
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

FVM: FPGA-assisted Virtual Device Emulation for
Fast, Scalable, and Flexible Storage Virtualization

Dongup Kwon, Department of Electrical and Computer Engineering,
Seoul National University / Memory Solutions Lab, Samsung Semiconductor Inc.;
Junehyuk Boo and Dongryeong Kim, Department of Electrical and Computer
Engineering, Seoul National University; Jangwoo Kim, Department of Electrical
and Computer Engineering, Seoul National University / Memory Solutions Lab,

Samsung Semiconductor Inc.
https://www.usenix.org/conference/osdi20/presentation/kwon

FVM: FPGA-assisted Virtual Device Emulation
for Fast, Scalable, and Flexible Storage Virtualization

Dongup Kwon1,2, Junehyuk Boo1, Dongryeong Kim1, Jangwoo Kim1,2,∗

1Department of Electrical and Computer Engineering, Seoul National University
2Memory Solutions Lab, Samsung Semiconductor Inc.

Abstract
Emerging big-data workloads with massive I/O processing

require fast, scalable, and flexible storage virtualization sup-
port. Hardware-assisted virtualization can achieve reasonable
performance for fast storage devices, but it comes at the ex-
pense of limited functionalities in a virtualized environment
(e.g., migration, replication, caching). To restore the VM fea-
tures with minimal performance degradation, recent advances
propose to implement a new software-based virtualization
layer by dedicating computing cores to virtual device emu-
lation. However, due to the dedication of expensive general-
purpose cores and the nature of host-driven storage device
management, the proposed schemes raise the critical perfor-
mance and scalability issues with the increasing number and
performance of storage devices per server.

In this paper, we propose FVM, a new hardware-assisted
storage virtualization mechanism to achieve high performance
and scalability while maintaining the flexibility to support
various VM features. The key idea is to implement (1) a
storage virtualization layer on an FPGA card (FVM-engine)
decoupled from the host resources and (2) a device-control
method to have the card directly manage the physical storage
devices. In this way, a server equipped with FVM-engine can
save the invaluable host-side resources (i.e., CPU, memory
bandwidth) from virtual and physical device management
and utilize the decoupled FPGA resources for virtual device
emulation. Our FVM-engine prototype outperforms existing
storage virtualization schemes while maintaining the same
flexibility and programmability as software implementations.

1 Introduction

Storage virtualization is one of the most important compo-
nents to determine the cost-effectiveness of modern datacen-
ters, which improves the utilization of the storage devices
and makes resource management much easier. For example,

∗Corresponding author.

0
20
40
60
80

100
120

1 12 24 36
N

um
be

r o
f

re
qu

ir
ed

C

PU
 co

re
s

Number of SSDs

Native I/O Virtualized I/O

Figure 1: CPU usage of native block I/O in Linux and virtual-
ized block I/O with SPDK vhost-nvme [21]

storage virtualization can map multiple virtual storage de-
vices onto a smaller set of physical storage devices and make
them shared by many virtual machines (VMs) [66]. At the
same time, it facilitates VM management by providing a va-
riety of functionalities in a virtualized context (e.g., live mi-
gration [41, 58], replication [52, 61], consolidation [62, 65],
aggregation, metering, server-side caching [35, 37]).

The importance of storage virtualization is growing for
modern datacenters running I/O-intensive big-data workloads
on their fast but expensive solid-state drives (SSDs). In par-
ticular, it is critical to reduce virtualization overhead and pro-
vide near-native storage performance to the VM workloads. A
conventional way to overcome the virtualization overhead is
to utilize hardware-assisted virtualization mechanisms (e.g.,
passthrough [30], SR-IOV [19]). However, the existing hard-
ware virtualization mechanisms have become much less ap-
pealing to modern datacenters due to their extremely limited
VM management support.

To provide highly flexible VM management at minimal
virtualization overhead, a new software-based storage virtual-
ization mechanism is now considered as a highly promising
solution. A storage performance development kit (SPDK)
vhost-target implementation not only enables flexible VM
management but also significantly improves performance by
exclusively dedicating computing cores (i.e., sidecores) to its
user-level virtualization layer [21, 69].

However, such sidecore approaches require a significant

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 955

amount of computing resources to execute their polling-based
virtual device emulation [53, 59]. Furthermore, the required
computing bandwidth quickly increases as a single server is
equipped with an increasing number of storage devices, and
each device gets faster. As shown in Figure 1, our projection
result shows that virtualized I/O with SPDK vhost-nvme [21]
necessitates 42% – 65% more CPU cores to saturate multiple
Intel Optane SSDs [7] than native block I/O in Linux.

Due to the severe computing resource requirement, the
software-based storage virtualization cannot provide high
performance or high scalability. First, without enough com-
puting cores dedicated to the storage virtualization layer, the
storage system comes to suffer from low performance. Sec-
ond, without the capability of adding virtualization-dedicated
cores as needed, the system comes to suffer from low scalabil-
ity. Therefore, to achieve high performance, scalability, and
flexibility all together, the ideal storage virtualization should
decouple itself from host CPU cores, scale with a target stor-
age system, and exploit the most cost-effective computing
solution for the programmable VM management.

In this paper, we design and implement FVM, a new
hardware-assisted storage virtualization mechanism, to
achieve high performance and scalability while maintaining
the flexibility to support a variety of VM management fea-
tures. The key idea of FVM is to implement (1) a storage
virtualization layer on an FPGA card (FVM-engine) which
is decoupled from the host resources, and (2) a hardware-
based device-control mechanism to make the card directly
manage the physical storage devices. FVM also leverages (3)
high-level synthesis (HLS) techniques to provide easy pro-
grammability for VM management. Our solution can also be
implemented on ASICs for higher performance, but in that
case, the ASIC implementations lose future flexibility for new
VM management features.

FVM achieves the design goals as follows. First, FVM
achieves high performance by utilizing a hardware-assisted
virtualization mechanism and leveraging massive parallelism
in the modern storage virtualization stack. FVM-engine can
cost-effectively exploit the virtualization’s parallelism by im-
plementing many wimpy FVM cores and distributing vir-
tual/physical I/O queues and queuing routines to them for
fine-grained parallel executions.

Second, FVM achieves high scalability by executing virtual
device emulation on FVM-engine, which is decoupled from
host CPU cores and device resources. In addition, its direct
device-control mechanism further improves the scalability
by enabling FVM-engine to directly manage the physical
devices. Therefore, without relying on expensive host CPU
cores, FVM can achieve highly scalable virtualization per-
formance by implementing FVM-engine on a more powerful
FPGA card or adding more FPGA cards on a system board.

Third, FVM achieves highly flexible storage virtualization
by implementing existing VM management features on a re-
configurable FPGA card. For user programmability, we lever-

Sidecore PassTh SR-IOV FVM
CPU On-dev SoC (1VM)

[59, 69] [53] [30] [19]

Performance† " " " "+
Host efficiency " " " "

Scalability " " "

Device sharing " " " "

Flexibility‡ " " "

Programmability " " "

†: I/O throughput, latency, ‡: Providing seamless storage-related services.

Table 1: Comparison of the existing and proposed storage
virtualization mechanisms

age an HLS-based design flow and separate the virtualization
layer from the I/O logic to interact with the host machine and
the physical storage devices.

Table 1 summarizes FVM’s key advantages over existing
software- and hardware-based storage virtualization mecha-
nisms, in terms of performance, host efficiency, scalability,
device sharing, flexibility, and programmability. FVM solves
the performance and scalability issues of the recent sidecore
approaches, while achieving device sharing and flexibility
that the existing hardware-assisted techniques cannot provide.
A detailed explanation can be found in Section 3.

For evaluation, we implemented our FVM-engine prototype
on a Xilinx FPGA board [23] and Intel Optane SSDs [7]. We
implemented Linux device drivers for the software support
and augmented an SPDK vhost-target implementation [21]
to apply FVM to an existing KVM-based virtualization sys-
tem [11].

Our experimental results show that the FVM prototype ob-
tains 1.36× higher I/O throughput than the software-based vir-
tualization method when allocating the same amount of host
CPU cores. FVM also scales well with the increasing number
of VMs and virtual/physical storage devices by achieving 9.5
GB/s aggregate I/O throughput with four SSDs. Also, our
HLS-based design flow requires only 10s – 100s of code lines
to implement example VM management functionalities.

In summary, we make the following contributions:

• Novel storage virtualization mechanism: We propose
a novel FPGA-assisted virtual device emulation mecha-
nism for fast, scalable, and flexible storage virtualization.

• High performance: FVM achieves high performance by
utilizing hardware-assisted virtualization and paralleliz-
ing virtual/physical device operations on FVM-engine.

• High scalability with host efficiency: FVM can easily
increase its computing power to match the target virtual-
ization scalability without depending on host resources.

• Flexibility & programmability: Our HLS-based FVM
design flow supports easy VM management and feature
programmability.

956 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

VM

Host

HW

Virtio
front-end driver

DMA
buffer

Hypervisor

Linux block I/O

Kernel-level device driver

I/O emulation

Virtio
back-end driver

DMA
buffer

NVMe SSD

I/O interposition

vm-exit

CPUCPUCPUCPU
CPUCPUCPUCPU
CPUCPUCPUCPU
CPUCPUCPUCPU

(a) Paravirtualization

VM

Host

HW

NVMe
device driver

SPDK vhost

User-level device driver

I/O emulation
Vhost-nvme

DMA
buffer

NVMe SQ/CQ
NVMe DB

NVMe SSD

Shared
mem

IOMMU

I/O interposition

Hyper-
visorCPUCPUCPUCPU

CPUCPUCPUCPU
CPUCPUCPUCPU

CPUCPUCPUCPU

vm-exit

CPUCPUCPUCPU

(b) Host sidecore

VM

HW

NVMe
device driver

SmartNIC

I/O interposition

I/O emulation

Runtime software

DMA
buffer

NVMe SQ/CQ
NVMe DB

NVMe SSD

IOMMU

NVMe interface

CPUCPUCPUSoC

CPUCPUCPUSoC

CPUCPUCPUSoC

(c) On-device sidecore

VM

HW

NVMe
device driver

DMA
bufferNVMe SQ/CQ

NVMe SSD

IOMMU

I/O interposition

SR-IOV

Namespace

PF/VF
NVMe DB

(d) Direct assignment

Figure 2: System architectures for conventional storage virtualization mechanisms

2 Background

In this section, we introduce modern non-volatile memory
(NVM) technologies and the latest advances in storage virtu-
alization mechanisms.

