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Abstract
To verify distributed systems, prior work introduced a method-
ology for verifying both the code running on individual ma-
chines and the correctness of the overall system when those
machines interact via an asynchronous distributed environ-
ment. The methodology requires neither domain-specific logic
nor tooling. However, distributed systems are only one in-
stance of the more general phenomenon of systems code that
interacts with an asynchronous environment. We argue that the
software of a storage system can (and should!) be viewed sim-
ilarly. We evaluate this approach in VeriBetrKV, a key-value
store based on a state-of-the-art Bεtree.

In building VeriBetrKV, we introduce new techniques to
scale automated verification to larger code bases, still without
introducing domain-specific logic or tooling. In particular,
we show a discipline that keeps the automated verification
development cycle responsive. We also combine linear types
with dynamic frames to relieve the programmer from most
heap-reasoning obligations while enabling them to break out
of the linear type system when needed. VeriBetrKV exhibits
similar query performance to unverified databases. Its inser-
tion performance is 24× faster than unverified BerkeleyDB
and 8× slower than RocksDB.

1 Introduction
Software verification promises a fundamentally better way
of constructing critical systems: Instead of relying on the
spotty coverage provided by run-time testing, verification can
mathematically guarantee the functional correctness and even
the reliability of software at compile time.

In the context of distributed systems, prior work on Iron-
Fleet [29] shows how to combine Hoare logic [23, 31], to
reason modularly about the behavior of a single program, with
TLA-based [40] state-machine reasoning to show that a col-
lection of nodes running that program behaves according to a
high-level functional spec when executing in a failure-prone,
asynchronous distributed environment. Both techniques em-
ploy general-purpose logic, unlike other work in the area that
relies on custom languages or logic [17, 18, 58]. The approach

is compatible with a reasonable level of automation, modest-
scale implementations (2-3K LoC), and performance within a
factor of 2 of unverified code.

We observe that the abstraction of a system as a program
interacting with a failure-prone, asynchronous environment
applies beyond the domain of distributed systems. Indeed, we
argue that a very different domain – storage systems – fits quite
naturally into this same abstraction, capturing the asynchrony
and nondeterminism of crash safety in such systems. Hence
we generalize the IronFleet methodology to this new domain,
without introducing a domain-specific logic [12], creating
a custom language [2], or changing our system’s API and
implementation to accomodate verification [54].

We evaluate the success of this generalization by construct-
ing VeriBetrKV, a key-value store based on a Bεtree [7], a com-
plex but asymptotically-compelling write-optimized data struc-
ture. Modern persistent key-value stores use write-optimized
data structures, such as LSM-trees [19, 20, 26, 37, 43, 53] and
Bεtrees [50], in order to efficiently handle random-insertion
workloads, which are common in many key-value-store ap-
plications. Write-optimized data structures outperform older
key-value data structures, such as B-trees, by orders of magni-
tude. However, these performance gains come at the cost of a
significant increase in code complexity.

TLA-based reasoning lets us prove VeriBetrKV’s correct be-
havior under process crashes and under disk sector corruptions,
while Hoare logic allows us to reason independently about the
implementation-level optimizations needed for performance.

The resulting system is significantly more complex than the
closest prior work, a verified in-memory key-value store [29].
The implementation is over 3× larger, and proving it function-
ally correct and crash safe requires a multi-level (vs. single-
level) refinement proof.

Hence, an important contribution of this work are the tech-
niques we developed to apply automated verification at this
new scale. To make verification practical for large-scale soft-
ware development, we need to balance between exploiting
automation and controlling it. Ideally, we want decisive au-
tomation; i.e., automation that quickly tells us whether our
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code and proofs are correct or incorrect. Decisive automation
keeps developers engaged and efficient. Unfortunately, since
general-purpose verification is undecidable, most automation
tools can also “time out”. This pessimal outcome takes longer
(by definition) and provides less direction to the developer,
harming morale and productivity [21, §9.1][29, §6.3.2].

To escape the plague of time outs, we present a concrete
development discipline that rapidly squashes time-out prone
code. This ensures developers spend the majority of their
time in a tight verification development cycle. For example,
98.3% of the definitions in VeriBetrKV verify in less than 10s,
enabling development of larger code bases with less effort.

Many verification frameworks reason only about code oper-
ating on immutable data structures [11, 49], leaving optimized
code generation to a compiler such as Haskell’s. Most real
systems code relies on explicit in-place updates for good per-
formance to avoid data copies. Some verification frameworks
enable reasoning about heap-manipulating code using vari-
ous methodologies from the PL literature, from separation
logic [12, 52] to dynamic frames [29, 30, 32]. These tech-
niques rely on both programmer annotations and relatively
heavy-weight automation (e.g., SMT solvers [16]) to deter-
mine whether a modification to one portion of the heap may
have affected other objects on the heap. Despite our time-out-
prevention discipline, we encountered challenges with such
automation: while it works well in small instances, as the sys-
tem grows more complex, the automation slows significantly,
reducing developer productivity (in line with prior reports [29,
§6.2]).

Drawing on ideas from commercial (Rust [33]) and re-
search [2, 51, 59] languages, we integrate a lightweight linear
type system that gives dramatic automation improvements
with dynamic frames when additional flexibility is needed. We
rewrote some core components of VeriBetrKV from dynamic
frames into linearity, reducing our proof burden by 31–37%
without impacting performance. We also leverage linear types
to emit optimized C++ code.

Ultimately, our evaluation (§7) shows that VeriBetrKV is
able to deliver much of the performance gains promised by
sophisticated key-value store data structures. On insertions us-
ing a hard disk, it outperforms BerkeleyDB by 24×. However,
there is still work to be done. Insertions in VeriBetrKV are
about 8× slower than RocksDB, a highly-tuned commercial
key-value store.

As with any research prototype, VeriBetrKV comes with
limitations. One limitation of VeriBetrKV is that it is presently
single-threaded; it can exploit I/O pipelining but not CPU
concurrency. Second, the guarantees of verification are limited
by the Trusted Computing Base (TCB): the top-level spec
of a crash-robust key-value store, the spec of VeriBetrKV’s
interface to the OS and runtime, and the verifier and compiler
(Dafny [41] and Z3 [16]). Finally, we focus on safety and
functional correctness: we guarantee that the system does not
return incorrect results, but liveness (i.e., the guarantee that an

operation will complete in finite time) is out of scope.
In summary, this paper makes the following contributions:

1. A method of specifying crash safety in a clean and exten-
sible way that generalizes a verification methodology for
distributed systems. As a demonstration of its extensibil-
ity, we enhance the specification to include robustness to
disk corruption.

2. A discipline for managing automation that supports scal-
able system development.

3. The integration of a lightweight linear type system within
a general-purpose verification language, and a large-scale
concrete case study quantifying the impact of the type
system as compared to previous approaches.

4. A prototype key-value store demonstrating that our veri-
fication methodolgy can scale to handle the complexities
of modern key-value-store data structures.

2 Assumptions and Background
We summarize the assumptions underpinning our verification
results (§2.1), the verification techniques we employ (§2.2-
2.3), and the prior work from which we take inspiration (§2.4).

2.1 Assumptions

Every verified system makes a guarantee that is predicated on
a set of assumptions which can be divided into three categories.
First, the user must trust the top-level application-facing speci-
fication of the contract provided by the system. We provide a
succinct (283 lines) specification for VeriBetrKV in terms of a
dictionary that, when it crashes, reverts to its state at the most
recent client sync (§3.1.2).

