
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Write Dependency Disentanglement with Horae
Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu, Tsinghua University

https://www.usenix.org/conference/osdi20/presentation/liao

Write Dependency Disentanglement with Horae

Xiaojian Liao, Youyou Lu∗, Erci Xu, and Jiwu Shu∗

Tsinghua University

Abstract

Storage systems rely on write dependency to achieve atom-

icity and consistency. However, enforcing write dependency

comes at the expense of performance; it concatenates multi-

ple hardware queues into a single logical queue, disables the

concurrency of flash storage and serializes the access to iso-

lated devices. Such serialization prevents the storage system

from taking full advantage of high-performance drives (e.g.,

NVMe SSD) and storage arrays.

In this paper, we propose a new IO stack called Horae to al-

leviate the write dependency overhead for high-performance

drives. Horae separates the dependency control from the

data flow, and uses a dedicated interface to maintain the write

dependency. Further, Horae introduces the joint flush to en-

able parallel FLUSH commands on individual devices, and

write redirection to handle dependency loops and parallelize

in-place updates. We implement Horae in Linux kernel and

demonstrate its effectiveness through a wide variety of work-

loads. Evaluations show Horae brings up to 1.8× and 2.1×

performance gain in MySQL and BlueStore, respectively.

1 Introduction

The storage system has been under constant and fast evolution

in recent years. At the device level, high-performance drives,

such as NVMe SSD [15], are pushed onto the market with

around 5× higher bandwidth and 6× lower latency against

their previous generation (e.g., SATA SSD) [11, 18]. From

the system perspective, developers are also proposing new

ways of storage array organization to boost performance. For

example, in BlueStore [23], a state-of-the-art storage backend

of Ceph [45], data, metadata and journal can be separately

persisted in different, or even dedicated devices.

With drastic changes from the hardware to the software,

maintaining the write dependency without severely impacting

the performance becomes increasingly challenging. The write

dependency indicates a certain order of data blocks to be per-

∗Jiwu Shu and Youyou Lu are the corresponding authors.

{shujw, luyouyou}@tsinghua.edu.cn

sisted in the storage medium, and further underlies a variety

of techniques (e.g., journaling [44], database transaction [13])

to provide ordering guarantee in the IO stack. Yet, the write

order is achieved through an expensive approach, referred

as exclusive IO processing in this paper. In the exclusive IO

processing, the following IO requests can not be processed

until the preceding one has been transferred through PCIe

bus, then been processed by the device controller and finally

returned with a completion response.

Unfortunately, this one-IO-at-a-time fashion of processing

conflicts with the high parallelism of the NVMe stack, and

further nullifies the concurrency potentials between multiple

devices. First, it concatenates the multiple hardware queues

of the NVMe SSD, thereby eliminating the concurrent pro-

cessing of both host- and device-side cores [50]. Moreover, it

serializes the access to physically independent drives, prevent-

ing the applications from enjoying the benefits of aggregated

devices. In our motivation study, we observe that with the

scaling of hardware queues and devices, the performance

loss introduced by the write dependency can be up to 87%.

Conversely, orderless writes without dependency can easily

saturate the high bandwidth of NVMe SSDs (§3).

Therefore, to leverage the high bandwidth of NVMe SSDs

while preserving dependency, we propose the barrier trans-

lation (§4) to convert the ordered writes into orderless data

blocks and ordering metadata that describes the write de-

pendency. The key idea of barrier translation is shifting the

write dependency maintenance to the ordering metadata dur-

ing normal execution and crash recovery, while concurrently

dispatching the orderless data blocks.

We incarnate this idea by re-architecting modern IO stack

with Horae (§5). In a nutshell, Horae bifurcates the tradi-

tional IO path into two dedicated ones, namely ordered con-

trol path and orderless data path. In the control path, Horae

flushes ordering metadata directly into the devices’ persistent

controller memory buffer (CMB), a region of general-purpose

read/write memory on the controller of NVMe SSDs [15, 16],

using memory-mapped IO (MMIO). On the other hand, Ho-

rae reuses classic IO stack (i.e., block layer to device driver to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 549

device) to persist orderless writes. Note that this design is also

scaling-friendly as orderless data blocks can be processed in

both an asynchronous (to a single device) and pipelined (to

multiple devices) manner.

Now, with a bifurcated IO path, we further develop a series

of techniques to ensure both high performance and consis-

tency in Horae. First, we design compact ordering metadata

and efficiently organize them in the CMB (§5.2). Second, the

joint flush of Horae performs parallel FLUSH commands on

dependent devices (§5.3). Next, Horae uses the write redi-

rection to break the dependency loops, parallelizing in-place

updates with strong consistency guarantee (§5.4). Finally,

for crash recovery, Horae reloads the ordering metadata, and

further only commits the valid data blocks but discarding

invalid ones that violate the write order (§5.5).

To quantify the benefits of Horae, we build a kernel file

system called HoraeFS to test applications relying on POSIX

interfaces, and a user-space object store called HoraeStore

for distributed storage (§5.6). We compare HoraeFS against

ext4 and BarrierFS [46], resulting in an up to 2.5× and 1.8×

speedup at file system and application (e.g., MySQL [13])

level, respectively (§6). We also evaluate HoraeStore against

BlueStore [23], showing the transaction processing perfor-

mance increases by up to 2.1×.

To sum up, we make the following contributions:

• We perform a study of the write dependency issue on

multi-queue drives among both single and multiple de-

vices setup. The results demonstrate considerable over-

head of ensuring write dependency.

• We propose the barrier translation to decouple the or-

dering metadata from the dependent writes to enforce

correct write order.

• We present a new IO stack called Horae to disentangle

the write dependency of both a single physical device

and storage arrays. It introduces a dedicated path to

control the write order, and uses joint flush and write

redirection to ensure high performance and consistency.

• We adapt a kernel file system and a user-space object

store to Horae, and conduct a wide variety of experi-

ments, showing significant performance improvement.

2 Background

This section starts with a brief introduction of enforcing write

dependency under current IO stack (§2.1). Then, we illus-

trate state-of-the-art techniques that alleviate the overhead of

enforcing the write dependency (§2.2).

2.1 Basic Ordering Guarantee Approach

In Figure 1(a), we can see that modern IO stack is a combina-

tion of software (i.e., the block layer, the device driver) and

hardware (i.e., the storage device) layers. Each layer may

reorder the write requests for better performance [15, 50] or

fairness [4, 29]. Specifically, in the block layer, the host IO

scheduler can schedule the requests in the per-core software

Ext4

Device A

Device

Driver

Per-core SWQ
Block

Layer

File

System

R/W

BarrierFS

Barrier-Enabled Device

Order Preserving

Dispatch

Barrier Write

Order Preserving

Block Layer

App. MySQL

fsync

journal

write-ahead log

BStorage C

Ext4

fsync

S
W
Q

S
W
Q

H
W
Q

MySQL

fsync fbarrier

(a) Linux IO stack (b) Barrier-Enabled IO stack

H
W
Q

H
W
Q

Figure 1: Existing IO Stacks with Different Order-Preserving

Techniques. SWQ: software queue. In current multi-queue block

layer, each core has a software queue. HWQ: hardware queue. The

storage device determines the maximum number of HWQs. Emerging

NVMe drives usually have multiple HWQs.

queues based on different algorithms (e.g., deadline). While

in the storage device, the controller may fetch and process

arbitrary requests due to timeouts and retries.

As a result of this design, the file system must explicitly

enforce the storage order. Traditionally, the file system relies

on two important steps: synchronous transfer and cache bar-

rier (e.g., cache FLUSH). First, synchronous transfer requires

the file system to process and transfer the dependent data

blocks through each layer to the storage interface serially.

Then, to further avoid the write reordering by the controller

in the storage device layer, the file system issues a cache bar-

rier command (e.g., FLUSH), draining out the data blocks in

the volatile embedded buffer to the persistent storage. After-

wards, the file system repeats this processing the next request.

Through interleaving dependent requests with exclusive IO

processing, the file system ensures the write requests are made

durable with the correct order.

The basic approach in guaranteeing the storage order is

undoubtedly expensive. It exposes DMA transfer latency

(synchronous transfer) and flash block programming delay

(cache barrier) to the file system.

2.2 Ordering Guarantee Acceleration

Many techniques [25, 26, 46, 48] improve the basic approach

presented in §2.1, by reducing the overhead of synchronous

transfer and cache barrier. As barrier-enabled IO stack (Barri-

erIO [46]) is the closest competitor, we introduce it briefly.

BarrierIO reduces the storage order overhead by preserv-

ing the order throughout the entire IO stack. Specifically,

the BarrierIO enforces the write dependency mainly using

two techniques: the order-preserving dispatch to accelerate

the synchronous transfer, and the barrier write command to

improve the cache barrier. First, as shown in Figure 1(b), the

order-preserving block layer ensures that the IO scheduler

follows the write order specified by the file system. Further,

the order-preserving dispatch maintains the write order of

550 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of hardware queues

1 Device 2 Devices 3 Devices

orderless

ordered

IO
P

S
 (

K
)

200

400

600

0 10 20 30 40 50 60 70 80 90

Figure 2: Ordered Write VS. Orderless Write with Varying The

Number of Hardware Queues and Devices. Each device has up

to 32 hardware queues. Described in Section 3.1.

requests queueing in the (single) hardware queue. As a col-

laborator, the storage controller also fetches and serves the

requests in a serialized fashion. Second, BarrierIO replaces

the expensive FLUSH with a lightweight barrier write com-

mand for the storage controller to preserve the write order.

File systems provide the fsync() call for applications to

order their write requests. Yet, it is still too expensive to

preserve order by fsync(). Thus, like OptFS [26], Barri-

erIO separates the ordering from the durability, and further

introduces a file system interface, i.e., fbarrier(), for order-

ing guarantee. The fbarrier() writes the associated data

blocks in order, but returns without durability assurance.

3 Motivation

Multi-queue. The improvement of storage technologies has

been continuously pushing forward the performance of solid-

state drives. To meet the large internal parallelism of flash

storage, SSDs are often equipped with multiple embedded

processors and multiple hardware queues [33, 38]. In the

host side, as shown in Figure 1(a), the IO stack employs

the multicore friendly design. It statically maps the per-core

software queues to the hardware queues for concurrent access.

