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Abstract 
The advent of software network functions calls for stronger 
correctness guarantees and higher performance at every 
level of the stack. Current network stacks trade simplicity 
for performance and flexibility, especially in their driver 
model. We show that performance and simplicity can co-
exist, at the cost of some flexibility, with a new NIC driver 
model tailored to network functions. The key idea behind 
our model is that the driver can efficiently reuse packet 
buffers because buffers follow a single logical path. 

We implement a driver for the Intel 82599 network card 
in 550 lines of code. By merely replacing the state-of-the-
art driver with our driver, formal verification of the entire 
software stack completes in 7x less time, while the verified 
functions’ throughput improves by 160%. Our driver also 
beats, on realistic workloads, the throughput of drivers that 
cannot yet be formally verified, thanks to its low variability 
and resource use.  

Our code is available at github.com/dslab-epfl/tinynf. 

1. Introduction 
The networking world is moving from hardware network 
functions to software ones to gain flexibility. This brings 
new problems to light in the network stacks of mainstream 
operating systems, which were not designed for this use 
case. In response to this move, the kernel-bypass model for 
software networking appeared, designed for low latency 
and high throughput. However, one area of the stack that 
remains under-explored is network drivers. We present the 
state of network functions, stacks and drivers in Section 2. 

Modern network cards contain powerful and complex 
hardware offloads, but their core features are conceptually 
simple. Network cards fetch requests and return responses 
to software using data structures named descriptors. The 
main complexity for packet reception and transmission is 
the descriptor ownership mechanism. We present the basics 
of modern network cards in Section 3. 

The current network driver model is too flexible for the 
needs of common network functions, which must pay the 
complexity costs of modern drivers without reaping their 
benefits. This is mainly because the current driver model 
allows network functions to process packets out of order, a 
powerful feature that is not needed in many of the core 
functions making up the Internet’s backbone. We formalize 
the current driver model for network cards and propose our 
conceptually simplified version in Section 4. 

We implement our new driver model for the Intel 82599, a 
modern 10 Gb/s Ethernet controller. Our implementation 
uses the model's insights and stays as simple as possible: it 
is only 550 lines of C code. Its key features are a minimal 
number of operations thanks to the driver design and to 
modern network card features, as well as some simple but 
powerful scheduling algorithms. We present our driver, 
which we call “TinyNF”, in Section 5. 

This paper’s core hypotheses are that our simpler model 
(1) makes network functions easier to formally verify, (2) is 
faster than the current most complex driver model that can 
be formally verified, (3) provides competitive performance 
against the fastest state-of-the-art drivers regardless of 
complexity, and (4) is applicable to most network functions 
that are deployed today.  

We show that hypotheses (1) and (2) hold in Section 6. 
Our driver has exponentially fewer code paths than current 
drivers and can thus be used to formally verify network 
functions in 7x less time than with a state-of-the-art driver 
while offering 2.5x the throughput, as well as lower median 
and tail latency. 

We show that hypothesis (3) holds in Section 7, with the 
surprising observation that our driver outperforms the state 
of the art using real network functions even though it loses 
on a synthetic “no-op” function. This is because our driver 
slows down less when running real functions due to having 
room to grow in instruction-level parallelism and cache use. 

We provide evidence for hypothesis (4) in Section 8, 
showing that our model is applicable to most of the low-
level network infrastructure, either running on bare metal 
or as virtualized network functions. 

We believe that the separation in common use between 
“drivers” and other software is blurry, and we argue that it 
hinders progress. This situation is worse in networking due 
to the lack of good baselines for benchmarks, leading to 
driver optimizations that increase complexity but may not 
increase performance in the real world. Our minimal driver 
also highlights opportunities in hardware documentation. 
We discuss these issues in Section 9. 

In summary, we make the following contributions: (1) a 
simplified driver model for network functions that process 
packets in order, (2) a formally verified driver based on our 
model that is easier to reason about and faster on realistic 
workloads than existing drivers, and (3) evidence that the 
current standard of benchmarking for network drivers 
leads to suboptimal performance in the real world. 
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2. Background on network functions 
In this section, we introduce network functions: packet-
processing appliances performing tasks such as routing, 
rate limiting, access control or caching. 

Hardware network functions are the traditional way 
to implement network functions for high-traffic networks. 
They are physical boxes with custom hardware that are part 
of the network, distinct from standard computers. 

They are typically robust because fixing hardware bugs 
after deployment is not possible, thus engineers must test 
them extensively before deployment. However, they are not 
flexible because they cannot be modified after deployment. 
Changing a network’s policies can require replacing the 
hardware entirely. 

Software network functions run on general-purpose 
hardware such as x86 and mainstream operating systems 
such as Linux, communicating with network cards through 
a software stack that includes drivers and implementations 
of protocols such as IP and TCP. 

The networking world is moving to software network 
functions to increase flexibility. Software network functions 
are flexible since they have low deployment costs. This 
means correctness guarantees, while important, are not a 
hard requirement for deployment. 

Verifying the correctness of software network functions 
is an open problem, with recent work showing it is easier 
than the intractable problem of general software verifica-
tion. The Vigor [33] project verifies network functions 
without human interaction, but cannot deal with common 
optimizations such as parallelism or batch processing. 

The other key concern of software network function is 
performance. This includes variability, since worst-case 
performance determines the guarantees network operators 
can offer. These guarantees turn into business concerns 
such as Service Level Agreements. 

To illustrate how crucial performance is, consider the 
time budget for processing a 64-byte packet and its 20-byte 
Ethernet header at 10 Gb/s: (64+20) ∗ 8 / (10∗109) = 67.2ns. 
This is the same order of magnitude as a memory read; a 
network function will exceed its time budget if it needs data 
outside the CPU cache. 

Software network stacks in modern operating systems 
are not adapted to network functions for three reasons.  

First, traditional stacks use a push model: hardware uses 
interrupts to notify software of packet reception. If packets 
are infrequent, this is efficient. But in network functions, 
packets are frequent thus interrupt overheads dominate. 
The pull model, in which software continuously polls for 
packets, better fits network functions because it is efficient 
if most polls succeed, as is the case under high load. 

Second, traditional stacks only access hardware through 
the operating system to provide isolation. Going through 
the operating system is an expensive operation, especially 
given the low time budget for each packet. But network 
functions typically run alone, paying the performance cost 
of isolation without the associated benefits. Systems such 
as netmap [28] have shown this cost can be amortized by 
processing packets in batches. 

Third, traditional stacks allow to manage packet buffers 
with complete flexibility. This is convenient for general-
purpose programs but hinders optimizations in the network 
stack. Network functions have restricted and well-defined 
behavior, yet they pay the performance cost of flexibility. 
Systems such as Windows Registered I/O [24] have shown 
that decreasing flexibility can increase performance. 

Kernel-bypass stacks, which allow programs to access 
hardware directly instead of going through the operating 
system, arose from the need for different tradeoffs. These 
stacks also focus on polling instead of interrupts, on tighter 
control of packet buffers, and on processing packets in 
batches. The de facto standard kernel-bypass stack is DPDK, 
the Data Plane Development Kit [5]. 

Drivers, network or otherwise, have a poor reputation 
among software developers because of the challenges of 
hardware interactions and the lack of documentation. 

Developers can only rely on specifications released by 
manufacturers to know how hardware behaves, and these 
specifications are not always public. Reverse-engineering 
hardware is infeasible without special equipment, unlike 
software. Since drivers are often exclusively maintained by 
hardware manufacturers, driver developers do not need to 
publicly document their code. Bug-finding efforts have 
shown that driver code is far from bug-free [21, 25]. 

These problems lead developers to think of drivers as 
mystical black boxes. But drivers are a fundamental part of 
the network stack; their correctness and performance are 
upper bounds on the entire stack. 

As an example of driver complexity, the network drivers 
in DPDK, which supports many different types of hardware, 
all have at least 1,000 lines of code, as we show in Figure 1, 
with the largest one being over 66,000 lines of code. 

