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Abstract
We describe the design and implementation of Protean – the
Microsoft Azure service responsible for allocating Virtual
Machines (VMs) to millions of servers around the globe. A
single instance of Protean serves an entire availability zone
(10-100k machines), facilitating seamless failover and scale-
out to customers. The design has proven robust, enabling a
substantial expansion of VM offerings and features with min-
imal changes to the core infrastructure. In particular, Protean
preserves a clear separation between policy and mechanisms.
From a policy perspective, a flexible rule-based Allocation
Agent (AA) allows Protean to efficiently address multiple
constraints and performance criteria, and adapt to different
conditions. On the system side, a multi-layer caching mecha-
nism expedites the allocation process, achieving turnaround
times of few milliseconds. A slight compromise on allocation
quality enables multiple AAs to run concurrently on the same
inventory, resulting in increased throughput with negligible
conflict rate. Our results from both simulations and produc-
tion demonstrate that Protean achieves high throughput and
utilization (85-90% on a key utilization metric), while satis-
fying user-specific requirements. We also demonstrate how
Protean is adapted to handle capacity crunch conditions, by
zooming in on spikes caused by COVID-19.

1 Introduction

The Cloud has revolutionized the way computing resources
are consumed. Providers allow end-users easy access to se-
cure, elastic and state-of-the-art resources, while applying
efficient management techniques in order to optimize their
return on investment. In particular, resource virtualization
is used to maximize the utilization of the underlying hard-
ware. Consequently, one of the most crucial components in
the cloud stack is the Virtual Machine (VM) allocator, which
assigns VM requests to the physical hardware. Indeed, sub-
optimal placement decisions can result in fragmentation (and
in turn, unnecessary over-provisioning of physical resources),
performance impact and service delays, and even rejection of
incoming requests and customer impacting allocation failures.

In this paper, we describe in detail the VM allocator for
Azure – one of the leading cloud service providers in the

∗O.H, L.M, I.M and A.P contributed equally to this paper.

world. Azure provides and manages infrastructure for SAAS,
PAAS and IAAS workloads. Its fleet consists of millions of
physical machines spanning more than a hundred countries.
Azure offers more than 500 different VM types tailored to
a vast array of application requirements reflected in the vir-
tual resource specification of each VM. VMs serve as the
primary units of (multi-dimensional) resource allocation, and
the means through which customers are able to leverage the
rich array of computing services offered by Azure; see §2 for
an analysis of Azure workloads.

The rapid growth of Azure both in terms of its feature set
and massive geo-scale mandated that its core VM allocator be
designed in a robust manner. First, the allocator logic must be
extensible – to efficiently facilitate new features, constraints
and offerings over time. Second, close attention was given to
flexibility – in our context, the ability to configure the allocator
to different working conditions and scenarios. Third, the core
algorithms had to be highly optimized: Given Azure’s scale,
even 1% in fragmentation reduction can lead to cost savings
in the order of $100M per year.

From an operational perspective, the total demand in Azure
is in the order of millions of VMs per day. Such large scale
leads to a complicated system challenge – satisfying this high
request rate while maintaining fast response times and high
resource utilization. In principle, an allocation service needs
to control a sufficiently large inventory of underlying capac-
ity (or domain), so that new requests assigned to the domain
can be accommodated, and customers within the domain can
scale-out (namely, get additional VMs upon request). How-
ever, controlling a large inventory inherently impacts the la-
tency of an allocation. To avoid unacceptable delays, a design
must include efficient mechanisms for determining the phys-
ical placement of the VM. In addition, to achieve adequate
throughput, the system architecture may incorporate multiple
allocation processes [43]. Parallelizing the allocation logic
introduces new challenges, such as sustaining high resource
utilization while keeping conflicts to a minimum.

While some of these challenges have been discussed in
similar contexts [17, 38, 43, 48], most previous works either
do not provide full details on the design and implementation,
or resort to simulation studies (or small size implementations)
without providing comprehensive evaluation from a global-
scale production deployment. In this paper, we describe the
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design, implementation and evaluation of Protean, the core
allocation service governing all VM placement and resource
allocation in Azure. An instance of Protean operates at the
granularity of an availability zone (typically 10-100 thousands
of machines), which allows for high acceptance rates and
seamless scale-out capabilities.

To achieve the desired robustness while controlling such
large inventories, Protean’s design provides a clear separation
between policy and system mechanisms. Policy is expressed
through a flexible rule-based Allocation Agent (AA), which
addresses multiple constraints and performance criteria for
allocating VMs. AA’s logic is inherently extensible; rules can
be refined and added with minimal disruption to the system.
Crucially, the rule-based semantics foster explainability, and
force clear and conscious trade-offs between the numerous
metrics and optimization criteria. On the system side, a multi-
layer caching infrastructure keeps track of previous allocation
outcomes through efficient update mechanisms, resulting in
an order of magnitude reduction in turnaround time compared
to a system without this caching layer. Notably, the memory
footprint of the cache is manageable (e.g., around 1GB for
10k machines), and scales sublinearly with the number of ma-
chines. By slightly compromising on the allocation quality,
we enable multiple AAs to run concurrently, resulting in in-
creased throughput with negligible conflict rate. The number
of AAs, as well as key rule parameters, are tuned at a slow
time-scale using production data.

Our results from real production measurements and a vari-
ety of simulations demonstrate that Protean achieves low la-
tency (typically 20ms per VM), while satisfying user-specific
requirements and values of 85-90% for a key utilization met-
ric. Importantly, Protean can easily satisfy the peak demands
observed in production (up to 2000 requests per second), and
may sustain much higher throughput if needed, as demon-
strated in simulations §6.2. In addition, we show how Protean
adapts to different conditions, by focusing on recent capacity
challenges during the COVID-19 crisis. In particular, we dis-
cuss how Protean seamlessly allowed critical control-plane
policy changes that were required to support the sudden in-
crease in demand. In summary, our main contributions are:

• We provide a detailed analysis of the workload and inven-
tory of Azure. Our analysis (§2) reveals key characteristics,
which motivate Protean’s design.
• We design a flexible rule-based allocation agent (§3), which

allows operators to incorporate new logic and explain allo-
cation outcomes to customers.

• To our knowledge, we provide the first detailed account of
the allocation logic and key implementation details of a
core VM allocator in a leading public cloud provider. Our
implementation includes a novel caching infrastructure
tailored to expedite the VM allocation process (§5).

• We evaluate Protean using extensive measurements from
geo-scale production, and augment these evaluations with

Azure

Region

Availability Zone Protean

Datacenter

Cluster

Cluster

Rack

Rack

Rack
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Figure 1: Azure Cloud Topology: Regions consist of avail-
ability zones, each of which comprise several datacenters that
house racks of servers.

low and high fidelity simulators where necessary (§6). Our
results show that Protean achieves low latency and high
throughput while sustaining high utilization under diverse
operating conditions.

2 Background and Motivation

2.1 Azure – A Global-Scale Public Cloud

The inventory. The global Azure inventory is arranged in a
hierarchy of regions and availability zones, exposed directly
to the customer. A region can have up to three zones, each in
turn consisting of one or more datacenters (see Fig. 1). Each
datacenter is divided into clusters and racks. There is no strict
upper bound on the size of a zone or a datacenter. Our larger
zones have over a hundred thousand machines, spread over
more than a hundred clusters, with each cluster having around
a thousand machines. The smaller zones have only around a
thousand machines.

