
and Yassmine Abdrabo, for providing feedback on the ideas,
paper, and code.

Availability
Our code is available at github.com/dslab-epfl/tinynf, and
described further in the Artifact Appendix below. The code
obtained the “Artifact Available”, “Artifact Functional” and
“Results Reproduced” badge from artifact evaluation and
can thus be reused by others with confidence.

In particular, the TinyNF code can be used as a simpler
and faster base for any network function that fits its model,
or as a baseline to evaluate low-level networking code. The
benchmarking scripts are independent of TinyNF and can
be reused to measure the performance of network functions
that use any framework or driver.

238 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dslab-epfl/tinynf

References
[1] Baumann, A., Barham, P., Dagand, P.-E., Harris, T.,

Isaacs, R., Peter, S., Roscoe, T., Schüpbach, A. and
Singhania, A. 2009. The Multikernel: A New OS Ar-
chitecture for Scalable Multicore Systems. Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2009), 29–
44.

[2] Belay, A., Prekas, G., Primorac, M., Klimovic, A.,
Grossman, S., Kozyrakis, C. and Bugnion, E. 2016. The
IX Operating System: Combining Low Latency, High
Throughput, and Efficiency in a Protected Dataplane.
ACM Trans. Comput. Syst. 34, 4 (Dec. 2016).
DOI:https://doi.org/10.1145/2997641.

[3] Bucek, J., Lange, K.-D. and v. Kistowski, J. 2018. SPEC
CPU2017: Next-Generation Compute Benchmark.
Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering (New York, NY,
USA, 2018), 41–42.

[4] Cadar, C., Dunbar, D. and Engler, D. 2008. KLEE: Un-
assisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. Proceedings of
the 8th USENIX Conference on Operating Systems De-
sign and Implementation (Berkeley, CA, USA, 2008),
209–224.

[5] Data Plane Development Kit: https://www.dpdk.org/.
Accessed: 2020-01-21.

[6] DPDK - Performance reports:
http://core.dpdk.org/perf-reports/. Accessed: 2020-05-
26.

[7] DPDK Intel NIC Performance Report Release 20.02:
https://fast.dpdk.org/doc/perf/DPDK_20_02_In-
tel_NIC_performance_report.pdf. Accessed: 2020-05-
27.

[8] Eisenbud, D.E., Yi, C., Contavalli, C., Smith, C.,
Kononov, R., Mann-Hielscher, E., Cilingiroglu, A.,
Cheyney, B., Shang, W. and Hosein, J.D. 2016. Maglev:
A Fast and Reliable Software Network Load Balancer.
13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16) (Santa Clara, CA,
2016), 523–535.

[9] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart,
F. and Carle, G. 2015. MoonGen: A Scriptable High-
Speed Packet Generator. Proceedings of the 2015 Inter-
net Measurement Conference (New York, NY, USA,
2015), 275–287.

[10] Emmerich, P., Pudelko, M., Bauer, S., Huber, S.,
Zwickl, T. and Carle, G. 2019. User Space Network
Drivers. 2019 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS)
(Los Alamitos, CA, USA, Sep. 2019), 1–12.

[11] Han, S., Jang, K., Panda, A., Palkar, S., Han, D. and
Ratnasamy, S. 2015. SoftNIC: A Software NIC to

Augment Hardware. Technical Report #UCB/EECS-
2015-155. EECS Department, University of California,
Berkeley.

[12] Intel 82599 10 Gigabit Ethernet Controller Technical
Library: https://www.intel.com/content/www/us/en/de-
sign/products-and-solutions/networking-and-io/82599-
10-gigabit-ethernet-controller/technical-library.html.
Accessed: 2020-01-21.

[13] Iyer, R., Pedrosa, L., Zaostrovnykh, A., Pirelli, S., Ar-
gyraki, K. and Candea, G. 2019. Performance Con-
tracts for Software Network Functions. 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19) (Boston, MA, Feb. 2019), 517–
530.

[14] Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Pen-
ninckx, W. and Piessens, F. 2011. VeriFast: A Power-
ful, Sound, Predictable, Fast Verifier for C and Java.
Proceedings of the Third International Conference on
NASA Formal Methods (Berlin, Heidelberg, 2011), 41–
55.