Emmerich et al. [10] showed that network drivers can 
fit in under 1,000 lines of code, though their driver focuses 
on educational value and not performance or correctness. 

 
Figure 1. Number of lines of C code in the network drivers 
included with DPDK 20.02. 
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3. Background on network cards 
In this section, we summarize the architecture of modern 
Network Interface Controllers, or “NICs” for short, which 
is necessary to understand network driver design. 

While NICs are diverse, the core concepts are similar. 
We estimate that, out of the 44 families of physical or virtual 
NICs supported by DPDK 20.02, this section applies to 40 of 
them. The remaining ones are three FPGA-based cards and 
one proprietary virtual NIC. 

Communication between CPU and NIC uses three 
channels: PCI registers, NIC registers, and RAM.  

PCI registers are stored on the NIC and accessed by the 
CPU using port-mapped I/O. The CPU only uses them for 
the first stage of NIC initialization. 

NIC registers are stored on the NIC and accessed by the 
CPU using memory-mapped I/O. Their latency is an order 
of magnitude higher than RAM [19], making them a perfor-
mance bottleneck. 

RAM is the main shared storage. The CPU accesses it as 
usual, and the NIC uses Direct Memory Access, or “DMA” 
for short, to transfer data into it. RAM holds packet buffers 
and metadata. The CPU and the NIC are not notified when 
the other has modified RAM; if they want to be aware of 
changes, they must poll RAM or use a side channel. 

The packet descriptor is the main NIC data structure, 
containing a pointer to a data buffer and some metadata. 
The metadata typically contains required fields such as the 
packet length, and optional fields such as whether to use 
advanced hardware offloading features. 

Software chooses the total number of descriptors when 
initializing hardware. Descriptors are given from the CPU 
to the NIC to issue commands, such as packet transmission, 
and given by the NIC back to the CPU when the associated 
command has finished. Different NICs have different ways 
to manage descriptor ownership, such as flags in metadata. 

Software can change the buffer pointer before giving a 
descriptor to the NIC. This lets developers implement buffer 
pools, to reuse descriptors without losing received data. 
This is useful for cases such as TCP, where packets must be 
kept until an entire message has arrived. 

Reception and transmission are the core operations 
of network cards, and work in symmetric ways. 

To receive packets, the CPU gives descriptors to the NIC 
indicating where to deposit packets in memory. The NIC 
gives descriptors back when it has received packets. The 
NIC sets descriptor metadata to indicate the packet length 
and other such information. 

To transmit packets, the CPU gives descriptors to the 
NIC indicating where packets are in memory, and the NIC 
gives descriptors back once it has transmitted packets. The 
metadata is set by the CPU, to inform the NIC of the packet 
length and other such information. 

Descriptor rings are the main mechanism for descriptor 
ownership in modern cards. We present here their inner 
workings in Intel’s 82599 NIC as a concrete example. 

A descriptor ring is composed of a region of memory, a 
head pointer, and a tail pointer. The memory is in RAM, 
while the pointers are NIC registers. Descriptors between 
the head, inclusive, and the tail, exclusive, belong to the 
NIC. Other descriptors belong to the CPU. If the head and 
tail are equal, the CPU owns all descriptors. We present an 
example ring in Figure 2. 

Since descriptors start in an unknown state, descriptor 
metadata has a “Descriptor Done” flag to let the CPU know 
whether a descriptor has been processed by the NIC or was 
just never initialized. 

The CPU gives descriptors to the NIC by clearing their 
“Descriptor Done” flag and incrementing the tail pointer. 
Since the tail pointer is a NIC register, the NIC immediately 
notices the change. The NIC gives descriptors back to the 
CPU by setting the “Descriptor Done” flag in metadata and 
incrementing the head pointer. To know when a descriptor 
has been given back, the CPU polls the metadata. 

The head and tail can only be incremented, though they 
can be incremented by more than 1 to give descriptors in 
batches. Decrementing is forbidden since it would logically 
be an attempt to steal descriptors. 

NIC queues are a hardware mechanism to allow for 
parallel packet processing. A queue consists of a descriptor 
ring and some configuration. The NIC places all received 
packets in the first reception queue by default; developers 
can configure the NIC to route packets to a queue based on 
packet headers, such that packets belonging to the same 
logical flow are routed to the same queue.  

For transmission, all queues behave in the same way, 
without flow tracking: packets added to any transmission 
queue are sent to the wire regardless of which queue it is. 

Queues allow multiple CPU cores to handle packets 
without having to synchronize NIC accesses, increasing 
software scalability. 
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Figure 2. A descriptor ring with 8 elements; the head is 1 
and the tail is 5, thus hardware owns elements 1, 2, 3 and 4. 
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4. Simplifying the driver model 
In this section, we present the existing kernel-bypass driver 
model, and our proposed simplification of it for common 
network functions. 

The driver model in modern frameworks such as 
DPDK is based around reusing a fixed set of packet buffers, 
in order to avoid the overheads of memory allocation. We 
formalize this model as a diagram in Figure 3, where the 
overall system is a set of first-in-first-out buffer queues. 
Each conceptual “step” of the system is performed by one 
of three actors: the NIC, the driver, or the network function. 
In the initial state, all buffers are in the “Free” state, which 
represents unused buffers in the buffer pool. 

The driver typically takes the first steps, by “allocating” 
buffers from the pool and giving them to the NIC for recep-
tion. This “allocation” refers to taking buffers from the pool, 
not creating new ones. If there are buffers in the “receiving” 
state, the NIC can transition them to the “received” state 
once it gets data from the network. The network function 
typically runs a polling loop to move buffers into the “pro-
cessing” step. From there, the network function can choose 
to transmit the buffer, possibly after modifying it. The NIC 
will then send out the buffer contents to the network and 
move the buffer to the “transmitted” state. The driver moves 
transmitted buffers back to the “free” state at well-defined 
points, for instance when there are too few free buffers left. 
The network function can also choose to keep the buffer for 
later, or to “drop” it and return it to the pool. The network 
function can also allocate buffers from the pool and process 
them like received buffers. 

Unlike classical driver models found in mainstream 
operating systems and exposed to programmers in libraries 
such as BSD sockets [29], the system is closed: none of the 
actors can insert buffers into the system from the outside, 
such as by asking the operating system for memory. Actors 
cannot remove buffers either, though the network function 
is allowed to keep buffers indefinitely by using its “keep” 
transition to reorder buffers in the “processing” state. 

The reason for a closed system is performance: buffer 
allocation and deallocation are expensive. This is not only 
due to general software issues such as the overheads of 
keeping a “free list” of memory blocks, or the cost of asking 
the operating system for more memory, but also to an issue 
specific to drivers: memory pinning. The driver gives phys-
ical memory addresses to the network card when specifying 
buffer addresses. If the operating system were to change 
which physical page backs a virtual page used by the driver, 
the network card would not see the change and write to the 
wrong page. Thus, the operating system has to be informed 
of which memory is used for buffers and give it special 
treatment. While modern hardware can use I/O memory 
management units to allow devices to address virtual 
memory, there is a cost to changing I/O memory mappings. 

This model provides flexibility to network functions: 
they can keep buffers aside to reassemble messages from 
high-level protocols such as TCP, and can allocate buffers 
from the pool in response to non-network events such as 
timers indicating a request needs to be retried. 

The model also lends itself well to concurrency: the 
“free” queue is the central element shared by any number 
of reception, transmission or processing queues. A network 
function can receive and transmit packets from multiple 
NICs, and it can use multiple processing queues that each 
communicate with different reception and transmission 
queues on the same NIC to process packets concurrently 
and increase overall throughput. 

But this flexibility comes at a cost: the steps that the 
network function can perform besides transmission intro-
duce forks in the path of packet buffers. This requires buffer 
management within the “free” queue, including support for 
concurrent accesses. It also requires the driver to imple-
ment a policy for buffer freeing and allocation, adding com-
plexity to the overall system. 

