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Abstract. We introduce BOURBON, a log-structured merge
(LSM) tree that utilizes machine learning to provide fast
lookups. We base the design and implementation of
BOURBON on empirically-grounded principles that we derive
through careful analysis of LSM design. BOURBON employs
greedy piecewise linear regression to learn key distributions,
enabling fast lookup with minimal computation, and applies
a cost-benefit strategy to decide when learning will be worth-
while. Through a series of experiments on both synthetic
and real-world datasets, we show that BOURBON improves
lookup performance by 1.23×-1.78× as compared to state-
of-the-art production LSMs.

1 Introduction
Machine learning is transforming how we build computer ap-
plications and systems. Instead of writing code in the tradi-
tional algorithmic mindset, one can instead collect the proper
data, train a model, and thus implement a robust and gen-
eral solution to the task at hand. This data-driven, empirical
approach has been called “Software 2.0” [26], hinting at a
world where an increasing amount of the code we deploy is
realized in this manner; a number of landmark successes over
the past decade lend credence to this argument, in areas such
as image [32] and speech recognition [24], machine transla-
tion [46], game playing [44], and many other areas [7,15,17].

One promising line of work, for using ML to improve
core systems is that of the “learned index” [31]. This ap-
proach applies machine learning to supplant the traditional
index structure found in database systems, namely the ubiq-
uitous B-Tree [9]. To look up a key, the system uses a learned
function that predicts the location of the key (and value);
when successful, this approach can improve lookup perfor-
mance, in some cases significantly, and also potentially re-
duce space overhead. Since this pioneering work, numerous
follow ups [13, 20, 30] have been proposed that use better
models, better tree structures, and generally improve how
learning can reduce tree-based access times and overheads.

However, one critical approach has not yet been trans-
formed in this “learned” manner: the Log-structured Merge

Tree (LSM) [37, 39, 42]. LSMs were introduced in the
late ’90s, gained popularity a decade later through work at
Google on BigTable [8] and LevelDB [22], and have be-
come widely used in industry, including in Cassandra [33],
RocksDB [18], and many other systems [21,38]. LSMs have
many positive properties as compared to B-trees and their
cousins, including high insert performance [11, 37, 40].

In this paper, we apply the idea of the learned index to
LSMs. A major challenge is that while learned indexes are
primarily tailored for read-only settings, LSMs are optimized
for writes. Writes cause disruption to learned indexes be-
cause models learned over existing data must now be updated
to accommodate the changes; the system thus must re-learn
the data repeatedly. However, we find that LSMs are well-
suited for learned indexes. For example, although writes
modify the LSM, most portions of the tree are immutable;
thus, learning a function to predict key/value locations can
be done once, and used as long as the immutable data lives.
However, many challenges arise. For example, variable key
or value sizes make learning a function to predict locations
more difficult, and performing model building too soon may
lead to significant resource waste.

Thus, we first study how an existing LSM system, Wisc-
Key [37], functions in great detail (§3). We focus on Wisc-
Key because it is a state-of-the-art LSM implementation that
is significantly faster than LevelDB and RocksDB [37]. Our
analysis leads to many interesting insights from which we
develop five learning guidelines: a set of rules that aid an
LSM system to successfully incorporate learned indexes. For
example, while it is useful to learn the stable, low levels in
an LSM, learning higher levels can yield benefits as well be-
cause lookups must always search the higher levels. Next,
not all files are equal: some files even in the lower levels
are very short-lived; a system must avoid learning such files,
or resources can be wasted. Finally, workload- and data-
awareness is important; based on the workload and how the
data is loaded, it may be more beneficial to learn some por-
tions of the tree than others.

We apply these learning guidelines to build BOURBON, a
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learned-index implementation of WiscKey (§4). BOURBON

uses piece-wise linear regression, a simple but effective
model that enables both fast training (i.e., learning) and in-
ference (i.e., lookups) with little space overhead. BOURBON

employs file learning: models are built over files given
that an LSM file, once created, is never modified in-place.
BOURBON implements a cost-benefit analyzer that dynam-
ically decides whether or not to learn a file, reducing un-
necessary learning while maximizing benefits. While most
of the prior work on learned indexes [13, 20, 31] has made
strides in optimizing stand-alone data structures, BOURBON

integrates learning into a production-quality system that is
already highly optimized. BOURBON’s implementation adds
around 5K LOC to WiscKey (which has ∼20K LOC).

We analyze the performance of BOURBON on a range of
synthetic and real-world datasets and workloads (§5). We
find that BOURBON reduces the indexing costs of WiscKey
significantly and thus offers 1.23× – 1.78× faster lookups
for various datasets. Even under workloads with significant
write load, BOURBON speeds up a large fraction of lookups
and, through cost-benefit, avoids unnecessary (early) model
building. Thus, BOURBON matches the performance of an
aggressive-learning approach but performs model building
more judiciously. Finally, most of our analysis focuses on
the case where fast lookups will make the most difference,
namely when the data resides in memory (i.e., in the file-
system page cache). However, we also experiment with
BOURBON when data resides on a fast storage device (an Op-
tane SSD) or when data does not fit entirely in memory, and
show that benefits can still be realized.

This paper makes four contributions. We present the first
detailed study of how LSMs function internally with learning
in mind. We formulate a set of guidelines on how to integrate
learned indexes into an LSM (§3). We present the design and
implementation of BOURBON which incorporates learned in-
dexes into a real, highly optimized, production-quality LSM
system (§4). Finally, we analyze BOURBON’s performance in
detail, and demonstrate its benefits (§5).

2 Background
We first describe log-structured merge trees and explain how
data is organized in LevelDB. Next, we describe WiscKey, a
modified version of LevelDB that we adopt as our baseline.
We then provide a brief background on learned indexes.

2.1 LSM and LevelDB
An LSM tree is a persistent data structure used in key-value
stores to support efficient inserts and updates [39]. Unlike
B-trees that require many random writes to storage upon up-
dates, LSM trees perform writes sequentially, thus achieving
high write throughput [39].