Multi-device. On the other hand, for higher volume capacity,

performance and isolation, applications usually stripe data

blocks to multiple devices as in RAID 0, or manually isolate

different types of data into multiple devices. For example,

as shown in Figure 1(a), the ext4 file system uses a dedi-

cated device for journaling processing. The MySQL database

redirects its write-ahead logs to a logging device.

The multi-queue and multi-device bring opportunities to

enhance performance for independent write requests. Nev-

ertheless, it still remains unknown how much overhead the

write dependency introduces to the multi-queue and multi-

device design. Here, we first start with a performance study

of the write dependency atop multi-queue and multi-device.

3.1 Write Dependency Overhead

In this subsection, we quantify the overhead of write depen-

dency atop Linux IO stack by comparing the IOPS of ordered

writes with orderless ones. We use an NVMe SSD (spec in

Table 2 Intel 750) with up to 32 hardware queues and use

FIO [9] for testing. During the test, we vary the number of

hardware queues and attach more devices. Further, we in-

crease the number of threads issuing 4 KB writes to gain the

maximum IOPS.

For orderless random write, we use libaio [3] engine with

iodepth of 512. In this setup, the write requests issued by

libaio have no ordering constraints and can be freely re-

ordered by the storage controller according to NVMe specifi-

cation [15]. The results are shown in Figure 2. As we enable

more hardware queues, the IOPS of orderless writes increases

and gradually saturates the storage devices.

For ordered random write, we use libaio engine but set the

iodepth to 1. This setup follows the principle of exclusive

IO processing in guaranteeing the ordering. As shown in

Figure 2, the IOPS of ordered write can hardly grow, even if

we use more devices as RAID 0 to serve the write request.

The gap between orderless and ordered writes (blue area

in Figure 2) indicates the overhead of the write dependency.

With the increase of hardware queues, the overhead becomes

more severe, and reaches up to 87%. We conclude that the

Linux IO stack is not efficient in handling ordered writes.

3.2 Write Dependency Analysis

In this subsection, we analyze the write dependency overhead

via explaining the behaviors of Linux IO stack.

For a single device, the physically independent hardware

queues get logically dependent. The application thread firstly

puts the write requests in the software queues through the

IO interface (e.g., io submit()). Linux IO stack supports

various IO schedulers (e.g., BFQ [4]), which perform requests

merging/reordering in the software queues. Next, the requests

are dispatched to hardware queues, where IO commands are

generated. In the hardware queues, out of consideration for

hardware performance (e.g., device-side scheduling) and com-

plexity (e.g., request retries), there are no ordering constraints

of storage controller processing the commands [15] 1. There-

fore, due to the orderless feature of both types of queues, to

guarantee storage order, the IO stack only processes a single

request or a set of independent requests at a time. As a result,

the ordered write request keeps most queues idle and leaves

the multi-queue drives underutilized.

For multiple devices, physically isolated devices get logi-

cally connected. The IO stack employs isolated in-memory

data structures for the software environment of multi-device.

In the hardware side, a device has its private DMA engine and

hardware context. Despite the concurrent execution environ-

ment, the ordered writes flow through the multi-device in a

serialized fashion; the application can not send a request to a

different device until the on-going device finishes execution.

1In barrier-enabled devices, the host can queue multiple ordered writes

and insert a barrier command in between. Such barrier command is available

in a few eMMC products [22] with usually single hardware queue. Multi-

queue-based NVMe does not have similar concept.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 551

3.3 Limitation of Existing Work

A straightforward solution to remedy aforementioned issues

is to keep the entire IO stack ordered as BarrierIO does, so as

to allow more ordered writes to stay in the hardware queue.

Recall that in Section 2.2, each layer in BarrierIO stack must

preserve the request order spread by the upper layer. Imple-

menting such design is quite simple in old drives with a sole

command queue (e.g., mobile UFS, SATA SSD): the requests

in the hardware queue are serviced in the FIFO way. How-

ever, it is quite challenging to extend this idea to multi-queue

drives and multiple devices, without sacrificing the multicore

designs of the host IO stack and the core/data parallelism of

fast storage devices. We explain the reason in detail.

The key of BarrierIO is that each layer agrees on a specific

order. While a single hardware queue structure itself can de-

scribe the order, for multi-queue and multi-device, the host IO

stack must manually specify the order. Maintaining a global

order among multiple queues throughout the entire IO stack

potentially ruins the multi-queue and multi-device concur-

rency, which are vital features to fully exploit the bandwidth

of high-performance drives, according to our evaluation (§6.2)

and a recent study [50]. Further, the firmware design should

comply with the host-specified order, which may introduce

synchronization among embedded cores and may neutralize

the internal core and data parallelism.

In this paper, instead of keeping the IO stack ordered, we

seek a new approach that keeps most parts of current IO stack

orderless while preserving correct storage order. We now

present our design in the following sections.

4 The Horae Foundation

To efficiently utilize the modern fast storage devices, we wish

to keep the orderless and independent property of both the

software and hardware intact. We achieve this goal via barrier

translation, which disentangles the write dependency from

original slow and ordered write requests.

4.1 Design

Here, we refer a series of ordered write requests issued by

the file system or applications as a write stream. Commonly,

a write stream can have multiple sets of data blocks and the

inbetween barriers that serve as ordering points between two

sets of data blocks. We note a set of data blocks to device

A with a monotonic set ID x as Ax, and refer a barrier (write

dependency) as �. Thus, for a write stream Ax � Bx+1, it shall

be ensured that the data blocks of Ax must be made durable

prior to (≺) Bx+1 or at the same time (=) as Bx+1.

Next, we move on to remove the dependency (i.e., �) be-

tween two write requests. We use {} to group a set of indepen-

dent write requests that can be processed concurrently. Our

key issue is to translate the Ax � Bx+1 into {Ax, Bx+1}. We

decouple the indexing of a write stream from its data content.

The indexing (i.e., ordering metadata) keeps a minimum set

of information to retain the dependency. We refer the ordering

metadata as Ãx and the data content as Āx, and thus we have

Ax = Ãx ∪ Āx. Specifically, if Ax has consecutive data blocks

of n length to device A from logical block address (lba) m, Ãx

= {A, m, n}.

Given a write stream Ax � Bx+1, the barrier translation

turns it into Ãx � ˜Bx+1 � {Āx, ¯Bx+1}. Specifically, the trans-

lated write stream guarantees the order in two steps: (1) {Ãx,
˜Bx+1} � {Āx, ¯Bx+1} and (2) Ãx � ˜Bx+1. First, we must ensure

the ordering metadata is made durable no later than data con-

tent. Then, the write dependency of original write stream is

extracted as the ordering metadata.

4.2 Proof

Now, we further discuss the correctness of barrier translation

via the following proof. Our main point is to show that the

translated write stream has the same effect on satisfying the

ordering constraints. In other words, the following proves

that if the ordering metadata is made durable in specific order,

and is made durable no later than the data content, the write

dependency of original write stream is maintained.

We formalize the implication as follows:

Ãx � ˜Bx+1 � {Āx,
¯Bx+1} =⇒ Ax � Bx+1 (1)

The key lies in the non-deterministic order between Āx and
¯Bx+1. We thus discuss the proof in two situations: Āx � ¯Bx+1

and ¯Bx+1 ≺ Āx as follows.

The first case Āx � ¯Bx+1. Since we already have Ãx � ˜Bx+1,

we have (Ãx ∪ Āx) � (˜Bx+1 ∪ ¯Bx+1). Because Ax = Ãx ∪ Āx

and Bx+1 = ˜Bx+1 ∪ ¯Bx+1, we have Ax � Bx+1.

The second case ¯Bx+1 ≺ Āx. This case at first glance may

seem to violate the write order. However, since we have ˜Bx+1

� ¯Bx+1, we can always find and discard the content ¯Bx+1 via

the indexing ˜Bx+1. In this situation, the data content remains

empty, i.e., ∅. The empty result obeys any write dependency,

i.e., ∅ ∈ {Ax � Bx+1} = {∅, {Ax}, {Ax, Bx+1}}.

Two intuitive concerns may be raised from the second case.

First, a long write stream may be at a higher risk of losing

more data due to discard, although it keeps a consistent state

of disk status. However, such scenario is common and accept-

able in storage systems. Similar to roll-back and undo log, the

discarding time window (e.g., fsync() delay) is determined

by the file systems or applications. If applications desire data

durability rather than ordering, they must synchronously wait

for the durability of the write stream, e.g., calling fsync().

Second, a special case of the write dependency, called

discarding at a dependency loop, may erase the old but valid

data content. For example, consider Ax � Bx+1 � Ax+2, where

Ax and Ax+2 operate on the same logical block address. This

would occur when storage systems perform in-place updates

(IPU). Simply discarding Āx in the second case loses the

valid data. Our solution is to break the dependency loop by

redirecting IPU to another location, i.e., Ax � Bx+1 � A
′

x+2,

where A
′

x+2 targets on a different address from Ax. In this

way, we guarantee the correctness of dependency loop as in

552 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A1A3 A2B4B5B6

A1

Device A

Device B

A3B4B6A1 A3A2

B4 B5 B6

Device A

Device B{lba, len, device id}

Ai
: ordered write request i to device A

Bk
: orderless write request k to device B

: slow barrier

: faster barrier

(a) the write stream before the barrier translation

(b) the write stream after the barrier translation

Figure 3: An Example of The Barrier Translation. The solid

circle represents the ordering metadata. The subscript denotes the

desired write order of the file system or applications.

normal case, preserving high concurrency as well as the old

version of data. We show more details in §5.4.

4.3 Example

We now use an example to go through the entire process of bar-

rier translation. Figure 3(a) presents the original write stream.

As we can see, even for different devices, the block-sized (e.g.,

4 KB) data is still processed in a serialized fashion. Even

worse, the classic approach uses slow and coarse-grained

barrier (the cloud shape, e.g., flash FLUSH) to enforce the

relationship �, which may process unrelated data blocks (e.g.,

the orderless data blocks).

Figure 3(b) shows the output of the barrier translation.

Original expensive barriers are replaced with faster and fine-

grained barriers (the thunder shape, e.g., memory barrier).

Further, the initial ordered writes are translated to orderless

ones with no barriers. As a result, after processing the order-

ing metadata, the devices can process data blocks at their full

throttle concurrently.