The model additionally introduces a failure case that is 
not fundamental to the concept of a network function. If 
there is a state within the processing logic in which any 
buffer is kept, and the only way to get out of that state is to 
receive new data, the system will only make progress if 
there are buffers outside of the processing queue, which is 
not guaranteed. Reasoning about the existence of such a 
state requires reasoning about the invariants that hold in 
the network function code across packets. 

This flexibility is not always needed: some of the 
network functions that power the backbone of the Internet, 
such as IP routers or Ethernet bridges, process packets one 
by one, never keep buffers aside, and never allocate buffers. 
Overall, they are conceptually simpler than the general case 
of a network function, yet they must currently pay the price 
of driver flexibility they do not use. 
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Figure 3. Diagram of the kernel-bypass driver model. Each 
box is a queue, each arrow is a step moving one packet from 
one queue to another. Steps are annotated with their actor 
and their name. “RX” is reception, “TX” is transmission, 
“Proc” is processing, and “NF” is network function. 
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We propose a new driver model designed for common 
network functions that do not need the flexibility provided 
by existing models. It is based on two key insights: we can 
remove the buffer pool altogether, and we can implement 
buffer drops on modern NICs without the theoretical 
branch they introduce, minimizing the amount of state that 
the driver must keep track of. 

Our model is designed to be as simple as possible, thus 
improving correctness and performance. Its simplicity 
makes it easier to formally or informally reason about and 
requires less code and simpler code to implement. 

Our model is a subset of the existing model: as shown 
in Figure 4: the core differences are that it has no pool of 
free buffers, and does not allow network functions to keep 
buffers. The driver moves transmitted buffers directly to the 
reception queue, and the network function must choose to 
either transmit or drop received packets. This simplifies the 
driver by giving it only one choice when transmitting a 
packet: recycling transmitted buffers to the receiving queue 
now or later. Removing the buffer pool also makes progress 
easier to reason about: the software can only halt if the 
driver does not recycle buffers when the receiving queue is 
empty, or if the network function halts. While termination 
is impossible to prove in the general case due to the halting 
problem [31], network functions have strict performance 
requirements, thus their code is unlikely to have loops 
whose termination is not obvious because such loops could 
be performance bugs. 

Our model minimizes state by combining reception, 
processing, and transmission into a single logical descriptor 
ring containing all buffers, without the need for any other 
data structure. While it is implemented using one reception 
ring and one transmission ring, the driver mirrors the head 
of the transmission ring to the tail of the reception ring, 
thus ensuring that buffers that have finished transmitting 
are reused for reception without any intermediate steps. 

The key hardware feature that allows this is called “null 
transmit descriptors”: as its name implies, it allows some 
descriptors in a transmission ring to have no effect. Packet 
drop is thus a special case of packet transmission, which 
removes the fork in buffers’ paths and allows for a regular 
buffer flow. For instance, a network card can implement this 
by dropping packets whose length in metadata is zero. 

The driver’s job consists of three tasks: move buffers 
from the “received” queue to the “processing” queue when 
the network function asks for a packet, move buffers from 
the “processing” queue to the “transmitting” queue when 
the network function asks to transmit or drop its current 
packet, and recycle buffers from the “transmitted” queue to 
the “receiving” queue to ensure the “receiving” queue is 
never empty. Since this last operation is not a response to a 
specific input, the driver must choose when to perform it, 
for instance once every few transmitted packets. 

Our model supports multiple outputs by using multiple 
transmission rings and making the driver synchronize their 
state. That is, the driver must set the tails of all transmission 
rings at the same time and use the earliest head in all rings 
as the head to mirror to the reception tail. Transmitting a 
packet when the driver has multiple outputs conceptually 
maps to transmitting it on some outputs and dropping it on 
all others; all rings still have a descriptor pointing to the 
buffer, but that descriptor is null in some of the rings. This 
may cause packet drops if an output link is too slow, in 
which case the entire ring will be used for transmission 
with no space left for reception. The same could happen in 
a traditional model if all buffers in the pool were used for 
transmission due to a slow output. 

Multiple inputs can be handled concurrently: while 
the same processing queue cannot have multiple inputs, 
since it is not possible to synchronize the state of reception 
rings, the entire system can be duplicated so that there is 
one reception queue per input, one associated processing 
queue, and any number of synchronized transmission 
queues. Modern NICs have hundreds of queues, thus it is 
not a problem to use one transmission queue per input. 

This does not mean our model requires parallelism: a 
single thread of execution can implement many instances, 
which are thus concurrent but not parallel. 

Our model is amenable to parallelism: multiple 
threads of execution can run in parallel, each implementing 
any number of instances, without having to synchronize 
any state. Only the state of the rings within an instance 
needs to be kept in sync. This is similar to existing models. 

The key limitation of our model is the flip side of its 
strength: since network functions must process buffers one 
by one without keep any aside, they cannot reconstruct 
multi-packet messages without copying buffers that arrive 
out of order. Thus, while core functions such as routing and 
network address translation can be implemented with our 
model, one cannot terminate TCP connections or otherwise 
reassemble fragments without copying buffers, which is an 
expensive operation given modern network speeds. 
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Figure 4. Diagram of our proposed driver model. Semantics 
are the same as in Figure 3. 
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5. Implementing our new model 
In this section, we describe an implementation of our driver 
model for the Intel 82599 NIC [12] which we call “TinyNF”, 
short for “Tiny Network Function”. 

TinyNF’s goals are to be easy to reason about and fast. 
The former is different from “correct” because it is hard to 
tell whether a driver operates as expected without hard-
ware schematics, since the data sheet may be incorrect. 
However, we want to make it simple enough that it is not a 
bottleneck in network function verification efforts. 

For simplicity, TinyNF processes buffers one at a time: 
there is always at most one buffer in the processing queue. 
One key hypothesis in this project was that TinyNF could 
be fast without explicitly processing packets in batches. 

The keys to TinyNF’s performance the avoidance of any 
operation that is not absolutely required, and the use of a 
few small but surprisingly effective scheduling algorithms 
for synchronizing queue state. 

TinyNF avoids unneeded work, even metadata copy. 
Because each buffer always belongs to exactly one queue, 
and because queues are ordered, it is enough to set the 
buffer pointers at initialization time and never change them 
afterwards. Moving a buffer from one queue to another only 
requires writing to the source head and destination tail. 

There are fewer delimiters in practice than in theory 
since some of them are implicit, as shown in Figure 5. The 
“transmitted” head and tail are the “receiving” tail and 
“transmitting” head, respectively. Similarly, the “received” 
head and tail are the “processing” tail and “receiving” head. 
While there is technically a “processed” queue that does not 
exist in the conceptual model, its head and tail are the 
“transmitting” tail and “processing” head respectively. The 
“processing” tail does not need explicit tracking, because it 
is always either one buffer ahead of the head or equal to it, 
due to the one-packet-at-a-time constraint. 

TinyNF avoids reading from NIC registers entirely after 
initialization. To check for received buffers, the “descriptor 
done” metadata flag of the descriptor at the processing tail 
is enough. To check for transmitted buffers, the 82599 NIC 
provides a “transmit head write-back” feature: software can 
request hardware to write the transmit head to RAM after 
hardware has finished transmitting a buffer. 

TinyNF cannot avoid updating the receive and transmit 
tails, which are NIC registers and thus slower than RAM, 
but it can avoid doing so after every packet. Updating the 
receive tail, which moves buffers to the “receiving” queue, 
is only necessary once every few transmitted buffers since 
reception continues working as long as there are buffers in 
the queue, even if there are less than there theoretically 
could be. Updating the transmit tail is necessary for buffers 
to be transmitted to the network, but this can be done once 
every few transmissions, or when there are no packets to 
receive and thus no other work to do. 