An LSM organizes data in multiple levels, with the size
of each level increasing exponentially. Inserts are initially
buffered in an in-memory structure; once full, this structure
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Figure 1: LevelDB and WiscKey. (a) shows how data is
organized in LevelDB and how a lookup is processed. The
search in in-memory tables is not shown. The candidate ssta-
bles are shown in bold boxes. (b) shows how keys and values
are separated in WiscKey.

is merged with the first level of on-disk data. This procedure
resembles merge-sort and is referred to as compaction. Data
from an on-disk level is also merged with the successive level
if the size of the level exceeds a limit. Note that updates do
not modify existing records in-place; they follow the same
path as inserts. As a result, many versions of the same item
can be present in the tree at a time. Throughout this paper,
we refer to the levels that contain the newer data as higher
levels and the older data as lower levels.

A lookup request must return the latest version of an item.
Because higher levels contain the newer versions, the search
starts at the topmost level. First, the key is searched for in
the in-memory structure; if not found, it is searched for in
the on-disk tree starting from the highest level to the lowest
one. The value is returned once the key is found at a level.

LevelDB [22] is a widely used key-value store built us-
ing LSM. Figure 1(a) shows how data is organized in Lev-
elDB. A new key-value pair is first written to the memtable;
when full, the memtable is converted into an immutable table
which is then compacted and written to disk sequentially as
sstables. The sstables are organized in seven levels (L0 being
the highest level and L6 the lowest) and each sstable corre-
sponds to a file. LevelDB ensures that key ranges of different
sstables at a level are disjoint (two files will not contain over-
lapping ranges of keys); L0 is an exception where the ranges
can overlap across files. The amount of data at each level
increases by a factor of ten; for example, the size of L1 is
10MB, while L6 contains several 100s of GBs. If a level ex-
ceeds its size limit, one or more sstables from that level are
merged with the next level; this is repeated until all levels are
within their limits.
Lookup steps. Figure 1(a) also shows how a lookup request
for key k proceeds. 1 FindFiles: If the key is not found
in the in-memory tables, LevelDB finds the set of candidate
sstable files that may contain k. A key in the worst case
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may be present in all L0 files (because of overlapping ranges)
and within one file at each successive level. 2 LoadIB+FB:
In each candidate sstable, an index block and a bloom-filter
block are first loaded from the disk. 3 SearchIB: The in-
dex block is binary searched to find the data block that may
contain k. 4 SearchFB: The filter is queried to check if k is
present in the data block. 5 LoadDB: If the filter indicates
presence, the data block is loaded. 6 SearchDB: The data
block is binary searched. 7 ReadValue: If the key is found
in the data block, the associated value is read and the lookup
ends. If the filter indicates absence or if the key is not found
in the data block, the search continues to the next candidate
file. Note that blocks are not always loaded from the disk;
index and filter blocks, and frequently accessed data blocks
are likely to be present in memory (i.e., file-system cache).

We refer to these search steps at a level that occur as part
of a single lookup as an internal lookup. A single lookup
thus consists of many internal lookups. A negative internal
lookup does not find the key, while a positive internal lookup
finds the key and is thus the last step of a lookup request.

We differentiate indexing steps from data-access steps; in-
dexing steps such as FindFiles, SearchIB, SearchFB, and
SearchDB search through the files and blocks to find the
desired key, while data-access steps such as LoadIB+FB,
LoadDB, and ReadValue read the data from storage. Our
goal is to reduce the time spent in indexing.

2.2 WiscKey

In LevelDB, compaction results in large write amplification
because both keys and values are sorted and rewritten. Thus,
LevelDB suffers from high compaction overheads, affecting
foreground workloads.

WiscKey [37] (and Badger [1]) reduces this overhead by
storing the values separately; the sstables contain only keys
and pointers to the values as shown in Figure 1(b). With this
design, compaction sorts and writes only the keys, leaving
the values undisturbed, thus reducing I/O amplification and
overheads. WiscKey thus performs significantly better than
other optimized LSM implementations such as LevelDB and
RocksDB. Given these benefits, we adopt WiscKey as the
baseline for our design. Further, WiscKey’s key-value sepa-
ration enables our design to handle variable-size records; we
describe how in more detail in §4.2.

The write path of WiscKey is similar to that of LevelDB
except that values are written to a value log. A lookup in
WiscKey also involves searching at many levels and a final
read into the log once the target key is found. The size of
WiscKey’s LSM tree is much smaller than LevelDB because
it does not contain the values; hence, it can be entirely cached
in memory [37]. Thus, a lookup request involves multiple
searches in the in-memory tree, and the ReadValue step per-
forms one final read to retrieve the value.

2.3 Optimizing Lookups in LSMs
Performing a lookup in LevelDB and WiscKey requires
searching at multiple levels. Further, within each sstable,
many blocks are searched to find the target key. Given that
LSMs form the basis of many embedded key-value stores
(e.g., LevelDB, RocksDB [18]) and distributed storage sys-
tems (e.g., BigTable [8], Riak [38]), optimizing lookups in
LSMs can have huge benefits.

A recent body of work, starting with learned indexes [31],
makes a case for replacing or augmenting traditional index
structures with machine-learning models. The key idea is to
train a model (such as linear regression or neural nets) on the
input so that the model can predict the position of a record
in the sorted dataset. The model can have inaccuracies, and
thus the prediction has an associated error bound. During
lookups, if the model-predicted position of the key is correct,
the record is returned; if it is wrong, a local search is per-
formed within the error bound. For example, if the predicted
position is pos and the minimum and maximum error bounds
are δ min and δ max, then upon a wrong prediction, a local
search is performed between pos−δ min and pos+δ max.

Learned indexes can make lookups significantly faster. In-
tuitively, a learned index turns a O(log-n) lookup of a B-tree
into a O(1) operation. Empirically, learned indexes provide
1.5× – 3× faster lookups than B-trees [31]. Given these ben-
efits, we ask the following questions: can learned indexes for
LSMs make lookups faster? If yes, under what scenarios?