2.1 NVM and NVMe Protocol
Modern NVM technologies such as 3D XPoint [8] and Z-
NAND [18] have significantly improved the storage perfor-
mance [39, 50, 67, 71]. At the same time, virtualization for
such fast storage devices becomes one of the most critical
components in cloud environments [53, 55, 59, 69]. For exam-
ple, Amazon Web Services (AWS) accelerates I/O virtualiza-
tion through dedicated hardware components [1, 55]. Other
major cloud providers, including Microsoft Azure [12] and
Google Cloud Platform (GCP) [6], are allowing advanced
NVM devices to be used as primary storage for VMs.

NVM Express (NVMe) [14] is a standard storage archi-
tecture used to enable fast NVM storage through PCIe and
optimized I/O paths. First, it brings multiple deep I/O queues
to take full advantage of NVM technologies. The current
specification supports up to 65,535 I/O queues, each with 1
– 65,535 outstanding commands. As a result, it can enable
highly parallel processing on multiple cores by assigning
independent I/O queues and queuing routines to each core
or thread. Second, its protocol provides fast I/O submission
and completion paths by reducing the number of memory-
mapped I/O (MMIO) operations. For example, it does not
require MMIO register reads in the common I/O paths, while
including a maximum of one MMIO register write for the
command submission path.

An NVMe I/O queue consists of a submission queue
(SQ)/completion queue (CQ) pair. For I/O submission, host
software places NVMe commands in the SQ and writes
the SQ tail pointer to the target SQ doorbell register ex-
posed through PCIe base address registers (BARs). The target
NVMe storage device then fetches the newly added com-
mands and processes them. Once the NVMe commands are

completed, the NVMe device writes completion messages
to the associated CQ and then generates an interrupt. Lastly,
the host software handles the completion messages and up-
dates the target CQ doorbell register to clear the interrupt and
release the CQ entries.

2.2 Storage Virtualization

2.2.1 Paravirtualization

In a paravirtualization scheme, a guest operating system (OS)
is installed with a VM abstraction to make it efficient to emu-
late virtual devices. For example, Virtio [60] is an abstraction
for virtual devices in a hypervisor. This abstraction allows
the hypervisor to export a common set of virtual devices and
makes them available to guests through an efficient device
interface. Figure 2a shows the system architecture for virtio-
based device emulation. The guest implements front-end vir-
tio drivers, with particular virtual device emulation behind a
set of back-end drivers in the hypervisor [60]. This paravir-
tualization mechanism can reduce the number of VM exits
by reducing the number of MMIO operations for the virtual
device of the guest, which addresses the huge performance
overhead incurred by CPU mode switches and cache pollu-
tion [51]. However, the guest OS should be aware that it is
being virtualized, which requires modifications to collaborate
with the hypervisor efficiently.

Virtio SCSI (virtio-scsi) [47] or block (virtio-blk) [45] can
be used to emulate an NVMe device with this paravirtualiza-
tion mechanism. They handle VM requests directed at the
virtual NVMe device as follows: (1) A guest OS makes a
request to a virtual device through virtual I/O queues (e.g.,
vring [60]) in virtio front-end drivers. (2) The guest then calls
a VM exit and traps into a host machine. (3) The hypervisor
emulates the virtual device through virtio back-end drivers,
interacting with kernel-level device drivers. (4) Once the I/O
request is completed, the virtio back-end drivers read com-
pletion messages from the physical devices, confirm their
completion status, and inject an interrupt to the guest OS

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 957

through the hypervisor.

2.2.2 Host Sidecore Approach

CPU-dedicated (or sidecore) approaches can further accel-
erate storage virtualization by avoiding expensive traps to
the hypervisor and reducing cache pollution [33, 48]. The
recently proposed SPDK vhost-scsi and vhost-blk implemen-
tations [21] can accelerate virtualization of NVMe storage. As
shown in Figure 2b, a hypervisor pre-allocates shared mem-
ory regions for guests and allows them to exchange storage
commands with SPDK vhost-target directly for virtual device
emulation. The SPDK vhost-target implementations emulate
VM requests as follows: (1) A user-space thread running on a
dedicated sidecore continues to poll virtual I/O queues (e.g.,
NVMe SQ/CQ pairs) via a shared memory region. (2) It reads
newly received VM SCSI or block requests and converts them
to NVMe commands (i.e., protocol conversion). (3) It con-
ducts the I/O operations through an SPDK user-level NVMe
device driver. (4) Once the requests are completed, another
dedicated thread in SPDK vhost-target deals with completion
messages and injects an interrupt to the guest through the
hypervisor.

The recent sidecore approaches can offer near-native per-
formance of modern NVMe devices to VMs. A dedicated
sidecore polls guest I/O operations through shared mem-
ory regions, so there is no need to call VM exits to submit
NVMe commands. Moreover, SPDK’s user-level NVMe de-
vice driver enables sidecores to conduct I/O operations with-
out user-kernel mode switches. SPDK vhost-target also re-
duces the number of data copies by allocating guest DMA
buffers in a pinned shared memory region. For this, the
software-based virtualization layer translates guest physical
addresses (gPAs) to pinned host physical addresses (hPAs).
Due to the address translation, the NVMe device can transfer
data directly to the guest’s memory space without being aware
that it receives requests from VMs.
Vhost-nvme. The SPDK vhost-nvme implementation [69] fur-
ther optimizes the sidecore approaches by directly exposing
NVMe devices to guest OSes. This transparent view of the
NVMe devices can eliminate the performance loss caused by
the protocol conversion between SCSI/block and NVMe. It
also allows the guest OSes to exploit advanced NVMe features
(e.g., shadow doorbell buffer [42]) to get higher performance.
A recent study [69] demonstrated that the vhost-nvme imple-
mentation gets 1.11× – 1.26× higher random-read throughput
than the other SPDK vhost-target implementations.

2.2.3 On-device Sidecore Approach

To save the host resources required for storage virtualiza-
tion, a recent study [53] offloaded the virtualization layer to
system-on-chip (SoC) cores in other peripheral devices (e.g.,
SmartNIC [2, 13]). Figure 2c shows its system architecture.

The on-device sidecore approach exposes virtual NVMe in-
terfaces to guest OSes by providing a uniform address space
across host CPUs and SoC cores. The SoC allows the run-
time software running on the on-device cores to reach virtual
NVMe queue pairs mapped in the host memory through DMA.
In addition, host software allocates NVMe queue pairs in the
SoC’s memory space and provides their locations to the phys-
ical NVMe device to make it interact with the SoC directly.
Since it utilizes on-device sidecores to emulate virtual storage
devices, it can save the host CPU resources and offer more
compute power to VMs or other VM management features.

Moreover, on-device sidecore mechanisms provide flexible
and programmable implementations leveraging ARM-based
SoC cores. In particular, it facilitates implementing essential
functionalities in storage virtualization, which are not fully
offloaded or not easily composable via other hardware-based
virtualization mechanisms (e.g., SR-IOV). For example, a
recent study [53] implemented storage versioning, prioritiza-
tion, isolation, replication, and aggregation functionalities in
runtime software installed on the SoC.

2.2.4 Direct Device Assignment

To overcome the virtualization overhead, VMs can make use
of support for DMA and interrupt remapping (e.g., Intel VT-
d [27], AMD-Vi [26]), which allows guest software to access
a target storage device directly. For the remapping support,
major processor manufacturers introduced I/O memory man-
agement units (IOMMUs). A DMA remapping engine in an
IOMMU allows DMAs from a guest to be accomplished with
gPAs. The IOMMU translates them into hPAs according to
page tables that are configured by host software. Likewise, an
interrupt remapping engine translates interrupt vectors issued
by devices based on an interrupt translation table.

The direct device assignment (or passthrough) eliminates
the virtualization overhead in software layers since the hy-
pervisor is no longer in a guest’s I/O paths. However, this
approach requires the physical devices to be exclusively as-
signed to a single VM and does not support device sharing
across multiple VMs. Therefore, the passthrough mechanism
has limitations in improving the utilization of storage devices
and reducing operating costs in modern datacenters.
SR-IOV. To address the challenges of the direct passthrough
scheme, the PCIe specification currently supports SR-IOV
[19], a standardized hardware virtualization protocol. An SR-
IOV capable PCIe device supports a physical function (PF)
and multiple virtual functions (VFs). The PF provides re-
source management for the device and is managed by the
host software, and each VF can be assigned to a single VM
exclusively for direct access. SR-IOV is now supported by
high-performance I/O devices such as network and storage
devices as well as accelerators. Recently, Xilinx released an
SR-IOV capable PCIe IP block [28], supporting up to 252
VFs.