[15] JDK-8023463: Improvements to HashMap /
LinkedHashMap use of bins/buckets and trees:
https://bugs.openjdk.java.net/browse/JDK-8023463.
Accessed: 2020-09-08.

[16] Kaufmann, A., Stamler, T., Peter, S., Sharma, N.Kr.,
Krishnamurthy, A. and Anderson, T. 2019. TAS: TCP
Acceleration as an OS Service. Proceedings of the
Fourteenth EuroSys Conference 2019 (New York, NY,
USA, 2019).

[17] Linux 1.1.23. The “apricot” driver is in driv-
ers/net/apricot.c.:
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.1/.
Accessed: 2020-01-21.

[18] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda,
M., Bifulco, R. and Huici, F. 2014. ClickOS and the Art
of Network Function Virtualization. Proceedings of
the 11th USENIX Conference on Networked Systems
Design and Implementation (USA, 2014), 459–473.

[19] Neugebauer, R., Antichi, G., Zazo, J.F., Audzevich, Y.,
López-Buedo, S. and Moore, A.W. 2018. Understand-
ing PCIe Performance for End Host Networking. Pro-
ceedings of the 2018 Conference of the ACM Special In-
terest Group on Data Communication (New York, NY,
USA, 2018), 327–341.

[20] Peter, S., Li, J., Zhang, I., Ports, D.R.K., Woos, D.,
Krishnamurthy, A., Anderson, T. and Roscoe, T. 2015.
Arrakis: The Operating System Is the Control Plane.
ACM Trans. Comput. Syst. 33, 4 (Nov. 2015).
DOI:https://doi.org/10.1145/2812806.

[21] Pirelli, S., Zaostrovnykh, A. and Candea, G. 2018. A
Formally Verified NAT Stack. Proceedings of the 2018
Afternoon Workshop on Kernel Bypassing Networks,
KBNets@SIGCOMM 2018, Budapest, Hungary, August
20, 2018 (2018), 8–14.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 239

[22] pmu-tools GitHub repository:
https://github.com/andikleen/pmu-tools. Accessed:
2020-09-11.

[23] Primorac, M., Bugnion, E. and Argyraki, K. 2017. How
to Measure the Killer Microsecond. Proceedings of the
Workshop on Kernel-Bypass Networks (New York, NY,
USA, 2017), 37–42.

[24] Registered Input/Output (RIO) API Extensions:
https://docs.microsoft.com/en-us/previous-ver-
sions/windows/it-pro/windows-server-2012-r2-and-
2012/hh997032(v=ws.11). Accessed: 2020-01-21.

[25] Renzelmann, M.J., Kadav, A. and Swift, M.M. 2012.
SymDrive: Testing Drivers without Devices. Pre-
sented as part of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12)
(Hollywood, CA, 2012), 279–292.

[26] RFC 2544 - Benchmarking Methodology for Network
Interconnect Devices: 1999.
https://www.ietf.org/rfc/rfc2544.txt. Accessed: 2020-
05-26.

[27] RFC 3234 - Middleboxes: Taxonomy and Issues:
https://tools.ietf.org/html/rfc3234. Accessed: 2020-01-
21.

[28] Rizzo, L. 2012. Netmap: A Novel Framework for Fast
Packet I/O. Proceedings of the 2012 USENIX Conference
on Annual Technical Conference (USA, 2012), 9.

[29] sys/socket.h - main sockets header: https://pubs.open-
group.org/onlinepubs/9699919799/basedefs/sys_socket.
h.html.

[30] Terpstra, D., Jagode, H., You, H. and Dongarra, J. 2010.
Collecting Performance Data with PAPI-C. Tools for
High Performance Computing 2009 (Berlin, Heidel-
berg, 2010), 157–173.

[31] Turing, A.M. 1937. On Computable Numbers, with an
Application to the Entscheidungsproblem. Proceed-
ings of the London Mathematical Society. s2-42, 1
(1937), 230–265. DOI:https://doi.org/10.1112/plms/s2-
42.1.230.

[32] Wang, P., Wang, D. and Chlipala, A. 2017. TiML: A
Functional Language for Practical Complexity Anal-
ysis with Invariants. Proc. ACM Program. Lang. 1,
OOPSLA (Oct. 2017).
DOI:https://doi.org/10.1145/3133903.