5 The Horae IO stack

To demonstrate the advantage of the barrier translation, we

implement Horae by modifying the classic Linux IO stack.

The following sections first give an overview of Horae, and

then present the techniques at length.

5.1 Overview

As the high level architecture shown in the Figure 4, Horae

extends the generic IO stack with an ordering layer target-

ing ordered writes. Moreover, Horae separates the ordering

control from the data flow: the ordering layer translates the

ordered data writes (①) into ordering metadata (②) plus

the orderless data writes (③). The ordering metadata passes

through a dedicated control path (MMIO). The orderless data

writes flow through the original block layer and device driver

(block IO) as usual. As a result of separation, the data path

is no longer bounded by the write dependency, and it thus

allows the file systems to dispatch the data blocks to arbi-

HoraeFS

Ordering Layer

Block Layer

Device Driver

fsync()fbarrier()

①Ax≼Bx+1

②	Ax
% ≼ Bx+1 &

③{Ax' , Bx+1}

Device A Device B

Ordered data writes

Ordered control writes

Orderless data writes

HoraeStore

queue_tx() apply_tx()

Figure 4: The Horae IO Stack Architecture. Horae splits the

traditional IO path into ordered control path ② and orderless data

path ③. Horae persists the ordering metadata Ãx via the control

path before submitting the orderless data blocks Āx to the data path.

trary hardware queues or storage devices without exclusively

occupying the hardware resources.

The key of Horae is the ordering layer, to which the order-

ing guarantee of the entire IO stack is completely delegated

(§5.2). Note that the ordering layer does not need to handle all

block IOs, but instead just need to capture the write dependen-

cies of ordered writes. Specifically, Horae stores the ordering

metadata in the persistent controller memory buffer (CMB in

NVMe spec 1.2 [15], PMR in NVMe spec 1.4 [16]) of the

storage device using an ordering queue structure. Horae lever-

ages epochs to group a set of writes with no intra-dependency,

and further uses the ordering queue structure itself to reflect

the order of each epoch with inter-dependency.

Separating the ordering control path from the data path pro-

vides numerous benefits; it saves the block layer, the device

driver, and the devices from enforcing write order, which can

sacrifice performance or particular property (e.g., schedul-

ing). Further, this design enables Horae to perform parallel

FLUSHes despite the dependencies among multiple devices

(§5.3). Yet, it also faces a challenge, the dependency loop.

As we mentioned in §4.2, the dependency loop occurs

when multiple in-place updates (IPU) operate on the same ad-

dress. As the data path of Horae is totally orderless, multiple

ordered in-progress (issued by the file system but the comple-

tion response is not returned) IPUs can co-exist and be freely

reordered. The dependency loops, if not properly handled,

can introduce data version issue (e.g., the former request over-

writes the later one) and even the security issue (e.g., unau-

thorized data access). Horae breaks the dependency loops

by write redirection (§5.4). In other words, Horae treats the

IPUs as versioned writes, stores their ordering metadata seri-

ally, and concurrently redirects them to a pre-reserved disk

location. In background, Horae writes the redirected data

blocks back to their original destination. In this way, Horae

parallels the IPUs while retaining their ordering.

Atop the ordering layer, Horae exports block device ab-

straction and provides ordering control interface to the upper

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 553

…..

Head Tail

Device A

A1 Z3A2 Z4

Epoch[0] Epoch[n]Epoch[n-1]

A5 Z7A6 Z8

A1 A2 A5 A6

A1 Z3A2 Z4 A5 Z7A6 Z8

A1 A2

A5 A6

Z3 Z4

Z7 Z8

Device Z

Z3 Z4 Z7 Z8

1

A1

A1

:data block

PCIe

:ordering metadata

A1, A2, Z3, Z4 A5, A6, Z7, Z8≼ MMIO

Block IO

The Ordering

Queue

1

4 4

32

Figure 5: The Circular Ordering Queue Organization. The or-

dering queue is located in the persistent controller memory buffer

(CMB) of SSD. Horae groups a set of independent writes to an epoch,

and enforces the ordering between epochs. Described in Section 5.2.

layer systems (§5.6). We provide APIs (application program-

ming interfaces) and high level porting guidelines for upper

layer systems to adapt to Horae. Moreover, we build a kernel

file system, HoraeFS, for applications that rely on POSIX file

system interfaces, and a user-space object store, HoraeStore,

for distributed storage backend.

On top of HoraeFS and HoraeStore, similar to previous

works [23,26,46], we provide two interfaces, the ordering and

durability interface, for upper layer systems or applications to

organize the ordered data flow. The ordering interfaces (i.e.,

fbarrier(), queue tx()) send the data blocks to the stor-

age with ordering guarantee, but return without ensuring dura-

bility. The durability interfaces (i.e., fsync(), apply tx())

deliver the intact semantics as before.

5.2 Ordering Guarantee

The major role of the ordering layer is guaranteeing the write

order. Recall that the write stream Ax � Bx+1 is translated to

Ãx � ˜Bx+1 � {Āx, ¯Bx+1}, thus the ordering layer enforces the

write dependency of the ordering metadata before dispatching

the translated data blocks. We first present the organization

of the ordering metadata.

Ordering metadata organization. As shown in the center of

Figure 5, through the PCIe base address register, Horae uses

the persistent Controller Memory Buffer (CMB) as the persis-

tent circular ordering queue. The ordering queue is bounded

by the head and tail pointers, and stores the ordering meta-

data of one write stream. For an incoming ordered write re-

quest, Horae first appends its ordering metadata to the queue

via MMIO. As shown in Figure 6, the ordering metadata is

compact, mainly consisting of range-based destination (i.e.,

lba, len, devid). Storing the ordering metadata via control

path is a CPU-to-device transfer with byte-addressability; un-

like an interrupt-based memory-to-device DMA transfer, it

does not transfer a full block nor switch context. Thus, per-

sisting the compact ordering metadata via MMIO is efficient.

Horae leverages the epoch to group a set of independent

writes. And, Horae only enforces the write dependency in

lba

32

Format:

Size in bits: 8 2232

len

32

devid plbaetag rsvddr

11

Figure 6: The Ordering Metadata Format. lba: logical block

address. len: length of continuous data blocks. devid: destination

device ID. etag: epoch boundary. dr: is made durable. plba: lba of

prepare write. rsvd: reserved bits.

the unit of epoch. To realize epoch, Horae uses the etag to

indicate the boundary of epochs. The etag implies �.

Now, we go through an example presented in Figure 5

to show how data blocks reach the storage with ordering

constraints. Suppose that the ordering layer receives two

sets of ordered write requests from two threads with ordering

constraints {A1,A2,Z3,Z4} � {A5,A6,Z7,Z8}. The ordering layer

first forms two epochs N and N-1, and constructs the ordering

metadata according to the data blocks and write dependencies.

Next, the two threads store the ordering metadata concurrently

to the ordering queue via MMIO (1©). Then, Horae updates

the 8-byte tail pointer sequentially to ensure both the update

atomicity of each epoch and the write order of associated

ordering metadata (2©, 3©). Finally, the two threads dispatch

the orderless writes concurrently via block IO interface (4©).

Since the size of available CMB is usually limited (e.g.,

2 MB), the ordering queue may exceed the CMB region.

Thus, Horae introduces two operations, swap and dequeue,

to reclaim free space of the CMB for incoming requests.

Swap. The ordering layer blocks the threads issuing ordered

writes, and then invokes swap operation, when the total size

of the valid ordering metadata exceeds the queue capacity. It

moves the valid ordering metadata to a checkpoint region with

larger capacity, e.g., a portion of flash storage. It first waits

for the on-going append operations on the ordering queue to

complete. Next, it copies the whole valid ordering metadata

to the checkpoint region. Finally, it updates the head and

tail pointers atomically with a lightweight journal.

Dequeue. The ordering layer dequeues the expired ordering

metadata when its associated data blocks and the preceding

ones are durable. The dequeue operation moves the 8-byte

head pointer.

Optimization. We observe that the MMIO write latency

through PCIe is acceptable, but MMIO read can be extremely

slow (8 B read costs 0.9us, 4 KB read costs 113us). This

is because MMIO read is split into small-sized (determined

by CPU) non-posted read transactions to guarantee atomic-

ity [17]. Yet, MMIO reads can be abundant on the CMB. For

example, Horae allocates free locations from the ordering

queue before sending the ordering metadata, which requires

frequent head and tail pointer access. Also, Horae needs

to read the whole ordering queue for a swap operation. Horae

avoids slow MMIO reads by maintaining an in-memory write-

through cache for the entire CMB. The cache serves all read

operations in memory. Write operations are performed to the

cache, and persisted to the device CMB simultaneously via

554 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Device A Device B Device C Device D

Head FLUSH(C) Tail

A1 C3B2 B4 A5 D7C6 D8 D9
The Ordering Q

A: <1,5> B: <2,4> C: <3,6> D: <7,9>

Flushed

(a) Pre-FLUSH states

Device A Device B Device C Device D

FlushedTail

D7 D8 D9

The Ordering Queue

A: <0,0> B: <0,0> C: <0,0> D: <7,9>

A1 C3B2 B4 A5 C6

Head Flushed

(b) Post-FLUSH states

Figure 7: The Durability and Joint FLUSH of Horae. A FLUSH

command to a single device also triggers flushings to other devices

whose write requests must be made durable in advance.

MMIO. The extra memory consumption (2 MB) is negligible.

5.3 Durability Guarantee

Applications may also require instant durability. Linux IO

stack uses the FLUSH command (e.g., calling fsync()) to

enforce durability and ordering of updates in a storage de-

vice. Further, the FLUSH serves as a barrier between multiple

devices, so as to ensure that the post-FLUSH requests are not

made durable prior to the pre-FLUSH ones. For example, to

guarantee the durability of Ax � Bx+1, Linux IO stack issues

two FLUSHes. The first one on device A ensures the write de-

pendency (�) as well as the durability of Ax, and the second

one on device B for durability of Bx+1.

The FLUSH of Horae no longer serves as a barrier. Thus,

Horae eliminates intermediate FLUSHes and invokes an even-

tual FLUSH to ensure durability. Unlike the legacy FLUSH

targeting on sole device, the FLUSH of Horae, called joint

FLUSH, automatically flushes related devices whose data

blocks should be persisted in advance.

Figure 7 shows an example of the joint FLUSH in detail.