958 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.00
0.20
0.40
0.60
0.80
1.00

Rand-read Rand-write Rand-rwTh
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Workloads

Native virtio vhost-scsi vhost-blk vhost-nvme

Figure 3: Random I/O throughput with a single SSD

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Rand-read Rand-write Rand-rwC
PU

 u
sa

ge
 (n

or
m

al
iz

ed
)

Workloads

Native virtio vhost-scsi vhost-blk vhost-nvme

Figure 4: CPU usage of random I/O with a single SSD

Since an SR-IOV capable device implements how to mul-
tiplex itself at the hardware level, it does not rely on host
software to multiplex the virtual device instances, as shown
in Figure 2d. In addition, with SR-IOV and an IOMMU in
a host machine, VFs can carry out DMA transactions with
gPAs, while avoiding the software-side address translation.
Similarly, interrupt remapping for each VF addresses the per-
formance overhead generated by triggering interrupts to notify
guests regarding the completion of their I/O requests.

3 Motivation

In this section, we discuss the challenges of the existing vir-
tualization mechanisms for modern datacenters. We identify
the critical performance and scalability issues of the existing
host and on-device sidecore approaches and the limited VM
management support of the hardware-assisted virtualization
technologies.

3.1 CPU-inefficient Storage Virtualization

Modern software-based storage virtualization mechanisms
dedicate CPU sidecores to emulate virtual NVMe devices.
For example, recent NVMe virtualization studies [59,69] allo-
cate multiple CPU cores to poll virtual I/O queues via shared
memory regions, instead of making a trap into a host machine.
Figure 3 shows the random I/O throughput of the various
software-based virtualization implementations on a single
CPU sidecore and a single Intel Optane SSD [7], normalized
to the native performance. Virtio denotes virtio-based par-
avirtualization through KVM, and vhost-scsi, -blk, and -nvme
mean three different virtual device interfaces through SPDK

0% 20% 40% 60% 80% 100%

Rand-
read

CPU usage

QEMU/KVM vhost bdev nvme interrupt others

Figure 5: CPU usage breakdown of random-read I/O with
SPDK vhost-nvme

vhost-target. We ran FIO [5] random I/O benchmarks with
four threads and 32 queue depth and measured the random I/O
throughput on VMs. On the other hand, Figure 4 shows the
relative CPU usage normalized to that of the native I/O opera-
tions on an Intel Xeon server [22] with the same experiment
environments. Our experimental results show that virtio fails
to offer the full native performance due to frequent VM exits,
and all the SPDK vhost implementations can achieve close
to the maximum native performance (i.e., 550K IOPS). How-
ever, at the same time, to get such near-native performance,
they demand 1.42× – 1.61× more CPU resources than native
random I/O operations.

There are two primary sources of such high CPU resource
usage. First, they utilize multiple active polling cores to re-
duce the number of VM exits [59, 69]. Because NVMe is a
highly parallel storage architecture, the conventional trap-and-
emulate approach will generate an unacceptable number of
VM exits for a VM to take full advantage of multiple I/O
queues [59]. For this reason, the sidecore approaches allo-
cate CPU resources exclusively and poll guest I/O operations
through a shared memory region to handle such frequent
NVMe requests quickly. Second, the SPDK vhost-target im-
plementations trigger guest interrupts through eventfd, which
requires system calls and VM exits [69]. Figure 5 shows the
CPU usage breakdown of the host machine running SPDK
vhost-nvme. Our experimental result demonstrates that around
22% of active CPU cycles are used to poll and emulate virtual
devices (vhost) and 39% to trigger guest interrupts (inter-
rupt). The other portions are consumed by the necessary VM
management (QEMU [15]/KVM [11]) and the SPDK storage
stack (bdev and nvme).

This resource-inefficiency issue poses a significant chal-
lenge to scalable storage virtualization and efficient VM man-
agement in modern cloud and datacenter environments. To
support many NVMe devices and guarantee quality-of-service
(QoS) at the same time, the current host sidecore approaches
will continue to demand a considerable portion of host CPUs
for storage virtualization [44]. Eventually, the number of VMs
that can be supported within a single server will decrease, and
the total datacenter costs will increase. Otherwise, the VMs
will have serious performance problems due to the lack of
computing resources. Also, with the limited capability of
adding virtualization-dedicated CPU cores per server, the sys-
tem will come to suffer from the low scalability.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 959

0

2

4

6

8

1 2 3 4

Th
ro

ug
hp

ut
 (G

B/
s)

Number of SSDs

CPU SoC (250MHz) SoC (3GHz) SoC (3GHz, 8 cores)

Figure 6: Performance comparison of different virtualization-
dedicated core implementations

3.2 Weak Computing Power of SoC Cores

Modern on-device sidecore approaches offload the virtual de-
vice emulation to SoC cores embedded in peripheral devices
instead of CPU cores to reduce the burden of host CPU [53].
However, their I/O performance can be severely bounded by
the SoC cores’ weak computing power. To measure the per-
formance bottleneck due to the small cores, we implemented
Microblaze softcores (250 MHz) [24] on an FPGA [23] and
ran storage virtualization runtime software. We linearly scaled
this performance result to evaluate more aggressive SoC de-
signs that use higher clock speed and more cores (3 GHz,
8 cores). Figure 6 shows the random I/O performance of
CPU (vhost-nvme) and SoC (runtime software) sidecore ap-
proaches with many NVMe devices. Our experimental results
show that, even with the number of SoC cores increased, their
weak computing capabilities become the significant perfor-
mance bottleneck.

In particular, SoC sidecore designs significantly suffer from
inefficient DMA mechanisms incurred by SW abstraction lay-
ers. For example, SmartNICs [2, 13], which utilize SoC cores
in NICs, expose RDMA APIs instead of native DMA primi-
tives, and it nearly doubles the DMA read/write latency [56].
Our Microblaze softcore implementation emulated the over-
head by adding 5 µs per DMA transaction, and as a result, it
achieved only 68% of the maximum performance of a single
device. In addition, SoC sidecore designs cannot support a
large number of virtual/physical devices and advanced storage
management features due to their limited computing capabil-
ities. As shown in Figure 6, an eight-core SoC cannot fully
utilize two or more NVMe devices. These scalability issues
will become more severe as storage devices get faster.

3.3 Absence of Interposition Layer

To save the host and on-device sidecores, hardware-assisted
virtualization techniques can bypass the host software en-
tirely. We experimentally confirmed that the two popular HW-
assisted virtualization technologies in modern NVMe SSDs
(i.e., passthrough and SR-IOV) provide the near-native per-
formance in VMs. For this purpose, we installed a Samsung
PM1733 SSD [17] which offers both passthrough and SR-IOV

capabilities, and measured its FIO random I/O performance in
VMs. We created a single VF through SR-IOV and assigned
a 128-GB namespace, eight virtual queues, and eight virtual
interrupt resources. When the device is connected through
PCIe Gen3, we obtained around 800k IOPS for random reads
and 250k IOPS for random writes in both passthrough and
SR-IOV environments.

However, they suffer from the limited VM management
and storage features in cloud environments. For example,
SR-IOV does not support critical features to enable easy stor-
age management such as live migration [41, 58] and seam-
less switching between different I/O channels. Also, it does
not allow hypervisors to add critical features that are not
natively provided by physical devices: replication [52, 61],
snapshot [40, 70], record-replay, deduplication [68, 72], com-
pression, encryption [63], metering, accounting, billing, and
throttling [36, 46, 54] of guest I/O activities.

In addition, such hardware techniques enabling only the
specific in-storage features significantly limit their portabil-
ity and fungibility in modern datacenters. Furthermore, their
fixed and vendor-specific storage functionalities do not pro-
vide enough flexibility to support advanced VM management.
It is still challenging to provide flexibility and high perfor-
mance at the same time with the current hardware-assisted
virtualization schemes.

4 FVM Design and Implementation

This section introduces the design goals for fast, scalable, and
flexible storage virtualization, and proposes our FVM solution
to satisfy the goals. We describe our solution by presenting (1)
a front-end implementation that emulates virtual devices and
(2) a back-end implementation that directly manages physical
devices.

4.1 Design Goals

We set the following design goals to resolve the challenges in
modern storage virtualization: (1) A next-generation virtual-
ization mechanism should ensure the near-native performance
of NVMe storage devices. (2) It should minimize the amount
of host resources used for virtualization so that a host machine
can provide more computing power to VMs. (3) At the same
time, it should nicely scale with the number of storage devices.
(4) A physical storage device should be shared by multiple
VMs. (5) It should not rely on hard-wired units to enable
flexible and essential management functionalities, as summa-
rized in Table 2. For example, software-based virtualization
can implement flexible VM management features, while SR-
IOV makes it hard for system administrators to guarantee
accurate feature behaviors as in-SSD resource allocation and
scheduling are done in a vendor-specific way.

960 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Category Features SW SR-IOV FVM

Storage
configuration

Consolidation " " "

Aggregation " "

Caching " "

Resource
management

Isolation " 4 "

Throttling " 4 "

Fault
tolerance

Replication " 4 "

Snapshot " 4 "

Data
manipulation

Compression " " "

Deduplication " 4 "

Encryption " " "

Administration
Migration " "

Metering " 4 "

Billing " 4 "

4: Limited to single-device use cases.

Table 2: Example VM management features in storage virtu-
alization layers

4.2 FPGA-assisted Storage Virtualization

To meet the design goals, we propose FVM, a new hardware-
assisted storage virtualization mechanism. The key idea of
FVM is to implement FVM-engine, an FPGA-based virtualiza-
tion acceleration card. We implement a storage virtualization
layer and a device-control mechanism on FVM-engine.

In contrast to on-device SoC cores, an FPGA can be con-
figured only with essential elements for storage virtualization
and can take advantage of highly parallel NVMe protocols.
Our FPGA-based solution can implement many cost-effective
cores, and distribute virtual and physical NVMe queues and
management routines to the cores. In this way, our solution
achieves fine-grained parallel executions and scalable per-
formance. In addition, our solution uses an FPGA’s on-chip
memory for SQ/CQ pairs and doorbell registers, which can
be fast and directly accessed by VMs and NVMe devices
through PCIe.