Second, the system must specify an interface to the envi-
ronment (i.e., the rest of the world) the codifies assumptions
about how that environment behaves. VeriBetrKV’s interface
is an asynchronous I/O bus that reorders but does not dupli-
cate or, except during a crash, drop messages. VeriBetrKV’s
environment models a block-level disk and the possibility of
arbitrary crashes and torn writes (§3.1)

Finally, we assume the correctness of our verification tools,
including the build system that runs our verifier, Dafny [41],
on each file. We modify Dafny to emit C++ code (§5.2), so
we also rely on the correctness of the C++ toolchain used to
produce an executable. These trusted tools are comparable
to those in other systems verification efforts; e.g., systems
verified in Coq [15] trust Coq, Coq’s extraction to, say, OCaml,
and the OCaml compiler and runtime. Prior research indicates
that each element in such a toolchain can itself be verified [6,
35, 42, 44, 56].

Despite all of these assumptions, several studies indicate
that verification is a qualitatively better way of developing
software [22, 24, 63], compared with current state-of-the-art
code development techniques. These studies found numerous
defects in traditional software, but none in verified software,
only in the (unverified) trusted components.
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2.2 TLA+-Style State-Machine Refinement

State machine refinement is an important tool in verifying
asynchronous systems [1, 25, 38]. A high-level, abstract state
machine models the desired behavior of a system (say, a key-
value dictionary) capturing essential features (inserts update
the dictionary; queries probe it) and abstracting away irrelevant
details (e.g., efficient indexing and data representation). A
concrete state machine adds more details, showing one way
to instantiate the abstract machine (e.g., using a hash table
to implement the dictionary). A safety proof then shows that
the concrete state machine refines the abstract state machine,
meaning that every execution of the concrete state machine
can be mapped to a possible execution of the abstract one.
Hence, reviewing the abstract state machine tells the consumer
what to expect from the concrete state machine’s behavior.

A strength of this approach is that the high-level machine
can abstract over asynchrony. If the concrete machine has
many concurrently-moving parts, but one can show a refine-
ment (because most transitions in the concrete model do not
change its abstract interpretation), then we know the concur-
rency is irrelevant to the abstract behavior.

2.3 Floyd-Hoare Verification

Floyd-Hoare reasoning [23, 31] is a popular technique for
reasoning about the correctness of single-threaded imperative
programs. The developer annotates the program’s functions
with pre-/post-conditions about the program’s state when en-
tering/leaving the function, and a verifier checks that these
claims hold for all possible inputs and outputs.

Verification tools based on Floyd-Hoare reasoning typically
do not consider asynchronous interactions with an environ-
ment, which makes it difficult to reason directly about, e.g.,
program crashes that might occur at arbitrary points during ex-
ecution. Hence, prior work in storage-system verification intro-
duced a novel version of Floyd-Hoare reasoning, Crash-Hoare
logic, to cope with this particular flavor of asynchrony [12].

2.4 Verifying Distributed Systems

In their IronFleet work [29], Hawblitzel et al. show how to
compose Hoare logic and TLA+-style state-machine refine-
ment to reason about the safety and liveness of distributed
systems. They use Hoare logic to reason locally about a single
program’s behavior, showing that it conforms to an abstract
state machine. They then model the distributed system as
another state machine whose state consists of N replicas of the
program state machine, along with a network represented as
a set of in-flight messages. The system transitions by nonde-
terministically choosing to allow either one of the N program
state machines to advance a step, or the network’s state to
advance (e.g., by delivering a message). The model captures
nodes that can fail-stop and a network that can duplicate, drop,
and reorder messages. The top-level verification theorem
proves that if the program (e.g., a sharded key-value store)
runs in a distributed system as modeled, then its behavior
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Figure 1: System and environment state machines express how
a program interacts with the world to implement an application
in IronFleet (left) and VeriBetrKV (right). Shaded shapes are
trusted; unshaded shapes are untrusted code and proof.

matches a concise app spec – a centralized map.

3 Verifying Storage Systems
To verify storage systems, we observe that embedded within
prior work on verifying distributed systems (§2.4) is a general-
purpose framework for verifying code that interacts with an
asynchronous environment, such as a storage system. This is
exciting because it suggests we can use a common method-
ology to solve a broader class of systems verification prob-
lems, and it obviates the need to develop a specialized logic
or proof framework for each environment. In this paper, we
showcase an instantiation of this general methodology for an
asynchronous environment with a single disk and a single
processing node. However, we conjecture that the approach
generalizes to a variety of systems including multi-node, multi-
disk storage systems; indeed, our predecessor, IronFleet [29],
has already shown how to model multiple nodes connected by
an asyncronous network. Further systems applications might
include heterogeneous hardware or device drivers.

In this general framework (Figure 1), the developer uses
Hoare logic to prove that their optimized imperative program
code, when run synchronously and without crashing, complies
with an abstract program state machine (e.g., in prior work,
this was the code running on each node in the distributed
system). The program code uses a trusted API (e.g., for the
network) to interact with the outside world, and an impor-
tant aspect of the refinement proof is showing that the code’s
interactions with this API match those specified by the pro-
gram state machine. A second state machine, the environment,
encodes assumptions about the rest of the world – the parts
the program does not control (e.g., the network). A final
state machine, the IOSystem, composes these two state ma-
chines (the program and the environment) and dictates how
they interact (e.g., prior work composes N programs running
asynchronously, communicating only via the environment’s
network). The developers prove a top-level theorem showing
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that the IOSystem state machine refines a simple, high-level
application spec (e.g., the distributed key-value store behaves
like a centralized map). This theorem guarantees correct exe-
cution in practice if the environment behaves as modeled, if
the hosts run an executable matching the program, and if the
combined elements interact as assumed by the system.

In this work, we instantiate this general framework to rea-
son about storage systems by modeling an environment that
contains a disk and in which crashes may occur.

3.1 An Environment Model with Crashes

Our model of a storage system is a special case of the IOSys-
tem as described above. It contains two parts: (i) the program,
which models the executable VeriBetrKV, and (ii) the environ-
ment: a model of the disk with an I/O bus. Together, these two
components form a StorageIOSystem (Figure 1).

The state machine representing this StorageIOSystem can
transition in three ways. First, the program state machine can
transition forward a step, possibly interacting with the I/O bus.
Second, the environment can transition, e.g., by having the
disk process a read- or write-command from the I/O bus.

Third and finally (and unlike IronFleet DistributedIOSys-
tems), the StorageIOSystem as a whole can perform a crash,
which models, e.g., a power failure or a kernel panic. Crash-
ing results in a disk state that remembers every write it has
acknowledged, but the data at the address of any unacknowl-
edged write may reflect the old value, the newly written value,
or a corrupt value (§3.1.1). For the program, a crash simply
resets its state machine to its initial (boot-up) condition.

Our top-level proof shows that the StorageIOSystem is a
refinement of the application spec (§3.1.2), demonstrating
that VeriBetrKV’s top-level guarantees are maintained despite
an arbitrary number of crashes occurring at nondeterministic
times (outside the program’s control).

3.1.1 Corruption

Our disk model allows the disk to corrupt its data at any
time (i.e., not just during a system crash). There is only one
constraint: corruption cannot produce a block with a valid
checksum.1 When VeriBetrKV detects an invalid checksum,
it aborts the current query. This ensures correctness, since
VeriBetrKV will not return an incorrect query result. This
assumption about the disk’s behavior is what checksummed
storage systems already (informally) assume. We formalize
this assumption and make use of it in our correctness proof.