The states of the ordering queue are in Figure 7a, and suppose

we decide to flush device C. The ordering layer firstly finds

the flush point (6), the last position of the flushed device in the

ordering queue. Next, it identifies the devices that need to be

flushed simultaneously. A device should be flushed if it has

requests prior to the flush point. To quickly locate the flush

candidates, Horae keeps the first and last position of each

device (device range) in the ordering queue (e.g., 〈1,5〉 of

device A), as shown in the top of Figure 7a. By checking the

existence of the intersection of the device range and head-to-

flush range (〈1,6〉), Horae selects the flush candidates. Then,

Horae sends FLUSH commands to the candidate devices (A

and B) simultaneously. When the joint FLUSH completes, Ho-

rae moves the flushed pointer and resets the device range,

as shown in Figure 7b.

With the flushed pointer, Horae ensures the durability of

the write requests between the head and flushed position.

However, on SSDs with power loss protection (PLP), data

blocks are guaranteed to durable when they reach the storage

buffer, prior to a FLUSH command. Therefore, Horae uses

the dr bit (shown in Figure 6) to indicate the durability of

the requests after the flushed position. For SSD with PLP,

Horae sets the dr bit, once the ordered write requests are

completed via interrupt handler or polling.

While the legacy FLUSH is always performed in a serialized

and synchronous fashion, the joint FLUSH enables Horae to

flush concurrently and asynchronously, for devices without

PLP. These devices expose extremely long flash programming

latency, so async flushings on them exploit the potential par-

allelism. However, Horae remains the sync flushing on the

other type of devices with PLP. Since flushing such devices is

returned from the block layer directly, async flushing incurs

unnecessary context switches from the wakeup mechanism.

5.4 Handling Dependency Loops

To understand the motivation for resolving the dependency

loops, we show two examples. First, consider a data block is

overwritten repeatedly. Reordering of two overwrite opera-

tions may cause the later one to be overwritten by the former

one, and results in a data version issue. Second, consider

at the file system level. The file system frees a data block

from owner A, and then reallocates it to owner B. Reordering

of reallocating and freeing upon a sudden crash can cause a

security issue: owner B can see the data content of owner A.

Classic IO stacks handle dependency loops by prohibiting

multiple in-progress IPUs on the same address. IPUs on the

same address are operated exclusively, where the next IPU

can not be submitted until the preceding one is completely

durable. However, this approach serializes the access to the

same address, leaving the device underutilized. Horae allows

multiple in-progress parallel IPUs on the same address, and

resolves dependency loops through IPU detection, prepare

and commit write.

IPU detection. The foremost issue is to detect IPUs. In Ho-

rae, the upper layer systems must specify the IPU explicitly

because of the awareness of IPU.

Prepare write. In receiving an IPU, Horae first allocates an

available location from the preparatory area (p-area), a pre-

reserved area of each device for handling dependency loops.

It stores the location in the plba region (shown in Figure 6) of

the ordering metadata. Next, it dispatches the IPU to the plba

position of p-area, via the same routine as the classic orderless

write. Further, Horae uses an in-memory IPU radix tree to

record the plba for following read operations to retrieve the

latest data. The IPU tree accepts the logical block address

(lba) as the input and outputs the newest plba. Compared

to the IO processing, the modification on the IPU tree is

performed in memory, and its overhead is thus negligible.

Commit write. Horae applies the effects of IPUs via the

commit write, once the durability of the prepare write is sat-

isfied. Horae firstly scans the ordering queue, and merges

the overlapping data blocks of the p-area. Then, it writes the

merged data blocks back to their original destination concur-

rently. When the commit write completes, Horae removes

associated entries of the IPU tree, and dequeues the entries

between the head and flushed pointer of the ordering queue.

Horae introduces two commit write policies, lazy and ea-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 555

API Explanation

olayer init stream(sid, param) Register an ordered write stream with ID sid and parameters param

olayer submit bio(bio, sid) Submit an ordered block IO bio to stream sid

olayer submit bh(bh, op, opflags, sid) Submit a buffer head bh to stream sid with specific flags opflags and op

olayer submit bio ipu(bio, sid) Submit an ordered in-place update block IO bio to stream sid

olayer blkdev issue flush(bdev, gfp mask, error sector, sid) Issue a joint FLUSH to device bdev and stream sid

fbarrier(fd) Write the data blocks and file system metadata of file fd in order

fdatabarrier(fd) Write the data blocks of file fd in order

io setup(nr events, io ctx, sids) Create an asynchronous I/O context io ctx and a set of streams sids

io submit order(io ctx, nr, iocb, sid) Write nr data blocks defined in iocb to stream sid

Table 1: The APIs of Horae. Horae provides the stream (or sequencer) abstraction for upper layer systems. Each stream is identified by a

unique sid, and represents a sequence of ordered IO requests. To realize multiple streams, Horae evenly partitions the CMB area and p-area,

and assigns a portion to each stream.

ger commit write. The lazy commit write is performed in

background when the IO stack is idle. When Horae runs out

of p-area space, it triggers eager commit write.

Read. As the ordered IPUs are redirected to p-area, the

following read operation retrieves the latest data blocks from

p-area first. Horae searches the IPU tree for the plba, and

reads the data from the plba position of p-area.

With write redirection for IPUs, Horae provides higher

consistency than the data consistency, which matches the

default ordered mode of ext4. The data consistency requires

that (1) the file system metadata does not point to garbage

data, and (2) the old data blocks do not overwrite new ones.

Horae is able to preserve the order between data and file

system metadata, and thus the file system metadata always

points to valid data. Also, Horae controls the order of parallel

IPUs. Therefore, Horae supports data consistency.

However, the data consistency does not provide request

atomicity. Under data consistency, the IPUs directly overwrite

valid data blocks, and can sometimes leave the file system

a combination of old and new data, which brings inconve-

nience to maintain application-level consistency [2]. This is

because commodity storage does not provide atomic write

operations. For a write request containing a 4 KB data block,

it may be split into multiple 512 B (determined partially by

Max Payload Size) PCIe atomic ops (i.e., transactions) [17].

A crash may result in partially updated 4 KB data block.

Horae enhances data consistency with request atomicity;

continuous data blocks of each write request sent to the Ho-

rae are made durably visible atomically due to double write.

Once the durability of the prepare write is satisfied, Horae

ensures request atomicity. Otherwise, the prepare write may

be partially completed and its effect is thus ignored.

5.5 Crash Consistency

In the face of a sudden crash, Horae must be able to recover

the system to a correct state that the data blocks are persisted

in the correct order and the already durable data blocks with

a completion response are not lost. This subsection discusses

the crash consistency of Horae, including the ordering queue

consistency and the data block consistency.

The ordering queue. As stated in §5.2, Horae writes the

ordering metadata via MMIO. But MMIO writes are not

guaranteed to be durable because they are posted transactions

without completions. After each MMIO write, Horae issues

a non-posted MMIO read of zero byte length to ensure prior

writes are made durable [24].

Upon a power outage, the ordering queue, the head,

flushed and tail pointers, are saved to a backup region

of flash memory, with the assistance of capacitors inside the

SSD. When power resumes, Horae loads the backup region

into the CMB.

The data block. Horae recovers the storage to a correct

state with the support of the ordering queue. Horae scans

the ordering queue from the head position to the flushed

position, in case of the data blocks are made durable with the

FLUSH response but expired entries are not dequeued. Horae

commits the data blocks of the p-area that obey the order.

Further, Horae recovers the durable yet not flushed data

blocks (e.g., in SSD with PLP). Starting from the flushed

position, Horae sequentially scans the ordering queue, and

commits the prepare writes until it finds a non-durable data

block (i.e., dr bit is not set). After that, Horae discards the

following data blocks through filling the blocks with “zeros”,

because they violate the write order.

5.6 The API of Horae and Use Cases

This subsection first describes the API of Horae, and then

presents two use cases: a file system leveraging a single write

stream (i.e., a single ordering queue), and a user-space object

store running with multiple write streams.

5.6.1 The API of Horae

To enable the developers to leverage the efficient ordering con-

trol of Horae, we provide three levels of functionalities/APIs

shown in Table 1: the kernel block device, the file system and

the asynchronous IO interface (i.e., libaio [3]).

Kernel block device interface. The kernel systems (e.g.,

file systems) can use olayer init stream to initialize an

ordered write stream for further use. olayer submit bio

and olayer submit bh deliver the same block IO sub-

556 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mission function as classic interfaces (i.e., submit bio

and submit bh); but they return when associated order-

ing metadata are persisted in the sid ordering queue

(§5.2). olayer submit bio ipu is for in-place updates

(§5.4). olayer blkdev issue flush is extended from clas-

sic FLUSH interface (i.e., blkdev issue flush); it keeps the

same arguments and performs joint FLUSH on a given stream

and target devices (§5.3).

File system interface. We offer two ordering file system

interfaces, the fbarrier and fdatabarrier, for upper layer

systems or applications to organize their ordered data flow.

The fbarrier bears the same semantics as the osync of

OptFS and fbarrier of BarrierFS; it writes the data blocks

and journaled metadata blocks in order but returns without

ensuring durability. The fdatabarrier is the same as that

of BarrierFS; it only ensures the ordering of the application

data blocks but not the journaled blocks. We further show the

internals of these interfaces in the following §5.6.2.

Libaio interface. Libaio provides wrapper functions for

async IO system calls, which are used for some systems (e.g.,

BlueStore and KVell [36]) designed on high-performance

drives. We expose the ordering control path of Horae via

two new interfaces on libaio. io setup allows developers to

allocate a set of streams defined in sids. io submit order

performs ordered IO submission; it bears the same seman-

tics of fdatabarrier. We further show the usage of these

interfaces in boosting BlueStore in §5.6.3.

Porting guidelines. We provide three guidelines. First, upper

layer systems can distinguish the ordered writes from the

orderless ones based on the categories of the request, and send

them using Horae’s APIs. The requests that contain metadata,

the write-ahead log and the data of eager persistence (e.g.,

data specified by the fsync() thread) are treated as ordered

writes. Second, due to the separation of ordering control path,

upper layer system can design and implement the ordering and

durability logic individually. In the ordering logic, they can

use the ordering control interface (e.g., olayer submit bio)

to dispatch the following ordered writes immediately after

the previous one returns from the control path. This allows

the ordered data blocks to be transferred in an asynchronous

manner without waiting for the completion of DMA. Third,

they can remove all FLUSHes that serve as ordering points in

the ordering logic, and invoke an eventual joint FLUSH in the

durability logic to guarantee durability.