Another advantage of our FPGA-based solution is its pro-
grammability to implement new VM management features.
Our FPGA-based solution has the potential of the hardware-
based virtualization to solve the performance and efficiency
challenges, while allowing to implement various VM manage-
ment functionalities with its reconfigurability. In this work, we
propose an FPGA-based virtualization layer, but it is also pos-
sible to implement the mechanism on ASICs. In such a case,
an ASIC implementation can achieve higher performance by
leveraging its optimized circuits for virtualization functions,
but its flexibility for new storage management features will
be limited.

Figure 7 shows the FVM architecture and its components.
First, FVM bypasses host software stacks entirely and mini-
mizes the use of host resources. Through the SR-IOV imple-
mentation on FVM-engine, VMs can enter a virtualization
layer without any arbitration support from the host software.
Moreover, its hardware-level NVMe interface makes the card
directly manage the physical NVMe devices through PCIe.

VM

HW

FVM engine

I/O interposition

I/O emulation

SR-IOV

NVMe doorbell registers

NVMe
device driver

DMA
buffer

NVMe
SQ/CQ

Host

NVMe interface

IPIPIPCore

FVM engine
driver

Shared
mem

Hugepage
gPAàhPA

mapping table

Hypervisor

PCIe P2P

PFVFVFVFVFVF …

IPIPIPCore
IPIPIPCore

IPIPIPCore gPAàhPA

…

…SSD SSD SSD SSD SSD

SQ SQ SQCQ CQ CQ

IOMMU

HLS

Figure 7: FVM architecture

Second, FVM is able to scale with many NVM devices by
employing a parallel architecture for the device emulation.
Instead of relying on on-device SoC cores, FVM-engine incor-
porates many specialized hardware units to poll and emulate
guest I/O operations. Third, its HLS-based design flow en-
ables flexible and programmable implementations for FVM-
engine and other storage management services.

4.3 Front-end: VM-to-FVM-Engine
Direct FVM-engine assignment. FVM assigns virtual in-
stances of FVM-engine to each VM through its SR-IOV in-
terface. The current FVM-engine implementation integrates a
PCIe IP block [28] to enable its own SR-IOV interface and
supports up to four physical functions (PFs) and 252 virtual
functions (VFs). The PFs are managed by host software for
resource management, and each VF is assigned to a single
VM exclusively for direct access to FVM-engine. Since all
VFs have an identical PCIe configuration (e.g., PCIe BAR),
VMs can install the same guest FVM-engine driver. FVM-
engine also successfully isolates MMIO from different VMs
by applying non-overlapping address translation to its inter-
nal address space (e.g., PCIe-to-AXI address translation [28]).
At the same time, with the IOMMU support, FVM-engine can
perform DMA transactions to guest memory space and in-
ject an interrupt without a host software arbitration. To en-
able such exitless DMA transactions and interrupts, we install
Linux virtual function I/O (VFIO) drivers in the host machine.

There are three major benefits of providing SR-IOV in
FVM-engine. First, this design enables CPU-efficient virtual
device emulation. All VMs can directly enter this hardware

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 961

NVMe device driver

FVM engine driver

Ba
ck

-e
nd

Fr
on

t-
en

d

FVM engine

DMA
buffer

NVMe
SQ/CQ

VM

HW

NVMe doorbell registers

NVMe interface

NVMe
SQ/CQ

SQ
handling

⋯

⋯

①

②

CQ
polling

⋯

⋯

FVM core

Interrupt
generation

VM management features

CQ
handling

Address
translation

SQ
polling

SSD

SSD

SSD

⋯

⑤

⑥

④

⑦

Virtual-NVMe resources Physical-NVMe resources

③

I/O interposition

SR-IOV

IOMMU

Figure 8: Hardware-level device emulation mechanism

interposition layer and handle interrupts without host soft-
ware intervention. Second, it allows multiple VMs to share
FVM-engine through 252 VFs. Using this interposition layer,
FVM-engine can map virtual devices onto a much smaller set
of physical NVMe devices. Third, it does not rely on fixed
or vendor-specific storage capabilities. By simply deploying
FVM-engine, any host machine can benefit from this virtual-
ization mechanism.
Doorbell register remapping. FVM-engine reserves a mem-
ory space for NVMe doorbell registers and exposes it
through PCIe BARs. When guest NVMe device drivers
call nvme_write_sq_db() to submit I/O requests, the guest
FVM-engine driver intercepts them and obtains their (vir-
tual) device id, SQ id, and SQ tail information. The guest
FVM-engine driver then calculates the address of the target
doorbell register and writes the received SQ tail pointer to
FVM-engine (Figure 8–¬). In this way, the guest OS can
indicate new NVMe commands to be executed. Similarly, to
notice that the command completions are normally handled,
FVM-engine driver intercepts nvme_process_cq() function
and acquires (virtual) device id, CQ id, and CQ head informa-
tion. It then writes the received CQ head pointer to the target
address in the FVM-engine doorbell regions.
Virtual I/O queue emulation. To process a guest I/O request
at the hardware layer, FVM-engine polls doorbell registers
using multiple FVM cores (Figure 8–). Algorithm 1 demon-

Algorithm 1: Polling function in the front-end for I/O sub-
mission

1 fvm_nvme_submit (devicesvirtual);
2 while true do

/* Iterate over the assigned virtual
devices and their SQs */

3 foreach vdev ∈ devicesvirtual do
4 foreach sq ∈ available_sqs(vdev) do

/* Poll the doorbell registers mapped
in FVM-engine */

5 tail = get_tail(sq)
/* Find newly added NVMe commands

from the guest OS */
6 head = get_head(sq)
7 while tail 6= head do
8 cmd = get_cmd(sq,head)
9 cmd = manipulate_cmd(cmd)

10 submit_cmd(cmd)
11 head = (head +1)%SQ_SIZE
12 end
13 set_head(sq,head)
14 end
15 end
16 end

strates its polling routine to emulate virtual NVMe devices.
First, the FVM core gets the newly updated SQ tail (line
5) and compares it with the SQ head that stores the previous
tail value (line 6). The difference between these two val-
ues indicates the number of commands that are submitted by
the guest OS. Since FVM-engine reserves its doorbell mem-
ory regions using on-chip memory (e.g., BRAM [29]), it can
quickly poll those regions. This design can easily scale up the
number of VMs as modern FPGAs currently support tens of
MBs on-chip memory [23].

To enable FVM-engine to access a submission queue in the
guest memory space, we utilize an internal DMA engine [28]
and an IOMMU. When VMs install guest NVMe drivers,
they deliver SQ/CQ gPAs to FVM-engine. FVM cores then
use these addresses to directly read the submitted commands
through the DMA engine (Figure 8–®). Since FVM guaran-
tees exitless DMA transactions with an IOMMU and VFIO
drivers, each virtual instance of FVM-engine can safely ac-
cess target SQ/CQ pairs allocated in the guest memory space
without software intervention.

Similarly, to deliver NVMe completion entries to a VM,
FVM-engine directly writes the completion messages to the
guest CQ memory region (Figure 8–²). In addition, it trig-
gers an interrupt to the guest directly through the interrupt
remapping engine. The FVM-engine driver then forwards the
interrupt with an associated IRQ vector to the NVMe driver
and allows it to handle the received completions.
PRP and LBA translation. FVM-engine processes the re-
ceived NVMe commands from VMs before submitting them

962 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to physical NVMe devices. Specifically, FVM-engine ma-
nipulates physical region page (PRP) entries (pointing guest
DMA buffers) from gPAs to hPAs. To enable such gPA-to-hPA
translation at the hardware level, FVM leverages hugepages
to allocate pinned memory [4, 20]. Since the current operat-
ing system does not change their physical locations, FVM-
engine can statically translate PRP entries by incorporating
the gPA-to-hPA mapping table. The translation does not incur
any performance overhead in this design as FVM-engine man-
ages the mapping table using its on-chip memory. Also, due to
the hugepages (2MB), the required table size is small enough
to keep them in the on-chip memory (i.e., 4KB table to cover
1GB guest memory space).

In addition, FVM-engine needs to manipulate a start logi-
cal block address (SLBA) to allocate separate block regions
of physical devices to VMs. Since the current implementation
of FVM assumes a static partition, the SLBA in guest NVMe
command can be simply modified by applying a different
offset value, which is managed by host software.
Virtual admin queue emulation. FVM manages a virtual
NVMe admin SQ/CQ pair through QEMU and SPDK vhost-
target implementations. Since QEMU and KVM can track
VM exits caused by MMIO on administration doorbell regis-
ters, they are still able to interact with SPDK vhost-target via a
UNIX domain socket. QEMU delivers critical administration
commands (e.g., I/O queue creation, deletion, shutdown) to
the SPDK vhost-target implementation following the conven-
tional vhost-target protocol.