TinyNF carefully schedules operations to minimize the 
amount of communication between software and hardware. 
This improves overall latency and reduces the fraction of 
PCIe throughput used for metadata. 

Two operations can be scheduled together: asking the 
NIC to update the transmission tail and checking for such 
updates to recycle buffers. The request is made with a bit in 
transmission metadata, and the check is made by reading 
the value that the NIC wrote to RAM via DMA. TinyNF 
schedules both operations once every 64 packets. The check 
will thus see the update that was requested 64 packets ago. 

The most important scheduling decision is updating the 
transmission tail: frequent updates decrease latency by 
making the NIC aware of packets sooner, but they increase 
throughput by performing less book-keeping. Networking 
stacks such as DPDK solve this with adaptive batching: they 
check for multiple received buffers at a time up to a limit, 
let the network function process them all, then update the 
transmission tail. This theoretically allows drivers to make 
better scheduling decisions because they have more data: 
they know how many packets have arrived, rather than 
whether there is at least one packet. 

TinyNF’s one-packet-at-a-time model is incompatible 
with batching, thus we chose an algorithm based on past 
data instead. TinyNF updates the transmission tail either 
once every few transmitted packets, or as soon as there are 
no packets to receive since this likely indicates there is time 
to perform this expensive operation. This keeps the period 
short under low load, avoiding latency spikes, but allows 
for longer periods under high load, avoiding throughput 
drops, without looking at packets beyond the current one. 

Overall, TinyNF is around 550 lines of C code, and its 
only dependency is a 300-line environment abstraction. It 
runs entirely in user mode, without kernel dependencies. 
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Figure 5. Logical ring composed of reception, processing 
and transmission queues. “In progress” queues are light, 
“done” ones are dark and shaded. Heads and tails refer to 
“in progress” queues, but implicitly delimit the others. 

230    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



6. Evaluation: TinyNF for verification 
In this section, we evaluate two hypotheses about TinyNF: 
its simplicity should (1) make it easier to reason about and 
(2) make it faster than other verified drivers. 

We evaluate TinyNF by using it in the formally verified 
network functions of the Vigor [33] project. Vigor verifies 
the entire software stack, including the network function 
code and the network card driver.  

Vigor does not need DPDK’s flexibility: it is focused on 
network functions that form the Internet’s backbone, such 
as Ethernet bridges and IP load balancers. This makes Vigor 
network functions good candidates to evaluate TinyNF. 

Vigor uses DPDK for performance, but it cannot take 
full advantage of DPDK’s optimizations either. Vigor’s use 
of DPDK allows its network functions to outperform those 
written using traditional networking APIs that go through 
the kernel to receive and transmit packets. However, some 
DPDK optimizations such as batching and vectorization are 
currently out of the reach of automated formal verification. 
Thus, the driver formally verified by Vigor is the subset of 
the DPDK driver that can be automatically verified, not all 
of the driver. 

TinyNF makes Vigor network functions 8x faster 
to verify, as we show in Table 1. We ran verification on 
two Intel Xeon E5-2690 CPUs at 2.90 GHz, totaling 32 cores.  

Vigor verification has two steps: first Vigor symbolically 
executes the network function code to find all paths, then it 
validates each path using a theorem prover, which can be 
done in parallel. Both parts of Vigor verification are faster 
with TinyNF for the same main reason: symbolic execution 
does not need to explore DPDK’s complex stack, thus it 
takes 1/5th the time and yields 1/7th the number of paths. 
Individual paths are also faster to validate since they have 
less code, though this is less pronounced since validation 
focuses on network function code, not driver code. 

The most drastic change is in the load-balancer, due to 
its more complex paths that involve more data structures: 
its total verification time on our machine goes down from 
~1h45min to ~14min. This allows full-stack verification to 
be used as part of development, such as verifying every 
code change, as opposed to being for special occasions. 

TinyNF is 1/11th the code of the DPDK driver and has 
exponentially fewer paths, as we show in Table 2, which 
explains why the improvements in verification time are so 
drastic. We measured the code complexity of TinyNF and of 
the verified subset of DPDK’s driver. We manually counted 
paths, so that we could define them in terms of the public 
parameters: the arguments passed in the code, and the 
choices made at DPDK build time when picking a data 
structure implementation. Automating this using symbolic 
execution would have only found the number of paths 
given a concrete configuration. When counting paths, we 
assume that NIC hardware behaves as per its data sheet. 

To show the effect of a change in driver model and not 
only in implementation, we also included the “Ixy” driver 
by Emmerich et al. [10], a simplified implementation of 
DPDK’s design for educational purposes that does not aim 
for comparable performance. As expected, TinyNF and Ixy 
use similar amounts of code to initialize, since they both use 
a limited set of NIC hardware features. However, TinyNF 
has less code and exponentially fewer paths than Ixy in the 
reception and transmission functions that form the core of 
the driver, providing more evidence in favor of our model. 

We note that the number of paths can change based on 
programmer decisions: using Boolean expressions rather 
than conditionally executed code can lower the number of 
paths, such as writing x = c ? y : x; instead of if (c) { x = y; } 
in C. We could have used this to bring down the number of 
paths in TinyNF’s transmission function to 4, without any 
exponent regardless of the number of output links, but 
chose not to as such code is compiled to conditional move 
instructions which have poor tail latency on our machines. 

 Init.  Reception  Transmission 

 #funs #LoCs  #funs #LoCs #paths  #funs #LoCs #paths 

DPDK 115 3204  5 136 1 + AF + 288AS  5 122 (8 + 14(FFT + P((FS + FF)T – FFT))O 

Ixy 14 279  1 63 1 + AF + AS  1 53 14O 

TinyNF 4 245  1 17 3  1 29 2 + 2O 
AS, AF and FS, FF: Number of success and failure paths in packet allocation and freeing respectively; Ixy’s freeing cannot fail 
P: Number of paths in the “put buffers back” operation of the DPDK memory pool in use 
T: DPDK parameter for the transmit descriptors write-back threshold, must be >0 O: Number of output links 

Table 2. Number of functions, lines of code and paths in DPDK, Ixy and TinyNF drivers for the Intel 82599. 

 DPDK  TinyNF 

 Sym. ex.     Validation  Sym. ex.   Validation 

NAT 337s 149 × 83s  63s 20 × 73s 

Bridge 527s 312 × 89s  104s 39 × 77s 

LB 731s 297 × 620s  161s 51 × 425s 

Policer 392s 190 × 90s  75s 25 × 76s 

FW 323s 140 × 83s  61s 20 × 68s 

Table 1. Verification time statistics for the Vigor network 
functions using DPDK and TinyNF. 

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    231



TinyNF makes fewer assumptions on its environment 
than DPDK. Vigor makes assumptions about the behavior 
of two components: DPDK data structures and operating 
system functions. 

One fundamental issue with DPDK’s driver, even in the 
verified version, is its need for a data structure to hold free 
packet buffers. This leaves two options for verification: use 
a simpler but slower data structure that can be verified or 
assume that a faster but unverified data structure is correct. 
Unlike DPDK and TinyNF, there is no evidence that simpler 
data structures can match their more complex counterparts 
in performance. In fact, the opposite is true: data structure 
contracts are already simple yet popular implementations 
become more complex with time, such as a 2500-line 
change in Java 8 to make the hash map more resilient to 
collisions [15]. By comparison, Vigor’s verified map has less 
than 300 lines of code in its entirety. 

Another issue with DPDK’s driver is in the amount of 
assumptions it makes about operating system functions. 
When verifying network functions running on Linux, Vigor 
replaces these functions during symbolic execution with 
custom models. This ensures DPDK calls operating system 
functions correctly according to Linux’s documentation, 
such as by validating the order and arguments of function 
calls. The models then return symbolic values that cover the 
range of documented behaviors. But there is no formal 
specification for these functions, much less a formal proof 
that the Linux implementation is correct. Thus, Vigor needs 
to assume the correctness of dozens of models for its proof 
on Linux. This can be avoided by using a custom operating 
system, at the cost of losing Linux tools and features such 
as multitenancy and scheduling. TinyNF needs much less 
from its environment, drastically reducing the number of 
assumptions even on Linux. 