Using checksums means that VeriBetrKV protects against
“torn writes”, where a block of the disk is changed to have
neither its old value nor the value written, as well as random
media corruptions. Of course, some disks do violate our check-
sum assumption. An adversarially-controlled disk could easily
return corrupted data yet with valid checksums. Likewise,
a disk which returns stale blocks would also not satisfy our

1Therefore, our checksum routine, CRC32C [8], exists within our TCB,
so that it can be referenced by our disk model.

checksum assumption. In either case, it would be impossi-
ble for any implementation to meet our application spec as
written.

However, our methodology provides flexibility in specify-
ing the precise assumptions made about the disk. In principle,
an engineer could provide a weaker disk model, and in ad-
dition, either provide a cleverer implementation or a weaker
application spec to match.

3.1.2 Application Specification

To achieve good performance, a practical storage system can-
not afford synchronous writes. Instead, the application calls
sync when it requires durability; data not synced is permitted
to be lost during a crash. The nondeterministic relationship
between nondeterministic crash and the application sync
API must appear in the theorem; each is a transition in the
application spec state machine.

Intuitively, the application spec of VeriBetrKV says that in
the absence of crashes or block corruption, VeriBetrKV acts
exactly like a dictionary, always returning the most-recently-
written value. In the presence of a crash, VeriBetrKV is al-
lowed to forget data, but no farther back than the most recent
sync. Furthermore, “forgetting” is equivalent to the entire
dictionary reverting to a consistent, previous snapshot; fu-
ture crash-free operations proceed forward from this snapshot.
Contrast this promise with a filesystem with crash-corrupted
metadata: the data may appear complete and valid, but future
operations may result in behaviors that violate the filesystem’s
contract.

Our storage system specification is easy to state, clean, and
easy to utilize from a client application. In contrast, contem-
porary file systems, for performance reasons, decouple sync
operations on metadata from sync on file data. Such guar-
antees are very difficult to utilize from a client, and in fact
difficult to even state precisely; much of DFSCQ is dedicated
to stating such a guarantee precisely [11].

3.2 Refinement Verification Techniques

Our methodology requires a proof of a TLA-style state-
machine refinement (§2.2) between a StorageIOSystem and
our application spec. Due to the complexity of this proof, we
break the refinement into a sequence of smaller refinements
(§6.2.1). We use the following techniques to organize the
proof, separating concerns between the caching subsystem,
the journal subsystem, and Bεtree manipulations.
State-machine composition. In many cases, we define a tem-
plated state machine S〈T 〉 in terms of an abstract subcompo-
nent T . A refinement T ′ of the subcomponent T can be lifted
to a refinement S〈T ′〉 of the larger state machine S〈T 〉. This
allows us to build up our refinement in terms of refinement
proofs for the subcomponents. For example, a Bεtree tree
refines a simple dictionary spec; therefore, a crash-safe Bεtree
refines a crash-safe dictionary spec.
IOSystem Refinement. Our proof re-uses the concept of an
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IOSystem at several layers of abstraction. For example, at the
lowest layer, we model the disk as storing sequences of bytes,
but at higher layers, we model the disk in a “type-safe” way,
as a collection of nodes. But at all layers, the overall system
follows the rules of an IOSystem state machine.
Transposition. High in the abstraction stack, the disk is used
in different ways by different modules. For example, the jour-
nal models the disk as an array of journal entries, whereas
the Bεtree models the disk as storing nodes. At a low level,
all the modules together interact with a single, byte-oriented
disk. Transposition arguments enable us to split up one Stor-
ageIOSystem into multiple, so each can be reasoned about
independently.

4 Disciplined Automation
A productive verification workflow uses the developer’s time
efficiently. This has two aspects: how much tedious typing the
developer has to do, and how quickly the verifier replies to the
developer’s proof attempts.

Functional verification of arbitrary software is undecidable,
and hence requires either a limit to expressivity [49, 54, 64]
or some degree of manual guidance. In interactive theorem
provers [15, 47], developers manually use tactics to tell the
prover which steps to take next.

A large verified system has a large number of definitions,
such as invariants and state-machine transition relations. An
automated program verifier is a great fit for systems verifi-
cation because so much of the verification work is tedium
amenable to automation. Exposing all the definitions to the
theorem prover, however, gives the theorem prover a large
search space, which can take a long time to explore.

The development cycle is a balance between exploiting
automation and controlling it. Faced with a verification failure,
the developer must first supply any guidance not provided by
automation. That process terminates when the proof passes
(because the failure was a weakness of the automation) or the
developer discovers an actual flaw. If automation is too weak,
the developer burns time tediously typing in the missing proof
guidance. If the automation heuristics are too aggressive, the
developer burns time waiting for replies from the verifier.

As the system grows, the risk of timeouts grows. We have
found it essential to resolve timeouts as soon as they crop up,
before there are so many they are difficult to sort out. If a
developer observes a > 20s response time, they are expected
to stop work and instead resolve the timeout,

The key technique to remedy timeouts is to control how
much information the prover has when trying to verify a
method or lemma, typically by making fewer definitions visi-
ble to the theorem prover. Developers can mark Dafny defini-
tions opaque, for example, so that the definitions are hidden
by default, except where the developer chooses to explicitly
reveal the definitions. We use a command-line SMT pro-
filer to pinpoint problematic definitions, i.e., those the solver
instantiates too many times in its attempts to construct a proof.

Table 7.1 shows that we have followed this discipline with
some consistency, and timeouts in VeriBetrKV remain rare.

5 Language Improvements

Verifying low-level systems software means verifying stateful
code with in-place updates. Unfortunately, reasoning about
updates is painful in the presence of aliasing. Traditional veri-
fication tools like Dafny and VCC [13] rely on an SMT solver
to reason about aliasing and ownership. For example, Dafny
uses dynamic frames [32], where programmers annotate meth-
ods with modifies clauses to specify which objects each
method may modify. With dynamic frames, programmers can
write arbitrarily complex expressions to compute the set of
modified objects. Programmers can also write arbitrarily com-
plex preconditions and postconditions to specify non-aliasing,
usually by specifying the disjointness of various sets of objects
used in various modifies clauses. The SMT solver must then
reason about these arbitrarily complex expressions, which pro-
vides programmers with great flexibility, but painfully slows
verification [29, §6.2]. Furthermore, this reasoning is mixed
with reasoning about functional correctness properties, often
making it confusing for the developer to diagnose errors: does
a verification failure indicate something deep about the invari-
ants and states, or just a missing non-aliasing requirement?

Recent work on low-level type-safe languages like Rust [33]
point to an alternate strategy, where the language’s type
checker quickly takes care of memory safety and ensures
non-aliasing. Full tools for verifying Rust-like programs [3]
are still under development and are not yet as mature as tools
like Dafny, Coq, and VCC. Therefore, we use Dafny as a start-
ing point and extend it in a more Rust-like direction in two
ways. First, rather than using Dafny’s existing high-level code-
generation backends, we wrote a C++ backend for Dafny that
generates efficient C++ code that does not require a garbage
collector (§5.2). Second, we extended Dafny’s static type
checker to support linear variables (§5.1), which allow us to
reason purely functionally about data that can be mutated and
manually deallocated. This extended type checking needs
no SMT solving and therefore places no burden on the SMT
solver. Section 6.1 describes the use of linearity in our imple-
mentation. Section 7 quantifies the dramatic reduction in proof
code it produces and confirms that our use of linear reasoning
has a negligible impact on run-time performance.