4.4 Back-end: FVM-Engine-to-SSD

Physical SQ/CQ remapping. To allow FVM-engine to
interact with physical NVMe devices directly, host soft-
ware remaps their NVMe I/O queues onto FVM-engine’s
PCIe BAR regions. At the installation time, the host FVM-
engine driver provides the memory-mapped region’s address
to the physical NVMe devices. The NVM devices are un-
aware of FVM-engine, but a PCIe switch delivers DMA trans-
actions to FVM-engine seamlessly. Also, our experimental
result demonstrates that FVM-engine can fully utilize a single
Intel Optane SSD with eight SQ/CQ pairs (4KB each queue).
Thus, FVM-engine can nicely scale with a large number of
physical devices and VMs without any on-chip memory space
issue for these remapped queues.
Direct NVMe device-control mechanism. FVM-engine in-
corporates standard NVMe interfaces to implement a di-
rect device-control mechanism. (1) FVM-engine moves the
NVMe commands to the submission queue in the FVM-
engine on-chip memory. (2) FVM-engine then rings doorbell
registers located in the NVMe device to notify the number
of newly submitted commands. (3) The NVMe controller
fetches the NVMe commands through PCIe P2P communica-
tions (Figure 8–¯). (4) After the NVMe device processes the
commands (Figure 8–°), it writes the command completions

to the FVM-engine address space (Figure 8–±). (5) FVM-
engine processes them and (6) rings doorbell registers located
in the NVMe device.
Polling CQs. To immediately handle completions from phys-
ical devices, an NVMe interface polls its CQ memory space.
Algorithm 2 shows its polling function. First, the NVMe in-
terface handles a CQ entry pointed by its head pointer (line
7) and compares its phase bit with the current round (line 9).
This enables the NVMe interface to determine whether a new
entry was posted as a part of the previous or current round
of completion notifications. After that, it processes the com-
pletion entries (line 10) and forwards them to the front-end
(line 11). The FVM core then writes completion messages to
the guest CQ memory space. Since FVM-engine manages all
SQ/CQ pairs using the on-chip memory, its polling routine
does not incur any performance overhead.

Algorithm 2: Polling function in the back-end for I/O com-
pletion

1 fvm_nvme_complete (devicesphysical);
2 while true do

/* Iterate over the assigned physical
devices and their CQs */

3 foreach pdev ∈ devicesphysical do
4 foreach cq ∈ available_cqs(pdev) do
5 head = get_head(cq)
6 cq_phase = get_cq_phase(cq)

/* Poll the completion entries mapped
in FVM-engine */

7 cpl = get_cpl(cq,head)
8 cpl_phase = get_cpl_phase(cpl)

/* Find newly added NVMe completions
from the physical device */

9 while cpl_phase == cq_phase do
10 cpl = manipulate_cpl(cpl)
11 f orward_cpl(cpl)
12 head = (head +1)%CQ_SIZE
13 if head == 0 then
14 cq_phase = invert_phase(cq_phase)
15 end
16 cpl = get_cpl(cq,head)
17 cpl_phase = get_cpl_phase(cpl)
18 end
19 set_head(cq,head)
20 set_cq_phase(cq,cq_phase)
21 end
22 end
23 end

4.5 FVM Core Design

FVM maximizes the opportunities of its hardware-level virtu-
alization mechanism by instantiating multiple FVM cores to
poll and emulate guest I/O. This design choice can offer more

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 963

0.0
0.5
1.0
1.5
2.0
2.5

1 2 4

Th
ro

ug
hp

ut
 (G

B/
s)

Number of threads

SoC core (250MHz) SoC core (400 MHz) FVM core (400MHz)

Figure 9: Performance comparison of different virtualization
processing core implementations

Crossbar

FVM
core

BRAM

PCIe
block

DMA
engine

Micro-
controller

… Device
emulation
Address
translation
NVMe
interface

VM
management

SQ/CQDRAM
controller

FVM
core

FVM
core

Figure 10: Multiple FVM cores with crossbar interconnect

scalable performance than an on-device SoC core as it re-
places the general-purpose sidecores with the customized
hardware units. By doing so, FVM can address the perfor-
mance bottleneck in the processing cores. Figure 9 shows the
performance difference between single-core SoC and single-
FVM core implementations. To measure the performance
bottleneck on the SoC cores, we implemented runtime soft-
ware on Microblaze softcores [24] and ran FIO random read
benchmarks with the increasing number of threads. We pro-
jected this performance result for the higher clock speed (400
MHz) to fairly compare it with our FVM core implementation
running at the same clock frequency. Our experimental re-
sult demonstrates that the current FVM core implementation
achieves 8× higher throughput than the softcore implementa-
tions.

Figure 10 shows an example system architecture using mul-
tiple FVM cores for storage virtualization. First, to reduce the
burden on users in building and integrating system functions
required for interacting between VMs and NVMe devices,
we separate the virtualization logic (storage service) from the
common I/O (BRAM, crossbar) and the board-specific logic
(DRAM, PCIe). Second, by interconnecting them with cross-
bars, FVM-engine can be extended to support a multi-core

FVM
core

FVM
core

FVM
core

FVM
core

VM 0 VM 1 VM 2 VM 3

SSD 0 SSD 1 SSD 2 SSD 3

SS
D

 0
V

M
 0

V
M

 1

SS
D

 0

SS
D

 0

SS
D

 0

SS
D

0
SS

D
 0

SS
D

 0
SS

D
 0

(a) Multi-VM support

FVM
core

FVM
core

FVM
core

FVM
core

VM 0 VM 1 VM 2 VM 3

SSD 0 SSD 1 SSD 2 SSD 3

SS
D

 0
V

M
 0

V
M

 1

SS
D

 1

SS
D

 2

SS
D

 3

SS
D

 0
SS

D
 1

SS
D

 2
SS

D
 3

(b) Multi-SSD support

Figure 11: Multi-VM and multi-SSD support with FVM cores

Designs LUTs Registers BRAMs Clock speed

1 core 4682 7528 5.5 400 MHz(0.36%) (0.29%) (0.29%)

1 VM - 6 cores 106809 130064 362.5 400 MHz(5 SSDs) (8.19%) (4.99%) (17.98%)

4 VMs - 6 cores 103539 131394 359.5 400 MHz(4 SSDs) (7.94%) (5.04%) (17.83%)

4 VMs - 2 cores 80259 93997 321.5 400 MHz(1 SSD) (6.16%) (3.61%) (15.95%)

Table 3: FPGA resource utilization for different FVM config-
urations

design. Our crossbar interconnection can have 16 input/out-
put ports and can be connected with other switches for higher
scalability. As each crossbar switch takes tens of nanosec-
onds, the overall switching latency is negligible compared to
modern SSD’s microsecond-scale access latency.

In addition, FVM-engine can be configured to support var-
ious FVM core mapping strategies. For example, Figure 11
shows two different mapping strategies. Figure 11a demon-
strates that a single FVM core is shared by multiple VMs,
while it is dedicated to a single NVMe device. This design can
easily cover an increasing number of VMs. On the other hand,
Figure 11b shows that an FVM core is dedicated to a single
VM, while it covers multiple physical NVMe devices. With
this mapping strategy, we can allocate more virtualization
resources to more performance-critical VMs.

As Table 3 shows, FVM can cost-effectively scale with
multiple FVM cores without sacrificing its clock speed. We
implemented three different FVM configurations depending
on the number of VMs and SSDs that can be supported. The
1-VM and 6-FVM-core implementation supports five NVMe
SSDs and utilizes 8.19% LUTs, 4.99% registers, and 17.98%
BRAMs in the FPGA chip. Also, its light resource usage (<
0.5% for a single FVM core) provides opportunities to uti-
lize the remaining resources to implement more FVM cores,
and/or deploy much cheaper FPGA boards to minimize the
FPGA costs. In addition, FPGAs and FVM cores can be more
easily added/upgraded on servers, which provides higher scal-
ability using expandable slots than CPU cores requiring extra
sockets.

4.6 HLS
FVM enables flexible and easily programmable implemen-
tations through its high-level synthesis (HLS)-based design
flow. Modern HLS supports high-level languages and has
become a standard hardware design flow for FPGAs. Our
HLS-based FVM implementation allows users to extend their
designs easily.

In this work, we implemented five different storage func-
tions on FVM-engine First, we implemented device sharing,
which allows multiple VMs to share a single NVMe device.
Second, we designed a token-based throttling mechanism to
effectively manage guest I/O operations. Third, we imple-
mented replication to achieve fault tolerance. Fourth, we

964 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2x Intel
Xeon Gold 5118

1x Xilinx
Alveo U280

5x Intel Optane 900p
480GB SSDs

Figure 12: FVM hardware prototype

implemented server-side caching to accelerate storage ac-
cesses from VMs. Fifth, we designed direct copying in which
a guest OS moves data between two different storage devices
using FVM-engine. For this purpose, the VM utilizes FVM-
engine’s internal memory space as an intermediate buffer,
while bypassing the entire software stacks.

5 Evaluation

In this section, we evaluate our FVM implementation and
compare its random I/O and RocksDB performance with
other storage virtualization schemes. We also present five
example VM management features implemented through our
HLS-based design flow.

5.1 Experimental Setup

To evaluate FVM, we ran FIO [5] random I/O benchmarks and
RocksDB [16] workloads on VMs. We evaluated our FVM im-
plementation against its native execution and existing virtual-
ization mechanisms including SPDK vhost-nvme v20.01 [21]
(configured with the option -with-internal-vhost-lib)
and passthrough. Since the passthrough technique avoids
most of the virtualization software stack and directly assigns
the device to the VM, it can provide the near-native execution
performance. As FVM’s use cases, we also implemented five
different storage services (device sharing, throttling, repli-
cation, caching, and direct copy) based on our HLS-based
design flow, and validated them with respect to the software
reference implementations.

Figure 12 shows our hardware FVM prototype. We built
this prototype on a host machine (Super Micro SuperServer
4029GP-TRT2) with two 12-core Intel Xeon Gold 5118 CPUs
running at 2.3GHz, 256GB DDR4 DRAM, and five 480GB
Intel Optane 900P NVMe SSDs. The Optane SSD (based
on the 3D XPoint NVM technology) can support up to 550k
IOPS in random-read and 500k IOPS in random-write with
10 µs latency [7]. We implemented FVM-engine on a Xilinx
Alveo U280 Data Center Accelerator Card using Vivado and
Vivado HLS v2019.2 EDA tools. We configured the PCIe

0.00
0.20
0.40
0.60
0.80
1.00

Rand-read Rand-write Rand-rwTh
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Workloads

Native vhost-nvme Passthrough FVM

Figure 13: Random I/O throughput with two NVMe SSDs

IP block to meet the PCIe Gen3 x4 specification and con-
nected it with other NVMe SSDs through PCIe Gen3 x16
lanes. For accurate performance measurements, we disabled
hyperthreading and dynamic voltage and frequency scaling
(DVFS).