TinyNF is easier to analyze than DPDK, since it only 
needs standard C. DPDK uses non-standard extensions to 
give hints to the CPU and compiler, such as prefetching 
memory and vectorizing loops. TinyNF does not need any 
such hints; the driver does not even use the standard library 
directly, going through a small environment abstraction 
layer instead. 

This standards compliance makes TinyNF analyzable 
“out of the box” with most tools and allows future tools to 
support TinyNF without special treatment. This includes 
symbolic execution engines such as KLEE [4], which Vigor 
uses and extended to support DPDK code, and manual 
provers such as VeriFast [14], also used by Vigor. We think 
this will accelerate networking research in drivers and 
functions by making it easier to develop new techniques 
and tools. For instance, TinyNF’s simplicity and small size 
makes it amenable to a proof of functional correctness 
given a hardware specification, which would improve upon 
Vigor’s proof of memory safety through hardware models.

TinyNF improves the throughput of Vigor network 
functions by 160%, with 2% less median latency, as we 
show in Table 3. 99th percentile latency decreases by 7%. 

To measure performance, we used two machines in a 
setup based on RFC 2544 [26], with a “device under test” 
running a network function and a “tester” running the 
MoonGen packet generator [9], which can measure latency 
using NIC timestamps. Both machines run Ubuntu 18.04 on 
two Intel Xeon E5-2667 v2 CPUs at 3.60GHz with power-
saving features disabled and have two Intel 82599ES NICs, 
using only one port per card to ensure PCIe bandwidth is 
not a bottleneck. We measure throughput using minimally 
sized packets. Our workload fills the internal flow table of 
the network functions to 90% of their capacity. Measuring 
latency with MoonGen instead of on the device under test 
allows us to capture the latency of NIC register writes as 
well as the effects of drivers’ NIC configuration. This setup 
is similar to the one used to originally evaluate Vigor, and 
can replicate Intel’s DPDK performance numbers [7]. 

We replicate Vigor’s benchmark setting: measuring the 
max throughput that a Vigor network function can achieve 
with less than 0.1% loss, in a single direction, as well as the 
latency with 1 Gb/s of background load. 

Vigor’s NAT gets the lowest throughput improvement; 
this is because its bottleneck is not the driver but computing 
packet checksums since it has to modify packet headers. To 
confirm this, we tried modifying the DPDK version of the 
NAT to use batching: this results in the same throughput as 
the TinyNF version of the NAT, confirming that the driver 
is unlikely to be the bottleneck. 

In summary, both of our hypotheses are validated: 
TinyNF is easier to reason about in terms of code quantity 
and code complexity, and network functions using TinyNF 
are faster than the same functions using DPDK’s verified 
subset. Thus, TinyNF allows developers to formally verify 
their network functions in less time, get more correctness 
guarantees, more than double the functions’ throughput, 
and lower the functions’ median and tail latency. 

 

DPDK  TinyNF 

Tput  Latency (μs)  Tput  Latency (μs) 
(Gb/s)  50% 99%  (Gb/s)  50% 99% 

NAT 1.99  4.04 4.77  3.69  3.92 4.25 

Bridge 2.65  3.97 4.50  5.82  3.93 4.23 

LB 2.22  4.01 4.63  6.66  3.90 4.24 

Policer 2.96  3.88 4.32  9.53  3.83 4.24 

FW 2.65  3.97 4.49  8.14  3.88 4.24 

Table 3. Single-link throughput and latency with 1 Gb/s 
background load of Vigor functions on DPDK and TinyNF.  
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7. Evaluation: TinyNF in general 
In this section, we compare the performance of TinyNF and 
DPDK for general purpose network functions, regardless of 
verifiability.  

We use the same benchmark setup as in the previous 
section, but this time use both directions for throughput, for 
a maximum of 20 Gb/s. We keep throughput symmetric 
during the benchmarks, i.e., if a function cannot handle a 
given load, we reduce the load of both directions by the 
same amount and retry. We then measure the latency at 
load increments of 1 Gb/s to paint a clear picture of the 
function’s overall performance profile. 

TinyNF can outperform a fully optimized DPDK 
setup, as we show in Figures 6 and 7 using a traffic policer 
as an example. We compare the Vigor policer using TinyNF 
as its driver to the same code using either “unbatched” 
DPDK, which is the simpler version used by Vigor, or 
“batched” DPDK, which is the standard way to use DPDK 
that enables optimizations such as adaptive batching and 
vectorization. We also implemented a 2-core parallelization 
of the policer for all three variants. We chose the policer 
because, by design, traffic in one direction is independent 
of traffic in the other, which means it admits a trivial 2-core 
parallelization for our experiments. We are not proposing a 
new way to parallelize network functions, but merely 
showing that TinyNF can be parallelized in a similar way to 
existing drivers. This also shows how much improvement 
parallelization can bring compared to batching. 

Using TinyNF, the policer achieves better throughput 
than using batched DPDK, with an even starker difference 
when using two cores. The bottleneck that prevents the 
dual-core TinyNF version of the policer from reaching line 
rate is the frequent reads from the CPU time, which it needs 
for flow expiration.  

 TinyNF leads to better latency at low and high loads but 
worse latency in the middle, especially the 99th percentile 
latency. Looking at individual data points, which we show 
in Figure 8, the TinyNF-based policer has lower latency in 
some cases, but this advantage is lost in the tail latency. We 
believe this is a case where DPDK’s batching shines: it can 
detect “gaps” between packets, in which updates to the 
transmission tail do not compete with packet processing, by 
looking at how many packets there are in the queue. 

Finally, since we had to modify the policer code to use 
TinyNF, we wanted to see whether the same performance 
benefits could be obtained without code changes. We wrote 
a compatibility layer that implements some of the DPDK 
API on top of TinyNF. The layer cannot implement all of the 
DPDK API, by design, but can replace DPDK for functions 
that fit the TinyNF model by changing an environment var-
iable at compile time. The compatibility layer allows for 1% 
more maximum throughput than batched DPDK, at the cost 
of increased latency. 

 
Figure 6. Throughput and median latency of a traffic policer 
using DPDK with and without batching, TinyNF, and 2-
core versions of all three. 

 
Figure 7. 99th percentile latency version of Figure 6. 

 
Figure 8. Complementary cumulative latency distributions 
of a traffic policer using the same alternatives as Figure 6, 
with 1 Gb/s background load. 
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A no-op function can handle more throughput with 
DPDK than with TinyNF, even though the opposite holds 
with real functions. We reached this surprising conclusion 
by benchmarking DPDK’s “testpmd” built-in application, 
which DPDK developers use in performance reports [7] to 
benchmark driver speed. We configured testpmd to update 
packets’ MAC address to provide some realism. Using our 
setup, both TinyNF and DPDK in its batched mode could 
saturate two 10 Gb/s links, as we show in Figure 9. We also 
included the Ixy driver [10], which performed admirably 
given its educational purpose but could not sustain line rate 
even with batching. 

Since our setup was bottlenecked by link capacity, we 
chose to lower the CPU frequency to 2 GHz and re-run the 
benchmark. In this setup, DPDK can reach 97.5% of line rate 
while TinyNF peaks at around 92.5% of line rate, as we show 
in Figure 10, though its latency is lower.  

We believe the bump around 11 Gb/s is due to hardware 
issues, since it appears in three independently written 
drivers and in both a no-op and a nontrivial function. 

This result is interesting, since the no-op benchmark is 
the one used by DPDK developers to measure their progress 
when optimizing DPDK’s performance. If this benchmark 
does not accurately represent driver performance on real 
network functions, the DPDK developers may believe they 
are improving DPDK’s performance but do the opposite. 