5.6.2 The HoraeFS File System

We build HoraeFS atop the Horae with a set of modifications

of BarrierFS [46]. BarrierFS builds on Ext4, and divides the

journaling thread (i.e., JBD2 in Figure 8) into submit thread

and flush thread.

HoraeFS inherits this design, and the major changes are

that (1) we submit ordered writes and reads to the ordering

layer first, (2) we remove the FLUSH to coordinate the data

and journal device and (3) we detect IPUs through inspecting

D Wait D

6.30 9.93

Pre

0.85

1.05

JM

6.12

Wait JM

10.75

JC

2.83

Wait JC
11.78

Post
0.72

Ext4 fsync 51.18us

1.05 6.12 2.83

5.95
Wait JM

0.72

0.85

Wait JC
5.26

F
0.85

Post
1.09

HoraeFS fbarrier 20.82us

HoraeFS fsync 34.82us

0.85

0.85

D
6.30 0.85

0.7

Pre JM JC
0.7 0.7

Post

CPU IO Context switch Ordering layer

App.

JBD2

App.

Submit

Flush

Figure 8: The fsync() and fbarrier(). 4 KB data size. The

number shows the latency of each operation in microseconds. D:

application data blocks. Pre: prepare the journaled metadata. JM:

journaled file system metadata. JC: journaled commit record. Post:

change transaction state, calculate journal stats, etc.

the BH New states of each write. Although the journal area is

repeatedly overwritten, we do not treat the journaled writes

as IPUs, as the journal area is always cleaned before reused.

Figure 8 shows a side-by-side comparison between Ext4

and Horae on a NVMe SSD. For each 4 KB allocating write in

most cases, both file systems issue three data blocks, namely

the data block (D), the journaled metadata block (JM) and

the journaled commit block (JC). Further, both file systems

order the data blocks with {D, JM } � JC. Ext4 enforces the

ordering constraints through the exclusive IO processing. It

waits for the completion of preceding data blocks (e.g., Wait

JM) and issues a FLUSH (not shown in the figure because it

is returned by the block layer quickly). HoraeFS eliminates

the exclusive IO processing, and preserves the order through

the ordering layer, as shown in the black rectangle. HoraeFS

waits for the durability of the associated blocks in flush thread,

and finally issues a FLUSH to the ordering layer for durability.

HoraeFS differs from BarrierFS in the IO dispatching (i.e.,

the white rectangle) and IO waiting (i.e., the gray rectan-

gle) phase. During IO dispatching phase, BarrierFS passes

through the entire order-preserving SCSI software stack. Be-

sides, BarrierFS experiences extra waiting time due to the

order-preserving hardware write, i.e., the barrier write.

5.6.3 The HoraeStore Distributed Storage Backend

We build HoraeStore atop the Horae with a set of modifica-

tions of BlueStore [23], an object store engine of Ceph.

BlueStore directly manages the block device by async IO

interfaces (e.g., libaio), providing transaction interfaces for

distributed object storage (i.e., RADOS). Inside each write

transaction, it first persists the aligned write to data storage,

followed by storing the unaligned small writes and metadata

in a RocksDB [1] KV transaction (KVTXN). The RocksDB

first writes the write-ahead log (WAL), then applies the up-

dates to the KV pairs. For inter-transaction ordering, it uses

sequencers; the next transaction can not start a KVTXN until

the preceding one has made the aligned write durable and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 557

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

0

0.5

1.0

Write size (KB)
4 8 16 32 64

1 NVMe SSD B

0

1

2

Write size (KB)
4 8 16 32 64

1 NVMe SSD C

0

1

2

Write size (KB)
4 8 16 32 64

2 NVMe SSDs (B + B)

0

2

4

Write size (KB)
4 8 16 32 64

3 NVMe SSDs (2B + C)

vanilla barrier horae

Figure 9: Ordered Write Performance. The throughput of randomly writing 1 GB drive space by 1 write stream (i.e., 1 thread). vanilla:

native Linux NVMe IO stack. horae: Horae IO stack. barrier: Barrier-enabled IO stack. Horizontal dotted lines: maximum device bandwidth.

started its KVTXN. Besides, BlueStore uses a single KV

thread to serially perform KVTXNs, which blocks and waits

for in-progress KVTXNs to become durable.

HoraeStore accelerates the transaction ordering guarantee,

while exporting the same transaction interfaces. For intra-

transaction ordering, HoraeStore uses the new async IO

interface of Horae, io submit order(), to control the write

order of data, WAL and KV pairs. With this new interface,

for each transaction, HoraeStore processes the data, WAL

and KV pairs concurrently.

For inter-transaction ordering, HoraeStore extends the

overlapping range of dependent transactions, and improves

the concurrency of KVTXNs’ submission. First, in Horae-

Store, the following transaction starts the KVTXN immedi-

ately after the preceding one has satisfied the ordering of its

aligned writes (D) and KVTXN. In other words, Horae can

process two dependent transactions concurrently, once the

ordering between them is satisfied, i.e., {D1, D2} � KVT XN1

� KVT XN2. Second, HoraeStore separates the ordering of

KVTXN from durability; it starts the KVTXNs in a KV sub-

mit thread for ordering, and ensures the durability in a KV

flush thread. Hence, more KVTXNs can be queued in the KV

submit thread, and can further be dispatched to RocksDB for

processing.

5.7 Implementation Details and Discussion

We implement Horae in Linux kernel as a pluggable kernel

module (i.e., the ordering layer), consisting of 1288 lines of

code (LOC); no changes are needed for traditional IO stack

(i.e., the block layer, NVMe and SCSI driver). HoraeFS is im-

plemented based on BarrierFS with approximately 100 LOC

changes. HoraeStore is implemented based on BlueStore

with around 200 LOC change.

Horae needs a region of byte-addressable persistent mem-

ory for efficient ordering control path. We realize this by

remapping the CMB region of a capacitor-backed CMB-

enabled SSD from StarBlaze [20] using ioremap wc().

Currently, CMB-enabled SSDs are already available in the

market [14, 18]. Moreover, many SSDs have enabled power

loss protection [10,12,18,32]. Therefore, the persistent CMB

(or PMR) requirement of Horae can be achieved easily. We

further discuss the alternatives of the CMB in §7.

6 Evaluation

This section evaluates the Horae, HoraeFS and HoraeStore

by answering the following questions:

• What is the performance of Horae in guaranteeing the

ordering? (§6.2, §5.2)

• What is the performance of Horae in guaranteeing the

durability? (§6.3, §5.3)

• How does Horae perform under in-place updates with

different consistency level? (§6.4, §5.4)

• Can Horae recover correctly after a crash and how much

overhead does recovery introduce? (§6.5, §5.5)

• How much improvement does Horae bring to applica-

tions? (§6.6, §5.6)

6.1 Experimental Setup

Hardware. We conduct all experiments with a 12-core ma-

chine running at 2.50 GHZ. Table 2 shows the specification of

the candidate SSDs. We use three broadly categorized SSDs:

the SATA SSD (labelled as A), the consumer-grade NVMe

SSD (B), and the high-performance datacenter-grade NVMe

SSD (C). The NVMe SSD B and C are with PLP. The size of

CMB used by Horae is 2 MB.

Compared Systems. We mainly compare with two types

of IO stacks, Vanilla and BarrierIO [46]. Vanilla is the de-

fault Linux IO stack. Ext4 [7] is a journaling file system

running upon vanilla. We setup ext4 with default options in

ordered journaling mode (denoted as ext4-DR). We disable

the barriers in ext4-DR (nobarrier option) with ext4-OD,

which only guarantees the dispatch order reaching in storage

buffer (not storage medium). Similar to ext4, we test Bar-

rierFS [46] upon BarrierIO stack with durability guarantee

(denoted as BFS-DR) and ordering guarantee (denoted as

BFS-OD). Since we do not have barrier compliant storage

Model Seq. Bandwidth Rand. IOPS (8GB span)

A
Samsung

860 PRO SATA

Read: 560MB/s

Write: 530MB/s

Read: 100k

Write: 90k

B
Intel

750 NVMe

Read: 2200MB/s

Write: 950MB/s

Read: 430K

Write: 230K

C
Intel

DC P3700 NVMe

Read: 2800MB/s

Write: 1900MB/s

Read: 640K

Write: 475K

Table 2: SSD Specifications.

558 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Ordering

Durability

(a) SATA

0

2

4

0
20

40

 # of theads
1 4 12

Ordering

Durability

(b) NVMe

0

50

0

50

100

 # of theads
1 4 12

Ordering

Durability

(c) SATA + SATA

0

2

4

0
20

40

60

 # of theads
1 4 12

Ordering

Durability

(d) SATA + NVMe

0

5

0
50

100

150

 # of theads
1 4 12

Durability

Ordering

(e) NVMe + NVMe

0

50

100

0
50

100

150

 # of theads
1 4 12

IO
P

S
(K

)

ext4 BFS HFS-SF HFS-JF

SATA + SATA SSDs

Figure 10: File System Performance under FIO Allocating Write Workload. Ordering: nobarrier option of ext4, but only guarantees a

relaxed ordering of reaching the storage write buffer. fbarrier() of BarrierFS and HoraeFS. Durability: fsync(). SF: serialized FLUSH.

JF: joint FLUSH.

devices, we reuse the software of BarrierFS and add extra

5% overhead of the hardware barrier write, following the as-

sumption of the BarrierFS paper. To run BarrierFS correctly

in multi-queue drives, we modify the NVMe driver to setup

only one IO command queue. HoraeFS (abbreviated as HFS)

uses just one ordering queue.

6.2 Basic Performance Evaluation

First, we demonstrate the effectiveness of Horae in guarantee

the ordering (§5.2), through measuring the throughput of

three IO stacks on block devices. We vary the number of

devices and organize them as soft-RAID 0. Specifically, we

evenly distribute X KB random writes to different devices in a

round-robin fashion. Figure 9 shows the overall throughput of

ordering guarantee with varying the write size. Note that we

only have the result of BarrierIO on a single device, because

it does not support multiple drives.