The inventory within a zone is typically heterogeneous,
with machines ranging across multiple hardware generations
and Stock Keeping Unit (SKU) configurations, including spe-
cial servers for HPC, GPUs, etc. Table 1 summarizes the
distribution of the different hardware generations for one of
the zones. In this case, the bulk of the inventory belongs to
two generations, while the others represent a generation that is
being decommissioned, and a new generation that is in early-
stage deployment. In contrast to zone heterogeneity, a cluster
is a homogeneous set of machines (e.g., identical SKUs and
configurations) spanning multiple racks; each cluster supports
most VM types. In §3.2 we discuss how we exploit cluster
homogeneity to improve request latency.
The workload. As mentioned, Azure exposes numerous op-
tions for renting VMs. Users specify their requirements in
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Gen Cores Per Machine # Machines

3 10 7295
4 24 34208
5 40 18016
6 48 2064

Table 1: Distribution of hardware generations for a zone. In-
dividual similar SKUs are aggregated within each generation.

the form of an service request. Each zone may accommo-
date millions of requests per day. A service request consists
of one or more VM requests, grouped as a tenant. The ten-
ant service model expresses the relationships and constraints
imposed on these VMs. An allocation succeeds only if all
the requested VMs within a tenant are successfully allocated
(gang-scheduling). A service model specifies the type of each
VM (which in turn determines the core, memory, disk, or net-
work requirements for the VM), fault domain requirements,
and priority of the service. By default, the tenant VMs can
be spread across the entire zone. However, a tenant can re-
quest all its VMs to be co-located within specific inventory
boundaries such as a datacenter or a row, or conversely, can
forbid too many of its VMs from being placed on the same
machine or rack. A tenant can even specify that no VMs from
any other tenant be placed on the machine that hosts its VMs.

A customer can resize (scale in/out) or delete an existing
tenant, or create a new tenant. Platform initiated requests
due to unexpected machine failures, planned maintenance,
or decommissioning of machines can lead to reallocation of
some or all tenant VMs. Note that higher-level services can
stitch together multiple tenants to expose alternative grouping
semantics to customers, such as jobs with tasks that can be
incrementally scheduled, or auto-scaled group of identical
VMs (e.g., virtual machine scale sets [4]). These services
are responsible for breaking the groups of VMs into tenants
before sending service requests to Protean.
Protean – a zone allocation service. Azure operates an allo-
cation service for each zone, termed Protean.1 Requests are
assigned to each zone either directly by the customer, or by
a higher-level service. The main role of Protean is to find a
physical placement (machine) for each VM in an allocation
request, subject to explicit requirements and constraints spec-
ified in the underlying service model, as well as other internal
operational considerations. To cope with large request loads,
Protean employs multiple Allocation Agents (AAs), which run
in parallel. Similar to [43], each agent is aware of the entire
inventory and can choose any eligible machine from the in-
ventory to host a VM. The authoritative state of the inventory
is maintained in a persistent store. Each AA maintains its own
view of the inventory, which is updated periodically and in
response to allocation or inventory related events.

1Protean means able to change frequently, versatile.

2.2 Workload Analysis

We next analyze some properties of our workload, with a focus
on characteristics that have influenced Protean’s design.
Demand is heterogeneous. Our zones exhibit workloads
which are fairly diverse in nature. We observe a large num-
ber of different VM types, see Table 2. The distribution is
generally nonuniform – some VM types may account for up
to 50% of the workload, while others are rare. To give more
insight into the challenge pertaining to packing the VMs, Ta-
ble 3 shows the distribution of CPU requirements, measured
in number of cores. We observe that most VMs require a
small number of cores, but some require half or even an entire
server.

VM Type Zone1 (%) Zone2 (%)

A 4.6 0.1
B 3.5 3.6
C 6.5 12.9
D 0.7 8.4
E 1.9 3.7
F 3.2 4.4
G 0.6 3.1
H 0.8 2.2
I 2.4 7.4
J 23.7 31.6
K 21.3 2.1
L 3.5 0.4
M 0.0 2.2

Table 2: Distribution of VM types for selected zones. VM
types having < 2% in both zones are excluded. We avoid using
real VM type names to preserve confidentiality.

Subsequent requests are similar. While our system supports
many VM types, we observe that subsequent requests are
fairly “similar”. For example, Fig. 2 shows the reuse distance,
which for each request of VM type v, measures the number
of unique VM types requested since the last time that v was
requested. We observe that more than 80% of requests have
zero reuse distance, while the majority has distance less than
five. This behavior can be attributed to a combination of
factors, such as large service requests that ask for the same
type of VM, and having a relatively small set of popular VM

VM Cores Zone1 (%) Zone2 (%)

1 17.1 27.0
2 37.4 52.4
4 32.0 10.5
8 8.9 4.5

> 10 4.3 2.6
> 20 0.3 3.1

Table 3: Distribution of VM resources for selected zones.
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for an entire day.
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Figure 3: Number of VM requests for a zone.
Counted over each hour, and averaged over day-
of-week for five weeks (shaded area is standard
deviation).
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Figure 4: Requests per second for a zone on
a single day, with max over 5 min intervals.

types (see Table 2). This “locality” property plays a key role
in our design for the allocation agent.

VM lifetime varies substantially. We observe that most VM
lifetimes are short, in the order of several minutes. However,
some VMs can stay in the system “forever” – for weeks
and months. See Figure 5 for empirical lifetime distributions
across representative zones.
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Figure 5: Zone-based VM lifetime distributions. The data rep-
resents VMs that were alive during a ten-day period in March
2020. The lifetime of VMs that remained alive when the data
was collected (June 2020) may be longer than reported.

Demand has spikes and diurnal pattern. Fig. 3 shows the
request count over a week in one of our busier zones, aver-
aged over day-of-week for 5 weeks. We observe some diurnal
patterns, e.g., typically less usage overnight. Demand can also
have large spikes throughout the day, as seen in Fig. 4. Note
that the demand reaches above 2k requests per second. This
behavior forces us to provision for the peak by employing
multiple AAs for each Protean instance (see §4). At the same
time, we exploit the off-peak periods to better prepare the
AAs for future allocations (see §5.2).

Tenants sizes are typically small, but can be huge. Our
analysis on two large zones indicates that 94% of requests
are for a single VM. 99% of requests are for five or less
VMs. We also observe a few requests for hundreds of VMs;
naturally, such requests would pose additional challenges (e.g.,
spreading the VMs across different fault domains).

2.3 Takeaways
Scale and uncertainty. Our analysis demonstrates that the
incoming demand is highly variable. Because Protean latency
and throughput requirements cannot be compromised, our
design has to account for extreme demand conditions. Fur-
thermore, Protean has to accommodate small and large re-
gions, which requires flexible configurations (for example,
the number of AAs).
Opportunity for caching. We have provided evidence that
subsequent requests are similar over time. This motivates
the “caching” of placement evaluation logic, and reuse across
multiple requests – this idea is central in our design and
facilitates scaling to large zones and regions.
The packing challenge. Our workload is highly diverse –
numerous VM types of different sizes, high variability in
lifetimes (which are unknown in advance). This poses a sub-
stantial challenge in adequately “packing” the VM in physical
servers. Algorithmically, a simplified version of our packing
problem already maps to dynamic bin packing [11], which
is an NP-hard problem in the offline setting (i.e., assuming
all VM arrivals are known), with quite bad competitive ra-
tio in the online setting [6]. In our practical setting, we have
other elements that make the problem even more challenging
(multiple priorities, fault domain requirements, etc.). Supple-
mentary to this paper, we release a new trace that can be
used by the research community to design and test different
packing algorithms [3].

