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Abstract

Snapshot Isolation (SI) enables online analytical processing
(OLAP) queries to observe a snapshot of the data at the time
the query is issued, despite concurrent updates by online trans-
actional processing (OLTP) transactions. The conventional
implementation of SI creates a new version of a data item
when it is updated, rather than overwriting the old version. Ver-
sions are garbage collected when they can no longer be read
by any OLAP query. Frequent updates during long-running
OLAP queries therefore create significant space amplifica-
tion, and garbage collection can give rise to latency spikes
for OLTP transactions. These problems are exacerbated on
modern low-latency drives that can persist millions of updates
per second.

We observe that analytic queries often consist in large part
of commutative processing of data items resulting from range
scans in which each item in the range is read exactly once.
We introduce Online Commutative Processing (OLCP), a new
model for processing analytical queries, that takes advantage
of this observation. Under OLCP, analytical queries observe
the same snapshot of the data as they would under conven-
tional SI, but space amplification and garbage collection costs
are largely and oftentimes nearly entirely avoided. When an
item in such a range is updated, the old version of the item is
propagated to the OLCP queries that might need it instead of
being kept in the store.

We demonstrate OLCP’s expressiveness by showing how
to formulate, among others, the TPC-H benchmark queries
in OLCP. We implement OLCP in KVell+, an extension of
KVell, a key-value store for NVMe SSDs. Using YCSB-T,
TPC-CH and production workloads from Nutanix, we run
a wide range of analytics queries concurrently with write-
intensive transactions. We show that OLCP incurs little or
no space amplification or garbage collection overhead. As
a surprising by-product we also show that OLCP speeds up
analytical queries compared to SI.

1 Introduction

The desire to run frequent analytics on fresh data has led to
the recent development of databases that allow concurrent pro-
cessing of online transaction processing (OLTP) and online
analytical processing (OLAP) [34]. To isolate OLAP queries
from OLTP updates, databases typically rely on Snapshot
Isolation (SI) [51, 66, 69]. SI provides OLAP queries with a
snapshot of the database at the time the query is issued, inde-
pendent of later updates made by OLTP transactions. Conven-
tionally, SI is implemented by multi-versioning [6]: an update
generates a new version of a data item, and previous versions
are kept for as long as they belong to an active OLAP query’s
snapshot. Versions that no longer belong to such a snapshot
are garbage collected. Long queries may thus cause the store
to grow—a phenomenon known as space amplification, and
garbage collection may provoke latency spikes.

Minimizing disk usage is important in production systems.
Facebook found that "storage space is the bottleneck" [23],
and Alibaba Group runs garbage collection with "the high-
est priority to prevent waste of storage space" [32]. Space
amplification is particularly problematic when the dataset is
stored on modern storage devices. NVMe SSDs can persist
millions of items per second. Furthermore, because random
and sequential access bandwidth are nearly identical, scan-
ning data is no longer faster than performing random access
updates. An analytical query running concurrently with write-
intensive transactions may therefore cause the size of the store
to increase manyfold.

Space amplification is a well-known problem for in-
memory SI data stores. Various solutions have been devel-
oped, but they perform poorly on disk-based systems. Execut-
ing transactions sequentially avoids the need for locking and
versioning [28], but is impractical when I/O latencies have to
be overlapped with CPU use. Creating snapshots using oper-
ating system fork and copy-on-write techniques [39] incurs
very high file system overheads when applied to disk-based
systems. Closest to our work, Steam [8] trims versions that
do not belong to any active snapshot, providing efficiencies
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for some workloads. We propose a more radical re-design,
suitable also for disk storage, that seeks to altogether avoid
keeping old versions in the store.

Our approach is based on the following two observations.
First, most OLAP queries scan data, but are oblivious to the
order in which they read items, because the operations per-
formed on items are commutative. Second, OLAP queries
read scanned items at most once. For instance, queries that
compute sales statistics (e.g., the most popular item in a re-
gion) can perform their operation by scanning items once
in any order. Based on these observations, we define a new
class of processing: OnLine Commutative Processing (OLCP).
OLCP queries declare so called scan ranges. When an item
in a scan range is updated by a concurrent transaction, its
old value is processed by OLCP queries and then discarded,
instead of being kept in the store.

Scan ranges have numerous advantages. First, because no
versions are kept for items in scan ranges, space amplifica-
tion is limited, and GC overhead is reduced. Second, because
OLCP queries process items in scan ranges as they are mod-
ified, they read more data from memory and less from disk,
and thus have higher throughput than their OLAP counter-
parts. The trade-off is that an OLCP query can read items
belonging to its scan ranges only once. In addition, scanned
items are not guaranteed to be read in order.

In addition, OLCP queries can declare point ranges, ranges
of items on which they want to perform point queries. Items
in point ranges are versioned, as in the conventional SI imple-
mentation. The combination of scan ranges and point ranges
allows OLAP queries to be expressed efficiently in OLCP.
Moreover, a very large subset can be expressed in a man-
ner so that they derive great benefit from OLCP, including
reduced space amplification, no GC-induced latency spikes,
and higher throughput.

We implement OLCP queries in Kvell+, an extension
of KVell [45]. In KVell+, scan and point ranges are de-
clared through an interface inspired by the MapReduce
paradigm [19]. OLCP queries declare a map function that
is called exactly once on all items that belong to scan ranges.
The items that map reads correspond to the items that the
query would have read under conventional SI (i.e., belonging
to the snapshot at the start of the query). The map function can
also perform point queries on items in point ranges. In the ab-
sence of updates by OLTP transactions, map is called on items
in scan ranges in lexicographic order, but when an item is
updated, we propagate its old value to OLCP queries. The old
value is processed by the OLCP queries (potentially breaking
the lexicographic order of the scans) and then deleted from
the store. Space freed by the deletion can be reused to store
new items.

OLCP can easily be integrated in existing applications,
either manually, using an SQL-to-MapReduce tool [44,71], or
automatically at the SQL query-plan level. OLAP and OLCP
queries can run simultaneously on the same data. A developer

may therefore choose to port existing OLAP queries that
create substantial space amplification to OLCP, while leaving
less problematic OLAP queries to run under SI.

We make the following contributions:

• The OLCP query model.
• A detailed explanation and examples showing how to

port OLAP queries (e.g., MapReduce analytics, TPC-H
queries) to OLCP.

• The implementation of OLCP in KVell+.
• A comparison of OLCP to SI and Steam [8] in terms of

space amplification, tail latency and throughput.

Roadmap. Section 2 presents the key OLCP principles.
Section 3 explains in detail how data analytics workloads can
greatly benefit from OLCP. Section 4 discusses the implemen-
tation. Section 5 shows our experimental evaluation results.
Section 6 presents the related work, and Section 7 concludes.

2 OLCP Overview

In this section, we explain OLCP’s design principles, advan-
tages, and limitations. We explain how to perform scans con-
currently with propagation events.