On the software side, we installed 64-bit Ubuntu 18.04
with the Linux kernel version 5.3.0 and QEMU emulator
version 3.0.0 on the host machine. We installed the same
OS and Linux kernel versions on VMs, and implemented
an FVM-engine Linux device driver. We modified an SPDK
vhost-target implementation and applied FVM to an existing
QEMU/KVM virtualization system.

5.2 Performance

5.2.1 Random I/O Benchmark

To evaluate the random I/O performance, we ran FIO with two
SSDs and measured (1) the maximum achievable throughput,
(2) latency, and (3) CPU utilization. For passthrough and
FVM, we allocated four CPU cores and 1GB system memory
per VM. To show the performance impact due to the lack of
host resources in vhost-nvme, we allocated one CPU core for
the vhost-nvme virtualization layer and three cores for the
VM.

Figure 13 shows the relative throughput of 4KB random
read, write and read/write (50% of read and write each) for
native, SPDK vhost-nvme, passthrough, and FVM. For all
three random I/O benchmarks, passthrough and FVM can
achieve about 79% (2.65GB/s on average) of native perfor-
mance (3.36GB/s on average). However, SPDK vhost-nvme
achieves about 58% (1.95GB/s on average) due to the CPU
resource competition between VMs and the vhost-nvme vir-
tualization layer.

In this experiment, we observed that other virtualization
overheads still prevent even the passthrough and FVM from
achieving the full native performance. First, passthrough and
FVM include VM exits caused by MSR_WRITE and HLT
instructions to manage timer interrupts and to yield CPU re-
sources to a host machine. Second, they involve IOMMU’s
address translation to transfer data to and from NVMe storage
directly (passthrough) or to manage guest OSes’ SQ/CQ pairs
from FVM-engine (FVM). There have been efforts to mini-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 965

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Rand-read Rand-write Rand-rwLa
te

nc
y

(n
or

m
al

iz
ed

)

Workloads

Native vhost-nvme Passthrough FVM

Figure 14: Random I/O latency with two NVMe SSDs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1 2 1 2 3 4

CPU cores = 4 # CPU cores = 8

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

of CPU cores and vhost sidecores

A B C D E F

Figure 15: RocksDB throughput with FVM (normalized to
SPDK vhost-nvme)

mize the overheads [34, 57]. In this work, we do not address
the overhead as they are orthogonal to our work.

In addition, we can see that FVM performs better than
passthrough in some cases. Our current FVM-engine imple-
mentation aggregates completions from those two SSDs and
delivers the smaller number of interrupts to the VM, which
provides more CPU resources to random I/O operations.

Figure 14 shows the average latency normalized to that of
the native execution for the FIO experiments. For all three
workloads, FVM outperforms vhost-nvme and passthrough
thanks to the fast FVM core design and the direct device-
control mechanism through PCIe P2P communications.

5.2.2 RocksDB

To evaluate a server workload on FVM, we ran RocksDB [16]
on the EXT4 file system and YCSB [38] to generate work-
loads. We configured YCSB to generate the workloads as
follows: (A) 50% of read and write each, (B) 95% of read
and 5% of write, (C) read-only, (D) read-latest (most reads ac-
cess the last write), (E) short-ranges (most reads access recent
writes), and (F) read-modify-writes. We scaled up RocksDB’s
recordcount and operationcount parameters to highlight
its I/O activities.

For SPDK vhost-nvme, we considered various CPU alloca-
tion scenarios and increased the portion of dedicated sidecores
up to 50% to emulate future high-performance NVMe devices.
For this purpose, we assigned 1 – 4 CPU cores (out of 4 or 8)
for SPDK vhost-target and the remaining CPU cores for the
VM. For FVM, we assigned four or eight CPU cores for the
VM.

0
2
4
6
8
10
12
14

1 2 3 4 5

Th
ro

ug
hp

ut
 (G

B/
s)

Number of SSDs

vhost-nvme Passthrough FVM

Figure 16: I/O throughput with multiple SSDs

0
2
4
6
8
10

1 2 3 4Th
ro

ug
hp

ut
 (G

B/
s)

Number of VMs

Native vhost-nvme Passthrough FVM

Figure 17: Multi-VM throughput with multiple SSDs

Figure 15 shows the operation throughput of FVM, nor-
malized to that of SPDK vhost-nvme. Since FVM saves host
CPU resources to provide more computing power to VMs, it
obtains 1.20× (average) higher and 1.33× (maximum) higher
throughput than vhost-nvme with four CPU cores. On the
other hand, with eight total CPU cores, FVM achieves 1.15×
(average) higher and 1.71× (maximum) higher throughput
than vhost-nvme. With these trends, FVM will become more
promising as the storage devices get faster in future.

5.3 Scalability

For the scalability test, we installed one VM with 18 CPU
cores to fully utilize five NVMe SSDs and measured the
aggregate throughput. For vhost-nvme, we assigned four cores
to SPDK vhost-target and 14 cores to the VM. Figure 16
shows the total throughput that a single VM can achieve with
the given number of SSDs. As the number of SSDs increases,
both passthrough and FVM scale nicely, while vhost-nvme
does not scale well due to its excessive CPU usage to emulate
the guest I/O operations in the hypervisor.

When the VM utilizes more than four SSDs, FVM’s to-
tal throughput is 7% lower compared to that of passthrough.
Because the current PCIe IP core [25] supports only eight
interrupt vectors per VF, the FVM-engine device driver in-
stalled in the guest OS should make the interrupt vectors
shared by many SQ/CQ pairs and look up multiple CQs to
identify completion messages.

Next, we assigned four CPU cores and one SSD to each
VM and ran four VMs concurrently. For vhost-nvme, we as-
signed one CPU core to SPDK vhost-target and three cores to
the VM. Figure 17 shows the total achievable throughput of
each virtualization implementation as the number of VMs in-
creases. The results show that FVM scales well as the number
of VM increases. With four VMs, FVM achieves up to 9.5

966 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0
0.5
1.0
1.5
2.0
2.5

1 2 3 4

Th
ro

ug
hp

ut
 (G

B/
s)

Number of VMs (sharing a single SSD)

VM1
VM2
VM3
VM4

Figure 18: Device sharing with balanced allocation

0
100
200
300
400
500

17 19 20 21 23 24 25 27 28 29 31 32 33 35 36 37 39 40 41 43Th
ro

ug
hp

ut
 (M

B/
s)

Time (second)

Figure 19: SSD throughput trace with token-based throttling

GB/s by processing on FVM-engine. However, vhost-nvme
fails to achieve the full native throughput, due to its software
overhead.

5.4 Programming Example Functions

To evaluate FVM’s flexibility, we implemented five exam-
ple storage functions in FVM’s hardware-level virtualization
layer: (1) device sharing, (2) throttling, (3) replication, (4)
caching, and (5) direct copy. To implement these functions,
we added and modified only 10s-100s of C++ code lines (i.e.,
device sharing: 40 LOC, throttling: 70 LOC, replication: 15
LOC, caching: 220 LOC, direct copy: 570 LOC).
Device sharing. To implement the device sharing function-
ality, we mapped multiple virtual I/O queue pairs from dif-
ferent VMs to a single physical NVMe queue pair (similar
to SPDK vhost-nvme implementations). To correctly arbi-
trate completion messages from the physical device, we made
an additional data structure to keep track of the virtual de-
vice identifications of the submitted NVMe commands which
requires 64 bytes for each physical I/O queue. We also de-
ployed a round-robin method between virtual I/O queues as
the vhost-nvme implementation does. Figure 18 shows the
FIO throughput results of FVM when running multiple VMs
on a single NVMe SSD. FVM achieves the perfectly balanced
throughput allocation among VMs without any performance
loss.
Throttling. We implemented a token-based throttling algo-
rithm on FVM, which can limit the bandwidth with period-
ically refilled tokens and a bucket which can save a certain
amount of tokens. The FVM-engine driver configures the
period of refill_token signal, the amount of tokens to be
refilled in a period, and the size of the bucket. An FVM core
periodically polls the refill_token signal and filters ev-
ery command by checking the size of the request and the
amount of remaining tokens. If the command is issued, a
proper amount of tokens are removed from the bucket. Fig-

0

100

200

300

400

500

50 90 99 99.9

La
te

nc
y

(μ
s)

Latency percentile

Base Replication

(a) Replication - write

0

100

200

300

400

500

50 90 99 99.9

La
te

nc
y

(μ
s)