Traditional learned indexes do not support updates be-
cause models learned over the existing data would change
with modifications [13, 20, 31]. However, LSMs are attrac-
tive for their high performance in write-intensive workloads
because they perform writes only sequentially. Thus, we ex-
amine: how to realize the benefits of learned indexes while
supporting writes for which LSMs are optimized? We answer
these two questions next.

3 Learned Indexes: a Good Match for LSMs?
In this section, we first analyze if learned indexes could be
beneficial for LSMs and examine under what scenarios they
can improve lookup performance. We then provide our in-
tuition as to why learned indexes might be appropriate for
LSMs even when allowing writes. We conduct an in-depth
study based on measurements of how WiscKey functions in-
ternally under different workloads to validate our intuition.
From our analysis, we derive a set of learning guidelines.

3.1 Learned Indexes: Beneficial Regimes
A lookup in LSM involves several indexing and data-access
steps. Optimized indexes such as learned indexes can reduce
the overheads of indexing but cannot reduce data-access
costs. In WiscKey, learned indexes can thus potentially re-
duce the costs of indexing steps such as FindFiles, SearchIB,
and SearchDB, while data-access costs (e.g., ReadValue)
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Figure 2: Lookup Latency Breakdown. The figure shows
the breakdown of lookup latency in WiscKey. The first bar
shows the case when data is cached in memory. The other
three bars show the case where the dataset is stored on dif-
ferent types of SSDs. We perform 10M random lookups on
the Amazon Reviews dataset [5]; the figure shows the break-
down of the average latency (shown at the top of each bar).
The indexing portions are shown in solid colors; data access
and other portions are shown in patterns.

cannot be significantly reduced. As a result, learned in-
dexes can improve overall lookup performance if indexing
contributes to a sizable portion of the total lookup latency.
We identify scenarios where this is the case.

First, when the dataset or a portion of it is cached in mem-
ory, data-access costs are low, and so indexing costs become
significant. Figure 2 shows the breakdown of lookup la-
tencies in WiscKey. The first bar shows the case when the
dataset is cached in memory; the second bar shows the case
where the data is stored on a flash-based SATA SSD. With
caching, data-access and indexing costs contribute almost
equally to the latency. Thus, optimizing the indexing por-
tion can reduce lookup latencies by about 2×. When the
dataset is not cached, data-access costs dominate and thus
optimizing indexes may yield smaller benefits (about 20%).

However, learned indexes are not limited to scenarios
where data is cached in memory. They offer benefit on fast
storage devices that are currently prevalent and can do more
so on emerging faster devices. The last three bars in Figure 2
show the breakdown for three kinds of devices: flash-based
SSDs over SATA and NVMe, and an Optane SSD. As the
device gets faster, lookup latency (as shown at the top) de-
creases, but the fraction of time spent on indexing increases.
For example, with SATA SSDs, indexing takes about 17% of
the total time; in contrast, with Optane SSDs, indexing takes
44% and thus optimizing it with learned indexes can po-
tentially improve performance by 1.8×. More importantly,
the trend in storage performance favors the use of learned
indexes. With storage performance increasing rapidly and
emerging technologies like 3D Xpoint memory providing
very low access latencies, indexing costs will dominate and
thus learned indexes will yield increasing benefits.
Summary. Learned indexes could be beneficial when the
database or a portion of it is cached in memory. With fast
storage devices, regardless of caching, indexing contributes

to a significant fraction of the lookup time; thus, learned in-
dexes can prove useful in such cases. With storage devices
getting faster, learned indexes will be even more beneficial.

3.2 Learned Indexes with Writes
Learned indexes provide higher lookup performance com-
pared to traditional indexes for read-only analytical work-
loads. However, a major drawback of learned indexes (as
described in [31]) is that they do not support modifications
such as inserts and updates [13, 20]. The main problem with
modifications is that they alter the data distribution and so
the models must be re-learned; for write-heavy workloads,
models must be rebuilt often, incurring high overheads.

At first, it may seem like learned indexes are not a good
match for write-heavy situations for which LSMs are opti-
mized. However, we observe that the design of LSMs fits
well with learned indexes. Our key realization is that al-
though updates can change portions of the LSM tree, a large
part remains immutable. Specifically, newly modified items
are buffered in the in-memory structures or present in the
higher levels of the tree, while stable data resides at the lower
levels. Given that a large fraction of the dataset resides in
the stable, lower levels, lookups to this fraction can be made
faster with no or few re-learnings. In contrast, learning in
higher levels may be less beneficial: they change at a faster
rate and thus must be re-learned often.

We also realize that the immutable nature of sstable files
makes them an ideal unit for learning. Once learned, these
files are never updated and thus a model can be useful until
the file is replaced. Further, the data within an sstable is
sorted; such sorted data can be learned using simple models.
A level, which is a collection of many immutable files, can
also be learned as a whole using simple models. The data in
a level is also sorted: the individual sstables are sorted, and
there are no overlapping key ranges across sstables.