2.1 OLCP in a nutshell

The main goal of OLCP is to reduce the time that old item
versions spend in the store. OLCP allows the store to reduce
the lifespan of old versions down to the duration of OLTP
commits. In a conventional SI implementation, OLAP queries
force the store to keep old versions for the entire duration of
the queries. In contrast, OLCP queries process old versions
as they are generated. Once the old version of an item has
been processed, it is deleted from the store and its space can
be reused to store new items.

OLCP advantages: OLCP provides the same guarantees as
SI, with virtually no space amplification. Furthermore, be-
cause OLCP queries process items as they are being updated,
OLCP queries avoid reads to disk, improving the throughput
of analytical queries.

OLCP requirements: To completely avoid space amplifica-
tion under OLCP, queries need to support scanning out-of-
order and to access each item in the scan ranges only once.
These requirements can be relaxed at the expense of increased
space amplification, but OLCP’s space amplification is always
lower than that of conventional SI implementations. OLCP
queries are widely applicable and constitute an efficient re-
placement of OLAP queries, as we demonstrate in Section 3.
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2.2 OLCP interface

MapReduce interface: The interface of OLCP is inspired by
the event-driven MapReduce paradigm [19]. An OLCP query
is created and executed by a single function call:

t = olcp_query(map, payload, [scan_range1,
scan_range2, ...], [point_range1, ...])

The olcp_query call takes the following parameters:
• A map function callback. OLCP guarantees that the map

callback is called exactly once on all items within the
scan ranges. The exactly-once guarantee is essential to
limit overheads. Without it, OLCP would have to main-
tain a list of items they have already seen, which could
have prohibitive CPU and memory overhead for large
scans. The item versions provided to the map callback
correspond to those that the query would have scanned
under SI (i.e., those belonging to the snapshot at the time
the query is launched).

• Payload for the map callback. An arbitrary pointer to
application specific data. Usually used to retrieve or store
intermediary computation results.

• Scan ranges. This range can be the entire store. If ranges
overlap, the map function is called only once per item
belonging to the ranges. Items belonging to the ranges
are not versioned and induce no space amplification. In
return, items belonging to the ranges are not guaranteed
to be scanned in order (old versions might be scanned
before their turn to avoid keeping them in snapshots).

• Point ranges. OLCP queries may also declare ranges of
items that they might access using point queries. Items
within those ranges are versioned until the query is com-
mitted and may induce space amplification. Items in
the point ranges can be accessed multiple times, and
scans on these ranges are guaranteed to happen in lexi-
cographic order. Many analytical processing queries can
be expressed without using point queries, as we show in
Section 3.

Items outside of the scan and point ranges are neither ver-
sioned nor propagated. The olcp_query function blocks until
the scans are complete. After calling olcp_query, a devel-
oper might choose to do further processing on the payload. In
the remainder of this paper, we do this processing in a reduce
function.

2.3 Scans, propagation and space reclamation
Algorithm 1 presents pseudo code for scanning, updating and
propagating updates in a store that supports OLCP queries.
For simplicity, we present a sequential implementation that
does not support point ranges. A full implementation would
have to handle possible races between scans and propagations
and delay the deletion of items belonging to point ranges. We

also assume the use of timestamps to define snapshots, as is
common in SI implementations.

Algorithm 1 Pseudo-code of a sequential implementation of
updates, propagations, and scans.

1 /*OLCP commit: create a new version and add the
2 old version in GC queue */
3 timestamp t_commit = now();
4 active_commit_timestamps.add(t_commit);
5 foreach(item i in updated_items) {
6 kv.write(i, t_commit);
7 gc.add(get_oldest(i), t_commit);
8 }
9 active_commit_timestamps.delete(t_commit);

11 /* GC */
12 timestamp t_min=min(active_commit_timestamps);
13 foreach(item i in gc) {
14 // Only delete items from
15 // fully committed transactions
16 if(i.t_commit >= t_min)
17 break;
18 foreach(olcp o in running_olcp) {
19 if(o.in_snapshot(i)
20 && i.key > o.last_scanned)
21 o.propagation_queue.add(i);
22 }
23 delete(i); // remove from the store
24 }

26 /* OLCP query thread */
27 item last_scanned = get_first(scan_range);
28 do {
29 if(last_scanned != EOF) {
30 map(last_scanned , payload);
31 get_next(&last_scanned);
32 }
33
34 while(item i = propagation_queue.pop())
35 if(i.key > last_scanned)
36 map(i, payload);
37 } while(last_scanned != EOF);

Scans: OLCP queries request items from the store in lex-
icographic order using the get_next function (line 31 of
Algorithm 1). When there are no concurrent OLTP trans-
actions, the scan happens as it would in a conventional SI
implementation: items are read in lexicographic order, and
the map function is called on each of them. In OLCP, however,
this order can be "interrupted" by propagations resulting from
updates by OLTP transactions to items in the scan ranges.
When receiving a propagated item, the OLCP query checks
that it has not yet scanned the item and, if so, calls map on it
(lines 35-36). Afterwards, the OLCP query resumes the scan
from the last scanned item using the get_next function.
Propagation and space reclamation: The key to avoiding
space amplification with OLCP queries is to delete old data as
soon as possible. However, an old version of an item cannot
be deleted as soon as a new version is created. When an OLTP
transaction updates multiple items, old items can be deleted
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only after all new items are persisted (to allow recovery in case
of a mid-commit crash). Hence, the deletions must happen
after a transaction has committed. Consequently, the store
must maintain multiple versions of committed items for the
duration of an OLTP commit.

Committing an OLTP transaction then consists of updating
the modified items in the store and enqueueing the oldest
version of those items on the GC queue (lines 6-7 of Algo-
rithm 1). After the commit is completed, the GC propagates
and deletes items. An item is propagated to an OLCP query
only if it belongs to the query’s snapshot and if it has not
yet been scanned. We rely on the lexicographic order of the
scan to efficiently ensure this latter property (line 20). In our
pseudo code, we choose to enqueue propagated elements in
a per-OLCP query queue (line 21), but an implementation
might choose a different communication mechanism between
the store and running OLCP queries.

Space reclamation efficiency: In practice, the number of ver-
sioned items in OLCP is small. When an OLCP query does
not use point ranges, a rough estimate of the number of ver-
sioned items in OLCP is the number of updates per transaction
times the number of concurrent commits. In a conventional
implementation of SI, this number is much higher, since the
system needs to keep old versions of all items updated during
the lifetime of OLAP queries.

Old versions are also only kept for a much shorter time in
OLCP. Figure 1 summarizes the lifespan of objects, executing
an OLTP transaction concurrently with an (a) OLAP or (b)
OLCP query. With OLAP queries, the store has to keep all
versions of items for the duration of long queries (minutes),
while OLCP allows the store to remove old versions after at
most a few commits (microseconds).