3 Rule-Based Allocation Agent

In this section, we describe the main design principles of
Protean’s allocation agent.

3.1 Metrics and Constraints
Metrics. Protean targets several metrics related to both per-
formance and quality of the allocation. The key metrics are:

• Latency. A single VM allocation should be satisfied
promptly, typically within 20 ms.

• Throughput. Protean should be able to handle peak de-
mands without delaying or throttling requests.
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• Acceptance. Protean should minimize the rejection rate. A
rejection occurs when a VM request cannot be satisfied.

We note that latency is not important in isolation (although
might become excessive for large tenants). Nonetheless, lower
latency facilitates higher throughput. Intuitively, when latency
is lower, requests can be processed by fewer AAs, resulting
in fewer conflicts and likely higher throughput. Furthermore,
lower latency decreases the probability that an individual AA
drifts from the true state of the inventory, which improves
allocation quality. Naturally, the three metrics above depend
on the size of the inventory. Latency and throughput become
more challenging with larger inventories, but accepting re-
quests becomes easier. We are also interested in efficient us-
age of compute resources; we will formally define utilization-
related metrics in §6.

Requirements and constraints.
Addressing multiple considerations. First and foremost,
Protean must make correct assignments; for example, an allo-
cation cannot violate the capacity of a machine. Additionally,
the request may include certain constraints that the allocation
must satisfy. For example, certain VMs may require a specific
type of hardware (e.g., GPUs). Furthermore, a service request
for multiple VMs may require that the VMs are spread across
multiple fault domains (typically across different racks).
Tenant experience. Protean should avoid allocations on ma-
chines that are not in a “ready” state; have not been updated
with the latest host environment; or are likely to fail in the near
future. If a machine fails, then its hosted VMs must be allo-
cated to other machines. Low priority VMs are used by Azure
offerings, such as Batch [1] and Spot Virtual Machines [2].
While these VMs are allowed to be preempted, Protean still
aims to minimize their eviction rates.
Adaptability. Protean must allow for an easy configuration of
allocation logic, and adjust for different conditions.
Extensibility and interpretability. Protean should be easily and
safely extendable, in order to enable engineers to incorporate
new allocation logic. Accordingly, the allocation logic should
allow for incremental changes, and performing A/B testing
in production. Moreover, Protean should enable operators to
interpret the allocation decisions (e.g., “why did the request
fail?”, “why was machine x chosen for VM request v?”);
explaining allocation outcomes is regarded as one of the main
challenges in large-scale cloud scheduling [46].

3.2 Allocation Rules
As discussed above, Protean has to account for multiple con-
siderations simultaneously. First, strict placement constraints
need to be enforced (e.g., a VM has to be allocated to a spe-
cific hardware type); other placement considerations can be
viewed as “preferred”, for example, it is better to place the VM
on a server that is perceived as healthy, has certain disk con-
figuration, etc. On top of that, Protean targets “high-quality”

𝑲𝟐:

Validator
Rules

Preference 
Rules

𝐑𝑲𝟐𝐑𝟏

Validator
Rules

Preference 
Rules

𝟏:

soft filtering

Figure 6: Rule based selection.

allocations; for example, packing the servers efficiently by
minimizing fragmentation, balancing allocations across racks,
avoiding lower-priority VMs evictions, etc. Due to the nu-
merous dimensions involved, Protean’s allocation logic is
organized as a set of rules. The rules determine which ma-
chine will be assigned for each individual VM. A service
request for k VMs will invoke the rule logic k times.

Rules are classified into either validator or preference rules.
A validator rule accounts for hard constraints, whereas a pref-
erence rule can be viewed as a soft constraint. The rules are
arranged in a two-level hierarchy – cluster selection rules
followed by machine selection rules (Fig. 6). In total, there
are currently around one hundred rules.
Cluster and machine selection rules. Cluster selection rules
effectively reduce the time complexity of the selection pro-
cess by limiting the scope of the machine selection rules to
a small number of clusters in a zone. Because clusters are
homogeneous (see §2), we implement several cluster valida-
tor rules which filter out clusters that are not relevant for the
VM request (e.g., a VM that requires a GPU machine can by
hosted only on a cluster with GPU machines). In addition, a
few cluster preference rules are used to sort the valid clusters
(e.g., we prefer emptier clusters to balance the available ca-
pacity across clusters). Based on that, Protean chooses the k
highest-quality clusters, where k ∈ [8,16] is a configurable
parameter; the inventory for the machine selection rules will
in turn consist of the machines in these clusters. The parame-
ter k is set based on a tradeoff between exposing a large set
of machines for making high-quality decisions and sustaining
adequate latency.

In turn, machine selection rules again consist of validator
rules that exclude specific machines from being considered,
followed by preference rules which eventually select a small
number of machines that are the best match for the particular
VM. A randomized tie-breaking rule picks one of these ma-
chines for the physical assignment of the VM. In what follows
we provide a more formal description of rule semantics, as
well as some examples.
Validator rules. Each validator rule implements the Boolean
method IsValid(x,v) to indicate whether an object x is a valid
candidate for placing VM v; an object can be either a cluster or
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a machine, depending on the rule. Validator rules are used to
prune the set of objects in the inventory to a subset of objects
that are valid candidates for placing the VM. Examples: (1)
AreNodeResourcesValid(x, v) checks whether machine x has
enough available capacity to accommodate VM v. The method
returns true if all resource dimensions can be fulfilled (CPU,
memory, disk, etc.). (2) IsTypeSupported(x, v) checks whether
cluster x is compatible with the VM type corresponding to v.
Preference rules. A preference rule quantifies the extent to
which each candidate object x (either a cluster or a machine,
depending on the rule) is a good fit for the VM. Each prefer-
ence rule r accounts for a specific consideration (e.g., packing
quality, balancing, cluster/machine quality, etc.) through a
numeric score Sr(x,v). We use the convention that a lower
score is better. Examples: (1) BestFit(x,v) assigns a score
∑i wi(ai(x)− di(v)), where ai(x) is the availability of “re-
source” i (e.g., CPU cores, memory, SSD)2 in machine x,
di(v) is the requirement of the VM for that resource, and wi is
the weight of the resource which quantifies its scarcity (intu-
itively, the higher wi the scarcer the resource). A lower score
here implies that the machine is a better fit for that VM, since
it is closer to being fully packed; we note that similar packing
heuristics have been proposed in [39]. (2) PreferNonEmp-
tyMachines(x,v) This rule prefers to use machines that are
non empty, primarily in order to improve packing quality.
(3) PreferEmptierClusters(x,v) This rule quantifies how many
empty cores cluster x has. The idea here is to balance the
available capacity among clusters. This is done to minimize
the probability that the cluster capacity is exhausted, which
is important from several perspectives. For example, some
customers require affinity within the cluster, and would not
be able to scale out if the cluster is completely full.