We next conduct a series of in-depth measurements to vali-
date our intuitions. Our experiments confirm that while a part
of our intuition is indeed true, there are some subtleties (for
example, in learning files at higher levels). Based on these
experimental results, we formulate a set of learning guide-
lines: a few simple rules that an LSM that applies learned
indexes should follow.
Experiments: goal and setup. The goal of our experiments
is to determine how long a model will be useful and how of-
ten it will be useful. A model built for a sstable file is useful
as long as the file exists; thus, we first measure and analyze
sstable lifetimes. How often a model will be used is deter-
mined by how many internal lookups it serves; thus, we next
measure the number of internal lookups to each file. Since
models can also be built for entire levels, we finally mea-
sure level lifetimes as well. To perform our analysis, we run
workloads with varying amounts of writes and reads, and
measure the lifetimes and number of lookups. We conduct
our experiments on WiscKey, but we believe our results are
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applicable to most LSM implementations. We first load the
database with 256M key-value pairs. We then run a workload
with a single rate-limited client that performs 200M opera-
tions, a fraction of which are writes. Our workload chooses
keys uniformly at random.
Lifetime of SSTables. To determine how long a model will
be useful, we first measure and analyze the lifetimes of ssta-
bles. To do so, we track the creation and deletion times of all
sstables. For files created during the load phase, we assign
the workload-start time as their creation time; for other files,
we record the actual creation times. If the file is deleted dur-
ing the workload, then we calculate its exact lifetime. How-
ever, some files are not deleted by the end of the workload
and we must estimate their lifetimes.†

Figure 3(a) shows the average lifetime of sstable files at
different levels. We make three main observations. First, the
average lifetime of sstable files at lower levels is greater than
that of higher levels. Second, at lower percentages of writes,
even files at higher levels have a considerable lifetime; for
example, at 5% writes, files at L0 live for about 2 minutes
on an average. Files at lower levels live much longer; files
at L4 live about 150 minutes. Third, although the average
lifetime of files reduces with more writes, even with a high

†If the files are created during load, we assign the workload duration as
their lifetimes. If not, we estimate the lifetime of a file based on its creation
time (c) and the total workload time (w); the lifetime of the file is at least
w− c. We thus consider the lifetime distribution of other files that have a
lifetime of at least w−c. We then pick a random lifetime in this distribution
and assign it as this file’s lifetime.

amount of writes, files at lower levels live for a long period.
For instance, with 50% writes, files at L4 live for about 60
minutes. In contrast, files at higher level live only for a few
seconds; for example, an L0 file lives only about 10 seconds.

We now take a closer look at the lifetime distribution. Fig-
ure 3(b) shows the distributions for L1 and L4 files with 5%
writes. We first note that some files are very short-lived,
while some are long-lived. For example, in L1, the lifetime
of about 50% of the files is only about 2.5 seconds. If files
cross this threshold, they tend to live for much longer times;
almost all of the remaining L1 files live over five minutes.

Surprisingly, even at L4, which has a higher average life-
time for files, a few files are very short-lived. We observe
that about 2% of L4 files live less than a second. We find
that there are two reasons why a few files live for a very
short time. First, compaction of a Li file creates a new file in
Li+1 which is again immediately chosen for compaction to
the next level. Second, compaction of a Li file creates a new
file in Li+1, which has overlapping key ranges with the next
file that is being compacted from Li. Figure 3(c) shows that
this pattern holds for other percentages of writes too. We ob-
served that this holds for other levels as well. From the above
observations, we arrive at our first two learning guidelines.
Learning guideline - 1: Favor learning files at lower levels.
Files at lower levels live for a long period even for high write
percentages; thus, models for these files can be used for a
long time and need not be rebuilt often.
Learning guideline - 2: Wait before learning a file. A few
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files are very short-lived, even at lower levels. Thus, learning
must be invoked only after a file has lived up to a threshold
lifetime after which it is highly likely to live for a long time.
Internal Lookups at Different Levels. To determine how
many times a model will be used, we analyze the num-
ber of lookups served by the sstable files. We run a work-
load and measure the number of lookups served by files at
each level and plot the average number of lookups per file at
each level. Figure 4(a) shows the result when the dataset is
loaded in an uniform random order. The number of internal
lookups is higher for higher levels, although a large fraction
of data resides at lower levels. This is because, at higher
levels, many internal lookups are negative, as shown in Fig-
ure 4(a)(ii). The number of positive internal lookups is as
expected: higher in lower levels as shown in Figure 4(a)(iii).
This result shows that files at higher levels serve many nega-
tive lookups and thus are worth optimizing. While bloom fil-
ters may already make these negative lookups faster, the in-
dex block still needs to be searched (before the filter query).

We also conduct the same experiment with another work-
load where the access pattern follows a zipfian distribution
(most requests are to a small set of keys). Most of the re-
sults exhibit the same trend as the random workload except
for the number of positive internal lookups, as shown in Fig-
ure 4(a)(iv). Under the zipfian workload, higher level files
also serve numerous positive lookups, because the workload
accesses a small set of keys which are often updated and thus
stored in higher levels.

Figure 4(b) shows the result when the dataset is sequen-
tially loaded, i.e., keys are inserted in ascending order. In
contrast to the randomly-loaded case, there are no negative
lookups because keys of different sstable files do not overlap
even across levels; the FindFiles step finds the one file that
may contain the key. Thus, lower levels serve more lookups
and can have more benefits from learning. From these obser-
vations, we arrive at the next two learning guidelines.
Learning guideline - 3: Do not neglect files at higher lev-
els. Although files at lower levels live longer and serve many
lookups, files at higher levels can still serve many negative
lookups and in some cases, even many positive lookups.
Thus, learning files at higher levels can make both internal
lookups faster.
Learning guideline - 4: Be workload- and data-aware. Al-
though most data resides in lower levels, if the workload does
not lookup that data, learning those levels will yield less ben-
efit; learning thus must be aware of the workload. Further,
the order in which the data is loaded influences which levels
receive a large fraction of internal lookups; thus, the system
must also be data-aware. The amount of internal lookups acts
as a proxy for both the workload and load order. Based on
the amount of internal lookups, the system must dynamically
decide whether to learn a file or not.
Lifetime of Levels. Given that a level as a whole can also be
learned, we now measure and analyze the lifetimes of levels.
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Figure 5: Changes at Levels. (a) shows the timeline
of file creations and deletions at different levels. Note that
#changes/#files is higher than 1 in L1 as there are more cre-
ations and deletions than the number of files. (b) shows the
time between bursts for L4 for different write percentages.

Level learning cannot be applied at L0 because it is unsorted:
files in L0 can have overlapping key ranges. Once a level
is learned, any change to the level causes a re-learning. A
level changes when new sstables are created at that level, or
existing ones are deleted. Thus, intuitively, a level would
live for an equal or shorter duration than the individual ssta-
bles. However, learning at the granularity of a level has the
benefit that the candidate sstables need not be found in a sep-
arate step; instead, upon a lookup, the model just outputs the
sstable and the offset within it.