Our approach to linearity combines ideas from linear type
systems [59] like Cogent [2], linear variables in CIVL [36, 51],
and Rust’s ownership borrowing. Crucially, our extended type
system integrates with Dafny’s existing dynamic frames, so
that we can use linearity to speed verification where possible
and fall back to dynamic frames when we need more flexibility.
This allows us to verify the safety of highly-aliased code that
would require run-time checks or unsafe code in Rust, or
would fall outside Cogent’s linearity restrictions.
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function method seq get<A>(shared s:seq<A>, i:uint64) : (a:A)
function method seq set<A>(linear s1:seq<A>, i:uint64, a:A)

: (linear s2:seq<A>)
function method seq free<A>(linear s:seq<A>)

method M(a:array<uint64>, o:seq<uint64>,
linear l:seq<uint64>, shared s:seq<uint64>) ... {

linear var l2:seq<uint64> := l; // ok: consumes l
linear var l3:seq<uint64> := l; // error: l already consumed
var n:uint64 := seq get(l2, 10); // ok: borrows l2
l2 := seq set(l2, 10, 20); // ok: consumes l2, then restores l2
seq free(l2); // ok: consumes l2
seq free(l2); // error: l2 already consumed

}

class BoxedLinear<A> {
function Has():bool
method Give(linear a:A)

modifies this; requires !Has(); ensures Has(); ...
method Take() returns(linear a:A)

modifies this; requires Has(); ensures !Has(); ...
function method{:caller must be pure} Borrow() : (shared a:A)

requires Has(); ...
}

Figure 2: Using linearity in extended Dafny

5.1 Linear Variables

Since aliasing and mutation are expensive to reason about, we
use linearity to express non-aliasing or non-mutation. Specif-
ically, we extend Dafny with a keyword linear to express
non-aliased, mutable values, and a keyword shared to ex-
press aliased, immutable values.

Figure 2 shows example code written in our extended ver-
sion of Dafny. Dafny can express both purely functional
code, with no heap modification, and imperative code that
allocates and modifies heap data. A Dafny method can
perform both functional and imperative operations, while a
function method can perform only purely functional op-
erations. The method M demonstrates various kinds of Dafny
variables. The variables a and o use existing Dafny fea-
tures: a is an ordinary pointer to a mutable array in the
heap, and o is an ordinary immutable sequence. a and o
rely on garbage collection (in C#) or reference counting (in
C++) for memory management. The variables l and s use
our extensions to Dafny: l is a linear (non-aliased) mutable
sequence, and s is a shared (potentially aliased) immutable
sequence temporarily borrowed from a linear sequence. l
and s do not rely on garbage collection or reference counting.
(The declarations linear l:seq<uint64> and shared
s:seq<uint64> are similar in spirit to Rust’s declarations
l:&mut[u64] and s:&[u64], although in Rust’s seman-
tics, l and s are references to sequences, while in Dafny’s
semantics, l and s are sequence values, not references.)

The static type checker flags any attempt to duplicate or
discard a linear variable like l as a type error. In Figure 2,
for example, the attempts to assign l to both l2 and l3 is
a type error, as is the attempt to free l2 twice. The lack of
duplication allows efficient in-place updates at run-time, as
shown in the call to seq set, which sets one element of a
sequence. Despite its efficient implementation, though, the
verifier can reason about the call to seq set in a purely func-
tional way [2, 59], without worrying about aliasing and the
state of the heap. Like Rust and Cogent, our extension to
Dafny allows temporary immutable borrowing from a linear
variable, as shown in the call to seq get. Borrowed val-
ues are tagged as shared, and shared variables cannot be
returned out of the scope of borrowing.

We also extended Dafny to support linear fields in data struc-
tures and linear elements in sequences. In contrast to purely
linear systems [2], our system can verify the interoperation
between the linear data structures and ordinary heap data (like
array). First, it supports linear-to-ordinary references: linear
data structures can hold ordinary fields and sequence elements,
such as Dafny heap pointers and arrays.

Second, to support ordinary-to-linear references, our ex-
tension provides a novel trusted class BoxedLinear<A>,
shown in Figure 2, which stores linear values in ordinary ob-
jects. Each BoxedLinear object is an ordinary heap object,
and references to the object can be freely duplicated, allowing
complex aliasing. However, to take the linear value out of
a BoxedLinear object, the program must prove that the
object currently has the linear value. Taking the linear value
sets Has to false, so that a program can’t take the same linear
value more than once. This prevents the linear value from be-
ing duplicated. In addition, pure functional code (function
methods) can Borrow directly from BoxedLinear with-
out modifying Has. Restricting the scope of the borrowed
value to functional code ensures that no imperative method
can make Has false during the borrow. This approach shows
the power of combining SMT solving with type system linear-
ity: linear variables bring economy and clarity to the common
cases, while SMT reasoning allows greater flexibility (e.g.
using lemmas to prove Has() == true) when needed.

5.2 Compiling to C++

Dafny compiles its code to C#, Java, JavaScript, and Go. When
building a storage system, however, we want more control over
memory layout and management than what these high-level,
garbage-collected languages offer.

Hence, we have added a new C++ backend to Dafny. We
compile Dafny’s immutable datatypes to C++ structs, and
Dafny’s classes and arrays to reference-counted pointers to
their C++ equivalents. We implement Dafny’s immutable
sequences using a C++ struct that contains a shared pointer
to the underlying values, along with an offset and length into
those values. This allows us to optimize operations that extract
portions of a sequence; because sequences are immutable, it is
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safe to implement such operations by returning a new struct
pointing at the same underlying values but with a different
offset and length, rather than copying the values.

When compiling linear variables, we perform updates in-
place, rather than copying. Since linear variables cannot be
silently discarded, we can rely on explicit deallocation (e.g.,
seq free) and do not need to reference count them.

Finally, the backend deliberately does not compile Dafny’s
mathematical integers; it expects the programmer to use
Dafny’s refinement types to define machine integers that can
be (provably) safely compiled to standard C++ integer types.

6 VeriBetrKV: A High-Performance, Verified
Key-Value Store

We present a high-level overview of VeriBetrKV’s implemen-
tation (§6.1) and the structure of its safety proof (§6.2).

6.1 VeriBetrKV’s Implementation

VeriBetrKV implements a copy-on-write Bεtree with a logical
journal for efficient syncs.

6.1.1 BεTree Background

A Bεtree [7] is a write-optimized structure that combines ideas
from B-trees and LSM-trees to dramatically improve insertion
performance versus a B-tree.

For our purposes, Bεtrees have two key properties:
• They support random insertions an order of magnitude

faster than B-trees. They achieve this speedup by accu-
mulating newly inserted key-value pairs high in tree and
“flushing” items from parent to child in large batches.

• They typically use much larger nodes than a B-tree.
Bεtree nodes are often in the range of 1-4MiB, whereas
B-tree nodes are in the range of 4-64KiB. This is because
Bεtrees perform node updates in batch, and hence can
afford to update large nodes without incurring high write
amplification. As a consequence, queries in an “off-the-
shelf” Bεtree are slower than in a B-tree, since each cache
miss must read a larger node. Production Bεtrees contain
optimizations to overcome this problem.

See Bender, et al. [4, 5] for a full exposition of Bεtrees and
an analytical framework for analyzing their performance.

In VeriBetrKV, we use 2MiB nodes on hard disk, 128KiB
nodes on flash, and a fanout of 8.

6.1.2 Node-Buffer Data Structures

Each node in a Bεtree contains a buffer of key-value pairs.
VeriBetrKV has two representations for in-memory nodes: a
serialized format and an in-memory search-tree format. The
former avoids marshaling and demarshaling costs for nodes
low in the tree, which are updated through batch flushes. We
use the search-tree representation only for the root node, which
must support single insertions of new key-value pairs from the
user.