3.3 Accounting for Multiple Rules

As illustrated in Fig. 6, the sequence of validator rules filters
out objects (clusters, machines) that are not eligible for the
particular VM. One of the main challenges in the design of
Protean was: how to account for multiple preference rules?
The inherent issue here is that different rules represent differ-
ent and hard-to-compare preferences. We describe below the
principles of our approach.
Compare method. Each preference rule r implements the
Compare(x,y | v) method to compare two objects x and y
based on their scores; the method returns 0 if scores are equal,
1 if Sr(x,v)< Sr(y,v), or −1 otherwise.
Comparisons and sorting. Each preference rule expresses
its relative importance using a weight (or gain value). Two
objects are compared according to an aggregate score com-

2Protean currently does not account for power. Power budgets are defined
for different aggregations of servers: chassis, racks, rows, etc. A separate
power-capping system [31] ensures that power usage does not exceed the
budget; since power consumption falls within the budget at high percentiles,
capping engages rarely.

puted as the sum of products of the compare value returned by
each rule compare method and its weight. Using the pairwise
comparisons, Protean computes a sorted list of the entire set
of objects based on their aggregate preference scores.
Weight assignment. While our system allows to set any pos-
itive value for the rule weights, we have chosen to set the
weights in a way that imposes strict ordering between the
preference rules. The rules are assigned weights according
to an order-preserving encoding (i.e., weights are exponen-
tially apart from each other), such that, effectively, any rule
can only express a preference among objects that have been
preferred by the previous rule. Accordingly, the entire set of
rules (including validator rules) can be regarded as a filtering
process in which the set of preferred objects is narrowed as
more rules are considered; see §3.4 for discussion.
Quantization. Having a strict prioritization among the pref-
erence rules, requires “smoothing” the preference rules, so
that all rules can contribute. We do so by quantizing the score
of some rules into a small number of buckets (e.g., rules with
a continuous score, such as BestFit). For example, we may ap-
ply the transformation dS ·Ne, where S ∈ [0,1] is the original
(continuous) score and N is the number of buckets. The rule
ordering and the specific quantization values entail domain
knowledge and understanding of business needs and prefer-
ences. Their setting is based on trial and error, building on
simulation results as well as production telemetry.

3.4 Discussion
We conclude this section by discussing how the rule-based
allocator helps us achieve our design goals.
Addressing multiple considerations. Having multiple rules
allows us to address multiple hard constraints, and explicitly
influence the quality of the allocation through designated rules
(e.g., best-fit for packing). The fundamental requirement of
making “correct” allocations will manifest itself in certain
system mechanisms; for example, ensuring that decisions are
made based on the true state of the zone (§5).
User experience. By design, Protean will not fail a VM re-
quest if there exists a feasible assignment for that VM. This
holds because (i) Protean chooses clusters that contain fea-
sible nodes; (ii) Protean considers all nodes in the selected
clusters. In addition, Protean has rules that target better user
experience (e.g., prefer “healthier” machines).
Adaptability. The rules themselves can be customized and
refined as needed. For example, if a specific rule is too “ag-
gressive”, a simple configuration change can make it softer,
e.g., by making the quantization coarser. As a concrete exam-
ple, we describe in §6 how Protean has been adapted to tackle
a capacity crunch during the Covid-19 crisis.
Extensibility and robustness. Our rule-based allocator is in-
herently extensible and robust. It is not too difficult to insert
a new rule, or to modify or delete an existing one; two main
design choices enable that: (i) rather than using a general
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weighted score function, Protean maintains a ranking of the
rules, and auto-generates weights that maintain the exponen-
tial distance property; (ii) the internal rule scores are not
factored in the sorting of the machines, which makes the de-
sign or modification of rules more robust. This is enabled by
using the rule compare method as a building block.
Interpretability. Strict ordering allows for better inter-
pretability. For example, we can infer why a certain machine
was not chosen for a particular VM request. More broadly,
we can aggregate statistics to determine how aggressive each
rule is (e.g., what fraction of objects it “filters on average”).
This evaluation helps us adjust the quantization of rules and
their ordering if needed; see §6 for an example.

4 Architecture

In this section, we provide a high-level overview of Protean,
and describe how the AA handles a service request.
Protean operation. Fig. 7 describes the high-level system
architecture of Protean. Protean employs multiple Allocation
Agents (AAs) that operate concurrently, following an opti-
mistic concurrency model. The AAs are organized to run
in multiple machines. Each machine hosts a single process,
which in turn creates multiple worker threads, one thread per
AA. Allocation requests from clients are routed to these pro-
cesses through a load-balancer. Within a process, the requests
are stored in a shared work-queue until they are picked up and
processed by a free AA. The number of AAs is determined ac-
cording to the peak instantaneous demand in the zone, while
the number of AAs per machine depends on the memory foot-
print of each AA. Each AA makes allocation decisions based
on its own (possibly stale) view of the inventory, and after
processing a request successfully, tries to commit the result to
a replicated store. The replicated store performs conflict de-
tection, and serializes the commits to the same node (commits
to different nodes are handled in parallel). Further, it stores all
inventory information that is modified by the VM placement

Algorithm 1: Service allocation algorithm
1 def ALLOCATE_SERVICE(v1, . . . ,vn, retries):
2 v1, . . . ,vn← ORDER(v1, . . . ,vn)
3 for i = 1 to n do
4 mi =ASSIGN_MACHINE_TO_VM(vi)
5 if IS_INVALID_MACHINE(mi) then
6 return FAILED

7 if COMMIT(m1, . . . ,mn) then
8 return SUCCEEDED

9 else if retries < MAX_RETRIES then
10 return QUEUE FOR RETRY

11 else
12 return FAILED

decisions from AAs. The replicated store functions as the
authoritative source for the latest placement-related inventory
state, and publishes all changes through a publish-subscribe
(pub/sub) service.

Changes in the inventory that are not influenced by place-
ment decisions, such as changes in machine health or capa-
bilities, are also published via the pub/sub service. The AAs
learn about inventory changes primarily through the updates
produced by the pub/sub service. Additionally, on commit
failures due to conflicts, they learn about the latest placement-
related information for the conflicting machines as part of the
failure notification.
Service allocation workflow. A service request may consist
of multiple VM requests that are processed sequentially by
a single AA. Algorithm 1 summarizes how Protean handles
a service request. ORDER determines the order in which the
VM requests will be processed. The goal of the ordering is
to minimize the risk that a request is rejected due to fault do-
main considerations. ASSIGN_MACHINE_TO_VM attempts to
assign a machine to a single VM by applying the rule logic; it
is applied sequentially for each of the requested VMs (see §5
for implementation details). If the AA succeeds in assigning
machines for all of the requested VMs, COMMIT tries to com-
mit the service allocation result to the authoritative store. The
commit fails if any of the VM-Machine assignments is invali-
dated because of a conflicting assignment made by another
AA. On commit failures, the allocator state is rolled back and
the entire request is re-queued for retry. The number of retries
is configurable. We allow for a relatively high number of re-
tries (more than 10) to avoid unnecessary allocation failures;
however this has a negligible effect in production (e.g., the
99.9-percentile allocations succeed after three retries). The
commit stage is pipelined with the previous stages, so that the
AA is free to process the next request while a commit is in
flight.

5 Protean Implementation

In this section, we describe our caching framework, which
substantially expedites the ASSIGN_MACHINE_TO_VM pro-
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cedure (§5.1–5.2). We also discuss our flexible conflict detec-
tion and reduction mechanisms (§5.3).