We examine the changes to a level by plotting the timeline
of file creations and deletions at L1, L2, L3, and L4 in Fig-
ure 5(a) for a 5%-write workload; we do not show L0 for the
reason above. On the y-axis, we plot the number of changes
divided by the total files present at that level. A value of
0 means there are no changes to the level; a model learned
for the level can be used as long as the value remains 0. A
value greater than 0 means that there are changes in the level
and thus the model has to re-learned. Higher values denote a
larger fraction of files are changed.

First, as expected, we observe that the fraction of files that
change reduces as we go down the levels because lower lev-
els hold a large volume of data in many files, confirming our
intuition. We also observe that changes to levels arrive in
bursts. These bursts are caused by compactions that cause
many files at a level to be rewritten. Further, these bursts
occur at almost the same time across different levels. The
reason behind this is that for the dataset we use, levels L0
through L3 are full and thus any compaction at one layer
results in cascading compactions which finally settle at the
non-full L4 level. The levels remain static between these
bursts. The duration for which the levels remain static is
longer with a lower amount of writes; for example, with 5%
writes, as shown in the figure, this period is about 5 minutes.
However, as the amount of writes increases, the lifetime of a
level reduces as shown in Figure 5(b); for instance, with 50%
writes, the lifetime of L4 reduces to about 25 seconds. From
these observations, we arrive at our final learning guideline.

Learning guideline - 5: Do not learn levels for write-heavy
workloads. Learning a level as a whole might be more appro-
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priate when the amount of writes is very low or if the work-
load is read-only. For write-heavy workloads, level lifetimes
are very short and thus will induce frequent re-learnings.
Summary. We analyzed how LSMs behave internally by
measuring and analyzing the lifetimes of sstable files and
levels, and the amount of lookups served by files at different
levels. From our analysis, we derived five learning guide-
lines. We next describe how we incorporate the learning
guidelines in an LSM-based storage system.

4 Bourbon Design
We now describe BOURBON, an LSM-based store that uses
learning to make indexing faster. We first describe the model
that BOURBON uses to learn the data (§4.1). Then, we discuss
how BOURBON supports variable-size values (§4.2) and its
basic learning strategy (§4.3). We finally explain BOURBON’s
cost-benefit analyzer that dynamically makes learning deci-
sions to maximize benefit while reducing cost (§4.4).

4.1 Learning the Data
As we discussed, data can be learned at two granularities:
individual sstables or levels. Both these entities are sorted
datasets. The goal of a model that tries to learn the data is to
predict the location of a key in such a sorted dataset. For ex-
ample, if the model is constructed for a sstable file, it would
predict the file offset given a key. Similarly, a level model
would output the target sstable file and the offset within it.

Our requirements for a model is that it must have low
overheads during learning and during lookups. Further, we
would like the space overheads of the model to be small. We
find that piecewise linear regression (PLR) [4, 27] satisfies
these requirements well; thus, BOURBON uses PLR to model
the data. The intuition behind PLR is to represent a sorted
dataset with a number of line segments. PLR constructs a
model with an error bound; that is, each data point d is guar-
anteed to lie within the range [dpos − δ , dpos + δ ], where
dpos is the predicted position of d in the dataset and δ is the
error bound specified beforehand.

To train the PLR model, BOURBON uses the Greedy-PLR
algorithm [47]. Greedy-PLR processes the data points one
at a time; if a data point cannot be added to the current line
segment without violating the error bound, then a new line
segment is created and the data point is added to it. At the
end, Greedy-PLR produces a set of line segments that repre-
sents the data. Greedy-PLR runs in linear time with respect
to the number of data points.

Once the model is learned, inference is quick: first, the
correct line segment that contains the key is found (using
binary search); within that line segment, the position of the
target key is obtained by multiplying the key with the line’s
slope and adding the intercept. If the key is not present in
the predicted position, a local search is done in the range
determined by the error bound. Thus, lookups take O(log-
s) time, where s is the number of segments, in addition to a

Workload Baseline
time (s)

File model Level model
Time(s) % model Time(s) % model

Mixed:
Write-heavy 82.6 71.5

(1.16 ×) 74.2 95.1
(0.87 ×) 1.5

Mixed:
Read-heavy 89.2 62.05

(1.44 ×) 99.8 74.3
(1.2 ×) 21.4

Read-only 48.4 27.2
(1.78 ×) 100 25.2

(1.92 ×) 100

Table 1: File vs. Level Learning. The table compares the
time to perform 10M operations in baseline WiscKey, file-
learning, and level-learning. The numbers within the paren-
theses show the improvements over baseline. The table also
shows the percentage of lookups that take the model path;
remaining take the original path because the models are not
rebuilt yet.

constant time to do the local search. The space overheads of
PLR are small: a few tens of bytes for every line segment.

Other models or algorithms such as RMI [31], PGM-
Index [19], or splines [29] may also be suitable for LSMs
and may offer more benefits than PLR. We leave their explo-
ration within LSMs for future work.

4.2 Supporting Variable-size Values
Learning a model that predicts the offset of a key-value pair
is much easier if the key-value pairs are the same size. The
model then can multiply the predicted position of a key by
the size of the pair to produce the final offset. However,
many systems allow keys and values to be of arbitrary sizes.

BOURBON requires keys to be of a fixed size, while val-
ues can be of any size. We believe this is a reasonable de-
sign choice because most datasets have fixed-size keys (e.g.,
user-ids are usually 16 bytes), while value sizes vary signif-
icantly. Even if keys vary in size, they can be padded to
make all keys of the same size. BOURBON supports variable-
size values by borrowing the idea of key-value separation
from WiscKey [37]. With key-value separation, sstables in
BOURBON just contain the keys and the pointer to the values;
values are maintained in the value log separately. With this,
BOURBON obtains the offset of a required key-value pair by
getting the predicted position from the model and multiply-
ing it with the record size (which is keysize + pointersize.)
The value pointer serves as the offset into the value log from
which the value is finally read.