OLCP queries can run alongside OLAP queries. In that case
the deletion and propagation of items is postponed to ensure
the correct execution of OLAP queries: items are deleted and
propagated when they no longer belong to an OLAP snapshot.
OLAP queries may thus reduce the effectiveness of using
OLCP.

2.4 Informal correctness argument

Correctness requires that, despite concurrent OLTP transac-
tions, OLCP queries read the same items from their scan
ranges as they would have read under a conventional imple-
mentation of SI, and that these items are processed exactly
once. The correctness relies on the following observations.

An item is propagated at most once, and the propa-
gated item belongs to the query’s snapshot. If an item is
not updated, then no propagation occurs. If an item is updated
once, its old version is propagated only if it belongs to the
snapshot (line 19 in Algorithm 1). If an item is updated multi-
ple times, all old versions are put in the GC queue, but only
one of them belongs to the snapshot and is propagated.

An item is processed exactly once. If an item is not prop-
agated, it is read as part of the scan. The scan does not "skip"
items: after scanning an item, a query always requests the
next item from the store regardless of concurrent propaga-
tions. Thus, a query always scans its entire scan_ranges. Only
items that have not yet been scanned are propagated (lines 20
and 35 in Algorithm 1).

From the previous observations, we conclude that an OLCP
query processes all the items belonging to its scan ranges ex-
actly once, and that the processed items belong to its snapshot.
As a result, a developer need not consider the distinction be-
tween scanned and propagated items.

2.5 Example

Figure 2 illustrates with an example some of the complex
interleavings between OLTP and OLCP. An OLCP query
T scans a range of 5 items. T has snapshot timestamp 0.
The initial versions of all five items have timestamp 0, and
therefore belong to T’s snapshot. Despite various updates by
OLTP transactions, T correctly calls map exactly once on all
five initial item versions.

Of particular interest in this execution is item d that is
updated twice, at t2 and t4, but only d0 is propagated. De-
spite being interrupted by the propagation of d0, T correctly

k1 GC deletes k0

Ti
m

e

k[0,1] 

KV
Versions of k

OLAP
Query

OLTP
Transaction

k0 

update(k)
Commit

k1 

Ti
m

e

k[0,1] 

KV
Versions of k

OLCP
Query

OLTP
Transaction

k0 

update(k)
Commit

   propagates k0GC deletes and ...
map(k0) 

(a) (b)

Figure 1: Lifespan of items under OLAP (a) and OLCP (b). OLAP forces an old item version to be kept for the entire duration of
the OLAP query, while OLCP needs to keep it only for the duration of the commit of the OLTP transaction that produces the new
version.
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resumes its scan from b0 at time t3. Finally, at t5, a is not
propagated because the query already scanned b, and at t6, c
is not propagated because it has just been scanned.
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[-∞...+∞]
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map(b0)
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update(d)
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propagate(a)?
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Figure 2: Possible interleavings between a scan and various
propagations. Arrows indicate that an item is propagated to
the OLCP query, rounded segments indicate that an item is
not. At the end, the map function has been called exactly once
on all items initially contained in the scan range.

3 Using OLCP in practice

Below, we explain how OLCP can be widely used in practice
to eliminate space amplification. Analytical processing is
typically done in the following three ways:

1. Multidimensional OLAP (MOLAP) analytics,

2. Relational OLAP (ROLAP) analytics, and

3. MapReduce-style analytics.

3.1 MOLAP analytics
MOLAP databases provide a traditional platform for data
analytics which is widely used in Business Intelligence ap-
plications (e.g., IBM Cognos [14], Oracle Essbase [56], and
iccube [35]). The data is first extracted from a relational
database, transformed into a specialized multidimensional
cube format, and then transferred into the MOLAP database.
OLCP can be used during the extraction phase to get a snap-
shot of the database with little space overhead. Using a con-
ventional implementation of SI, updates performed during
the extraction create space amplification, and the relational
database may stall once the extraction is complete because
of GC. To avoid these issues, database administrators usu-
ally run the extraction during the night when the load is low.
OLCP allows extractions to occur at any time without space
overhead or database stalls.

3.2 ROLAP analytics
ROLAP tools query the main relational database directly
through a language like SQL. In this paper we use SQL syntax
for simplicity, but other languages with similar constructs can
be used as well. Analytical queries consist of a combination
of three types of building blocks.

1. Decomposable aggregate functions (e.g., SUM, COUNT).

2. Aggregate functions (e.g., GROUP BY, CUBE, ROLLUP).

3. Joins.

We show that for these three types of operations OLCP re-
duces space amplification. Most ROLAP operations have no
space overhead under OLCP.

Decomposable aggregate functions: Decomposable aggre-
gate functions are the least complex of the three query build-
ing blocks. They consist of commutative operations that only
require one pass over the data (e.g., SUM, MIN, MAX, AVG).

Nutanix uses decomposable aggregate functions to com-
pute simple statistics on a store that keeps track of disk blocks
allocated to virtual machines in a datacenter. For instance,
Algorithm 2 counts the number of disk blocks that have not
been accessed for the last two hours. The query is used to es-
timate the percentage of allocated storage that is infrequently
accessed. Algorithm 3 presents the equivalent using OLCP.
For simplicity, we present a sequential version of the algo-
rithm. In practice the map function can be called concurrently
by multiple threads, and we use per thread payloads that are
merged at the end of the scan.

The query is executed with low priority in order to avoid
interfering with other workloads. This query used to be exe-
cuted under read committed to avoid the space amplification
overhead of SI (under read-committed, old data is removed
from the store and the scan reads the most recent version
of committed items). Unfortunately, under read committed,
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this query overestimates the number of accessed blocks be-
cause, when a block is accessed after the start of the query,
it is impossible to know if the block was idle in the past two
hours prior to the query, since this information is lost after
the update. Executing the query with OLCP, and thus with SI
guarantees, produces a precise estimate of disk usage.

Algorithm 2 RocksDB pseudocode for counting the number
of disk blocks in a datacenter that have not been used in the
last two hours.

1 size_t count = 0, target_time = now() - 2;
2 Iterator *it = ...;
3 for(it->SeekToFirst();it->Valid();it->Next()){
4 block_t *t = it->value;
5 if(t->last_access < target_time)
6 count++;
7 }

Algorithm 3 OLCP pseudocode for counting the number of
disk blocks in a datacenter that have not been used in the last
two hours.

1 map(item *i, payload *p) {
2 if(i->last_access < p->target_time)
3 p->count++;
4 }
5 payload p={.target_time = now()-2, .count=0};
6 t = olcp_query(map, &p, [...], NULL);
7 commit(t);

Aggregate functions: Like decomposable aggregate func-
tions, these queries do not require items to be accessed in
order, and the data is accessed only once. The difference is
that these queries group items into categories and compute
statistics for each group (e.g., using the GROUP BY clause and
its extensions like CUBE and ROLLUP).