The in-memory search tree is one of the VeriBetrKV’s most
performance-critical components. Thus, we originally wrote

it using Dafny’s dynamic-frames heap reasoning, making it
one of the most difficult pieces of code in our implementation.

We then rewrote it using our linear type system (§5). From
the verifier’s perspective, this eliminated all heap-mutating
code. Furthermore, the type system gave immediate feedback
on linear typing errors, enabling rapid development. Section 7
quantifies the reduction in proof code and shows that the shift
to linear reasoning had no noticeable impact on performance.

The in-memory search tree also demonstrates the utility of
the integration between our linear type system and Dafny’s
builtin Floyd-Hoare reasoning. Each node in our in-memory
search tree maintains a linear sequence of linear (pointers to)
children. When we split a node, we need to copy half of those
child pointers to the new left-hand node, and half of them to
the new right-hand node. In a standard linear type system,
such as in Rust, we cannot “take” a subset of the values out of
a linear array, and we would have to resort to unsafe code or
incur the run-time overhead of using an Optional type for
each array element.

With our linear type system, each linear sequence s
has an associated boolean ghost2 sequence, lseq has(s),
that serves the same purpose as the Has predicate of the
BoxedLinear class in Figure 2. When we remove the
child pointers for the new left-hand node the ghost se-
quence becomes false for each index i that we take.
However, this does not prevent taking the remaining chil-
dren for the right-hand node, since Dafny infers that
lseq has(children)[i] is still true for those indices.

6.1.3 Caching, Copy-on-Write, and Indirection Tables

VeriBetrKV maintains a cache (BlockCache) of recently ac-
cessed nodes, using an LRU eviction policy. The cache is free
to write back a node at any time, which is safe because Veri-
BetrKV uses copy-on-write. The BlockCache is oblivious to
the data structure it caches. It resembles a kernel buffer-cache,
except (a) its allocation unit is a type parameter so we can
allocate tree nodes, (b) it tracks inter-block references and
garbage collects blocks.

VeriBetrKV implements crash safety by maintaining three
copy-on-write Bεtrees: a persistent tree, a frozen tree, and an
ephemeral tree. New inserts go into the ephemeral tree, the
frozen tree is in the process of being made durable, and the
persistent tree is the previous tree that was made durable.

Each tree is defined by an indirection table, which maps
logical node IDs to physical disk addresses. Parents refer
to children by logical node ID, and the cache is indexed by
logical ID. Since nodes are large, the indirection table is small.
For example, the indirection table for a 1TiB disk is only
24MiB.

To sync the tree to disk, we write out all dirty nodes, write
the indirection table, and then write a superblock pointing
to the indirection table. VeriBetrKV keeps two superblocks,

2i.e., a data structure used for proof purposes only, not compiled code
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alternating between them, and using a counter to detect which
one is newer. We call this process a checkpoint.

VeriBetrKV ensures that checkpoints capture a point-in-
time-snapshot as follows. When we begin a checkpoint, all
dirty nodes in the live indirection table are marked as “write-
back-before-editing”. Since these nodes are now also refer-
enced by the indirection table of the in-progress checkpoint,
we must write them to disk before modifying them in cache.
Note that we need not wait for the write to complete: if the
system crashes before the write completes, then the system
will boot from the previous checkpoint.

The indirection table in VeriBetrKV is implemented as a
linear-probing hash table. As with the in-memory search tree,
we initially implemented this using Dafny’s dynamic frames.
In order to isolate the complexities of heap reasoning, we
essentially wrote the hash table twice. The first version used
immutable data structures, and served as a precise, low-level
description of the hash table’s behavior. We then wrote it a sec-
ond time using mutable arrays, proving that each step exactly
followed the algorithm in the functional model. This approach
separated the proof of functional correctness from the proof
of correct heap manipulation, but it meant implementing the
hash table twice.

We then reimplemented this hash table using our linear
Dafny extensions. In this version, the low-level functional
model of the algorithm, suitably annotated with linear and
shared keywords, is the implementation, cutting the amount
of code substantially (§7).

6.1.4 Optimizing Syncs with a Journal

When applications perform frequent syncs, writing out every
dirty node for each sync becomes expensive. For example, if
an app performs a sync after every insert, then each sync must
write out the root node (2MiB) to persist a single insertion.

We solve this problem with a journal of logical operations.
Each insertion is recorded in an in-memory journal as well as
inserted into the Bεtree. When the application requests a sync,
we simply write the in-memory journal to disk.

Journal space is reclaimed as part of a checkpoint.

6.2 VeriBetrKV’s Proof

VeriBetrKV weaves several modularity techniques together to
manage the complexity of the code and its correctness argu-
ment. We use modular Hoare logic to reason about implemen-
tation code and reusable templated state machine models and
IOSystem composition (§3.2) to reason about how that code
behaves in an asynchronous environment. IOSystems gener-
alize well to this new context of storage systems, and reuse
well as we develop a correctness argument up through layers
of abstraction. Overall, this blend of techniques is sufficient
to modularize the complexity of a modern high-performance
storage architecture.

6.2.1 VeriBetrKV’s Refinement Proof

Below, we describe how simple state-machine refinement suf-
fices to reason about the correctness of our Bεtree assuming it
existed in memory on a crash-free machine (§6.2.2).

To manage complexity, we modularize our proof by sep-
arating the reasoning about the journal subsystem and the
crash-safe Bεtree storage subsystem. We further modular-
ize the Bεtree proof by separating caching logic from Bεtree
manipulation logic.

6.2.2 Simple State-Machine Refinement

State-machine refinement enables designers to organize high-
level correctness arguments in isolation from its low-level
details, and then ignore abstract concerns when writing im-
plementation code [40]. For example, suppose we want to
prove that a single, unfailing process correctly implements an
in-memory Bεtree ( 1© in Figure 3).

• The application spec is a Map that updates and queries a
key-value relation.

• An abstract Bεtree inserts messages into nodes arranged
in a tree, where each node is an infinite map. This model
has enough detail to define query semantics over that
tree, but the (unimplementable) nodes elide detail that is
addressed below.

• The Bεtree defines the node data structure that clumps
the infinite key range into finite buckets at pivot keys.

• ImplBεtree is compilable real imperative code, organized
with Hoare logic, with details like mutable data structures
and 64-bit integer overflow (gray in the diagram because
VeriBetrKV does not have a purely in-memory Bεtree).

The refinement arrow between the Bεtree and the abstract
Bεtree concerns only the relationship between pivot nodes
and infinite-map nodes; it ignores higher-level concerns (the
tree shape) and lower-level concerns (efficient data structures).
This application of refinement gives the developer the freedom
to modularize the correctness argument.

6.2.3 VeriBetrKV’s IOSystem Refinement

Of course, VeriBetrKV’s Bεtree does not necessarily run with-
out crashing, and it interacts with an asynchronous byte-level
disk, so that the full data structure is stored on disk but cached
in memory. Hence, to prove its safety, we repeatedly apply
the techniques from §3.2 to prove that the storage IOSys-
tem state machine (§3), when instantiated with VeriBetrKV’s
program state machine, refines the application-facing specifi-
cation (§3.1.2).

A good specification of a crash-safe system needs to be able
to describe how data is recovered upon crash. Our specification
has an ephemeral state and a persistent state. All user opera-
tions (e.g., queries and inserts) are applied to the ephemeral
state; if there are no crashes, the user will observe the behavior
of a simple dictionary. On a crash, the ephemeral state reverts
to the persistent state; the persistent state therefore represents
the state made persistent to disk. Background operations can
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Figure 3: Structure of VeriBetrKV’s correctness argument.

update the persistent state to a newer state. Two transitions,
sync start and sync end are defined such that, when
sync end runs, the persistent state will have updated to the
ephemeral state from the sync start (or a newer version).
We call this generic specification CrashSafe〈T〉, parameterized
over a state machine T. In our case, the top-level specification
will be CrashSafe〈Map〉.