4.3 Level vs. File Learning
BOURBON can learn individual sstables files or entire levels.
Our analysis in the previous section showed that files live
longer than levels under write-heavy workloads, hinting that
learning at the file granularity might be the best choice. We
now closely examine this tradeoff to design BOURBON’s ba-
sic learning strategy. To do so, we compare the performance
of file learning and level learning for different workloads.
We initially load a dataset and build the models. For the read-
only workload, the models need not be re-learned. In the
mixed workloads, the models are re-learned as data changes.
The results are shown in Table 1.
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For mixed workloads, level learning performs worse than
file learning. For a write-heavy (50%-write) workload, with
level learning, only a small percentage of internal lookups
are able to use the model because with a steady stream of in-
coming writes, the system is unable to learn the levels. Only
a mere 1.5% of internal lookups take the model path; these
lookups are the ones performed just after loading the data
and when the initial level models are available. We observe
that all the 66 attempted level learnings failed because the
level changed before the learning completed. Because of the
additional cost of re-learnings, level learning performs even
worse than the baseline with 50% writes. On the other hand,
with file models, a large fraction of lookups benefit from the
models and thus file learning performs better than the base-
line. For read-heavy mixed workload (5%), although level
learning has benefits over the baseline, it performs worse
than file learning for the same reasons above.

Level learning can be beneficial for read-only settings: as
shown in the table, level learning provides 10% improve-
ments over file learning. Thus, deployments that have only
read-only workloads can benefit from level learning. Given
that BOURBON’s goal is to provide faster lookups while sup-
porting writes, levels are not an appropriate choice of granu-
larity for learning. Thus, BOURBON uses file learning by de-
fault. However, BOURBON supports level learning as a con-
figuration option that can be useful in read-only scenarios.

4.4 Cost vs. Benefit Analyzer
Before learning a file, BOURBON must ensure that the time
spent in learning is worthwhile. If a file is short-lived, then
the time spent learning that file wastes resources. Such a
file will serve few lookups and thus the model would have
little benefit. Thus, to decide whether or not to learn a file,
BOURBON implements an online cost vs. benefit analysis.

4.4.1 Wait Before Learning
As our analysis showed, even in the lower levels, many files
are short-lived. To avoid the cost of learning short-lived files,
BOURBON waits for a time threshold, Twait , before learning a
file. The exact value of Twait presents a cost vs. performance
tradeoff. A very low Twait leads to some short-lived files
still being learned, incurring overheads; a large value causes
many lookups to take the baseline path (because there is no
model built yet), thus missing opportunities to make lookups
faster. BOURBON sets the value of Twait to the time it takes
to learn a file. Our approach is never more than a factor of
two worse than the optimal solution, where the optimal solu-
tion knows apriori the lifetime and decides to either immedi-
ately or never learn the file (i.e., it is two-competitive [25]).
Through measurements, we found that the maximum time to
learn a file (which is at most ∼4MB in size) is around 40 ms
on our experimental setup. We conservatively set Twait to be
50 ms in BOURBON’s implementation.

4.4.2 To Learn a File or Not
BOURBON waits for Twait before learning a file. However,
learning a file even if it lives for a long time may not be ben-
eficial. For example, our analysis shows that although lower-
level files live longer, for some workloads and datasets, they
serve relatively fewer lookups than higher-level files; higher-
level files, although short-lived, serve a large percentage of
negative internal lookups in some scenarios. BOURBON, thus,
must consider the potential benefits that a model can bring,
in addition to considering the cost to build the model. It is
profitable to learn a file if the benefit of the model (Bmodel)
outweighs the cost to build the model (Cmodel).
Estimating Cmodel. One way to estimate Cmodel is to assume
that the learning is completely performed in the background
and will not affect the rest of the system; i.e., Cmodel is 0.
This is true if there are many idle cores which the learning
threads can utilize and thus do not interfere with the fore-
ground tasks (e.g., the workload) or other background tasks
(e.g., compaction). However, BOURBON takes a conservative
approach and assumes that the learning threads will interfere
and slow down the other parts of the system. As a result,
BOURBON assumes Cmodel to be equal to Tbuild . We define
Tbuild as the time to train the PLR model for a file. We find
that this time is linearly proportional to the number of data
points in the file. We calculate Tbuild for a file by multiplying
the average time to a train a data point (measured offline) and
the number of data points in the file.
Estimating Bmodel. Estimating the potential benefit of learn-
ing a file, Bmodel , is more involved. Intuitively, the bene-
fit offered by the model for an internal lookup is given by
Tb−Tm, where Tb and Tm are the average times for the lookup
in baseline and model paths, respectively. If the file serves
N lookups in its lifetime, the net benefit of the model is:
Bmodel = (Tb−Tm) ∗N. We divide the internal lookups into
negative and positive because most negative lookups termi-
nate at the filter, whereas positive ones do not; thus,

Bmodel = ((Tn.b−Tn.m)∗Nn)+((Tp.b−Tp.m)∗Np)

where Nn and Np are the number of negative and positive in-
ternal lookups, respectively. Tn.b and Tp.b are the time in the
baseline path for a negative and a positive lookup, respec-
tively; Tn.m and Tp.m are the model counterparts.

Bmodel for a file cannot be calculated without knowing the
number of lookups that the file will serve or how much time
the lookups will take. The analyzer, to estimate these quanti-
ties, maintains statistics of files that have lived their lifetime,
i.e., files that were created, served many lookups, and then
were replaced. To estimate these quantities for a file F , the
analyzer uses the statistics of other files at the same level as
F ; we consider statistics only at the same level because these
statistics vary significantly across levels.