Latency percentile

Base Cache hit

(b) Cache - read

Figure 20: Tail latency of replication and caching

ure 19 shows the aggregate bandwidth within a time interval
of the FIO benchmark while throttling the I/O operations on
FVM-engine. We configured the FIO benchmark to achieve
the maximum bandwidth of an SSD (2GB/s), and we throttled
the I/O from 100MB/s to 400MB/s. The figure shows that the
bandwidth is stable and limited as configured.
Replication. By seamlessly replicating I/O operations from
VMs, a server with FVM-engine can achieve fault toler-
ance. To enable this feature, we assigned multiple physi-
cal NVMe SSDs to a single virtual storage device. When an
FVM core receives a write command from a VM, it repli-
cates the commands and broadcasts them to the physical de-
vices. The FVM core then waits for completion messages
from all physical storage devices assigned to the virtual de-
vice before sending corresponding completions to the target
VM. Figure 20a shows its tail latency results of 4KB ran-
dom writes through FVM. As an FVM core should replicate
NVMe commands and wait completions from all the NVMe
SSDs, the replication feature adds the extra latency compared
to the baseline FVM implementation.
Caching. To enable caching, we implemented a hash ta-

ble that has 256k entries in the FPGA’s 4MB on-chip mem-
ory space. Each table entry contains a start logical block
address (SLBA) and a corresponding cached block address
(CBA). If an FVM core finds a valid entry in the hash ta-
ble, it replaces the received SLBAs with CBAs and sub-
mits them to the NVMe devices. We measured the tail la-
tency of 4KB random reads with FVM and its caching
mechanism, while emulating a perfect cache hit ratio. Fig-
ure 20b shows that the caching mechanism increases the
tail latency due to the increased number of contentions on
FVM-engine’s interconnection resources for the hash table
accesses.
Direct copy. FVM can enable a direct device-to-device (D2D)
data copy feature, while bypassing the host CPU and memory.
Using the feature, a server with FVM-engine can perform
intra-VM or inter-VM data transfers efficiently. We imple-
mented a direct-copy feature on FVM leveraging its hardware-
based device-control mechanism. When FVM-engine receives
a request, it splits the bulk data transfer into multiple smaller-
sized requests. It then generates NVMe commands for each

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 967

0

0.2

0.4

0.6

0.8

1

vh
ost

-nv
me

FVM

C
PU

 u
sa

ge
 (n

or
m

al
iz

ed
)

0

500

1000

1500

2000

2500

vh
ost

-nv
me

FVM

PC
Ie

 R
C

 b
na

dw
id

th
 (M

B/
s)

8.17
0

400

800

1200

1600

vh
ost

-nv
me

FVM
M

em
or

y
ba

nd
w

id
th

 (M
B/

s)

Figure 21: Resource usage of direct copying

split request and submits them using FVM-engine’s NVMe
interface. To bypass the host memory, the NVMe commands
utilize the FPGA’s on-chip memory as an intermediate data
buffer. Figure 21 shows the CPU usage, host memory band-
width, and PCIe root complex (RC) bandwidth usage while
performing a 32GB inter-SSD bulk data transfer. This figure
shows that the data transfer controlled by FVM provides high
bandwidth without consuming the host resources.

6 Discussion

Cost analysis. FVM can be used for the cost saving, as it
minimizes the number of the required CPUs and servers for
the target storage virtualization. For example, for a server with
24 NVMe devices, FVM can reduce the CPU core usage by up
to 30% (i.e., saving 20 cores in a 64-core machine). Based on
the current prices on major online stores (e.g., Amazon) and
vendor websites, FVM can save $2000–$6400 ($100–$320
per core [9,10]) for 64-core machines. If we consider the trend
of increasing the number and performance of storage devices
per server, the cost saving will be even more significant. In
addition, as our wimpy FVM core uses very small FPGA
resources (< 0.5%), we can implement FVM on the cost-
effective FPGA boards (e.g., $3000 for Alveo U50 [3], $1500–
$3500 for evaluation boards).
FVM-engine scalability. The scalability bottleneck can oc-
cur if an FPGA is short of resources and/or communication
takes too long. On our FPGA, we can implement around 140
wimpy FVM cores (0.5% per FVM core) including multi-
level crossbar networks (2.5% per crossbar module) and hun-
dreds of SQ/CQ pairs (5KB per pair). Our crossbar switch
can have 16 input/output ports and can be connected with
other switches. As each crossbar switch takes 24 ns (6 cycles,
250MHz), the overall switching latency is negligible com-
pared to modern SSD’s tens of microsecond access latency.
Supporting other storage protocols. One of the biggest ben-
efits of using programmable FPGAs is to provide various stor-
age protocols as needed. The FPGA-based virtualization layer
can easily implement a new interface to activate advanced
features in modern storage devices. For example, it can easily
support standardized key-value store (KV) acceleration ex-
tensions [43] by reprogramming the FPGA according to their

interface specifications.

7 Related Work

NVMe virtualization. NVMe virtualization requires a spe-
cial mechanism to make full use of its parallel and high-
performance storage protocol. SPDK [20] is a user-space
library for high-performance and scalable storage applica-
tions. It integrates all the necessary drivers into the user space
to avoid system calls and enable zero-copy access from the
applications. In addition, it adopts polling to monitor I/O com-
pletions instead of relying on interrupts. Specifically, SPDK
vhost-nvme [69] extends the SPDK library to provide virtual
NVMe controllers to QEMU-based VMs. Similarly, MDev-
NVMe [59] provides a mediated passthrough mechanism in
kernel space with an active polling mode.
Direct device-control mechanism. A direct device-control
mechanism at the hardware level provides fast and resource-
efficient I/O paths. For example, device-centric server (DCS)
and its direct device-control method [32, 49] implement a
device orchestration scheme on an FPGA to enable fast
device-to-device direct data communications. In this way,
DCS can enable hardware-offloaded direct data transfers be-
tween NVMe SSDs and network adapters through PCIe P2P.
As another example, GPUDirect Async [31] enables a direct
data transfer between GPUs and NICs to free CPUs from the
control path, while moving data between GPUs and NICs.
Lynx [64] offloads the server data and control planes to a
SmartNIC, and enables direct networking from accelerators
via a lightweight hardware-friendly I/O mechanism. It enables
to develop hardware-accelerated network servers which do
not require much CPU involvement.

8 Conclusion

In this work, we present FVM, a new hardware-assisted stor-
age virtualization mechanism. The key idea is to implement
(1) a storage virtualization layer on an FPGA card (FVM-
engine) decoupled from the host resources and (2) a device-
control method to have the card directly manage the physical
storage devices. In this way, a server equipped with FVM-
engine achieves high performance, scalability, and flexibility
by saving the invaluable host-side resources and by adding the
decoupled VM management-efficient FPGA cards as needed.

Acknowledgments

This work was supported by Samsung Research Funding &
Incubation Center of Samsung Electronics under Project Num-
ber SRFC-IT1901-12. We also appreciate the support from
Automation and Systems Research Institute (ASRI) and Inter-
university Semiconductor Research Center (ISRC) at Seoul
National University.

968 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AWS Nitro System. https://aws.amazon.com/ec2/
nitro/.

[2] Broadcom Stingray SmartNIC Adapters.
https://www.broadcom.com/products/
ethernet-connectivity/smartnic.

[3] DigiKey A-U50DD-P00G-ES3-G.
https://www.digikey.com/en/products/detail/
xilinx-inc/A-U50DD-P00G-ES3-G/10642492.

[4] DPDK. https://www.dpdk.org/.

[5] Flexible I/O Tester. https://github.com/axboe/
fio.

[6] Google Cloud Computing Services. https://cloud.
google.com/.

[7] Intel Optane SSD 900P Series.
https://www.intel.com/content/www/
us/en/products/memory-storage/
solid-state-drives/consumer-ssds/
optane-ssd-9-series/optane-ssd-900p-series.
html.

[8] Intel Optane Technology.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
intel-optane-technology.html.

[9] Intel R© Xeon R© Gold 5118 Processor.
https://ark.intel.com/content/www/us/
en/ark/products/120473/intel-xeon-gold\
-5118-processor-16-5m-cache-2-30-ghz.html.

[10] Intel R© Xeon R© Processor E5-4669 v4.
https://ark.intel.com/content/www/us/en/
ark/products/93805/intel-xeon-processor\
-e5-4669-v4-55m-cache-2-20-ghz.html.

[11] Linux KVM. https://www.linux-kvm.org/.

[12] Microsoft Azure Cloud Computing Services. https:
//azure.microsoft.com/en-us/.

[13] NVIDIA Mellanox BlueField-2 DPU. https://www.
mellanox.com/products/bluefield2-overview.

[14] NVM Express. https://nvmexpress.org/.

[15] QEMU. https://www.qemu.org/.

[16] RocksDB - A Persistent Key-Value Store for Fast Stor-
age Environments. https://rocksdb.org/.

[17] Samsung PM1733 NVMe SSD.
https://www.samsung.com/semiconductor/ssd/
enterprise-ssd/MZWLJ3T8HBLS-00007/.

[18] Samsung Z-SSD.
https://www.samsung.com/semiconductor/ssd/
z-ssd/.

[19] Single-Root Input/Output Virtualization. http://www.
pcisig.com/specifications/.

[20] SPDK. https://spdk.io/.

[21] SPDK I/O Virtualization with Vhost-user. https://
spdk.io/doc/vhost_processing.html.

[22] Super Micro Computer, SuperServer, 4029GP-TRT2.
https://www.supermicro.com/en/products/
system/4U/4029/SYS-4029GP-TRT2.cfm.

[23] Xilinx Alveo U280 Data Center Accelerator Card.
https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

[24] Xilinx MicroBlaze Soft Processor Core.
https://www.xilinx.com/products/
design-tools/microblaze.html.

[25] Xilinx QDMA Subsystem for PCI Express.
https://www.xilinx.com/products/
intellectual-property/pcie-qdma.html.

[26] AMD I/O Virtualization Technology (IOMMU) Specifi-
cation, Rev 1.26. 2009.

[27] Intel R© Virtualization Technology for Directed I/O, Rev
1.3. 2011.

[28] Xilinx QDMA Subsystem for PCI Express v3.0. 2019.

[29] Xilinx UltraScale Architecture Memory Resources
v1.11. 2020.

[30] Darren Abramson, Jeff Jackson, Sridhar Muthrasanal-
lur, Gil Neiger, Greg Regnier, Rajesh Sankaran, Ioannis
Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert.
Intel Virtualization Technology for Directed I/O. Intel
technology journal, 10(3), 2006.