To explain this finding, we started by plotting the no-op 
function’s latency in more detail. We did this because of an 
observation we made while running the other benchmarks:  
TinyNF’s performance appeared more stable than DPDK’s, 
yielding more consistent results across runs, such as never 
dropping packets under high loads whereas DPDK would 
sometimes drop a few packets per million. 

As expected, TinyNF has a more stable latency profile 
than DPDK: without background load, TinyNF’s latency 
remains low up until the 99.9th percentile, whereas DPDK’s 
latency starts jittering before this, as show in Figure 11. We 
stop at the 99.99th percentile because Primorac et al. showed 
that NIC timestamping is not accurate after that point [23]. 

This measurement highlights a key issue with DPDK’s 
driver model: the driver has to manage buffers explicitly 
instead of merely moving them from one queue to the next, 
which leads to a distinct bump in latency before the 99th 
percentile. The same holds for Ixy, since it uses the same 
driver model as DPDK. 

We used the toplev microarchitectural measurement 
tool [22] to investigate bottlenecks in DPDK’s driver when 
running the Vigor policer. While the tool indicates that the 
policer is bottlenecked on memory writes, there is no single 
write that dominates. Some of the memory writes that take 
the most time are fundamental to DPDK’s design, such as 
moving buffer pointers to and from the buffer pool, while 
others could be removed at the cost of some functionality, 
such as writes to packet buffer metadata. 

 
Figure 9. Throughput and median latency of DPDK’s no-op 
function with and without batching, a port of it on TinyNF, 
and a port of it on Ixy with and without batching. 

 
Figure 10. Same benchmark as Figure 9 but with the CPU 
capped to 2 GHz. We do not show Ixy since it could not 
sustain line rate even at full CPU speed. 

 
Figure 11. Complementary cumulative latency distributions 
of the no-ops from Figure 9 without background load. 
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TinyNF slows down less when running real functions 
because its instruction-level parallelism has room to 
grow and it interferes less with the CPU’s caches. We 
reached this conclusion after measuring low-level CPU 
counters using libPAPI [30], in particular the number of 
cycles, instructions, and cache hits per packet at 20 Gb/s.  

Before going further, we must caution against over-
interpreting our results, in particular absolute numbers of 
cycles. To measure low-level CPU metrics, we instrumented 
network functions with code that copies counter values for 
later processing. This has overhead: reading performance 
counters uses cycles, and copying their values touches the 
CPU caches. Furthermore, due to the out-of-order nature of 
modern CPUs, accurately measuring cycle counts requires 
inserting serializing instructions to ensure past instructions 
have completed. Thus, measuring the cycle count increases 
it as it prevents the CPU from reordering some instructions. 
The measurement overhead is stable, so we measure it and 
subtract it from the measurements, but we cannot fully 
account for cache changes due to storing counter values, or 
for the effects of serialization. Because of this, cycle counts 
can only be compared to other functions on the same driver. 
Instruction counts and cache use can be compared globally. 

We collected data by running network functions ten 
times collecting ten million packets each time. We intended 
to collect data in a single run, but noticed that some runs 
have a lower cache miss rate than others, despite using the 
same executable run in the same way on a CPU not 
otherwise used by the operating system. 

We used four functions: a no-op function that does not even 
touch packets, one that writes a constant to the destination 
MAC address, one that sets the destination MAC address 
using a lookup table based on the source MAC address, and 
the Vigor policer. In our setup, the write function is faster 
on DPDK but the lookup one is faster on TinyNF. We report 
the measured cycles, instructions and cache hits in Table 4. 
We do not report main memory hits as they are negligible, 
around one in a million packets. 

Two results stand out: the increase in instructions per 
cycle for TinyNF when running more realistic functions, 
and TinyNF’s low cache use compared to DPDK. 

TinyNF has low instruction-level paralelism in a no-op 
because the CPU is waiting for operations on descriptors 
and NIC registers, which cannot be executed out of order. 
On a more realistic function, the CPU executes the function 
instructions out of order, increasing efficiency, thus the 
slowdown is not linear. This is consistent with TinyNF’s 
low latency in the reduced frequency benchmark: the 
frequency makes little difference when waiting for the NIC. 

Batched DPDK, on the other hand, can execute multiple 
instructions per cycle even in no-ops, due to instructions 
for metadata and buffer management. Its use of vector 
instructions also helps keep a high instruction count per 
cycle by waiting for multiple descriptors in parallel without 
reordering. The slowdown when executing a real function 
is thus linear in the number of instructions, unlike TinyNF. 

TinyNF also has a lower memory footprint than DPDK, 
thus realistic functions have fewer cache misses, an effect 
that cannot be observed in no-ops. 

 IPC  Cycles  Instrs  L1d hits  L2 hits  L3 hits 

 50%  50% 99%  50% 99%  50% 99%  50% 99%  50% 99% 

DPDK unbatched                 

  No-op 0.39  664 2140  258 3780  101 1300  8.94 103  1.00 82.0 

  MAC write 0.37  725 2220  267 3790  107 1300  10.3 102  2.00 85.0 

  MAC lookup 0.39  746 2180  287 3810  116 1310  10.4 96.1  3.00 96.0 

  Policer 0.66  866 2540  669 4130  331 1500  4.94 94.4  3.00 95.0 

DPDK batched                 

  No-op 1.70  58.1 64.3  99.0 99.1  32.3 33.0  4.81 5.83  1.41 2.50 

  MAC write 1.68  63.9 70.1  107 107  36.3 37.0  4.74 5.65  2.66 3.62 

  MAC lookup 1.53  84.4 93.1  129 129  46.6 47.3  5.01 6.07  5.12 5.94 

  Policer 1.65  298 333  511 512  265 269  4.33 5.52  4.47 5.53 

TinyNF                 

  No-op 0.12  289 683  35.0 53.0  7.87 16.7  4.51 11.0  0.00 1.00 

  MAC write 0.13  339 717  45.0 63.0  13.8 22.2  5.11 12.8  1.00 3.00 

  MAC lookup 0.18  360 734  65.0 83.0  19.7 29.7  8.99 14.9  2.00 4.00 

  Policer 0.49  490 883  297 308  125 144  11.0 23.0  2.00 4.00 

Table 4. Low-level metrics. IPC is Instructions Per Cycle. Cycles and IPC are only comparable within the same driver, as 
explained in the main text. DPDK batched uses batches of size 32. Main memory hits are negligible and not shown. 

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    235



8. Applicability 
In this section, we evaluate the applicability of our model 
to real-world network function deployment. Did we strike 
a good tradeoff choosing not to support some functions to 
simplify the model? And is our model useful in the context 
of network function virtualization? 

As previously explained, the core limitation of our 
driver model is that network functions cannot keep buffers 
aside for later use. For instance, they cannot reconstruct 
messages in TCP or other higher-level protocols. Our model 
targets network functions that do not need to do so because 
they logically handle packets one at a time. 

Our model supports many well-known functions, 
though there is no standard list of network functions. 
Despite their increased importance in modern networking, 
there is no consensus on what is a “network function” and 
what is not. There have been attempts such as RFC 
3234 [27] to classify “middleboxes”, which are functions 
that are not crucial to the network, but to the best of our 
knowledge there is no commonly accepted list of network 
functions. We chose to use the list of functions from the 
ClickOS [18] paper, which were also used by the authors of 
Vigor [33] to estimate the applicability of their verification 
technique. We complement this list with our own 
knowledge, for lack of a more standard source. 

Our driver model supports 13 of the 14 types of network 
functions listed in ClickOS: load balancing, DPI, NAT, fire-
walls, tunnel, multicast, BRAS, monitoring, DDoS preven-
tion, IP proxies, congestion control, IDS, and IPS. The only 
one that our model cannot support without compromises is 
a traffic shaper, because shaping requires keeping packets 
to send them later in the desired traffic shape. Among the 
network functions not mentioned by ClickOS, our model 
can be used for Ethernet bridges, ARP clients and servers, 
DNS proxies, statistics collectors, traffic policers, and 
Google’s Maglev [8] load-balancer. 