Recall that BOURBON waits before learning a file. Dur-
ing this time, the lookups are served in the baseline path.
BOURBON uses the time taken for these lookups to estimate
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Tn.b and Tp.b. Next, Tn.m and Tp.m are estimated as the aver-
age negative and positive model lookup times of other files
at the same level. Finally, Nn and Np are estimated as fol-
lows. The analyzer first takes the average negative and pos-
itive lookups for other files in that level; then, it is scaled
by a factor f = s/s̄l , where s if the size of the file and s̄l is
the average file size at this level. While estimating the above
quantities, BOURBON filters out very short-lived files.

While bootstrapping, the analyzer might not have enough
statistics collected. Therefore, initially, BOURBON runs in an
always-learn mode (with Twait still in place.) Once enough
statistics are collected, the analyzer performs the cost vs.
benefit analysis and chooses to learn a file if Cmodel < Bmodel ,
i.e., benefit of a model outweighs the cost. If multiple files
are chosen to be learned at the same time, BOURBON puts
them in a max priority queue ordered by Bmodel−Cmodel , thus
prioritizing files that would deliver the most benefit.

Our cost-benefit analyzer adopts a simple scheme of us-
ing average statistics of other files at the same level. While
this approach has worked well in our initial prototype, us-
ing more sophisticated statistics and considering workload
distributions (e.g., to account for keys with different popu-
larity) could be more beneficial. We leave such exploration
for future work.

4.5 Bourbon: Putting it All Together
We describe how the different pieces of BOURBON work to-
gether. Figure 6 shows the path of lookups in BOURBON. As
shown in (a), lookups can either be processed via the model
(if the target file is already learned), or in the baseline path
(if the model is not built yet.) The baseline path in BOURBON

is similar to the one shown in Figure 1 for LevelDB, except
that BOURBON stores the values separately and so ReadValue
reads the value from the log.

Once BOURBON learns a sstable file, lookups to that file
will be processed via the learned model as shown in Fig-
ure 6(b). 1 FindFiles: BOURBON finds the candidate ssta-
bles; this step required because BOURBON uses file learning.
2 LoadIB+FB: BOURBON loads the index and filter blocks;

these blocks are likely to be already cached. 3 Model-
Lookup: BOURBON performs a look up for the desired key
k in the candidate sstable’s model. The model outputs a pre-
dicted position of k within the file (pos) and the error bound
(δ ). From this, BOURBON calculates the data block that con-
tains records pos− δ through pos+ δ .† 4 SearchFB: The
filter for that block is queried to check if k is present. If
present, BOURBON calculates the range of bytes of the block
that must be loaded; this is simple because keys and pointers
to values are of fixed size. 5 LoadChunk: The byte range
is loaded. 6 LocateKey: The key is located in the loaded
chunk. The key will likely be present in the predicted po-

†Sometimes, records pos−δ through pos+δ span multiple data blocks;
in such cases, BOURBON consults the index block (which specifies the
maximum key in each data block) to find the data block for pos.
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Figure 6: BOURBON Lookups. (a) shows that lookups
can take two different paths: when the model is available
(shown at the top), and when the model is not learned yet
and so lookups take the baseline path (bottom); some steps
are common to both paths. (b) shows the detailed steps for
a lookup via a model; we show the case where models are
built for files.

sition (the midpoint of the loaded chunk); if not, BOURBON

performs a binary search in the chunk. 7 ReadValue: The
value is read from the value log using the pointer.
Possible improvements. Although BOURBON’s implemen-
tation is highly-optimized and provides many features com-
mon to real systems, it lacks a few features. For example,
in the current implementation, we do not support string keys
and key compression (although we support value compres-
sion). For string keys, one approach we plan to explore is to
treat strings as base-64 integers and convert them into 64-bit
integers, which could then adopt the same learning approach
described herein. While this approach may work well for
small keys, large keys may require larger integers (with more
than 64 bits) and thus efficient large-integer math is likely es-
sential. Also, BOURBON does not support adaptive switching
between level and file models; it is a static configuration. We
leave supporting these features to future work.

5 Evaluation
To evaluate BOURBON, we ask the following questions:
• Which portions of lookup does BOURBON optimize?

(§5.1)
• How does BOURBON perform with models available and

no writes? How does performance change with datasets,
load orders, and request distributions? (§5.2)

• How does BOURBON perform with range queries? (§5.3)
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Figure 7: Datasets. The figure shows the cumulative distri-
bution functions (CDF) of three synthetic datasets (linear,
segmented-10%, and normal) and one real-world dataset
(OpenStreetMaps). Each dataset is magnified around the
15% percentile to show a detailed view of its distribution.

• In the presence of writes, how does BOURBON’s cost-
benefit analyzer perform compared to other approaches
that always or never re-learn? (§5.4)

• Does BOURBON perform well on real benchmarks? (§5.5)
• Is BOURBON beneficial when data is on storage? (§5.6)
• Is BOURBON beneficial with limited memory? (§5.7)
• What are the error and space tradeoffs of BOURBON?

(§5.8)
Setup. We run our experiments on a 20-core Intel Xeon
CPU E5-2660 machine with 160-GB memory and a 480-
GB SATA SSD. We use 16B integer keys and 64B values,
and set the error bound of BOURBON’s PLR as 8. Unless
specified, our workloads perform 10M operations. We use a
variety of datasets. We construct four synthetic datasets: lin-
ear, segmented-1%, segmented-10% , and normal, each with
64M key-value pairs. In the linear dataset, keys are all con-
secutive. In the seg-1% dataset, there is a gap after a con-
secutive segment of 100 keys (i.e., every 1% causes a new
segment). The segmented-10% dataset is similar, but there
is a gap after 10 consecutive keys. We generate the normal
dataset by sampling 64M unique values from the standard
normal distribution N(0,1) and scale to integers. We also use
two real-world datasets: Amazon reviews (AR) [5] and New
York OpenStreetMaps (OSM) [2]. AR and OSM have 33.5M
and 21.9M key-value pairs, respectively. These datasets vary
widely in how the keys are distributed. Figure 7 shows the
distribution for a few datasets. Most of our experiments fo-
cus on the case where the data resides in memory; however,
we also analyze cases where data is present on storage.