[31] Elena Agostini, Davide Rossetti, and Sreeram Potluri.
Offloading communication control logic in gpu acceler-
ated applications. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 248–257. IEEE, 2017.

[32] Jaehyung Ahn, Dongup Kwon, Youngsok Kim, Moham-
madamin Ajdari, Jaewon Lee, and Jangwoo Kim. Dcs:
a fast and scalable device-centric server architecture. In
2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 559–571. IEEE,
2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 969

https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.digikey.com/en/products/detail/xilinx-inc/A-U50DD-P00G-ES3-G/10642492
https://www.digikey.com/en/products/detail/xilinx-inc/A-U50DD-P00G-ES3-G/10642492
https://www.dpdk.org/
https://github.com/axboe/fio
https://github.com/axboe/fio
https://cloud.google.com/
https://cloud.google.com/
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold\-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold\-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold\-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/93805/intel-xeon-processor\-e5-4669-v4-55m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/93805/intel-xeon-processor\-e5-4669-v4-55m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/93805/intel-xeon-processor\-e5-4669-v4-55m-cache-2-20-ghz.html
https://www.linux-kvm.org/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview
https://nvmexpress.org/
https://www.qemu.org/
https://rocksdb.org/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZWLJ3T8HBLS-00007/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZWLJ3T8HBLS-00007/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.samsung.com/semiconductor/ssd/z-ssd/
http://www.pcisig.com/ specifications/
http://www.pcisig.com/ specifications/
https://spdk.io/
https://spdk.io/doc/vhost_processing.html
https://spdk.io/doc/vhost_processing.html
https://www.supermicro.com/en/products/system/4U/4029/SYS-4029GP-TRT2.cfm
https://www.supermicro.com/en/products/system/4U/4029/SYS-4029GP-TRT2.cfm
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html

[33] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and As-
saf Schuster. viommu: efficient iommu emulation. In
USENIX Annual Technical Conference (ATC), pages 73–
86, 2011.

[34] Andrea Arcangeli. Micro-optimizing kvm vm-exits. In
KVM Forum, 2019.

[35] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan
Sundararaman, and Ming Zhao. Cloudcache: On-
demand flash cache management for cloud computing.
In 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), pages 355–369, 2016.

[36] Peter A Balinski, Sasikanth Eda, Ashwin M Joshi,
John T Olson, and Sandeep R Patil. Dynamic i/o throt-
tling in a storlet environment, March 10 2020. US Patent
10,585,596.

[37] Deepavali Bhagwat, Mahesh Patil, Michal Ostrowski,
Murali Vilayannur, Woon Jung, and Chethan Kumar.
A practical implementation of clustered fault tolerant
write acceleration in a virtualized environment. In 13th
USENIX Conference on File and Storage Technologies
(FAST 15), pages 287–300, 2015.

[38] Erwin Tam Raghu Ramakrishnan Brian F. Cooper,
Adam Silberstein and Russell Sears. Benchmarking
cloud serving systems with ycsb. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC),
pages 143–154. IEEE, 2010.

[39] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean
Hildebrand, and Erez Zadok. On the performance varia-
tion in modern storage stacks. In 15th USENIX Confer-
ence on File and Storage Technologies (FAST 17), pages
329–344, 2017.

[40] Hoi Chan and Trieu Chieu. An approach to high
availability for cloud servers with snapshot mechanism.
In Proceedings of the Industrial Track of the 13th
ACM/IFIP/USENIX International Middleware Confer-
ence, pages 1–6, 2012.

[41] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. Live Migration of Virtual Ma-
chines. In Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation-
Volume 2, pages 273–286, 2005.

[42] NVM Express. NVM Express revision 1.3 specification.
page 220, 2017.

[43] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework

for near-data processing of big data workloads. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), page 153–165, 2016.

[44] Jim Harris. Accelerating NVMe-oF* for VMs with
the Storage Performance Development Kit. In Flash
Memory Summit, 2017.

[45] Asias He. Virtio-blk Performance Improvement. In
KVM Forum, 2012.

[46] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and Moinud-
din K Qureshi. Flashblox: Achieving both performance
isolation and uniform lifetime for virtualized ssds. In
15th USENIX Conference on File and Storage Technolo-
gies (FAST 17), pages 375–390, 2017.

[47] Masaki Kimura. Better Utilization of Storage Features
from KVM Guest via virtio-scsi. In LinuxCon and
CloudOpen North America, 2013.

[48] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya
Ladelsky, Abel Gordon, and Dan Tsafrir. Paravirtual
remote i/o. ACM SIGARCH Computer Architecture
News, 44(2):49–65, 2016.

[49] Dongup Kwon, Jaehyung Ahn, Dongju Chae, Moham-
madamin Ajdari, Jaewon Lee, Suheon Bae, Youngsok
Kim, and Jangwoo Kim. Dcs-ctrl: a fast and flexible
device-control mechanism for device-centric server ar-
chitecture. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 491–504. IEEE, 2018.

[50] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 460–
477, 2017.

[51] Alex Landau, Muli Ben-Yehuda, and Abel Gordon.
Splitx: Split guest/hypervisor execution on multi-core.
In WIOV, 2011.

[52] Emmanuel S Levijarvi and Ognian S Mitzev. Private
cloud replication and recovery, January 6 2015. US
Patent 8,930,747.

[53] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan RK Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S Gunawi, and
Anirudh Badam. Leapio: Efficient and portable vir-
tual nvme storage on arm socs. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 591–605, 2020.

970 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[54] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. Pslo:
Enforcing the xth percentile latency and throughput slos
for consolidated vm storage. In Proceedings of the
Eleventh European Conference on Computer Systems,
pages 1–14, 2016.

[55] Anthony Liguori. The Nitro Project – Next Generation
AWS Infrastructure. In Hot Chips: A Symposium on
High Performance Chips, 2018.

[56] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on Data
Communication, pages 318–333. 2019.

[57] David Matlack. Kvm message passing performance. In
KVM Forum, 2015.

[58] Michael Nelson, Beng-Hong Lim, and Greg Hutchins.
Fast Transparent Migration for Virtual Machines. In
USENIX Annual technical conference, general track,
pages 391–394, 2005.

[59] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong,
Yu Xu, and Haibing Guan. Mdev-nvme: a nvme storage
virtualization solution with mediated pass-through. In
2018 USENIX Annual Technical Conference (ATC 18),
pages 665–676, 2018.

[60] Rusty Russell. virtio: towards a de-facto standard for
virtual i/o devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[61] Yossi Saad, Assaf Natanzon, and Yedidya Dotan. Se-
curing data replication, backup and mobility in cloud
storage, October 6 2015. US Patent 9,152,578.

[62] Aameek Singh, Madhukar Korupolu, and Dushmanta
Mohapatra. Server-storage virtualization: integration
and load balancing in data centers. In SC’08: Proceed-
ings of the 2008 ACM/IEEE conference on Supercom-
puting, pages 1–12. IEEE, 2008.

[63] Uma Somani, Kanika Lakhani, and Manish Mundra. Im-
plementing digital signature with rsa encryption algo-
rithm to enhance the data security of cloud in cloud
computing. In 2010 First International Conference On
Parallel, Distributed and Grid Computing (PDGC 2010),
pages 211–216. IEEE, 2010.

[64] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:
A smartnic-driven accelerator-centric architecture for

network servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
117–131, 2020.

[65] Akshat Verma, Ricardo Koller, Luis Useche, and Raju
Rangaswami. Srcmap: Energy proportional storage us-
ing dynamic consolidation. In FAST, volume 10, pages
267–280, 2010.

[66] Carl Waldspurger and Mendel Rosenblum. I/O Virtu-
alization. Communications of the ACM, 55(1):66–73,
2012.

[67] Jian Xu and Steven Swanson. Nova: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, 2016.

[68] Jiwei Xu, Wenbo Zhang, Shiyang Ye, Jun Wei, and Tao
Huang. A lightweight virtual machine image dedupli-
cation backup approach in cloud environment. In 2014
IEEE 38th Annual Computer Software and Applications
Conference, pages 503–508. IEEE, 2014.

[69] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu,
and Gang Cao. Spdk vhost-nvme: Accelerating i/os in
virtual machines on nvme ssds via user space vhost
target. In 2018 IEEE 8th International Symposium
on Cloud and Service Computing (SC2), pages 67–76.
IEEE, 2018.

[70] Lei Yu, Chuliang Weng, Minglu Li, and Yuan Luo.
Snpdisk: an efficient para-virtualization snapshot mech-
anism for virtual disks in private clouds. IEEE Network,
25(4):20–26, 2011.

[71] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: punching
through server storage stack from kernel to firmware for
ultra-low latency ssds. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 477–492, 2018.

[72] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng.
Exploiting data deduplication to accelerate live virtual
machine migration. In 2010 IEEE international confer-

ence on cluster computing, pages 88–96. IEEE, 2010.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 971

	Introduction
	Background
	NVM and NVMe Protocol
	Storage Virtualization
	Paravirtualization
	Host Sidecore Approach
	On-device Sidecore Approach
	Direct Device Assignment

	Motivation
	CPU-inefficient Storage Virtualization
	Weak Computing Power of SoC Cores
	Absence of Interposition Layer

	FVM Design and Implementation
	Design Goals
	FPGA-assisted Storage Virtualization
	Front-end: VM-to-FVM-Engine
	Back-end: FVM-Engine-to-SSD
	FVM Core Design
	HLS

	Evaluation
	Experimental Setup
	Performance
	Random I/O Benchmark
	RocksDB

	Scalability
	Programming Example Functions

	Discussion
	Related Work
	Conclusion