However, our driver model cannot efficiently support 
functions based on entire TCP messages, since this requires 
keeping IP packets around to reorder and merge them into 
logical messages. Such functions include proxies and HTTP 
servers. While one could implement reordering by copying 
buffers before giving descriptors back to the hardware, this 
would hinder performance. 

We believe our model is a good fit for network functions 
that form the backbone of networks, such as routing, load-
balancing, NAT and DNS, access control and statistics. 
However, it is not suited to high-level functions that deal 
with entire connections or protocols that fragment packets. 

Some requirements are orthogonal to our model. For in-
stance, offloading checksums to hardware would remove 
the main bottleneck in the NAT we benchmarked. Any such 
feature that can be used by providing metadata to the NIC 
can be implemented in a driver using our model. 

TinyNF can be used for virtualization, which is a key 
tool for the practical deployment of network functions [35]. 
Virtualization allows operators to deploy multiple network 
functions on the same physical machine, instead of having 
to dedicate an entire machine to a single function. They also 
provide an easier way to manage network functions, in the 
same way virtual machines ease software management. 

We experimented with virtualization using Single-Root 
I/O Virtualization, or “SR-IOV” for short, a PCIe standard 
with which network cards can expose virtual network cards 
with the same packet-processing features as the physical 
card. The virtual machine monitor can let virtual machines 
access virtual devices directly, without surrendering control 
over the physical card. The physical card includes hardware 
to route packets to virtual cards based on packet headers, 
for instance by Ethernet address. The physical card can limit 
the rate at which each virtual card transmits packets and 
can prevent virtual cards from transmitting packets with a 
different source address than their own. Virtual machines 
thus gain the benefits of direct access without the ability to 
monopolize the link or lie about their network identity. 

The Intel 82599’s virtual cards do not support some of 
the physical features. Notably, using transmit head write-
back causes virtual cards to hang, a problem not mentioned 
in the card’s data sheet but already reported by the authors 
of Arrakis [20]. Another missing feature is legacy packet 
descriptors, which are simpler to use, though the data sheet 
calls this out. We wrote a version of TinyNF that does not 
use these features, making it slightly slower. The Arrakis 
authors estimated that the lack of transmit head write-back 
causes a 5% performance penalty 

We used the same physical setup as before, but with 16 
virtual functions on each of the two network cards, for a 
total of 32 virtual cards. Each virtual card has an Ethernet 
address, and physical cards route packets to virtual cards 
based on these addresses. The only code changes are due to 
the missing features mentioned above, as well as a few 
dozen lines of configuration. The functions forward each 
packet using a virtual card on the physical card opposite the 
one whose virtual card received the packet. 

The Vigor policer handles 12.2 Gb/s of minimally-sized 
packets without loss when using TinyNF in this setup. A 
no-op function reaches 14 Gb/s. Both are bottlenecked by 
reading packet descriptors for packet fetches, as the data 
from packets and descriptors no longer fits in the L2 cache. 

This experiment is only intended to show that our driver 
model is applicable to virtualized environments. With this 
number of devices, other concerns arise such as load skew 
across devices and non-uniform memory accesses, which 
we do not capture here. We believe TinyNF is as sensitive 
to these concerns as other stacks. In particular, the order in 
which the function checks virtual cards for packets matters. 
For instance, if packets mostly arrive on one card, checking 
the other cards for packets will limit performance. 
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9. Discussion 
In this section, we present our main takeaways from this 
project, in the form of actionable recommendations for both 
researchers and practitioners.  

Drivers are not a special category of software, and 
the line currently drawn between drivers and other kinds 
of software is neither well-defined nor helpful. Drivers 
should be considered just another kind of software system, 
one that is more focused on hardware than usual. The same 
techniques used in systems that handle requests can and 
should be scaled down to “drivers”, instead of creating new 
vocabulary for one kind of software. 

The common meaning of “driver” is a piece of code that 
has exclusive access to hardware and exposes a software 
API to programs who want to use it. However, software that 
does this is not always called a driver. Operating systems 
allows programs to access CPUs, including isolation and 
high-level APIs to access features such as clocks, but they 
are not commonly referred to as “CPU drivers”, with the 
notable exception of Barrelfish [1]. The same can be said of 
higher-level frameworks such as Java or .NET, which offer 
an abstraction over low-level CPU details yet are not called 
drivers. This applies to other kinds of devices as well: code 
that lets programs run GPU shaders is called a driver, but 
code that lets programs to draw windows and buttons on 
the screen is not, even though it is also a way for programs 
to draw. The internal architecture of some systems does rely 
on “drivers” as an indirection to access hardware, but this 
is not relevant from users’ point of view. 

An example of overly specific vocabulary is “batching” 
in network drivers: a feature that improves performance by 
amortizing costs. It is really composed of three independent 
features: (1) getting multiple packets at a time from the NIC, 
gaining information about network load, (2) processing 
multiple packets at a time, allowing for vectorized code, and 
(3) giving multiple packets at a time to the NIC, amortizing 
the cost of NIC register writes. TinyNF shows that only (3) 
is required for high throughput, though (1) may be required 
to get consistently low latency. In fact, any developer that 
uses batching but does not explicitly keep track of network 
load or use vector operations is already implicitly aware of 
this. Amortizing NIC writes is similar to existing techniques 
such as buffering reads and coalescing writes in disk I/O. 

The idea that drivers are a special kind of software is 
hindering research. Most systems for fast networking, such 
as ClickOS [18], DPDK [5], netmap [28], SoftNIC [11], and 
IX [2], reuse existing drivers, which are bottlenecks on their 
performance. Arrakis [20] uses custom drivers but focuses 
on interrupt-driven I/O, which strikes a different tradeoff. 
Ixy [10], is the only research driver we know of besides 
ours. It is odd to have more research operating systems than 
drivers: the former are by definition more complex as they 
contain at least one driver. 

Isolation is required for low-level performance, just as 
modularity is required for high-level correctness. The best-
effort approach of shared caches is no longer enough when 
interferences that cause even a low number of cache misses 
cause a noticeable performance difference, as is the case 
with fast networking. 

One way to provide performance modularity is to run 
each part of a system on physically separate hardware, as 
in TAS [16]. This eliminates interference in per-core caches, 
at the cost of increasing resource use. It also increases the 
cost of communication between modules, in the same way 
protection rings eliminate functional interference between 
user and kernel mode at the cost of an expensive boundary 
between the two modes. 

However, the current way to measure low-level metrics 
through special CPU registers cannot be isolated from the 
code under measurement. This is not an issue for most code, 
because the overhead of measurement is low, but it becomes 
an issue with nanosecond-scale code such as TinyNF. 

One way to avoid measurement overhead is to use static 
instead of dynamic analysis, but this requires a hardware 
model. TiML [32] includes performance reasoning in a type 
system, and Bolt [13] infers performance metrics from the 
source code of network functions written in C. However, 
predicting cycle counts requires accurate hardware models. 
For instance, Bolt predicts instruction counts within a few 
percent of ground truth but is 300% off the true cycle count 
for typical workloads. Since hardware optimizations are 
considered a competitive advantage, perfectly accurate 
hardware models are unlikely to be made publicly available. 

Standard benchmarks would improve the state of 
network function research. Other areas of research use 
benchmarks such as SPEC [3] to measure improvements on 
a widely-accepted scale. There is no equivalent for network 
functions, not even non-standard ones. 

We chose to explore a new point in the design space of 
networking code based on our experience with networking 
research, but the main threat to this paper’s validity is that 
we have no way to validate the usefulness of this design. It 
may be that real-world traffic looks more like the one used 
to benchmark Arrakis [20], for instance, in which Peter et 
al. came to the conclusion that handling operations in user 
mode entirely eliminates the need for even transmission tail 
update coalescing. 