The CrashSafe〈T〉 template is an abstraction of our
BlockCache〈T〉 template state machine, which interacts with
a disk but is oblivious to the data structure it caches. We prove
generically that if concrete type Tconc refines an abstract type
Tabs, then an IOSystem containing a BlockCache〈Tconc〉 and a
disk refines a CrashSafe〈Tabs〉.

We apply this generic result at the next level down 3©, where
we instantiate the type-oblivious BlockCache〈T〉 template
with the IO-oblivous Bεtree (§6.2.2). Leveraging refinement
1©, this proves that BεtreeIOSystem refines CrashSafe〈Bεtree〉

and hence CrashSafe〈Map〉.
In a sibling library, we prove that the JournalIOSystem

refines JournalViewMap, an abstract summary of journal be-
havior, including components for journal entries persisted to
disk, journal entries being written, and journal entries in mem-
ory. Ordinary state machine composition pulls those together
into the CompositeViewMap, an abstract summary of the
state-machine composition BεtreeJournalIOSystem. The Com-
positeViewMap is shown to implement a CrashSafe〈Map〉:
an abstraction function applies updates in JournalViewMap’s
journals to the map states in CrashSafe〈Map〉 to obtain the
application-spec CrashSafe〈Map〉.

Thus, we have refined from the application spec to a model
3© of the VeriBetrKV’s two main components, each modeled
as separate systems, each of which uses a high-level “disk”
that stores its client’s internal datatype representation.

One layer down, the ConcreteIOSystem 4© introduces a real
byte-level disk-IO interface. The program component of this
IOSystem is the ConcreteCache, which includes marshaling
and demarshaling functions on top of the JournalCache and
BlockCache〈Bεtree〉. The ConcreteCache refines 5© the Both-
Cache. The disk component of the ConcreteIOSystem is our
low-level disk model, the Disk〈byte〉, which refines 6© Parti-
tionedDisk via the same marshaling functions. This refinement
relies on an invariant that Disk〈Journal〉 and Disk〈Bεtree〉 ac-
cess mutually-disjoint regions of the disk. With these two
refinements in place, we transpose the four subcomponents
(dashed green arrows) and obtain a refinement 7© from Con-
creteIOSystem to BεtreeJournalIOSystem. This rearrange-
ment is crucial to allow us to reason about BetreeIOSystem
and JournalIOSystem separately.

ConcreteCache is the lowest-level model of the program,
including all of the components (Bεtree, journal, indirection
table, byte-level IO interface). It remains to show that our
imperative heap-mutating code 8© refines ConcreteCache. To
do so, we show that each handler invocation in the code cor-
responds to a Next transition in the ConcreteCache state
machine. Because ConcreteCache is a low-level model, this
task decomposes nicely along Hoare-logic call-graph bound-
aries: calls to update the journal advance the JournalCache
sub-component, leaving the Bεtree unchanged, and vice versa.

6.2.4 VeriBetrKV’s Floyd-Hoare Proof

The top-level API methods of VeriBetrKV’s implementation
( 8©) use Floyd-Hoare logic to show that their operations corre-
spond to transitions of the ConcreteCache state machine. Of
course, the ConcreteCache is only one component of the Con-
creteIOSystem ( 4©), and likewise, the implementation code
interacts with the disk only via a trusted interface.

At the implementation level, we do not reason about the
disk itself—we reason only about interactions via the trusted
interface. Transitions of the ConcreteCache state machine are
labeled with disk ops. Each disk op is either a no-op (i.e.,
no disk interaction), an I/O request, or an I/O response. The
disk-op labels are “visible” to the ConcreteIOSystem: the
ConcreteIOSystem state machine is defined in terms of the
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Major component spec impl proof
Map, CrashSafe〈Map〉 283 82 818
AbstractBεtree 0 70 2024
Bεtree 0 137 7079
CompositeViewMap 0 26 823
BεtreeIOSystem 0 246 6510
ConcreteIOSystem 270 68 2887
implementation code 180 5380 21697
libraries 477 364 2847
total 1210 6373 44685

Table 1: Line counts [60] by major components in Figure 3.

hash table search tree
Aliasing reasoning impl proof impl proof
Dynamic frames 289 1678 289 2220
Linear type system 289 1063 373 1531

Table 2: Line counts [60] of two subcomponents, compar-
ing dynamic-frame implementations with our linear type sys-
tem.3 Linear typing reduces the proof burden by 31–37%

ConcreteCache’s interaction with the disk via disk ops.
Thus, the Floyd-Hoare logic in our implementation does

not need to reason about the disk proper. Rather, it only needs
to show that each interaction with the trusted disk interface
corresponds to a disk op which is valid according to the Con-
creteCache state machine.

Overall, our proof shows that an executable built from our
implementation’s code, if run on a real host with a real disk that
meets our assumptions, will behave as the ConcreteSystem
does, and hence as a CrashSafe〈Map〉. We have connected not
just code, but a system with a disk and the possibility of the
code crashing, up to the app spec.

7 Evaluation
Our evaluation addresses two main questions:

1. Do our automation-control techniques (§4) and language
improvements (§5) improve the developer experience?

2. Can our verification methodology scale to the complexity
of a modern key-value-store data structure, and can we
deliver the performance gains of write optimization?

7.1 Developer Experience

Measuring Tedium. We estimate the amount of tedium (or
conversely, the efficacy of automation) by the ratio of the lines
of proof (e.g., lemmas, pre-/post-conditions, loop invariants)
to the lines of executable implementation code. This is not a
precise model, since it measures a completely verified artifact,
where the developers may have cleaned up temporary lines of
tedium that were typed in the course of resolving verification
failures. However, the proof text in the “cleaned up” code at
least reflects the tedium needed to bridge what automation
could not manage by itself.

Table 1 gives line counts for VeriBetrKV, organized by
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Figure 4: Cumulative distribution of verification times of func-
tion definitions, implementation methods, and proof lemmas.
Most definitions–99.0%–verify in less than 20s, and 98.3%–
verify in less than 10s.

the major components shown in Figure 3. We see that the
proof ratio for the implementation code is 4:1, which grows
to 7:1 when including all system refinement proofs (“total”).
This is comparable to the distributed, in-memory key-value
store verified in previous work [29], which also reports a 7:1
ratio. However, VeriBetrKV’s implementation is 3× larger,
indicating that automated verification techniques can scale to
larger systems without super-linear effort.

The results also show that VeriBetrKV’s implementation is
more than 5× larger than its specification, giving us reason
to hope that the specification is less likely to contain bugs
than an unverified implementation. We have observed no
correctness or data loss bugs at runtime; we have seen liveness
and performance bugs.

Table 2 compares two VeriBetrKV components that we
wrote using both dynamic frames and linear reasoning. The
results show that switching to linear reasoning saves tedium,
reducing proof overhead by 31–37%. Our qualitative expe-
rience was that development of linear code was much more
pleasant than dynamic frames because the linear typechecker
quickly and unambiguously identifies aliasing problems.

One interesting datum for tedium is the effort develop-
ers spend on test infrastructure in conventional development.
RocksDB has a 0.99:1 ratio between test and production code
(measuring its db, java, utilities, third-party,
and tools directories). BerkeleyDB’s ratio is 0.45.
Measuring Proof-Attempt Latency. To assess the success
of our discipline for keeping automation under control (§4),
we measure the time to verify individual proof units (e.g.,
definitions, methods, or lemmas) where developers spend most
of their time waiting for verification results. This estimates
the developer’s perception of the latency of the verification-
development cycle.