5.1 Preliminaries
To make high quality assignments, the AA initially considers
the entire set of machines in the inventory as candidates.
Cluster selection. As discussed in §3.2, the AA starts the
selection process by filtering and sorting clusters instead of
machines. Since a zone has at most a few hundred clusters
today, filtering and sorting the clusters is very fast (a couple
of milliseconds at most). Accordingly, the cluster selection
phase does not require any additional enhancements (such as
caching past selection decisions). The output of this phase is
the best 8 to 16 clusters; their machines (typically 10-15k)
are the candidates for the machine selection process.
Machine selection – basic complexity. Recall that the
machine-selection logic first trims the set of candidate ma-
chines to the set of valid machines by evaluating all validator
rules for each machine. Then, it builds a comparison-based
total ordering of the machines in the valid set, based on
the suitability of each machine in hosting the VM (§3.3).
Finally, a machine is randomly selected from the set of
best machines. Building an evaluation result – the ordered
list of valid machines – incurs a runtime complexity of
N ∑

K1
i=1 Tv(i)+N logN

(
∑

K2
i=1 Tp(i)

)
, where N is the number

of candidate machines, K1 the number of validator rules, K2
the number of preference rules, Tv(i) the time to compute Is-
Valid for the ith validator rule, and Tp(i) the time to compute
Compare for the ith preference rule. If the AA attempted to
build this evaluation result from scratch for every request, it
would exceed the required latency bounds for anything more
than just a couple of thousand machines.
Motivation for caching. First, we observe “Locality in re-
quests". Each VM request is characterized by a vector of trait
values. Example traits include: VM-Type, priority, and Re-
quireIsolation (i.e., the VM should be on a machine of its
own). There are tens of traits, each of which can take several
values (including a “don’t care” or empty option). In Sec. §2.2
we show that requests exhibit “locality” when zooming in on
a single dimension (VM type). We note that this phenomenon
carries over to the entire vector: there are a few value vec-
tors commonly used across multiple requests, especially if
they are chronologically close. The second observation is that
the inventory state changes slowly. The state of a machine
can change because of allocation-related events (addition,
suspension, or deletion of VMs), or because of changes in
health or other conditions of a VM or a machine. However,
allocation-related events are the dominant reason for such
changes. Hence the machines that change between consecu-
tive executions of the AA are primarily the machines whose
states were altered as a result of allocation decisions made by
other AAs running in parallel. Since the number of parallel
AAs is relatively small, there are typically not many such

changes. These characteristics would allow us to drastically
reduce the amount of computation performed in an execution
of the machine selection logic by caching and reusing an eval-
uation “state” from previous executions. Intuitively, the only
computation that is required is to update the state to incorpo-
rate the impact of inventory changes since the previous run.
We next discuss the details of our caching approach.

5.2 Caching for Efficient Machine Selection
Each AA maintains a collection of cached objects, which
together hold the information required for machine selection.

5.2.1 Caching Rule State

Caching internal rule state for efficient execution. Rules
are the basic building blocks of the selection process. So,
first and foremost, we use caching to improve the execution
time for IsValid and Compare methods of the rules (Tv(i) and
Tp(i) respectively). Specifically, every rule type implements
these methods. The instantiations of each rule type, termed
rule objects, are cached for reuse. A newly created rule ob-
ject computes and stores all the information that it requires
to execute the IsValid or Compare method in constant time.
Usually this information is stored on a per machine basis. For
example, the PreferNonEmptyMachines rule (see §3.2) stores
a <MachineID, Boolean> dictionary that tracks whether each
machine is empty or not.
Just-in-time updates of rule state. Every time a cached rule
object is used, its internal state has to be brought up-to-date
before its IsValid or Compare method can be called. To that
end, along with the IsValid or Compare method, each rule
implements the Update(x1, . . . ,xm) method in order to update
its stored state. The Update method is called immediately
before the rule object is used. Its argument, (x1, . . . ,xm), rep-
resents the latest state for machines that have changed from
the last time the object was updated. Every rule can execute
its IsValid or Compare function in constant time once it has
updated its state with the latest changes.
Splitting rule state into multiple objects. The stored state
of a rule object may depend on one or more request traits.
For example, the AreNodeResourcesValid rule depends on
the requested VM-Type, and hence must cache the Boolean
whether the machine has enough capacity for each <Machine,
VM-Type> pair. We observe, however, that to process a partic-
ular VM request, the rule object only needs the information
for the VM-Type value of that request. Updating the state for
every other VM-Type value would increase the just-in-time
update time, and in turn the request processing time. Hence,
instead of creating a single rule object for all requests, a rule
object is created on demand for every VM-Type value. A
rule object for a particular VM-Type value is used for all re-
quests asking for that value. In effect, requests are divided
into equivalence classes based on the relevant trait value, and
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Time Request Cached Objects Hits Misses (Create New)

T1 req(x1,y1) None None
Eval(x1,y1)

R1(x1,y1) R2(x1)

Eval(x1,y1) Eval(x1,y2)T2 req(x1,y2) R1(x1,y1) R2(x1)
R2(x1) R1(x1,y2)

T3 req(x1,y1)
Eval(x1,y1) Eval(x1,y2) Eval(x1,y1)

∗ None
R1(x1,y1) R2(x1) R1(x1,y2)

Table 4: Example cache timeline. ∗If Eval(x1,y1) needs to be updated then
R1(x1,y1) and R2(x1) would also be requested (and have cache hits).

Eval(x1,y1)

R1(x1,y1)

Eval(x1,y2)

R1(x1,y2)R2(x1)

Figure 8: Cache hierarchy for the ex-
ample in Table 4.

a single rule object handles all requests belonging to a class.
For rules depending on multiple request traits, each unique
combination of the trait values define a new equivalence class
of requests for that rule. For the special case where a rule
does not depend on any request trait (e.g., PreferNonEmpty-
Machine), a single rule object is used for all requests. This
rule object specialization technique substantially reduces pro-
cessing latency, and further decreases the effective memory
size needed for caching.
Caching rule objects. Rule object references are stored in a
constant size pool. The size is determined through trial-and-
error based on memory footprint and hit-rate considerations.
A rule object is identified by its type and the request trait value
combination that it is associated with. Rule objects are evicted
from the pool either if it is full (following a standard LRU
eviction policy), or if they reach a certain age. Age-based
eviction allows us to reduce the memory footprint during
periods of low load.