We illustrate how OLCP reduces space overhead with the
first query from the TPC-H suite [74] (Algorithm 4). Algo-
rithm 5 presents its equivalent using OLCP (for simplicity we
use the name of the tables to represent the ranges of keys).
The query provides a summary pricing report for all items
shipped before a given date, aggregated by a flag and a sta-
tus. This query is more complex than the previous example
because it requires grouping analyzed items in buckets and re-
turning them in order. Since the number of flags and statuses
is small, the number of buckets is small, and the summaries
can be computed in memory. If the number of summaries
to be computed was large, the map function could use point
queries to load and store temporary summary results from
disk. After the scan completes, the summaries are sorted in a
reduce function.
Joins: ROLAP joins are typically hash joins or nested loop
joins [30]. An analysis of the query plans of Microsoft
SQL [12] for the TPC-H queries shows that approximately
70% of the joins are hash joins, and the remaining 30% are
nested loop joins.

Algorithm 4 First query of TPC-H.

1 select l_returnflag ,
2 l_linestatus ,
3 sum(l_quantity) as sum_qty , [...]
4 from lineitem
5 where l_shipdate <= ’1998-09-04’
6 group by l_returnflag , l_linestatus
7 order by l_returnflag , l_linestatus;

Algorithm 5 First query of TPC-H using OLCP.

1 map(item *i, payload *p) {
2 if(i->l_shipdate < "1998-09-04")
3 return;
4 string k=i->l_returnflag+"|"+i->l_linestatus;
5 p->sum_qty[k] += i->l_quantity;
6 }
7
8 reduce(payload *p) {
9 sort(p->sum_qty); // sort p by key

10 return p->sum_qty;
11 }
12
13 payload p = { ... };
14 t = olcp_query(map, &p, [lineitems], NULL);
15 commit(t);
16 reduce(&p);

Hash joins are usually performed in two steps. First, the
join scans the first table, and builds a hash table (build phase).
Then, the join scans the second table and probes the hash
table for matches (probing phase). Building the hash table
only uses one-time commutative reads. By putting the first
table in the scan ranges, OLCP avoids any space amplification
during the build phase. The probing phase then occurs in the
reduce function, with the second table in the point ranges. In
general, hash joins can easily be ported to OLCP by placing
the more frequently updated table in the scan ranges and the
less frequently accessed table in the point ranges.

Algorithm 6 presents the fourth query of TPC-H. The query
counts the number of orders ordered in a given quarter of a
given year in which at least one lineitem (item of an order)
is received by the customer later than its committed date.
In Microsoft SQL, the build phase is performed on the "or-
ders" table and the probing phase on the "lineitem" table.
Algorithm 7 presents a port of this query plan to OLCP. The
"orders" table is placed in the scan ranges, and the "lineitem"
table in the point ranges. The hash table is built in the map
function, and the scan of lineitem and the probing is done
in the reduce function. While the query is running, updates
on the "orders" table, or any table that is not accessed by the
query, do not induce any space amplification. Items in the
"lineitem" table are versioned. If "lineitem" were known to be
frequently updated, the query plan could easily be modified
to build the hash table using "lineitems" and scanning the
"orders" table next.
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Algorithm 6 Query 4 of TPC-H in SQL.

1 select o_orderpriority , count(*) as order_cnt
2 from orders
3 where
4 o_orderdate >= date ’1995-01-01’
5 and o_orderdate < date ’1995-04-01’
6 and exists (
7 select *
8 from lineitem
9 where l_orderkey = o_orderkey

10 and l_commitdate < l_receiptdate
11 )
12 group by o_orderpriority
13 order by o_orderpriority;

Algorithm 7 Pseudo code of Query 4 of TPC-H using OLCP.

1 map(item *i, payload *p) {
2 if(i->o_orderdate >= ’1995-01-01’
3 && i->o_orderdate < ’1995-04-01’)
4 p->hash[i->o_orderkey] = ...;
5 }
6 reduce(payload *p) {
7 // Scan versioned lineitems
8 hash_t res = {};
9 foreach(lineitem_t l in lineitems) {

10 if(p->hash[l->l_orderkey]
11 && l->l_commitdate < l->l_receiptdate)
12 res[l->o_orderdate].order_cnt++;
13 }
14 return sort(res);
15 }
16 payload p = { ... };
17 t=olcp_query(map,&p,[order],[lineitem]);
18 reduce(&p);
19 commit(t);

Nested loop joins iterate over two tables in order. Because
of the order constraint, nested loops do not naturally fit the
OLCP model. However, it is often possible to adapt nested
loops to OLCP with minor changes to the query plan. Query
17 of the TPC-H benchmark (Algorithm 8) is an example of a
complex join query that is executed using nested loops in the
Microsoft SQL query plans for TPC-H. This query gets items
of a given brand that sold five times less than the same item
from other brands. It then computes the total revenue loss that
would have occurred if these items had not been sold. The
query is divided in two sections: tinner computes the average
number of sales per "partkey" item, regardless of the brand,
and touter gets the sales information for a given brand.

The number of "partkey" items is small (10K) compared to
the number of order items (90M), and orders are aggregated
by "partkey". Algorithm 9 presents pseudo code of a possible
implementation. Lineitem (list of ordered items) is scanned,
and the map function simultaneously computes information
for the tinner and touter queries. The map function performs
one point query to the "partkey" table to get the brand of the
scanned item. A reduce function then aggregates per-partkey

information and outputs the total price of the items that match
the criteria. The memory required to execute this query is low
(hashtable with 10K entries). The "partkey" table is the only
table that is accessed using a point query. Since "partkey"
is read-mostly, this query has negligible space amplification
when executed with OLCP.

Algorithm 8 Query 17 of TPC-H.

1 select sum(l_extprice) / 7.0 as avg_yearly
2 from
3 (
4 select l_partkey , l_quantity , l_extprice
5 from lineitem , part
6 where p_partkey = l_partkey
7 and p_brand=’Brand#34’
8 and p_container=’MED PACK’
9 ) touter ,

10 (
11 select l_partkey as lp,
12 0.2*avg(l_quantity) as lq
13 from lineitem
14 group by l_partkey
15 ) tinner
16 where touter.l_partkey = tinner.lp
17 and touter.l_quantity < tinner.lq;

Algorithm 9 Pseudo code of Query 17 using OLCP.