Figure 4 demonstrates that VeriBetrKV almost always ex-
hibits interactive verification times, with 98.3% of definitions
verifying in under 10 seconds, and 99.0% in under 20 seconds.
This suggests that our timeout-averse development policy is

3The implementation of the hash table (with dynamic frames and the
linear type system) and search tree (with dynamic frames) coincidentally have
identical line counts, despite being unrelated.
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Figure 5: VeriBetrKV manually hides 308 definitions (18% of
all system definitions), revealing them 1403 times. This metric
reflects the effort involved in explicitly managing automation.

effective. The figure reveals that we did not apply our policy
with perfect consistency, as 37 proofs do take longer than 20s
to verify. Of those, 54% involve dynamic frames.

It is difficult to capture every place we applied the policy.
As a proxy, we can count places where we explicitly hid a
definition. This both overestimates the cost of the policy
(because sometimes we hid a definition based on intuition,
before observing a timeout) and underestimates it (because
automation can be controlled with other techniques).

These approximations aside, Figure 5 gives an idea of the
burden of controlling automation. We hid 308 definitions, 18%
of all definitions in the system. These hidden definitions are
manually revealed 1403 times. Of the 308, 52 were never
revealed: the salient properties of the definition could be ex-
ported as a postcondition without causing timeouts. 74% of
hidden definitions are revealed no more than five times; their
essential features are captured in lemmas or wrapped into
higher-level definitions.

One of the motivations for introducing linear types into
Dafny (§5) is to remedy slow verification of dynamic frames.
For the fragment of VeriBetrKV we converted to linear reason-
ing, we compared interactive verification times (as in Figure 4)
against the original dynamic frames code. The maximum
method-level interactive verification time dropped 10s to 32s,
and the 99th percentile dropped 1.3s to 4.8s.

Developers are typically less sensitive to the latency of
continuous-integration builds that check that the system as a
whole still verifies. For VeriBetrKV, these take 1.8 hours of
CPU time, but thanks to the inherent parallelism of modular
verification, complete in 11 minutes on 32 cloud machines.

7.2 Performance

Our performance evaluation addresses two questions:
1. Does VeriBetrKV demonstrate the insertion-performance

gains of write-optimized data structures?
2. Does our linear extension produce code with performance

comparable to hand-written code using dynamic frames?
All experiments were run on cloud instances with directly

attached physical storage. The HDD experiments and sub-
component microbenchmarks are run on AWS EC2 d2.xlarge
instances, with 4x hardware hyperthreads on a 2.4 GHz Intel

Xeon E5-2676 v3. The SSD experiments are run on AWS EC2
i2.xlarge instances, with 4x hardware hyperthreads on a 2.5
GHz Intel E5-2670 v2 and a SATA SSD.

7.2.1 YCSB

Figure 6 shows throughput for VeriBetrKV, BerkeleyDB, and
RocksDB on the YCSB benchmarks [14] on hard drive and
SSD, including the load phase for workload A, and a uni-
formly random query workload (labeled as workload “U”).
All systems are limited to a single core.

There are three main take-aways from these measurements.
First, VeriBetrKV demonstrates the performance gains of us-
ing a write-optimized data structure. For the load phase on
hard drive, which consists of a pure random insertion work-
load, VeriBetrKV is over 25× faster than BerkeleyDB. Even
on SSD, where random I/O is much cheaper, VeriBetrKV
modestly outperforms BerkeleyDB on insertions.

In contrast, VeriBetrKV is roughly 8× slower than
RocksDB on hard disk and 4× slower on SSD. Investigation
identified three contributing factors: First, where Rocks relies
on the kernel buffer cache, VeriBetrKV manages its own cache
memory. Its effective cache size is reduced due to malloc frag-
mentation and conservative allocation to avoid violating the
cgroup. Simulating an efficiently-allocated 1.8GiB Bεtree
node cache improves performance to over 13K insertions per
second on HDD. Second, VeriBetrKV fails to overlap CPU
with flush I/O: a twelve-minute run spends four minutes in
CPU and eight minutes waiting for I/O, accounting for roughly
a 2/3× slowdown. Third, VeriBetrKV performs 1.5× more
I/O than Rocks in YCSB-Load; about half of the extra I/O is
due to a suboptimal checkpointing policy.

The second main take-away is that queries in VeriBetrKV
are about 4× slower than on RocksDB. The fragmentation
penalty again explains a 2× factor; with a simulated 1.8GiB
cache, VeriBetrKV and Rocks both perform 300K I/Os in
serving 1M YCSB-C queries. Furthermore, we observed
most Rocks I/Os are 4-8KiB (one or two buffer cache pages),
whereas most VeriBetrKV I/Os are 1.5MiB (an entire Bεtree
node). This I/O size difference combined with the measured
seek and read bandwidth of our hard drives explains the re-
maining gap. We plan to change our marshalling strategy to
enable reading fields without fetching the entire node.

The final take-away is that at a macro-level our linear imple-
mentation has essentially the same performance as the version
with hand-tuned code using dynamic frames reasoning.

Overall, we conclude that VeriBetrKV demonstrates that a
verified system can achieve the performance gains of a write-
optimized storage system, but it needs further optimization to
match highly-tuned commercial implementations.

7.2.2 Linear Data Structures

Figure 7 shows the performance of our linear and dynamic-
frames-based hash-table and search-tree implementations. The
main take-away from both experiments is that, even in mi-
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Figure 7: Median throughput of subcomponent microbench-
marks. Higher is better. Error bars are min/max of 6 runs.

crobenchmarks, the linear and non-linear implementations
have very comparable performance.

The hash table benchmark inserts 64 million key-value pairs,
performs 64 million positive and 64 million negative queries,
and then deletes everything in the hash table. The keys are
selected pseudo-randomly and are distributed uniformly in
the 64-bit key space. The linear version is slightly faster than

the non-linear version, except for deletes, which are slightly
slower. We suspect the speedup comes primarily from the lack
of shared pointer overhead.

The search-tree benchmark measures the time to insert 8
million key-value pairs in pseudo-random order and then query
them all in the same order. Performance for the linear version
is close to the non-linear version, but slightly faster for queries
and slightly slower for inserts. We believe queries are faster
due to the elimination of shared pointer overheads, and the
insertions are slower due to the overheads of destructing nodes
on the way down the tree and reconstructing them on the way
back up.

Our modifications to add linear types to Dafny consist of
1900 lines (3%); the C++ backend changes, which include
linear features, add another 3100 lines (7.5%).

Overall, our linear type system enables us to construct per-
formant code without the challenges of dynamic frame reason-
ing.

8 Related Work
IronFleet [29], VeriBetrKV’s most direct intellectual ancestor,
verifies distributed systems of fail-stop nodes. Its verification
strategy uses a refinement hierarchy with just two layers: one
from imperative code to a protocol state machine, another
from there to application spec. VeriBetrKV’s implementation
contains more components (an in-memory B-tree and hash ta-
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ble, a block cache, and a journal), and the Bεtree, its core data
structure, is substantially more complicated. Hence VeriBe-
trKV’s implementation is 3× larger than IronFleet’s sharded
distributed key-value in-memory-only store.