5.2.2 Caching Rule Evaluation State

Caching the rule objects helps in substantially reducing Tv(i)
and Tp(i). However, without any additional enhancements, we
would still pay the sorting complexity of N logN. Hence, we
introduce additional objects termed RuleEvaluation objects.
A rule evaluation object essentially holds the complete state
of the evaluation, for a specific vector of trait values (see
§5.1). The state includes the evaluation result (sorted list of
machines) and references to relevant rule objects whose trait
values match the respective values in the entire vector of trait
values. A RuleEvaluation object is created after computing
the evaluation result for a new vector of trait values, which
serves as the identifier for the object). The object will then be
reused for all requests that map to this identifier.
Updating the RuleEvaluation object. Similar to the rule ob-
jects, a cached RuleEvaluation object is brought up-to-date
before it is used. However, unlike rule objects, RuleEvalua-
tion objects use a common Update method, whose goal is to
update the evaluation result with the changed machines. The
method proceeds as follows: (1) the cached rule objects are
brought up-to-date by calling their Update methods; (2) the
modified machines are removed from the evaluation result;
(3) the validator rules are run for each of these machines to

determine which machines are valid; (4) valid machines are
inserted back into the ordered list with an updated position.
Because each insertion takes logN time, the Update method
has runtime complexity of M logN, where M is the number of
machines with modified state. This is a substantial reduction
in complexity, because M � N (M is in the order of tens).
RuleEvaluation objects are cached in another constant size
memory pool, with an LRU eviction policy.
Example. Consider an example scenario where each request
can have two traits X ∈ {x1,x2} and Y ∈ {y1,y2}; and the
allocation logic is expressed through two rules: R1, which de-
pends on traits X and Y , and R2, which depends on X . Figure 8
shows the various rule and RuleEvaluation objects that are
created and reused as the allocation engine serves incoming re-
quests with different trait values. The accompanying Table 4
shows the hierarchy of objects that are created and cached as
a consequence of processing the requests. The first request at
time T1 has trait values X = x1 and Y = y1, and accordingly
two new rule objects R1(x1,y1) and R2(x1), and an evaluation
object Eval(x1,y1) are created. The second request at time
T2 uses a different value y2 for trait Y, and hence cannot reuse
Eval(x1,y1) or R1(x1,y1) objects. It reuses R2(x1) since the
trait value for X does not change, and creates new objects
R1(x1,y2) and Eval(x1,y2). The third request at time T3 uses
the same trait values as the first, and hence is able to reuse
all three objects that were created during the processing of
the first request. Overall, two RuleEvaluation objects are cre-
ated, corresponding to the two trait value vectors {x1,y1} and
{x1,y2}. They share a single object for rule R2, but use two
separate objects for rule R1.

5.2.3 Additional Cache Hierarchies

Multiple rules often depend on the same part of the state. For
example, multiple rules need to track whether machines are
empty (e.g., BestFit and a rule that attempts to balance capac-
ity across racks). For such cases, we encapsulate the shared
part of the state in a Shared-Cache type, which multiple rules
can refer to. Just like a Rule, a Shared-Cache implements the
Update method, and declares any request traits it depends on.
Shared-Caches play a huge role in reducing memory usage.
These objects are cached in their own constant size memory
pool. As mentioned, a cached object may depend on other
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cached objects. The rule selection engine thus ensures that all
dependencies are updated before the object is updated. Our
cache hierarchy embeds desirable properties. For example,
when a new RuleEvaluation object is created, it may often
rely on existing rule and shared-cache objects.

5.2.4 Efficiently Updating the Cache

Tracking and updating mechanisms. Recall that each AA
maintains its own private caches. Since each cached object
can in principle be updated just before it is used, objects can
exist at different levels of staleness. To facilitate seamless
updates, each AA has a journal that keeps track of changes to
any machine in the inventory. The journal maintains a global
revision number which is incremented upon every update.
In addition, the journal stores only the latest machine state
for every machine. Every cached object stores the highest
revision number it has seen, which corresponds the latest
inventory update it has consumed. An object brings itself
up to date by reading only the journal records with higher
revision numbers. Consequently, the update operation has
runtime complexity at the order of the number of machines
that were modified, rather than the entire inventory. The AA
updates the journal during an ongoing evaluation to record
each VM placement decision that it is making. In addition, the
AA updates the journal between evaluations by processing
enqueued incoming changes from the pub/sub service or the
placement store.
Background updates. An up-to-date cache can handle a re-
quest in few ms by simply extracting the best machine(s).
However, when this is not the case, just-in-time cache update
times can be a significant part of the total VM request latency.
Nonetheless, because the system has multiple AAs that are
provisioned to handle the rare periods of peak load, they re-
main inactive for most of the time. Hence, when an AA has
no requests to process, it is used to opportunistically update
the caches (starting with RuleEvaluation cache objects and
proceeding recursively).

5.2.5 Discussion

Design advantages. One clear advantage of our caching ap-
proach over other alternatives (e.g., node sampling or strict
partitioning the inventory) is that Protean can sustain low la-
tency and high throughput without giving up on allocation
opportunities. Another appealing property of our implementa-
tion is that the complexity of creating, reusing, and updating
a rule object is almost completely hidden from the creator of
a rule. A rule only has to implement the IsValid (or Compare)
and Update methods and declare the request traits it depends
on. The rest is handled by the machine selection engine within
the AA. This clear separation between the rules and the eval-
uation engine has been instrumental in the extensibility and
adaptability of Protean.

Global rules. There are a few machine selection rules that
do not express preference for individual machines, but rather
among groups of machines (e.g., prefer the least used rack).
We refer to such rules as global rules. Most global rules reason
about clusters and hence are part of cluster selection. However,
a few rules also reason about racks, and hence are part of the
machine selection stage. Global rules require us to adjust our
caching methodology. To understand the issue, observe that
for such rules, a change in a single machine within the group
might impact the value of all other machines in that group
(e.g., an allocation to a single machine in a rack might make
the rack less attractive than another rack). Hence, a single ma-
chine change makes all machines in the group ‘dirty’, and the
cached objects would require updating all the machines in the
group. To still benefit from our caching infrastructure, we use
a divide and conquer approach: in a nutshell, we divide the
machine inventory into cells. Each cell consists of a subset of
machines who are considered identical from the perspective
of all the global rules. We apply our caching mechanisms
separately for each cell; that means that we maintain a sorted
list of valid machines (the filtering and sorting is done based
on all non-global rules). To obtain the actual evaluation result,
we pick the best machine from each cell, and do the required
comparisons and sorting based on all rules. While these com-
parisons slow the evaluation time, we note that the original
complexity term of N logN reduces to Nc logNc, where Nc is
the number of cells. In our current setting, cells correspond
to racks. The number of racks after cluster selection is in the
order of a hundred, hence Nc� N.

5.3 Conflict Detection and Reduction
Occasional spikes of thousands of requests push all AAs to
work at full tilt. Naturally, chances of commit failures due to
conflicts increase considerably during such periods. Conflicts
reduce the effective throughput and increase outright failures;
as a request fails after a fixed number of retries. We employ
the following strategies to reduce such failures.
Fine-grained conflict detection. We built a conflict-
detection mechanism which allows commits to succeed even
when the AA makes a placement decision based on an out-
dated view of a machine. The logic verifies that the new place-
ment decision does not over-commit the machine resources
or violate other anti-colocation constraints (such as placing
a new VM on a machine that already hosts a VM requiring
isolation). If so, it merges the new placement decision with
the current state of the machine as part of the commit. This
mechanism has led to 25% drop in conflicts in one of our
busiest zones, compared to the simpler strategy of rejecting
all out-dated placement decisions.
Trading allocation quality for conflict reduction. Conflicts
increase during high-load periods, not only because of rapid
inventory changes, but also because AAs apply the same logic;
AAs are likely to identify highly overlapping sets of best ma-
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chines if their respective requests are similar. The number
of machines in this set might be very small, so that even a
random selection from it may lead to a conflict with high prob-
ability. To address this challenge, the AA employs an hybrid
strategy for selecting a machine in its final step. In periods
with no conflicts, it selects from the set of best machines. Al-
ternatively, it may use a more permissive conflict-avoidance
scheme; this scheme randomly selects a machine from the
top N0 machines, where N0 is a configurable parameter (note
that the top N0 machines may differ in their desirability).
The conflict-avoidance scheme is enabled with a probability
proportional to the ratio of conflict failures to total commit
attempts, measured using a rolling window of the most recent
commit attempts. The conflict-avoidance scheme is instru-
mental in satisfying demand at high-load periods; since such
periods are infrequent, it has little effect on allocation quality.