1 map(item *i, payload *p) {
2 string k = i->l_partkey;
3
4 // Tinner
5 p->tinner[k].l_quantity_sum += i->l_quantity;
6 p->tinner[k].l_quantity_count++;
7
8 // Touter
9 part_t *part = kv_get("part"+k); // Seek

10 if(part ->p_brand == "Brand#34"
11 && part ->p_container = "MED PACK") {
12 p->touter[k] += {
13 l_quantity = i->l_quantity ,
14 l_extprice = i->l_extprice
15 };
16 }
17 }
18 reduce(payload *p) {
19 double l_extprice_sum = 0;
20 foreach(string k in p->touter) {
21 double lq = 0.2*p->tinner[k].l_quantity_sum/
22 p->tinner[k].l_quantity_count;
23 foreach(int i in p->touter[k]) {
24 if(p->touter[k][i].l_quantity < lq)
25 l_extprice_sum+=p->touter[k].l_extprice;
26 }
27 }
28 return l_extprice_sum / 7.0;
29 }
30 payload p = { ... };
31 t=olcp_query(map,&p,[lineitems],[parts]);
32 commit(t);
33 reduce(&p);
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3.3 MapReduce analytics
MapReduce provides a highly parallelizable and scalable
framework. This approach is popular for computing simple
analytics on vast amounts of data, employed for instance to
obtain cluster management statistics [9], to compute popular
search-word and query trends [20], and to analyze time-series
workloads in IoT, recommender systems and finance [1]. Es-
sentially, the mappers are doing a background scan on the
store (e.g., Cassandra, RocksDB), and push the items of in-
terest into a MapReduce system (e.g., Hadoop, CouchDB,
Phoenix [52]). These scans take on the order of a few hours
and happen concurrently with the foreground workloads,
which can be write-heavy [3]. Using the conventional im-
plementation of SI causes prohibitive space amplification
because incoming updates need to be tracked over a long time
span. To avoid the space explosion, these statistics are usually
collected in read-committed mode and thus have lower accu-
racy. In contrast, OLCP supports consistent one-pass scans,
with no space overhead.

4 Implementation

In this section, we describe our implementation of SI and
OLCP. The source code of our implementation is available at
https://github.com/BLepers/KVell. Our implementation adds
approximately 4,000 lines of code on top of KVell.

4.1 KVell
As noted in previous work [45], when running on modern
fast drives, existing KVs that support SI, such as WiredTiger
and RocksDB, run into a CPU bottleneck and are unable to
write data at disk speed. As a result they are not suitable for
studying space amplification on such drives. We therefore
extend KVell [45], a recent KV designed for NVMe SSDs.

KVell has two main components: an ordered index residing
in RAM, and an unsorted data structure on disk similar to a
slab memory allocator, which groups items with similar sizes
in the same file. Reads are either served from a cache (0 I/O),
or from disk (1 I/O). Updates fetch a 4KB block from disk,
modify it in memory, and then write the dirty block back to
disk (1 or 2 I/Os, depending on whether the block was cached
or not). The index and the disk data structure are partitioned
among multiple worker threads, with each worker handling a
range of the key space.

Ideally, analytical queries should not slow down OLTP
transactions. Even on modern drives, a fine balance has to be
maintained between sending too few simultaneous requests
(resulting in sub-optimal bandwidth) and sending too many
(resulting in high latency). In its original implementation,
KVell scans ranges by reading all items of the range in par-
allel. We change the implementation of scans to ensure that
scans do not overwhelm the disk with with requests. Scans

request batches of items from the store, with the size of a
batch adjusted depending on the current disk utilization. In
practice, we aim at having between 32-64 pending disk I/O
requests at all time. When reading the next batch, we adjust
the batch size to keep the number of disk I/Os within this
bound.

In its original implementation, KVell did not support trans-
actions. We first describe our conventional implementation of
SI in KVell+ and the extension to reduce space amplification
proposed in Steam [8]. We then describe our implementation
of OLCP in KVell+.

4.2 Conventional SI

Our implementation of SI is inspired by those of RocksDB
and WiredTiger, two KVs that are widely used in industry.

Timestamps: We add a global logical timestamp in KVell.
The global timestamp is incremented every time it is read.
When a transaction commits, it is given a commit timestamp
tcommit equal to the current global timestamp. When a trans-
action starts, it is given a snapshot timestamp, tsnapshot . The
snapshot timestamp is chosen so that a transaction can only
read data that has already been committed, using the following
formula: tsnapshot = minactive(tcommit)−1. If no transaction is
committing, the tsnapshot is set to the current global timestamp.

In the original version of KVell, persisted items are already
timestamped; we use these timestamps in the read and writing
path: a transaction can only read or write an item with a
timestamp less than or equal to its tsnapshot .

Writing data: To perform a write on a key, a transaction
locks the index entry for that key in the main memory index.
If the key is not present in the store, a new locked index entry
is created. To prevent write-write conflicts, a transaction that
fails to lock an item aborts. It also removes all previously
acquired locks and any newly created index entries. Before
commit, only the in-memory index is updated. The new item
versions are kept in a private in-memory buffer (similarly to
RocksDB).

Reading data: When reading an item, the worker first checks
if the item is in its private buffer. If not, the item is read from
the main store. If the memory index contains multiple versions
of an item, the transaction reads the most recent version that
belongs to its snapshot.

Committing updated data: To commit, a transaction per-
sists an tuple "(tcommit ,N)", where N is the number of updated
items. This tuple is used in case of a crash to avoid recovering
items from partially committed transactions. The transaction
then writes the new items to disk, timestamped with tcommit .
Once all new items have been persisted, the transaction deletes
the "(tcommit ,N)" tuple. During a commit, the transaction up-
dates the index non-atomically: entries for the new versions
are added to the index, and index entries are unlocked as they
are updated. This process is safe because no other transac-
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tion can read or write any of the updates before the commit
ends (by the definition of tsnapshot), so transactions cannot
access partially committed data. Hence, transactions appear
"atomically" in the system.

KVell did not use a commit log in its original implemen-
tation, and we do not add one to support transactions. This
design choice is essential for performance on modern drives.
Historically, commit logs were cheap to maintain compared
to the cost of updating the store – a fast sequential append
vs. a slow random update to a complex data structure. NVMe
drives can perform random I/Os as fast as sequential I/Os.
In KVell, persisting an item is performed in as low as 1 I/O.
Adding a commit log would essentially double the number
of I/Os required to perform an update and halve the speed of
the store. We acknowledge the usefulness of logs (e.g., for ac-
countability, audit, etc.), and developers might choose to log
store accesses via a fast logging system. Our implementation
has the advantage of placing logs outside of the critical path.

Garbage collection: After commit, the location of the old ver-
sions of updated items are placed in a per-worker cleaning list.
Workers periodically check the smallest active tsnapshot . When
this value changes, they scan their cleaning list and delete
obsolete items. Workers stop cleaning as soon as they find an
item with a timestamp higher than or equal to min(tsnapshot)
(similarly to WiredTiger).

4.3 Steam

Steam [8] uses a more aggressive form of garbage collection
that aims to reduce the number of old versions. When an item
is updated, Steam scans that item’s versions, and deletes the
ones that do not belong to any active transaction. Steam was
originally implemented in an in-memory database and does
not handle recovery in case of a crash. In our implementation,
we delay the deletion of old versions to after the commit to
avoid deleting versions that might be needed during recovery.
Otherwise, our implementation is similar to the original one.