8.1 Verified Storage Systems

FSCQ’s Crash Hoare Logic[12] modifies Hoare logic to explic-
itly reason about crashes, enabling crash reasoning to follow
Hoare clauses up the implementation call graph. It does not
employ refinement reasoning. FSCQ reasons about potentially
repeated crashes during the recovery procedure; VeriBetrKV
avoids such reasoning by virtue of a design whose recovery
procedure requires no disk writes. FSCQ’s implementation is
functional code extracted to Haskell, so the framework gives
the developer less low-level control than VeriBetrKV.

DFSCQ [11] contributes an application spec for how crashes
interplay with the separate fsync and fdatasync opera-
tions. Production file systems like ext4 provide these opera-
tions to offer greater performance at the cost of an application
spec even more relaxed than the general sync operation that
covers all updates (as in VeriBetrKV). DFSCQ’s implementa-
tion exploits this freedom to defer writes.

Yggdrasil uses refinement to show implementation func-
tional correctness relative to a specification [54]. Crashes in
the environment are implicit, and the app spec only promises
linearity, requiring the implementation to sync on every mutat-
ing client operation (or group commit). It cannot exploit the
performance benefit of deferring writes until an application-
specified sync. Its disk model includes asynchronous I/O
but has no concept analogous to an IOSystem. Its pushbut-
ton approach to verification constrains the structure of the
implementation and proof, but in exchange produces a very
favorable proof:code ratio, reported at 1:300.

As discussed in §5, our linear extensions to Dafny are in-
spired by multiple sources [2, 33, 36, 51, 59]. Most relevant
to systems verification is the Cogent language [2], which is a
restricted functional language that certifiably compiles to C
code. Amani et al. use Cogent to develop two file systems,
each about 4K lines of native C. They verify two functional
correctness properties of one of the file systems, with the aim
of eventually proving both functional correctness and crash
safety. The Cogent language is an impressive foundational
effort and its certifying compiler provides a stronger guar-
antee than our simple but trusted changes to Dafny’s type
system. Our type system’s linear variables are similar in spirit
to Cogent’s linear types, but our work also integrates linearity
directly with Dafny’s dynamic frames, enabling us to move
smoothly back and forth between linear and non-linear reason-
ing about memory.

It is difficult to make meaningful performance comparisons
between our durable key-value store and file systems: File sys-
tems provide richer semantics, such as bulk directory rename.

8.1.1 Concurrent Storage

AtomFS [66] is a compute-concurrent file system with fine-
grained (per-inode) locks, but it does not reason about crash
safety. CSPEC [9] verifies a compute-concurrent mail server
absent crash safety. It verifies 215 lines of Coq implemen-
tation with 4,050 lines of proof. Perennial [10] verifies a
compute-concurrent, crash-safe mail server. Perennial extends
a capability separation logic with crash-safety-specific con-
cepts, with which it builds a refinement argument. Perennial
verifies 159 lines of concurrent Go with 3,360 lines of proof.
Drawing on techniques from these systems would allow Veri-
BetrKV to scale further via parallelism.

8.2 Automation Strategies

A line of work on “push-button” verification [45, 46, 54, 55,
64, 65] accepts constraints on system structure in exchange
for maximizing automation. The developer constrains their
imperative code to bounded executions and writes invariants
to span independent handler invocations. Such handlers could
not walk down a tree of arbitrary depth, as happens in Veri-
BetrKV’s Bεtree and search tree. Supporting longer bounded
executions requires framework improvements [45] rather than
creating a modularization job for the developer.

Taube et al. [57] employ a restricted fragment of logic [49]
to verify distributed system implementations, including
Raft [48] and Multi-Paxos [39]. By restricting the descrip-
tion of the protocol and its properties to a decidable logic, this
approach guarantees that a solver can always return either a
decisive answer. While the developer still must supply invari-
ants, the remaining proof work is entirely automatic. The cost
of this approach is that it force the developer to restate defini-
tions unnaturally, and decidable verification is still subject to
combinatorial slowdown as the scope of definitions grows.

The exploration of extreme points in the automation space
is promising, but limitations on expressiveness and design
motivate us to stick with developer-guided proofs, and instead
use automation to make it as cheap as possible.

8.3 Additional Verified Systems

The seL4 verified microkernel is the seminal systems verifi-
cation project [34], demonstrating the feasibility of verifying
software at the scale of thousands of lines. C code refines a
Haskell functional model of the implementation, which refines
a high-level specification for the behavior of system calls.

CertiKOS [27] proves a concurrent microkernel implemen-
tation correct using refinement of state machines it calls “lay-
ers” expressed in a side-effect free subset of C. It introduces
the notion of contextual refinement to reason about concurrent
state machines in isolation [28].

Verdi [61] uses Coq to verify distributed systems by proving
the correctness of a series of “system transformers” that take
a high-level protocol description running in a friendly envi-
ronment and transform it into a protocol that is safe in a more
hostile environment (e.g., where packets can be dropped). The
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signature transformer is a verified implementation of Raft [62].
In a sense, Verdi is a distributed systems analog to correctness-
preserving compiler transforms.

9 Conclusion
In this work, we extracted a general methodology for veri-
fying asynchronous systems from prior work and applied it
to storage systems. In doing so, we developed a verification
discipline and a novel integration of linearity with dynamic
frame reasoning to reduce the burden of verifying systems
code. Because we applied a generic methodology, we expect
these improvements to apply equally well to the verification
of other asynchronous systems. In future work, we would like
to extend the methodology to also support thread-concurrent
systems with shared memory, utilizing our linear type system
to manage memory ownership.

Ultimately, our implementation and proof of crash safety
for VeriBetrKV, a complex, modern storage system, show
that automated verification techniques can scale to larger code
bases without increasing the proof burden relative to simpler
systems.
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A Artifact Appendix
A.1 Abstract

The evaluated artifact is provided as Docker images that con-
tain the source code to VeriBetrKV, build instructions to run
the verification as well as run the performance experiments
and draw the graphs corresponding to those in §7 with the
generated data.

A.2 Artifact check-list
• Algorithm: A verified Bεtree-based key-value store.

• Program: VeriBetrKV as described in this paper.

• Compilation: Dafny/C++ compiler, included in Docker image.

• Data set: YCSB generated workload

• Run-time environment: Docker

• Hardware: Any x64; provide a data store directory on HDD
or SSD as desired

• Run-time state: KV store backing files

• Output: PDFs containing graphs corresponding to §7

• Required disk space: 20GiB

• Expected experiment run time: Several hours

• Public link: https://github.com/
secure-foundations/veribetrkv-osdi2020/
blob/master/README.md

A.3 Description

A.3.1 How to access
Follow the README at https://github.com/
secure-foundations/veribetrkv-osdi2020/blob/
master/README.md. You can either run the binary Docker
distribution, or build it yourself.

A.3.2 Hardware dependencies
You will need any x86 CPU, plus HDD and/or SSD storage devices
for the performance measurements.

A.3.3 Software dependencies
All required dependencies are included in the Docker image.

A.3.4 Data sets
Performance experiments use the YCSB benchmark, for which the
source and configuration are included in the Docker image.

A.4 Installation
You can either download the GitHub release,
veribetrkv-artifact-hdd, and load the image with
docker load -i veribetrkv-artifact-hdd.tgz

or build it yourself with
cd docker-hdd
docker build -t veribetrkv-artifact-hdd .

A.5 Experiment workflow
The README explains how to launch the experiments by running
scripts from outside Docker. The scripts will generate PDFs that
reproduce the results from the paper.

A.6 Evaluation and expected result
The graphs in the output PDFs should correspond to those in §7,
modulo variation in the experimental hardware.

A.7 Experiment customization
The README at the link above provides details on how to modify
the experiment scripts in the Docker container.

A.8 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/
call-for-artifacts
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