6 Evaluation

6.1 Methodology

Production measurements. Since Protean is fully deployed
across all regions of Azure, it is natural to evaluate it using
measurements from production. Our infrastructure collects
numerous diagnostic metrics and structured logs, which are
used for monitoring and evaluation. These metrics and logs
are aggregated into a central and easily accessible source,
which allows custom queries for specific data extraction. Pro-
duction measurements is the default method in our evaluation;
we will mention explicitly when we use simulations.
Simulations. Simulations are incredibly useful for evaluating
what-if scenarios, such as the effect of different inventory
sizes, different rule configurations, etc. Our simulations use
real traces and configurations as input, and can be considered
a reasonably accurate representation of reality. In particular,
the simulated workload includes both traces from production,
as well as realistic probabilistic models of VM requests, de-
rived from historical traces. We built two types of simulators.
The high-fidelity simulator uses the actual production code of
Protean to perform the allocations, and outputs large amounts
of data for debugging purposes. Our low-fidelity simulator in-
cludes a lightweight emulation of the allocator (e.g., supports
a subset of the rules). This simulator still provides an excellent
approximation of the system, is orders-of-magnitude faster,
and especially useful for large scale evaluations.

6.2 Performance and Scale

Here we evaluate key mechanisms and design choices that
help Protean scale. We focus on the caching mechanism and
the effect of multiple AAs.
Cache evaluation: Hit-rate, latency and update overhead.
As discussed in §2, the nature of our workload motivates the
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Figure 9: Cache-hit ratio over time for some caches. The
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Figure 10: Latency in a large zone; average (+standard devia-
tion) per hour per day, over two months.

use of caching. Our first goal is to understand the effective-
ness of the hierarchical cache architecture. Towards that end,
Fig. 9 shows typical hit-ratio patterns in one of our zones,
focusing on four different cacheable classes over a day period
(taking into account all cached objects for each class). The
FdEmptyNodes and BestFit are cached rules; NodeResources
is a Shared-Cache; and RuleEvaluation corresponds to the
RuleEvaluation class. The stacked bar to the right of the fig-
ure shows the frequency of cache requests as a percentage of
allocation requests (NodeResources cache is requested only
in 0.16% of allocations, hence barely noticed). Lower-level
caches are only requested when higher-level caches miss, so
to interpret the results, both the request frequency and hit-ratio
should be considered. For example, the NodeResources cache
has a hit-ratio around 20%, but is less frequently accessed –
compared to RuleEvalution, which has a much higher hit-ratio
and is accessed on every request.

The resulting benefit of our cache and high hit-rates for
evaluation caches is improved latency. This can be clearly
seen from Fig. 10, which depicts the effect of a cache hit/miss
for the RuleEvaluation cache. Given our high hit-rate, the
overall average latency is close to 20 ms per allocation. A
cache-miss still uses many lower-level caches so that the la-
tency is typically 70-80ms. We note that Protean’s latency is
affected by additional functionality beyond the allocation pro-
cess itself, such as tracking and outputting debug information
about every allocation.

To gain further insights into the cache operation and re-
sulting latencies, we track the average number of machines
updated per allocation in one of our zones (∼30k machines),
over an entire day. Cache hits/misses have a significant impact
on the number of updated machines: approximately 50 for a
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hit verses 2000 for a miss. A hit thus translates to less over-
head in the allocation process and in turn, to lower latency.
Notably, the number of updates is relatively small even in
case of a miss (6.6% of the machines). This can be attributed
to two main factors. First, the cluster selection process filters
out a large part of the inventory. In particular, we observe
through simulations that cluster selection rules filter out up
to 20% of the inventory for zones of 10k machines or more.
Second, a substantial part of inventory updates occur asyn-
chronously via background resolve. Indeed, our production
measurements indicate that 80-96% of machine updates are
done by that mechanism.
Scaling with inventory. Fig. 11 shows the inventory size ef-
fect on latency under three different scenarios. The first two
scenarios correspond to cache hit or miss for RuleEvaluation
cache, where the results represent production measurements
of zones with different sizes. To further examine the effective-
ness of mechanisms, we include a third scenario (“baseline”)
where the caching and cluster selection are disabled; because
we would rather not disable these mechanisms in production,
we use our high-fidelity simulator to obtain the results; ob-
serve that the median latency reaches around 1000 ms for
larger zones. In addition to latency performance, it is also
important to examine the cache’s memory footprint. Fig. 12
shows the memory required per AA, as a function of inven-
tory size. The fitted line, obtained via regression, shows that
the growth of our the memory footprint is sublinear (∼ x0.73),
which helps keep memory sizes manageable at scale.
Multiple allocation agents. Multiple allocators influence im-
portant metrics, such as the number of conflicts, delay and
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throughput. Since the number of AAs in production is fixed,
we use our low-fidelity simulator for the experiments: we
emulate an heterogeneous inventory of one of our zones with
nearly 25k machines. We replay an actual request trace of
an entire day. We use the same conflict-avoidance (see §5.3)
parameters (100 machines allowed for final random selection,
rolling window size of 50 commits) and number of retries
before rejection (20) as in production. To expedite the low-
fidelity simulations, the actual cache infrastructure is not inte-
grated in the simulator. To mimic the cache, we use a realistic
statistical model, derived from production measurements of
the same zone over a month period. A cache hit/miss is de-
termined using a Bernoulli random variable, with an average
hit-ratio (p = 0.9) obtained from production; a hit results in
14ms latency, whereas a miss incurs a higher latency of 88ms.

Our first experiment examines how different number of
AAs handle a spike in demand (see Fig. 13). The key take-
away here is that a single allocator struggles to satisfy the load
in a reasonable time, causing excess delays to requests. With
five AAs, the requests are handled in more than 3x less time
(adding more AAs yields similar results). Our second experi-
ment (Fig. 14) replays another trace from the same zone; the
figure depicts the 99th percentile for the conflicts per second,
as well as the throughput observed during the same time. Our
collision-avoidance strategy provides clear gains: note that
throughput increases substantially with the number of AAs
with little effect on conflicts.
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Our system easily handles the request volume currently
seen in production. It is of natural interest to study (via simu-
lations) the possible performance trends at higher scale. To-
wards that end, we take an existing request trace and speed
up time by factors of up to 1000x. Fig. 15 shows throughput,
conflicts and rejection rates as we scale up the demand, verses
the number of AAs handling the requests; the simulations use
our standard avoidance scheme. We observe that although
throughput reaches over 10k requests per second, this comes
at the expense of significant conflicts which in turn affect
the rejection rate. The throughput eventually plateaus, likely
due to a combination of fixed inventory size and increasing
conflicts. In a production setting, we would have several op-
tions to deal with increased demand (e.g., tune the avoidance
scheme, or longer-term increase of inventory size).