Result. From the result, we find that Horae outperforms

vanilla and BarrerIO IO stack by 4.1× and 2× respectively in

the case of a single device and 4 KB write unit. On multiple

devices, Horae achieves up to 6.8× throughput than vanilla.

Further, we observe that Horae can easily saturate the device

bandwidth with small write units (e.g., 4 KB).

Analysis. We now decompose the IO path to better under-

stand the performance. The overall IO path can be broken

down into four parts, and we measure the overhead of each

part when issuing 4 KB data blocks as follows: (1) data page

preparation costs 0.8 us in our test; (2) the ordering layer pro-

cesses and writes ordering metadata within 0.7 us; (3) about

1.0 us is spent on block layer, which performs request merging

and bio(block IO data structure)-to-request(NVMe driver

data structure) transmission; (4) data DMA, device-side pro-

cessing and interrupt handler consume 8.7 us. The classic

approach experiences all parts except (2), which counts up

to 10.5 us in total. Thus, the maximum IOPS and throughput

that a single write stream can achieve in classic IO stack are

95K and 380 MB/s. Horae experiences (1) and (2) in most

cases. The ordering layer delegates the submission of order-

less block IO to per-CPU background submitter threads, so as

to hide the overhead of block layer for foreground ordering

calls. Thus, Horae can achieve up to 2.6 GB/s in the case

of 4 KB writes. BarrierIO eliminates (4) in ordering guar-

antee, and thus can achieve up to 2.2 GB/s in NVMe stack

theoretically. However, we observe that configuring the drive

to a single IO command queue considerably decreases the

available bandwidth of high-performance storage.

6.3 File System Evaluation

In this subsection, we evaluate the performance of POSIX

file systems atop different IO stacks with varying the number

and type of storage devices. Moreover, we demonstrate the

effectiveness of Horae in guaranteeing the durability (§5.3).

We perform allocating write so that the file system always

finds the updated metadata in the journal. We set up the file

system with two modes: the internal journal that mixes data

and journal blocks in a single device, and the external journal

that uses a dedicated device for locating journal. The result is

shown in Figure 10, and we make the following observations.

Effect of removing flush. As shown in Figure 10(a), on

SATA SSD, HFS achieves 80% higher IOPS averagely against

ext4, and exhibits comparable performance compared to BFS.

Here, the major overhead is two FLUSHes. The former one

is used to control the write order of the data blocks and the

commit record, and the later one is to ensure durability. The

FLUSH of SATA SSD exposes raw flash programming delay

(1 ms). In BFS and HFS, the former FLUSH is eliminated.

Effect of async DMA. As shown in Figure 10(b), on NVMe

SSD, HFS achieves 22% higher IOPS than ext4. Compared to

the durability of HFS, the ordering guarantee of HFS can fur-

ther boost IOPS by 57%. The major overhead here is shifted

to the DMA transfer. Figure 8 shows the source of improve-

ment, and the number next to each rectangle shows the single

thread latency of each operation. Due to the separation of the

ordering and durability, HFS and BFS can overlap the DMA

transfer with CPU processing, and thus partly hide the DMA

delay. BFS does not perform well on NVMe SSD due to the

restriction of the single IO command queue, especially when

we increase the number of threads.

Effect of joint flush. As shown in Figure 10(c), HFS out-

performs ext4 by 88% and 90% on average in durability and

ordering respectively. Comparing HFS-PF to HFS-SF, we

find the joint flush improves the overall performance by up to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 559

(a) IOPS with different consistency

ext4

HFS

0

50

100

ordered
DR OD

data-journaling
DR OD

ext4-OD
ext4-DR

HFS-OD
HFS-DR

(b) Sensitivity to p-area size

60

80

100

p-area size (MB)
16 32 64 128 256 512

IO
P

S
 (

K
)

Figure 11: In-Place Update Performance. OD: nobarrier op-

tion of ext4, fbarrier() of HFS. DR: fsync(). Test on SSD C.

70%. This is because joint flush allows physically indepen-

dent devices to perform flushing concurrently.

Effect of parallel device access. Figure 10(d-e) plots the

result when we use an NVMe SSD to accelerate the journal. In

ordering, HFS improves ext4 by 150% and 76% respectively.

The major contributor here is the parallel device access. In

HFS, once the associated ordering metadata is processed

serially by the control path, the data blocks can be transferred

and processed by individual devices concurrently. While in

ext4, this is done in a serialized manner.

6.4 In-Place Update Evaluation

In this subsection, we evaluate the performance of in-place

update under different consistency and with varying the size

of the preparatory area (p-area) (§5.4).

As shown in the X title of Figure 11(a), we first setup the

file system with two modes, the ordered and data-journaling

mode, representing data and version consistency, respectively.

Then, we issue 10 GB overwrites to a 10 GB file. The ordered

mode performs metadata journal. The data-journaling mode

performs data journal to achieve the version consistency that

the version of data matches that of metadata.

In the ordered mode, the double write of eager commit

write enhances the data consistency at the cost of 10% IOPS

loss in durability. In ordering, HFS exhibits 50% higher

IOPS compared to ext4, because HFS can emit multiple IPUs

simultaneously without interleaving each IPU with DMA

transfer and FLUSH command.

In the data-journaling mode, both file systems first put

the IPU to journal area. When performing journal, HFS

dispatches the commit record immediately after the journaled

data, and thus provides 60% higher IOPS on average.

When Horae runs out of p-area space, Horae blocks incom-

ing requests and triggers eager commit write. To investigate

the performance of Horae in such a situation, we run the same

IPU workload with the scaling of p-area size. The results are

shown in Figure 11(b). We find that HFS-OD performs dra-

matically better than ext4-OD even with small p-area. To

provide request atomicity, HFS-DR delivers less IOPS than

ext4-DR. As we enlarge the p-area, the IOPS gap narrows.

ext4 ext4-R0 BFS HFS-R0 HFS

K
 T

x
/s

0

50

100

(a) Sole

DR OD

(b) Separate redo

DR OD

(c) Separate redo&undo

DR OD

Figure 12: MySQL under OLTP-insert Workload. (a) Sole: mix

data, redo log and undo log in device B. (b) Separate redo: data and

undo log to device B, redo log to device C. (c) Separate redo & undo:

data to device B, redo log to device C, undo log to another device B.

DR: The fsync() used to control the write order of transactions is

replaced with fbarrier(). OD: All fsync()s are replaced with

fbarrier()s. Sync() the database every 1 second. R0: organize

underlying devices as logical volumes using RAID 0.

6.5 Crash Recovery Evaluation

To verify the consistency guarantees of Horae (§5.5), we run

workloads, and forcibly shut down the machine at random.

We restart the machine and measure the recovery performance.

We choose Varmail workload of Filebench [8] for its intensive

fsync(). Varmail contains two fsync()s in each flow loop,

and we replace the first one with fbarrier().

We repeat the test 30 times, and observe HoraeFS can

always recover to a consistent state. The recovery time comes

from two main parts: the ordering queue load time and com-

mit write time. First, Horae loads the pointers and the order-

ing metadata into host DRAM, which consumes 29.8 ms on

average. Next, the commit write requires “read-merge-write”,

and costs 497.6 ms on average.

6.6 Application Evaluation

6.6.1 MySQL

We evaluate MySQL with OLTP-insert workload [21]. The

setups are described in the caption of Figure 12.

In sole configuration, HFS-DR outperforms ext4-DR and

BFS-DR by 15% and 23% respectively. In ordering, HFS-

OD prevails ext4-OD by 56% and achieves 36% higher TPS

than BFS-OD. This evidences that HFS is more efficient in

controlling the write order.

When using dedicated devices to store redo and undo logs

(i.e., Figure 12(b)), HFS-DR outperforms ext4-DR by 16%,

and HFS-OD performs 76% better than ext4-OD. This is

because HFS can parallelize the IOs to individual devices.

Comparing Figure 12(b) with (c), we find that separating

undo logs does not bring much improvement in both ext4

and HFS. Undo logs perform logical logging to retain the old

version of database tables, which incurs less writes compared

to physical logging (redo log). MySQL tightly embeds the

undo logs in the table files, thus separating undo logs does

not alleviate the write traffic to the data device.

Comparing HFS with HFS-R0, we observe that, from the

performance aspect, manually distributing data flows to de-

560 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
.8

1
1
.8

0
.9

1
1
.0

1
.0

1
2

.3

1
0

.0

1
1
.8

1
2

.1

1
4

.6

1
2

.6

1
5

.3

ext4-DR

BFS-DR

HFS-DR

ext4-OD

BFS-OD

HFS-OD

K
 T

x
/s

0

5

10

15

20

SATA SSD NVMe SSD

Figure 13: SQLite Random Insert Performance. SQLite runs at

WAL mode. 1M inserts in random key order. Key size 16 bytes, value

size 100 bytes. DR: The first three fdatasync()s used to control

storage order of transactions are replaced with fdatabarrier()s,

but the last one remains intact. OD: All fdatasync()s are replaced

with fdatabarrier()s.

(a) apply_transaction

0

2

4

of sequencers
2 4 6 8 10 12

(b) queue_transaction

0

5

10

of sequencers
2 4 6 8 10 12

Bluestore-S BlueStore-M HoraeStore-S HoraeStore-M

T
P

S
 (

K
)

Figure 14: Object Store Performance. Store-S: mix data, meta-

data, WAL to device A. Store-M: data to device A, metadata to

device B, WAL to device C. apply transaction: durability guaran-

tees. queue transaction: ordering guarantee.

vices of particular usage is better than the automatic disper-

sion of logical volumes. A naive implementation of RAID 0

treats the devices equally. However, the data flows of applica-

tion usually have different write traffic and locality. Therefore,

uniform distribution potentially bounds the better devices and

ruins the data locality.

6.6.2 SQLite

This subsection focuses on the performance of SQLite [19].

The detailed setups are presented in the caption of Figure 13.

On SATA SSD, the ordering setups (OD) outperform the

durability ones (DR) by an order of magnitude due to the

reduction of the prohibitive FLUSH. In ordering, both BFS

and HFS exhibit over 20% performance gain against ext4

due to the separation of ordering and durability that brings

chances of overlapping CPU with IOs.

On NVMe SSD, as the FLUSH becomes inexpensive, ext4-

OD achieves almost the same performance as ext4-DR. HFS

separates the control path from the data path, and thus SQLite

can order the table files and logs through fbarrier(). There-

fore, more IOs can be processed at the same time.