4.4 OLCP in KVell+

OLCP further modifies garbage collection and implements
propagation, We also describe a key optimization to avoid
extra I/Os as a result of propagation.

Garbage collection: The main difference between OLCP
and OLAP is the time during which old versions need to
be kept in the store. Workers have two cleaning lists: one
for items belonging to the scan ranges, and one for items
belonging to the point ranges. GC for point ranges happens as
it would under SI. GC for scan ranges happens as described
in Algorithm 1.

Propagations: Key to the proper functioning of OLCP is im-
plementing an efficient propagation mechanism. KVell uses
an asynchronous interface: threads send requests to the datas-

tore, and the datastore enqueues answers in a per-transaction
queue. We build on this mechanism for propagations. Propa-
gating an item I to a OLCP query T consists of enqueuing I in
T’s queue (as if T had requested to read the item). At the data
store level, data is sharded between single threaded workers,
so propagations do not introduce any data races. For instance,
if an item is propagated "while" being requested by a scan,
the scan request and the propagation request are serialized at
the worker level and only one of the requests causes the item
to be enqueued in the queue. If multiple OLCP queries are
running, an item may be enqueued in multiple queues.

Concurrency: In KVell, items are sharded between multiple
workers. To speed up queries, we start the scan on all workers.
All workers progress in their scan concurrently and may prop-
agate updates concurrently. No synchronization is required
between workers because workers work on distinct items. In
practice, the scan happens as if multiple single threaded scans
were launched on disjoint sets of items.

Avoid reading old versions from disk: In Section 2, old
item versions are propagated immediately after committing
the new versions. This approach is sub-optimal: updates are
not performed in place, and therefore propagating old ver-
sions at this time requires reading them from disk, adding an
extra read to an update. To eliminate this extra read, we delay
propagations and deletions. Instead of propagating and delet-
ing the old versions in the GC (lines 18- 23 in Algorithm 1),
we keep the entries for them in the index, and we put their
location in a list of reusable spots. When such a spot is later
reused, the disk block containing that spot is read, and we
take advantage of that to propagate the old version without
an extra disk read.

This optimization raises the possibility that versions of
the same item might not be overwritten in the order they are
created. For instance, if versions of the same data item are of
different size, they are allocated in different slabs, and a more
recent version may be overwritten before an older version.

Figure 3 presents a case where an item has three versions
(k0, k1 and k2). k2 is the current version. k0 and k1 are old
versions (t0< t1< t2). k0 and k1 are in the free list of reusable
spots and have not yet been overwritten. At the beginning of
the execution, the in-memory index still contains all three
versions. Indeed, k0 and k1 have not been overwritten, and so
have not yet been propagated. In Figure 3 an OLCP query
T executes with a snapshot timestamp equal to t1. Assume
that the slot containing k1 is reused before the one containing
k0, and assume furthermore that k has not been scanned. k1 is
propagated and deleted, since it has not been scanned and it
is part of T ’s snapshot.

However, k1’s index entry must not be immediately re-
moved. In the absence of any record of k1 in the index, if k0’s
slot is overwritten before the scan reaches k, as depicted in
Figure 3, it would be propagated to T . Similarly, if T ’s scan
reaches k before k0 is overwritten, it would be read by the
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scan. In both cases, T would erroneously read k0, a version
that does not belong to its snapshot. To avoid these situa-
tions, we keep k1 in the index, but flag it as deleted. It then
becomes clear that k0 does not belong to T ’s snapshot, and
it is neither propagated nor read by the scan. Once k0 has
been overwritten, it is removed from the index because it is
the oldest version. k1 is then removed from the index as well
because it is now the oldest version and flagged as deleted.

Ti
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k[0,(1),2] 

k[0,1,2] 

update(...)
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Commit map(k1) 

get_next(...)
skips k because
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skipped because
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Versions of k

OLCP Query
(Snapshot = 1)

OLTP
Transactions

Figure 3: Under optimized OLCP old versions might not be
overwritten in version order. In that case, the query must skip
k0, even though it would appear to belong to its snapshot
(t0 < t1).

4.5 OLCP in other stores

In the previous section, we focused on the implementa-
tion of OLCP in KVell, but the OLCP paradigm is general
and applicable to other datastores and other storage devices.
For instance, OLCP can be implemented in RocksDB and
WiredTiger and on slower SSDs. In RocksDB, old items
can be propagated during compactions: when merging two
SSTables, old items can be propagated and discarded with
no extra I/Os. Similarly, WiredTiger can propagate old items
during checkpointing. OLCP can also be implemented in in-
memory databases like Hyper [39]: Hyper maintains free lists
of reusable spots, so it can propagate old items when reusing
their spot (just as in our KVell+ implementation).

5 Evaluation

5.1 Goals

We evaluate OLCP queries on a variety of synthetic and pro-
duction workloads. We seek to answer the following ques-
tions:

• Resource utilization: What is the space amplification
of OLCP compared with existing SI implementations?
What is the impact of using OLCP queries on throughput
and tail latency?

• Scalability: How does OLCP scale with the number of
concurrent scans and with the size of the store?

• Performance: How does OLCP perform on TPC and
production workloads?

5.2 Experimental settings
Hardware: We use the following hardware configurations:

Config-AWS. An AWS i3.metal instance, with 36 CPUs
(72 cores) running at 2.3GHz, 488GB of RAM, and 8 NVMe
SSD drives of 1.9TB each (brand unknown, 2016 technology).
The server can sustain a total of 3M read IOPS and 1.4M
write IOPS (on read/write workloads, the maximum number
of IOPS varies between 1.4 and 3M). The store is configured
to cache 30GB of data.

Config-NVMe. A 4-core 4.2GHz Intel i7, 48GB of RAM,
and a 480GB Intel Optane 905P (2018). The server can sustain
500K read or write IOPS. The store is configured to cache
20GB of data.
Workloads: We use the following workloads:

YCSB-T: YCSB-Transactional [21] is inspired by the Ya-
hoo! Cloud Serving Benchmark [16] but groups updates in
transactions. The average KV item size is 1024B, and the
total data set size is approximately 100GB (100M keys) for
the small test and 5TB (5B keys) for the large test. Similarly
to previous work [77], we perform 16 updates per transaction
and items are accessed uniformly. We use this workload to
test the limit of SI and OLCP under a write-heavy workload
(100% updates).

TPC-CH: The TPC-CH workload [15] mixes the widely
popular TPC-C and TPC-H workloads. Currently, TPC-C is
the industry standard to simulate OLTP systems [72] and TPC-
H is the industry standard to simulate OLAP systems [74].
The TPC-CH workload harmonizes the representation of the
data used by TPC-C and TPC-H so that TPC-C and TPC-H
queries can run on the same dataset. The TPC-CH bench-
marks [15] remove 3 updates that cause most TPC-C queries
to fail due to write-write conflicts. Without this modification,
TPC-C transactions abort 85% of the time. The abort rate
goes down to less than 1% of the time with the modification.
Our implementation is similar to the one for Redis [73].