6.3 Allocation Quality

Quality vs. performance tradeoff. There are different crite-
ria for quantifying quality; for example, balancing allocations
across multiple fault domains is important for satisfying large
service requests. In this section, we zoom in on a key effi-
ciency metric – packing density – which measures the average
number of allocated cores on non-empty machines (certain
machines must be kept empty, e.g., for failover of large VMs).
Formally, the packing density at time t is the ratio between
the number of allocated cores, and the number of non-empty
machines times the number of cores in each machine. We
note that packing density can be defined similarly for other
resources, such as memory; we focus on CPU because it is
typically the bottleneck resource. Table 5 summarizes a set
of experiments in one of our zones, using the low-fidelity
simulator on a 5 month trace. The different rows correspond
to different parameter configurations of the BestFit rule; in
particular, the configurations differ by the number of buckets
(see §3.2), where ∞ means no quantization. Recall that the
more buckets we use the finer is the quantization of the score,
which allows for better discrimination of machines by the
packing quality. On the flip side, a finer quantization means
that downstream rules are left with fewer candidate machines.
The results demonstrate some interesting trends. As expected,
the packing density (denoted PD %) increases with the num-

Buckets PD (%) Post-BestFit (%) P99 Conflicts / min

1 83.5 27.6 13.4
2 84.3 25.0 13.5
3 86.3 21.0 11.6
4 87.3 16.5 12.0
5 87.8 13.7 10.7
∞ 89.1 2.3 18.0

Table 5: [Simulation] The trade-off between packing and
robust allocations. PD (%) is the packing density averaged
over five months.

ber of buckets; note that the most significant increase is from
two to three buckets. More buckets increases the packing den-
sity by a little, however at the cost of filtering out a substantial
percent of candidate machines (Post-BestFit). The effect is
magnified at the extreme of no quantization, where very few
candidate machines are left. As a consequence, not only down-
stream rules become meaningless, but also the conflict rate
increases. This is because different allocators are more likely
to pick the same machine for allocation. In view of the above
analysis, we currently use three buckets in production.
Adapting to COVID-19 capacity crunch. As a consequence
of the COVID-19 pandemic, Azure observed a sharp increase
in demand. As an immediate response, we increased the uti-
lization limits in each cluster by 1%. These limits are used
to leave enough buffers for in-cluster scale-outs as well as to
account for failures. The increase was done easily by modify-
ing configurable threshold values in a cluster validator rule
IsClusterBelowLimit(x,v). This limit change slightly increased
the risk for scale-outs and fail-overs. To mitigate the risk, we
used Protean to identify fragmented machines, and recom-
mend migration targets that would improve packing (what-if
analysis). A supplementary VM migration mechanism used
these recommendations to live-migrate some VMs (targeting
first-party VMs only), resulting in improved packing density.
Fig. 16 shows both the average utilization (i.e., ratio between
number of allocated cores and total number of cores in Azure)
and the packing density over our entire fleet. The dashed lines
indicates the point of time at which the above changes were
made. The net effect of Protean adaptation was a sizeable in-
crease in utilization, facilitated by a significant improvement
in packing density. We also depict in the same figure the rela-
tive trends for the overall capacity fulfillment rate (CFR) – the
fraction of allocations that are successfully deployed. CFR
dipped slightly in mid-March, but went up again exceeding
its target of four nines by mid-April.

7 Related Work

Resource management for large compute clusters. Nu-
merous systems have been implemented for various do-
mains, including batch scheduling for HPC applications
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Figure 16: CPU usage across Azure. Absolute capcity fulfill-
ment rate (CFR) values are omitted for confidentiality (hence,
the CFR y-axis is not labeled). The curve represents the rela-
tive trend and scaled to fit the graph.

[25, 44, 45], big-data analytics [7, 20, 23, 28, 38, 40, 47, 52],
stream-processing [34], AI [36], etc. More related to our
context is the work on hyper-scale cloud computing clus-
ters, see [8, 12, 15–17, 43, 48] and references therein. Our
cloud workload analysis adds to a body of work on this topic,
e.g., [5, 10, 12, 18, 26, 30, 35, 42, 46, 50].
Scheduler types. One useful way to classify large-scale
schedulers is based on how they process work items (jobs,
tasks, VMs, etc.). Centralized monolithic schedulers [21, 24,
52] use a single agent to process requests. They avoid concur-
rency issues, yet are harder to scale. A subset of these sched-
ulers, optimizes placement decisions by batch-processing mul-
tiple jobs together [19, 21, 24]. Our demanding latency and
throughout requirements preclude using these approaches.
To cope with scale and management complexities, two-level
schedulers [23, 47] perform course-grained resource manage-
ment, while leaving the fine-grained scheduling to application
frameworks. Similarly, distributed schedulers [36, 38, 41] de-
centralize the scheduling logic by employing sophisticated
queue management strategies at the target machines (see also
works on hybrid schedulers [13,14,29]). Two-level or various
distributed approaches are less applicable for VM schedul-
ing, which is inherently IaaS-centric. Our AA is centralized,
while target machines create their assigned VMs according to
a simple FCFS policy.
Concurrent schedulers. Similar to Sparrow [38], Apollo [7]
and Omega [43], Protean is a concurrent scheduler which em-
ploys multiple agents over a shared inventory. Omega handles
conflicts immediately as part of scheduling, whereas Apollo
and Mercury allow conflicting scheduling decisions to queue
on target nodes while deferring conflict resolution. As in [43],
we use multiple concurrent allocation agents and a conflict
resolution model. Indeed, our customers prefer VM requests
to fail early rather than waiting longer in hope for success;
this allows higher level services to quickly try other alterna-
tives, such as using another zone or modifying some request
properties.
Allocation scope. Cluster selection and caching allow
Protean to make resource assignment decisions based on
the entire inventory, similar to [7, 15]. Alternatively, sched-
ulers can statically partition the inventory [49], or use random

sampling to make a decision using a subset of the inven-
tory [17, 38, 48]. Protean shares similarities with Google’s
Borg [48]. Borg employs other optimizations for scalability,
such as caching node preference scores until the node changes,
and avoiding duplicate work by evaluating decisions for only
a single task within a group of identical tasks. Protean caches
not only node-centric data, but also rule and evaluation out-
comes that can be used across different requests. In addition,
Borg introduces the notion of equivalent classes, where fea-
sibility and scoring is determined only for a single task out
of identical tasks in a job. Protean extends this idea by con-
sidering requests across tenants to be equivalent if they share
the same trait values. Finally, unlike Borg, we do not employ
sampling (termed “relaxed randomization”), but rather use
other techniques to help with scale (multi-layer caching and
cluster selection).

Resource efficiency. Cloud schedulers attempt to increase
actual resource usage through a variety of techniques, e.g., re-
claiming unused resources, harvesting, profiling, heterogene-
ity and interference awareness [9, 12, 15, 16, 22, 27, 32, 33, 37,
48, 51, 53]. Protean’s flexible rule-based logic facilitates dy-
namic resource adjustment and interference mitigation strate-
gies; their description is outside the scope of this paper.

8 Conclusion

We describe Protean, the VM allocation service of Azure.
Our design separates policy from mechanisms, which has al-
lowed us to successfully expand our VM offerings over the
years. A flexible rule-based allocator facilitates refining the
allocation logic and explaining it to customers. VM requests
are processed in milliseconds, due to a hierarchical caching
framework. Results from production demonstrate that Protean
sustains adequate trade-offs between performance and qual-
ity.
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