Unlike other domains in which one can substitute 
benchmarks with well-known publicly available targets, 
such as compiling the compiler itself to show optimization 
improvements, network functions are generally not public. 

This problem is getting worse as hardware gets faster. 
With 100 Gb/s Ethernet becoming more popular, should we 
focus on handling minimally sized packets, with a budget 
of 6ns per packet, or should we assume that traffic is made 
up of packets in the hundreds of bytes, as Pigasus [34] does? 
We do not know. 
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Any benchmark, even if unrealistic, would improve 
the situation, which is that both industry and academia 
use no-op functions as a de facto standard. DPDK’s 
performance reports [6] from Intel, Mellanox, and 
Broadcom all exclusively use no-ops, and research such as 
netmap [28] or SoftNIC [11] mostly use no-ops. But no-ops 
are not representative of either general or specific cases. 
Even overly specific benchmark suite would at least result 
in systems optimized for a real use case, instead of systems 
optimized for no-ops which are not useful to anyone. 

Since the performance of infrastructure code interferes 
with the performance of application code in non-obvious 
ways, extrapolations from no-ops are not representative of 
actual performance. We believe that using any real network 
function as a standard benchmark would provide a data 
point from which one can extrapolate more credibly to 
other real functions. The chosen function would be closer 
to any other function than a no-op is in terms of how the 
infrastructure code influences its performance, regardless 
of how close it is in terms of functionality. 

We started this project with the goal to close the gap 
between unverified and verified performance using the 
Vigor network functions as benchmarks. Had we measured 
no-op performance for TinyNF first, under the belief that it 
was representative, we would have come to the conclusion 
that it was worse than DPDK. This could have led us to 
make TinyNF more complex to “fix” its no-op performance, 
accidentally lowering performance for real functions in the 
process. 

More formal hardware data sheets could speed up 
software development and reduce bugs, without the 
need to change the hardware. TinyNF’s complexity mainly 
comes from the number of assumptions it makes about 
hardware. These are due to missing or incorrect data, which 
is a natural consequence of free-form data sheets. 

Most of the data sheet errors could be avoided using the 
same kind of analysis performed by compilers today. For 
instance, the Intel 82599 NIC’s data sheet [12] has typos in 
register names and even in the size of some register fields; 
these could be caught by consistency checks ensuring all 
referenced names are declared and all registers contain the 
right number of bits. Some registers are only documented 
within the list of registers and not in the explanations of the 
operations they are used for, requiring developers to read 
the entire data sheet to learn about them; these could be 
caught by a check for unused declarations. 

It would be unreasonable to expect hardware engineers 
to always provide perfect data sheets or design bug-free 
hardware, in the same way that it would be unreasonable 
to expect software engineers to always write bug-free code. 
However, our experience is that most current bugs are low-
hanging fruit that could be caught without inventing new 
analysis techniques, if data sheets written in a machine-
readable format first. 

Using the basic features of a modern NIC does not 
have to be complicated, despite the belief that hardware 
has become inherently harder to deal with than in the past. 
We examined the oldest driver we could find for a NIC of 
the Intel 8259x family, which is the so-called “apricot” 
driver [17] for the Intel 82596, released with Linux 1.1 in 
1994. It contains 450 lines of code not including debug code, 
which is close to TinyNF’s 550. 

Most lines of code in TinyNF come from unused features 
that must be initialized anyway. For instance, software must 
clear packet filters and virtualization-related registers after 
resetting the hardware, unlike some other features that are 
left in a clean state by the hardware reset. This kind of issues 
is not a fundamental source of complexity but a hardware 
implementation detail. If the hardware could be fully reset 
in a single operation, TinyNF would have fewer lines of 
code than the old “apricot” driver. This overhead is not as 
visible in a driver such as DPDK’s, whose complexity comes 
from the amount of features it supports. 

We hope this paper serves as evidence that developing 
code that interacts with network cards is both interesting 
and rewarding, and that it is not as complex or difficult as 
is often believed. On the contrary, we found that developing 
our own driver made the development and verification of 
network functions easier, by removing all dependencies on 
complex external stacks and kernel-mode drivers. 
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Availability 
Our code is available at github.com/dslab-epfl/tinynf, and 
described further in the Artifact Appendix below. The code 
obtained the “Artifact Available”, “Artifact Functional” and 
“Results Reproduced” badge from artifact evaluation and 
can thus be reused by others with confidence. 

In particular, the TinyNF code can be used as a simpler 
and faster base for any network function that fits its model, 
or as a baseline to evaluate low-level networking code. The 
benchmarking scripts are independent of TinyNF and can 
be reused to measure the performance of network functions 
that use any framework or driver. 
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Artifact Appendix 

Abstract 
The artifact of this paper contains the code of the “TinyNF” 
prototype, as well as scripts to run the various experiments 
used in this paper. The benchmarking scripts can be used 
for any network function, not only TinyNF. 

Checklist 
Program: driver and network functions 
Metrics: throughput, latency, code complexity 
Output: compiled network function including the driver 
Experiments: as described in Sections 6, 7, and 8 
Required disk space: 80 GB for low-level metrics, a few 
MBs for everything else 
Expected run time: around half a day to run all available 
experiments, almost all of which is spent waiting 
Public link: github.com/dslab-epfl/tinynf 
Code license: MIT 

Description 
How to access: Use the link above. 
Hardware dependencies: Two machines with Intel 82599 
NICs, as mentioned in experiments/ReadMe.md. 
Software dependencies: TinyNF currently supports Linux 
only. A few standard packages are required to compile and 
run experiments, as described in experiments/ReadMe.md. 

Installation 
There is no explicit installation step, cloning the repository 
is enough. The artifact is fully self-contained and does not 
install files to the rest of the machine, except for benchmark 
scripts copied to a configurable directory on the machine 
that runs them. 

Experiment workflow 
All experiments are run using scripts. Manual work is not 
needed beyond executing the scripts with some parameters 
and setting up a configuration file once. 

Evaluation and expected result 
The scripts produce tables and figures that correspond to 
those in this paper. Tables are produced as tab-separated 
output on the command line, while figures are produced as 
vector images. 

Experiment customization 
The benchmarking scripts are reusable for any experiment 
even not including TinyNF. They are designed to measure 
the throughput and latency of any network function, with 
special treatment for ones that require DPDK-compatible 
kernel drivers. 

Notes 
We elaborate here on the environment abstraction library 
mentioned in Section 5, which is the only dependency of 
the TinyNF driver. The driver itself does not depend on any 
kernel-mode driver and only needs “freestanding” features 
of the C library, i.e., it only uses a few headers and types but 
no C functions from the standard library. 

The abstraction contains 5 groups of functions: memory 
allocation and deallocation, translation between virtual and 
physical addresses, PCI register reads and writes, endian-
ness conversion, and sleep. 

We believe these 5 groups are all necessary to write NIC 
drivers without compromises, though some of these could 
be modified or removed under certain conditions. Sleeping 
could be replaced by a clock function combined with busy-
waiting in the driver, but this would be less efficient and no 
less complex. Memory deallocation could be omitted if the 
software uses a crash-only failure mode. Translating virtual 
to physical addresses may not be necessary in the presence 
of an IOMMU, if memory allocation also configured the 
IOMMU. In systems that use the Enhanced Configuration 
Access Mechanism for PCI registers, or “ECAM” for short, 
the functions to read and write PCI registers could instead 
be a single function providing the memory address at which 
this space is accessible for a given device. 

Notably, the abstraction does not expose non-uniform 
memory access: implementations are expected to provide 
sane defaults. The current Linux implementation allocates 
memory on the same node as the current CPU and does not 
allow for PCI operations on devices on other nodes. This 
would need to change in a more production-ready version, 
in which various strategies can be used when dealing with 
devices on multiple nodes, but those strategies are beyond 
the scope of this paper. 

AE Methodology 
Submission, reviewing and badging methodology: 
usenix.org/conference/osdi20/call-for-artifacts 
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