In order to reach a significant database size, we configure
TPC-CH to run with 300 warehouses. In that configuration,
the store contains 140M items in total, 90M of which represent
orders. The rest of the items represent customer data, stock,
etc.

Production workloads from Nutanix: The production
workloads are two write-intensive workloads, with a profile
of 57:41:2 write:read:scan ratio. The KV item sizes range
between 250B and 1KB, with a median of 400B. The total
dataset size for the production workload is 256GB. The dif-
ference between the two workloads is the data skew: The
key distribution in Production Workload 1 is close to uni-
form, while Production Workload 2 is more skewed. OLTP
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transactions perform on average 10 requests per transaction.

Existing SI implementations: We compare OLCP to the
conventional SI implementations and the Steam SI implemen-
tation presented in Section 4. In the remainder of this section,
we refer to these implementations as "SI" and "Steam", re-
spectively.

5.3 YCSB-T

In this experiment, we run scans of the store concurrently
with YCSB-T transactions. The system is disk-bound. We run
the experiment with the 100GB dataset on Config-NVMe.

5.3.1 Space amplification

Figure 4 presents the evolution of the number of old versions
in time for a Zipfian and a uniform distribution of updates,
varying the number of concurrent scans.

Figure 4(a) - 1 scan - Zipfian distribution: Unsurpris-
ingly, the number of old versions increases linearly with time
with the standard implementation of SI and, after 24 minutes
of execution, the store has accumulated 350 million old ver-
sions and runs out of space. Steams keeps at most one version
per active snapshot; since we only execute one scan, Steam
only keeps at most one old version per item. Running a Zip-
fian workload concurrently with a single scan is the best case
scenario for Steam because most updates are concentrated on
a few items. At the end of the scan, Steam has accumulated
50M old versions. OLCP propagates old versions to the scan,
and the number of old versions using OLCP is low and stable
throughout the run (a maximum of 1000 old versions).

Figure 4(b) - 1 scan - Uniform distribution: Similarly to
the Zipfian distribution, the number of old versions grows
linearly with the standard implementation of SI. Because
updates are distributed over more items, Steam keeps more
versions and eventually the store doubles in size. The number
of old versions using OLCP is again negligible throughout
the run (a maximum of 1000 old versions).

Figure 4(c) - 3 scans - Uniform distribution: In this ex-
periment, we launch a second scan after 500s of execution,
and a third scan after 1,000s of execution. The three scans
run concurrently. In this configuration, Steam has to keep
up to three versions per item. At the end of the execution
of the first scan (not shown in the picture), the store has ac-
cumulated 250M old versions (store tripled in size). OLCP
propagates old versions to the scans and has close to zero
space amplification (a maximum of 1000 old versions).

5.3.2 Throuphput

In this section, we study the performance of the scans and the
updates when executed with the various SI implementations.
We run the uniform workload with a single scan presented
in the previous section. Results are similar with the Zipfian
distribution and with more scans. Figure 5(a) shows the scan
throughput, and Figure 5(b) shows the update throughput.

Figure 5(a): The scan throughput is the same for the stan-
dard SI implementation and Steam. Surprisingly, scanning
data is much faster using OLCP. The OLCP scan finishes after
691s. With standard SI, the scan aborts after 1460s because
the store runs out of disk space (350GB space amplification).
With Steam, the scan takes 1870s to complete, 2.7x as long
as OLCP. OLCP queries process items just before they are
overwritten, and thus when they are in memory. In contrast,
with SI and Steam, queries have to fetch most of their data
from disk. This advantage is especially visible at the begin-
ning of the scan. As the scan progresses, the advantage of
OLCP over SI decreases, because, statistically, as the scan
progresses, most of the overwritten items have already been
scanned.

Figure 5(b): OLCP scans also interfere slightly less with
updates because updates make better use of the caches with
OLCP. Updates happen as follows: read a 4KB block (1 I/O if
the block is not cached), modify and persist the block (1 I/O).
In a uniform workload, the probability of hitting the cache
depends on the store size (P(hit) = cache size/store size).
Because the database grows less with OLCP, the read has a
higher probability of hitting the cache and updates are faster.
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Figure 4: Config-NVMe. Evolution of the number of old versions for (a) a Zipfian workload with 1 scan, (b) a uniform workload
with 1 scan, and (c) a uniform workload with 3 scans.
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Figure 5: Config-NVMe. Evolution of (a) scanned items/s,
and (b) updated items/s. Y-axes differ.

Table 1 shows the tail latency of the updates. At the 99th
percentile, it takes 3-3.4ms to commit the 16 updates per-
formed by an OLTP transaction (190-250us per update).
Switching to OLCP for scans has no significant impact on the
99th percentile latency of OLTP transactions. In SI, the GC
of the 350M old items stalls the store after the scan aborts, so
the tail latency is high (18s). Cleaning the 100M old items
takes 5s in Steam. A non stop-the-world GC could be used,
at the expense of higher average space utilization. In OLCP,
regardless of the GC implementation, cleaning overhead is
negligible, and tail latency is orders of magnitude lower (9ms).

Latency SI Steam OLCP
99p 3.4ms 3.1ms 3ms
Max 18s 5s 9ms

Table 1: Config-NVMe. Tail latency of OLTP transactions
(16 updates).

Config-AWS: Trends are similar on Config-AWS. The full
scan of the store finishes in 134s with OLCP and in 256s with
SI and Steam. OLTP transactions have similar throughput.

5.3.3 Overhead of propagations

The overhead of propagations depends on the number of run-
ning OLCP queries: the more OLCP queries, the more en-
queues in propagation queues might be done. The overhead

also depends on whether concurrent updates are done on scan
ranges or not: an item is only propagated if it belongs to
a scan range. We launch up to 32 concurrent scans on two
stores containing 100M items (100GB) and 5B items (5TB),
respectively. Each scan reads a random range of 1M items.
As in the previous section, the scans run concurrently with
an update intensive YCSB-T workload. We run all tests on
Config-AWS, since it is the only machine able to store 5TB.

Figure 6 presents the average number of scanned items per
second, varying the number of concurrent scans. On all tested
configurations, OLCP is equivalent or faster than conventional
SI and Steam. The difference between OLCP and conven-
tional SI is lower than in the experiments of Section 5.3.2
because (i) the queries only scan a small percentage of the
store, so updates are less likely happen in a scanned range and
result in a propagation, (ii) the read bandwidth of the disks
on Config-AWS is higher than the write bandwidth, so the
scan progresses faster than the updates. On the 100M store,
the gap between OLCP and SI increases with the number of
concurrent scans. Indeed, as the number of scans increases,
so does the probability that a propagation happens within a
scan range and that OLCP can process items in memory. On
the 5TB store this effect is less visible (statistically an update
has a lower probability of being in a scan range).