6.6.3 BlueStore

This subsection evaluates the transaction processing of ob-

ject store with default options. We use the built-in object

store benchmark [5] of Ceph with varying the number of

HFS-flash HFS-CMB HFS-PM HFS-DRAMext4

(a) Durability

(b) Ordering

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

0

500

0

500

Write size (KB)
4 8 16 32 64

Figure 15: Comparison of The Media of The Ordering Queue.

flash: block IO to SSD. CMB: MMIO to SSD’s memory buffer. PM:

Intel Optane persistent memory. DRAM: capacitor-back memory.

sequencers. Each sequencer serializes the transactions, and

transactions of different sequencers do not have dependency.

Each transaction issues 20 KB write, which is split into 16 KB

aligned write to data device and 4 KB small write to RocksDB.

Two interfaces are evaluated, apply transaction() and

queue transaction(), representing ordering and durabil-

ity guarantee, respectively. Figure 14 shows the results.

In Figure 14(a), HoraeStore exhibits 1.4× and 2.1× TPS

gain against BlueStore, in S and M setup, respectively. To

preserve order, BlueStore does not submit the small write

and metadata to RocksDB until the aligned write has been

completed. While in HoraeStore, once the aligned write and

KV transaction have been processed serially via the control

path, associated data blocks can be processed concurrently.

The queue transaction() brings opportunities to apply

multiple transactions. As shown in Figure 14(b), HoraeStore

outperforms BlueStore averagely by 23% and 83% in S and

M setup, respectively. Due to the write dependency over

multiple devices, the slower data device burdens the faster

metadata and WAL devices. Hence, BlueStore-M delivers

similar TPS compared to BlueStore-S. In HoraeStore-M,

as the control path guarantees the ordering, the synchroniza-

tion between aligned write and KV transaction is alleviated.

Further, HoraeStore enables more KV transactions to con-

tinuously fulfill the metadata and WAL storage.

7 Discussion

CMB Alternatives. Recall that Horae persists the ordering

metadata in the CMB for efficiency. Nevertheless, several

off-the-shelf non-volatile media are capable of storing the

ordering metadata: SSD (flash), Intel persistent memory (PM)

and capacitor-backed DRAM. We locate the ordering queue

in these media and measure the single-threaded throughput

of the ordered writes, as shown in Figure 15. We find that

storing the ordering metadata directly through the block-based

interface to SSD (i.e., HFS-flash) significantly decreases the

throughput. This is because, even the ordering metadata is

16 B, it must be padded to 4 KB, where the 4 KB synchronous

PCIe transfer masks the concurrency of translated orderless

writes. When the write size increases (over 64 KB), HFS-

flash gradually outperforms ext4. We also find the PM and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 561

DRAM are also satisfiable alternatives of the CMB.

8 Related Work

Storage order. Many researchers [25–28, 40, 46] have stud-

ied and mitigated the overhead of storage order guarantee.

Among these studies, the closest ones are OptFS [26] and Bar-

rierFS [46] that separate the ordering guarantee from durabil-

ity guarantee and provide similar ordering primitive. OptFS,

BarrierFS and HoraeFS are proposed under different storage

technologies (HDD, SATA SSD, NVMe SSD and storage

arrays), thereby mainly differing in the architecture, the scope

of application and hardware requirements. First, OptFS em-

beds the transaction checksum in the journal commit block

and detects the ordering violation during recovery, which

reduces the rotational disk FLUSH overhead at runtime. Barri-

erFS preserves the order layer by layer, thereby aligning with

the single queue structure of SCSI stack and devices. They

are difficult to be extended to multiple queues or multiple

devices. In contrast, Horae stores the ordering metadata via

a dedicated control path to maintain the write order. This

design aims to let the ordering bypass the traditional stack to

enable high throughput and easy scaling to multiple devices.

Second, the checksum-based ordering approach of OptFS is

limited to continuous address space (e.g., file system journal-

ing), because the checksum can be only used to detect the

ordering violation of data blocks in pre-determined locations.

Alternatively, Horae builds a more generic ordering layer

which can spread data blocks to arbitrary logical locations of

any device. Third, OptFS requires the disk to support asyn-

chronous durability notification. BarrierIO requires barrier

compliant storage device which is only available in a few

eMMC (embedded multimedia card) products. Horae can

run on the standard NVMe devices with exposed CMB. The

CMB feature is already defined in NVMe spec, and is under

increasing promotion and recognition by NVMe and SPDK

communities [6].

Dependency tracking. Some works use dependency track-

ing techniques to handle storage order. Soft updates [39]

directly tracks the dependencies of the file system structures

in a per-pointer basis. Similarly, Featherstitch [28] introduces

the patch to specify how a range of bytes should be changed.

Horae also tracks the write dependencies in the ordering

queue. The tracking unit of Horae is different from prior

works; each entry in Horae describes how a range of data

blocks (e.g., 4 KB) should be ordered. The block-aligned

tracking introduces less complexity of both dependency track-

ing and file system modifications, and it is more generic in

the context of block device. In addition, due to the disability

of telling data versions, soft updates does not support version

consistency. Featherstitch assumes single in-progress write

to the same block address, and treats dependency loop as

errors. Thus, the in-place updates of Featherstitch must wait

for the completion of preceding one. Instead, Horae saves

the in-place updates from long DMA transfer through write

redirection with enhanced consistency.

Storage IO stack. A school of works [30,31,34,35,37,40–43,

49,51] improve the storage IO stack. Xsyncfs [40] uses output-

triggered commits to persist a data block only when the result

needs to be externally visible. IceFS [37] allocates separate

journals for each container for isolation. SpanFS [31] parti-

tions the file system at domain granularity for performance

scalability. Built atop F2FS [34], ParaFS [51] co-designs the

file system with the SSD’s FTL to bridge the semantics gap

between the hardware and software. iJournaling [41] designs

fine-grained journaling for each file, and thus mitigates the

interference between fsync() threads. CCFS [42] provides

similar stream abstraction at file system level for applica-

tions to implement correct crash consistency. Its stream is

designed on individual journals and still relies on exclusive

IO processing to preserve the order. Horae exports stream

at block level via the dedicated control path, not relying on

exclusive IO processing nor journal. TxFS [30] leverages the

file system journaling to provide transactional interface. Son

et al. [43] propose a high-performance and parallel journal

scheme. FlashShare [49] punches through the IO stack to

device firmware to optimize the latency for ultra-low latency

SSDs. AsyncIO [35] overlaps the CPU execution with IO

processing, so as to reduce the fsync() latency. CoinPurse

leverages the byte interface and device-assisted logic to ex-

pedite non-aligned writes [47]. However, these works still

rely on exclusive IO processing to control the internal order

(e.g., the order between data blocks and metadata blocks) and

external order (e.g., the order of applications’ data).

NoFS [27] introduces backpointer-based consistency to

remove the ordering point between two dependent data blocks.

Due to the lack of ordering updates, NoFS does not support

atomic operations (e.g., rename()).

9 Conclusion

In this paper, we revisit the write dependency issue on high-

performance storage and storage arrays. Through a perfor-

mance study, we notice that with the growth of performance

of storage arrays, the performance loss induced by the write

dependency becomes more severe. Classic IO stack is not

efficient in resolving this issue. We thus propose a new IO

stack called Horae. Horae separates the ordering control

from the data flow, and uses a range of techniques to ensure

both high performance and strong consistency. Evaluations

show that Horae outperforms existing IO stacks.

10 Acknowledgement

We sincerely thank our shepherd Vijay Chidambaram and the

anonymous reviewers for their valuable feedback. We also

thank Qing Wang and Zhe Yang for the discussion on this

work. This work is supported by National Key Research & De-

velopment Program of China (Grant No. 2018YFB1003301),

the National Natural Science Foundation of China (Grant No.

61832011, 61772300).

562 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] A Persistent Key-Value Store for Fast Storage. https:

//rocksdb.org/.

[2] A way to do atomic writes. https://lwn.net/

Articles/789600/.

[3] An async IO implementation for Linux.

https://elixir.bootlin.com/linux/v4.18.

20/source/fs/aio.c.

[4] BFQ (Budget Fair Queueing). https://www.

kernel.org/doc/html/latest/block/bfq-

iosched.html.

[5] Ceph Objectstore benchmark. https://github.

com/ceph/ceph/blob/master/src/test/

objectstore_bench.cc.

[6] Enabling the NVMeTM CMB and PMR

Ecosystem. https://nvmexpress.org/wp-

content/uploads/Session-2-Enabling-the-

NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-

Mell....pdf.

[7] ext4 Data Structures and Algorithms. https:

//www.kernel.org/doc/html/latest/

filesystems/ext4/index.html.

[8] Filebench - A Model Based File System Work-

load Generator. https://github.com/filebench/

filebench.

[9] fio - Flexible I/O tester. https://fio.readthedocs.

io/en/latest/fio_doc.html.

[10] Intel Solid State Drive 750 Series Datasheet.

https://www.intel.com/content/dam/

www/public/us/en/documents/product-

specifications/ssd-750-spec.pdf.

[11] Intel R© SSD 545s Series. https://www.intel.

com/content/www/us/en/products/memory-

storage/solid-state-drives/consumer-

ssds/5-series/ssd-545s-series/545s-256gb-

2-5inch-6gbps-3d2.html.

[12] Intel R© SSD DC P3700 Series. https:

//ark.intel.com/content/www/us/en/ark/

products/79621/intel-ssd-dc-p3700-series-

2-0tb-2-5in-pcie-3-0-20nm-mlc.html.

[13] MySQL reference manual. https://dev.mysql.

com/doc/refman/8.0/en/.

[14] NoLoad U.2 Computational Storage Proces-

sor. https://www.eideticom.com/uploads/

attachments/2019/07/31/noload_csp_u2_

product_brief.pdf.

[15] NVMe specifications. https://nvmexpress.org/

resources/specifications/.

[16] NVMe SSD with Persistent Memory Region.

https://www.flashmemorysummit.com/

English/Collaterals/Proceedings/2017/

20170810_FM31_Chanda.pdf.

[17] PCI Express Base Specification Revision 3.0.

http://www.lttconn.com/res/lttconn/pdres/

201402/20140218105502619.pdf.