[33] Zaostrovnykh, A., Pirelli, S., Iyer, R., Rizzo, M., Ped-
rosa, L., Argyraki, K. and Candea, G. 2019. Verifying
Software Network Functions with No Verification Ex-
pertise. Proceedings of the 27th ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2019), 275–290.

[34] Zhao, Z., Sadok, H., Atre, N., Hoe, J., Sekar, V. and
Sherry, J. 2020. Achieving 100Gbps Intrusion Preven-
tion on a Single Server. Proceedings of the 14th USE-
NIX Symposium on Operating Systems Design and Im-
plementation (OSDI) (Berkeley, CA, USA, 2020).

[35] 2012. Network Functions Virtualisation: An Introduc-
tion, Benefits, Enablers, Challenges & Call for Action.
Issue 1. ETSI.

240 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Artifact Appendix

Abstract
The artifact of this paper contains the code of the “TinyNF”
prototype, as well as scripts to run the various experiments
used in this paper. The benchmarking scripts can be used
for any network function, not only TinyNF.

Checklist
Program: driver and network functions
Metrics: throughput, latency, code complexity
Output: compiled network function including the driver
Experiments: as described in Sections 6, 7, and 8
Required disk space: 80 GB for low-level metrics, a few
MBs for everything else
Expected run time: around half a day to run all available
experiments, almost all of which is spent waiting
Public link: github.com/dslab-epfl/tinynf
Code license: MIT

Description
How to access: Use the link above.
Hardware dependencies: Two machines with Intel 82599
NICs, as mentioned in experiments/ReadMe.md.
Software dependencies: TinyNF currently supports Linux
only. A few standard packages are required to compile and
run experiments, as described in experiments/ReadMe.md.

Installation
There is no explicit installation step, cloning the repository
is enough. The artifact is fully self-contained and does not
install files to the rest of the machine, except for benchmark
scripts copied to a configurable directory on the machine
that runs them.

Experiment workflow
All experiments are run using scripts. Manual work is not
needed beyond executing the scripts with some parameters
and setting up a configuration file once.

Evaluation and expected result
The scripts produce tables and figures that correspond to
those in this paper. Tables are produced as tab-separated
output on the command line, while figures are produced as
vector images.

Experiment customization
The benchmarking scripts are reusable for any experiment
even not including TinyNF. They are designed to measure
the throughput and latency of any network function, with
special treatment for ones that require DPDK-compatible
kernel drivers.

Notes
We elaborate here on the environment abstraction library
mentioned in Section 5, which is the only dependency of
the TinyNF driver. The driver itself does not depend on any
kernel-mode driver and only needs “freestanding” features
of the C library, i.e., it only uses a few headers and types but
no C functions from the standard library.

The abstraction contains 5 groups of functions: memory
allocation and deallocation, translation between virtual and
physical addresses, PCI register reads and writes, endian-
ness conversion, and sleep.

We believe these 5 groups are all necessary to write NIC
drivers without compromises, though some of these could
be modified or removed under certain conditions. Sleeping
could be replaced by a clock function combined with busy-
waiting in the driver, but this would be less efficient and no
less complex. Memory deallocation could be omitted if the
software uses a crash-only failure mode. Translating virtual
to physical addresses may not be necessary in the presence
of an IOMMU, if memory allocation also configured the
IOMMU. In systems that use the Enhanced Configuration
Access Mechanism for PCI registers, or “ECAM” for short,
the functions to read and write PCI registers could instead
be a single function providing the memory address at which
this space is accessible for a given device.

Notably, the abstraction does not expose non-uniform
memory access: implementations are expected to provide
sane defaults. The current Linux implementation allocates
memory on the same node as the current CPU and does not
allow for PCI operations on devices on other nodes. This
would need to change in a more production-ready version,
in which various strategies can be used when dealing with
devices on multiple nodes, but those strategies are beyond
the scope of this paper.

AE Methodology
Submission, reviewing and badging methodology:
usenix.org/conference/osdi20/call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 241

https://github.com/dslab-epfl/tinynf
https://www.usenix.org/conference/osdi20/call-for-artifacts