The throughput on the 5TB store is lower than on the 100M
store because less data is cached (30% vs. 0.6%). The total
number of "scans + updates" requests per second is not con-
stant in the experiments (i.e., adding 100K scans/s does not
reduce the update rate by 100K updates/s) because (i) reads
are done using at most 1 I/O (vs. 2 for updates), and (ii)
Config-AWS disks can sustain a higher number of read IOPS
than write IOPS.
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Figure 6: Config-AWS. Number of scanned items per second
on a (a) 100M and (b) 5TB store, varying the number of scans.
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Figure 7 presents the number of updates performed per
second. OLCP is slightly faster for the same reasons as those
presented in the previous experiment.
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Figure 7: Config-AWS. Number of updates per second on a
(a) 100M and (b) 5TB store, varying the number of scans.

In conclusion, it is possible to propagate items to OLCP
queries with negligible overhead. In all experiments, less than
2% of the time is spent propagating values.

5.4 TPC-CH performance
In this section, we measure space amplification and perfor-
mance on a TPC-C workload running concurrently with a
TPC-H analytical workload. We ran on average 10 TPC-C
queries concurrently. Each TPC-C query does an average of
22 requests (17 reads, 5.5 writes), and 30% of the reads hit
the cache. Figure 8 presents the throughput of TPC-C running
concurrently with TPC-H Query 17, presented in Algorithm 9.

With OLCP, Query 17, which scans 64% of the store, com-
pletes without space overhead and creates little interference
with TPC-C queries (3% slowdown compared to an execution
without a scan). Under Steam, the store doubles in size. Under
SI, the store runs out of space, and the query aborts.

5.5 Production workloads performance
We study the performance of conventional SI, Steam and
OLCP with the production workloads running on Config-
AWS. Figure 9 presents the resulting space amplification,
scan throughput and update throughput. At the end of the
analytical processing, in Production Workload 2, the store
has accumulated 934M old versions with the conventional SI
implementation, and GC takes 49s. Steam stores 310M old
versions at the end of the analytical processing. OLCP queries
cause no space amplification. All implementations have the
same throughput.
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Figure 8: Config-NVMe. Space amplification and throughput
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6 Related Work

Running mixed OLTP/OLAP workloads: OLTP/OLAP
workloads are commonly handled by systems that maintain
a column-oriented datastore for OLAP (e.g., Vertica [42], C-
Store [67], and Hive [71]), isolated from the row-oriented
OLTP system (e.g. Cassandra [26], RocksDB [24]). This ap-
proach allows to optimize each sub-system independently.
The main disadvantages are running analytics on old data and
space amplification caused by data replication.

A popular approach to decrease data replication overhead is
to design store for OLTP/OLAP workloads from the ground-
up [10, 13, 25, 38, 39, 43, 60, 80]. Typically, these systems
employ hybrid vertical/horizontal data partitioning schemes,
coupled with carefully chosen secondary indexing. A signif-
icant drawback of these systems is the performance impact
that OLAP and OLTP workloads have on each other (e.g., up
to 5x throughput decrease in SAP HANA [63]). In OLCP,
the analytics workloads do not impact transactions thanks to
OLCP’s minimal GC overhead.
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Reducing space amplification in SI: The role of SI is to pro-
vide a coherent view of the data to OLAP queries [51, 66, 69].
SI-related space amplification is one of the most challenging
issues for stores that run fully in main memory and it has
been addressed by many designs. Harizopoulos et al. [28]
execute transactions sequentially to avoid MVCC mainte-
nance work. IoSnap provides flash-optimized snapshots that
reduce space overhead by reconstructing snapshot metadata
in-memory [68]. Hyper [38, 39] runs OLTP transactions on
a fork of the store. BatchDB [51] runs OLAP queries on a
replica of the store. These solutions still create problematic
space amplification (up to 2x), and garbage collection times
at the end of the execution of OLAP queries. Furthermore,
the execution of OLAP queries might be delayed to the next
batch, adding possibly minutes/hours of latency to analytical
queries. OLCP mitigates the space amplification and garbage
collection issues. OLCP model could also be beneficial for
in-memory stores.

Space amplification in KVs for fast drives: Much of the
prior KVs work relies on SI to provide a consistent view of
the data during range scans [2, 4, 36, 37, 47, 50, 57–59, 64, 65].
Existing systems such as PebblesDB [64], TRIAD [3], Wis-
cKey [50], and HashKV [11] propose optimizations to de-
crease space amplification caused by compactions in log-
structured merge KVs. SlimDB [65] decreases space for
caching indexes and filters. Other KVs designed for fast drives
do not support transactions [3, 5, 40, 41, 45, 48]. To the best
of our knowledge, OLCP is the first work that focuses on
reducing disk space amplification due to SI on fast drives.

Improving the performance of MVCC: In practice, SI is
implemented through MVCC [6]. Many recent optimiza-
tions and protocols provide support for high transaction
rates [8, 33, 46, 49, 55, 75]. Steam [8] trims versions that
do not belong to any active transaction’s snapshot. Steam
is efficient for skewed workloads. However, under a uniform
load the space amplification is proportional to the number of
active transactions. We go one step further by propagating
old versions to avoid keeping unnecessary versions in snap-
shots. Silo [75] chooses provides scalable timestamps and
uses RCU to garbage collect old versions. Cicada [49] batches
operations to reduce protocol costs. TicToc [77] only keeps
the latest version of an item in the store. All these techniques
focus on improving the speed of MVCC, but do not address
space amplification. They can be used to complement OLCP.

Improving the performance of transactions: Various ap-
proaches have been proposed to increase transaction perfor-
mance such as transactional memory techniques [7, 18, 22,
29, 31, 54, 62], transaction support for byte-addressable per-
sistent memory [27, 53], work stealing [79], relaxing ACID
properties when possible [17, 61, 76], decreasing replication
overhead [78], and reducing coordination [70]. These tech-
niques are orthogonal to OLCP and can be used together with
our model to boost the OLTP workload.

7 Conclusion

Long OLAP queries cause problematic space amplification
and long transaction tail latencies when run under SI. To
remedy this problem, we propose OLCP, a new query model.
OLCP provides the same isolation guarantees as conventional
SI implementations, but with much reduced space amplifi-
cation and interference with concurrent OLTP transactions.
We show how OLCP can be used to express a wide range of
OLAP queries. We implement OLCP in KVell+, an extension
of KVell, a state-of-the-art open-source KV for NVMe SSDs.
OLCP achieves low or no space amplification, up to 2x higher
throughput for OLAP queries, and order-of-magnitude im-
provements in tail latency for concurrent OLTP transactions.
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