[18] Product Brief: Intel R© OptaneTM SSD DC D4800X

Series. https://www.intel.com/content/www/

us/en/products/docs/memory-storage/solid-

state-drives/data-center-ssds/optane-ssd-

dc-d4800x-series-brief.html.

[19] SQLite. https://www.sqlite.org/index.html.

[20] Starblaze OC SSD. http://www.starblaze-tech.

com/en/lists/content/id/137.html.

[21] SysBench manual. https://imysql.com/wp-

content/uploads/2014/10/sysbench-

manual.pdf.

[22] Embedded Multimedia Card. http://www.konkurel.

ru/delson/pdf/D93C16GM525(3).pdf, 2018.

[23] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R.

Ganger, and G. Amvrosiadis. File systems unfit as

distributed storage backends: Lessons from 10 years

of ceph evolution. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

page 353–369, New York, NY, USA, 2019. Association

for Computing Machinery.

[24] D.-H. Bae, I. Jo, Y. A. Choi, J.-Y. Hwang, S. Cho, D.-

G. Lee, and J. Jeong. 2b-ssd: The case for dual, byte-

and block-addressable solid-state drives. In Proceed-

ings of the 45th Annual International Symposium on

Computer Architecture, ISCA ’18, page 425–438. IEEE

Press, 2018.

[25] Y.-S. Chang and R.-S. Liu. Optr: Order-preserving trans-

lation and recovery design for ssds with a standard block

device interface. In Proceedings of the 2019 USENIX

Conference on Usenix Annual Technical Conference,

USENIX ATC ’19, pages 1009–1023, Berkeley, CA,

USA, 2019. USENIX Association.

[26] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Optimistic crash consistency. In

Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, pages 228–

243, New York, NY, USA, 2013. ACM.

[27] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Consistency without ordering.

In Proceedings of the 10th USENIX Conference on File

and Storage Technologies, FAST’12, page 9, USA, 2012.

USENIX Association.

[28] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,

S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 563

https://rocksdb.org/
https://rocksdb.org/
https://lwn.net/Articles/789600/
https://lwn.net/Articles/789600/
https://elixir.bootlin.com/linux/v4.18.20/source/fs/aio.c
https://elixir.bootlin.com/linux/v4.18.20/source/fs/aio.c
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://github.com/ceph/ceph/blob/master/src/test/objectstore_bench.cc
https://github.com/ceph/ceph/blob/master/src/test/objectstore_bench.cc
https://github.com/ceph/ceph/blob/master/src/test/objectstore_bench.cc
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/
https://www.eideticom.com/uploads/attachments/2019/07/31/noload_csp_u2_product_brief.pdf
https://www.eideticom.com/uploads/attachments/2019/07/31/noload_csp_u2_product_brief.pdf
https://www.eideticom.com/uploads/attachments/2019/07/31/noload_csp_u2_product_brief.pdf
https://nvmexpress.org/resources/specifications/
https://nvmexpress.org/resources/specifications/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FM31_Chanda.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FM31_Chanda.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FM31_Chanda.pdf
http://www.lttconn.com/res/lttconn/pdres/201402/20140218105502619.pdf
http://www.lttconn.com/res/lttconn/pdres/201402/20140218105502619.pdf
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.sqlite.org/index.html
http://www.starblaze-tech.com/en/lists/content/id/137.html
http://www.starblaze-tech.com/en/lists/content/id/137.html
https://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://www.konkurel.ru/delson/pdf/D93C16GM525(3).pdf
http://www.konkurel.ru/delson/pdf/D93C16GM525(3).pdf

file system dependencies. In Proceedings of Twenty-

First ACM SIGOPS Symposium on Operating Systems

Principles, SOSP ’07, page 307–320, New York, NY,

USA, 2007. Association for Computing Machinery.

[29] M. Hedayati, K. Shen, M. L. Scott, and M. Marty. Multi-

queue fair queuing. In 2019 USENIX Annual Technical

Conference (USENIX ATC 19), pages 301–314, Renton,

WA, July 2019. USENIX Association.

[30] Y. Hu, Z. Zhu, I. Neal, Y. Kwon, T. Cheng, V. Chi-

dambaram, and E. Witchel. Txfs: Leveraging file-

system crash consistency to provide ACID transac-

tions. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), pages 879–891, Boston, MA, July

2018. USENIX Association.

[31] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and

J. Huai. Spanfs: A scalable file system on fast storage

devices. In Proceedings of the 2015 USENIX Confer-

ence on Usenix Annual Technical Conference, USENIX

ATC ’15, pages 249–261, Berkeley, CA, USA, 2015.

USENIX Association.

[32] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh.

Durable write cache in flash memory ssd for relational

and nosql databases. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’14, pages 529–540, New York, NY,

USA, 2014. ACM.

[33] N. Kirsch. Phison E12 High-Performance SSD Con-

troller. https://www.legitreviews.com/sneak-

peek-phison-e12-high-performance-ssd-

controller_206361, 2018.

[34] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2fs: A new

file system for flash storage. In Proceedings of the 13th

USENIX Conference on File and Storage Technologies,

FAST’15, pages 273–286, Berkeley, CA, USA, 2015.

USENIX Association.

[35] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and

J. Jeong. Asynchronous i/o stack: A low-latency kernel

i/o stack for ultra-low latency ssds. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages

603–616, Renton, WA, July 2019. USENIX Associa-

tion.

[36] B. Lepers, O. Balmau, K. Gupta, and W. Zwaenepoel.

Kvell: The design and implementation of a fast persis-

tent key-value store. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

page 447–461, New York, NY, USA, 2019. Association

for Computing Machinery.

[37] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Physical disentan-

glement in a container-based file system. In Proceedings

of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI’14, pages 81–96,

Berkeley, CA, USA, 2014. USENIX Association.

[38] Marvell. Marvell 88SS1093 Flash Memory Con-

troller. https://www.marvell.com/content/

dam/marvell/en/public-collateral/storage/

marvell-storage-88ss1093-product-brief-

2017-03.pdf, 2017.

[39] M. K. McKusick and G. R. Ganger. Soft updates: A

technique for eliminating most synchronous writes in

the fast filesystem. In Proceedings of the Annual Confer-

ence on USENIX Annual Technical Conference, ATEC

’99, page 24, USA, 1999. USENIX Association.

[40] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and

J. Flinn. Rethink the sync. In Proceedings of the 7th

Symposium on Operating Systems Design and Imple-

mentation, OSDI ’06, page 1–14, USA, 2006. USENIX

Association.

[41] D. Park and D. Shin. ijournaling: Fine-grained journal-

ing for improving the latency of fsync system call. In

Proceedings of the 2017 USENIX Conference on Usenix

Annual Technical Conference, USENIX ATC ’17, pages

787–798, Berkeley, CA, USA, 2017. USENIX Associa-

tion.

[42] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Applica-

tion crash consistency and performance with CCFS. In

15th USENIX Conference on File and Storage Technolo-

gies (FAST 17), pages 181–196, Santa Clara, CA, Feb.

2017. USENIX Association.

[43] Y. Son, S. Kim, H. Y. Yeom, and H. Han. High-

performance transaction processing in journaling file

systems. In Proceedings of the 16th USENIX Confer-

ence on File and Storage Technologies, FAST’18, pages

227–240, Berkeley, CA, USA, 2018. USENIX Associa-

tion.

[44] S. C. Tweedie. Journaling the linux ext2fs filesystem. In

In LinuxExpo’98: Proceedings of The 4th Annual Linux

Expo, 1998.

[45] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn.

Ceph: A scalable, high-performance distributed file sys-

tem. pages 307–320, 11 2006.

[46] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang, and

S. Cho. Barrier-enabled io stack for flash storage. In

Proceedings of the 16th USENIX Conference on File

and Storage Technologies, FAST’18, pages 211–226,

Berkeley, CA, USA, 2018. USENIX Association.

[47] Z. Yang, Y. Lu, E. Xu, and J. Shu. Coinpurse: A

device-assisted file system with dual interfaces. In 2020

57th ACM/IEEE Design Automation Conference (DAC),

pages 1–6, 2020.

564 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.legitreviews.com/sneak-peek-phison-e12-high-performance-ssd-controller_206361
https://www.legitreviews.com/sneak-peek-phison-e12-high-performance-ssd-controller_206361
https://www.legitreviews.com/sneak-peek-phison-e12-high-performance-ssd-controller_206361
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf

[48] J. Yeon, M. Jeong, S. Lee, and E. Lee. Rflush: Re-

think the flush. In Proceedings of the 16th USENIX

Conference on File and Storage Technologies, FAST’18,

pages 201–209, Berkeley, CA, USA, 2018. USENIX

Association.

[49] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian,

M. Chun, M. T. Kandemir, N. S. Kim, J. Kim, and

M. Jung. Flashshare: Punching through server storage

stack from kernel to firmware for ultra-low latency ssds.

In 13th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 18), pages 477–492,

Carlsbad, CA, Oct. 2018. USENIX Association.

[50] J. Zhang, M. Kwon, M. Swift, and M. Jung. Scalable

parallel flash firmware for many-core architectures. In

18th USENIX Conference on File and Storage Technolo-

gies (FAST 20), pages 121–136, Santa Clara, CA, Feb.

2020. USENIX Association.

[51] J. Zhang, J. Shu, and Y. Lu. Parafs: A log-structured

file system to exploit the internal parallelism of flash

devices. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16), pages 87–100, Denver, CO, June

2016. USENIX Association.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 565

	Introduction
	Background
	Basic Ordering Guarantee Approach
	Ordering Guarantee Acceleration

	Motivation
	Write Dependency Overhead
	Write Dependency Analysis
	Limitation of Existing Work

	The Horae Foundation
	Design
	Proof
	Example

	The Horae IO stack
	Overview
	Ordering Guarantee
	Durability Guarantee
	Handling Dependency Loops
	Crash Consistency
	The API of Horae and Use Cases
	The API of Horae
	The HoraeFS File System
	The HoraeStore Distributed Storage Backend

	Implementation Details and Discussion

	Evaluation
	Experimental Setup
	Basic Performance Evaluation
	File System Evaluation
	In-Place Update Evaluation
	Crash Recovery Evaluation
	Application Evaluation
	MySQL
	SQLite
	BlueStore

	Discussion
	Related Work
	Conclusion
	Acknowledgement