5.1 Which Portions does BOURBON Optimize?
We first analyze which portions of the lookup BOURBON op-
timizes. We perform 10M random lookups on the AR and
OSM datasets and show the latency breakdown in Figure 8.
As expected, BOURBON reduces the time spent in index-
ing. The portion marked Search in the figure corresponds
to SearchIB and SearchDB in the baseline, versus Model-
Lookup and LocateKey in BOURBON. The steps in BOURBON

have lower latency than their baseline counterparts. Inter-
estingly, BOURBON reduces data-access costs too, because
BOURBON loads a smaller byte range than the entire block
loaded by the baseline.
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Seg1% 640K 3.11
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Figure 9: Datasets. (a) compares the average lookup laten-
cies of BOURBON, BOURBON-level, and WiscKey for different
datasets; the numbers on the top show the improvements of
BOURBON over WiscKey. (b) shows the number of segments
for different datasets in BOURBON.

5.2 Performance under No Writes
We next analyze BOURBON’s performance when the models
are already built and there are no updates. For each exper-
iment, we load a dataset and allow the system to build the
models; during the workload, we issue only lookups.

5.2.1 Datasets
To analyze how the performance is influenced by the dataset,
we run the workload on all six datasets and compare
BOURBON’s lookup performance against WiscKey. Figure 9
show the results. As shown in 9(a), BOURBON is faster than
WiscKey for all datasets; depending upon the dataset, the im-
provements vary (1.23× to 1.78×). BOURBON provides the
most benefit for the linear dataset because it has the smallest
number of segments (one per model); with fewer segments,
fewer searches are needed to find the target line segment.
From 9(b), we observe that latencies increase with the num-
ber of segments (e.g., latency of seg-1% is greater than that
of linear). We cannot compare the number of segments in
AR and OSM with others because the size of these datasets
is significantly different.
Level learning. Given that level learning is suitable for read-
only scenarios, we configure BOURBON to use level learn-
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ing and analyze its performance. As shown in Figure 9(a),
BOURBON-level is 1.33× – 1.92× faster than the baseline.
BOURBON-level offers more benefits than BOURBON because
a level-model lookup is faster than finding the candidate ssta-
bles and then doing a file-model lookup. This confirms that
BOURBON-level is an attractive option for read-only scenar-
ios. However, since level models only provide benefits for
read-only workloads and give at most 10% improvement
compared to file models, we focus on BOURBON with file
learning for our remaining experiments.

5.2.2 Load Orders
We now explore how the order in which the data is loaded af-
fects performance. For this experiment, we use the AR and
OSM datasets and load them in two ways: sequential (keys
are inserted in ascending order) and random (keys are in-
serted in an uniformly random order). With sequential load-
ing, sstables do not have overlapping key ranges even across
levels; whereas, with random loading, sstables at one level
can overlap with sstables at other levels.

Figure 10 shows the result. First, regardless of the load or-
der, BOURBON offers significant benefit over baseline (1.47×
– 1.61×). Second, the average lookup latencies increase in
the randomly-loaded case compared to the sequential case
(e.g., 6µs vs. 4µs in WiscKey for the AR dataset). This is
because while there are no negative internal lookups in the
sequential case, there are many (23M) negative lookups in
the random case (as shown in 10(b)). Thus, with random
load, the total number of internal lookups increases by 3×,
increasing lookup latencies.

Next, we note that the speedup over baseline in the random
case is less than that of the sequential case (e.g., 1.47× vs.
1.61× for AR). Although BOURBON optimizes both positive
and negative internal lookups, the gain for negative lookups
is smaller (as shown in 10(b)). This is because most negative
lookups in the baseline and BOURBON end just after the fil-
ter is queried (filter indicates absence); the data block is not
loaded or searched. Given there are more negative than posi-
tive lookups, BOURBON offers less speedup than the sequen-
tial case. However, this speedup is still significant (1.47×).

5.2.3 Request Distributions
Next, we analyze how request distributions affect
BOURBON’s performance. We measure the lookup la-
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Figure 11: Request Distributions. The figure shows the
average lookup latencies of different request distributions
from AR and OSM datasets.
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Figure 12: Range Queries. The figure shows the normal-
ized throughput of range queries with different range lengths
from AR and OSM datasets.

tencies under six request distributions: sequential, zipfian,
hotspot, exponential, uniform, and latest. We first randomly
load the AR and OSM datasets and then run the workloads;
thus, the data can be segmented and there can be many
negative internal lookups. As shown in Figure 11, BOURBON

makes lookups faster by 1.54× – 1.76× than the baseline.
Overall, BOURBON reduces latencies regardless of request
distributions.
Read-only performance summary. When the models are
already built and when there are no writes, BOURBON pro-
vides significant speedup over baseline for a variety of
datasets, load orders, and request distributions.

5.3 Range Queries
We next analyze how BOURBON performs on range queries.
We perform 1M range queries on the AR and OSM datasets
with various range lengths. Figure 12 shows the through-
put of BOURBON normalized to that of WiscKey. With short
ranges, where the indexing cost (i.e., the cost to locate the
first key of the range) is dominant, BOURBON offers the most
benefit. For example, with a range length of 1 on the AR
dataset, BOURBON is 1.90× faster than WiscKey. The gains
drop as the range length increases; for example, BOURBON

is only 1.15× faster with queries that return 100 items. This
is because, while BOURBON can accelerate the indexing por-
tion, it follows a similar path as WiscKey to scan subsequent
keys. Thus, with large range lengths, indexing accounts for
less of the total performance, resulting in lower gains.

5.4 Efficacy of Cost-benefit Analyzer with Writes
We next analyze how BOURBON performs in the presence
of writes. Writes modify the data and so the models must
be re-learned. In such cases, the efficacy of BOURBON’s
cost-benefit analyzer (cba) is critical. We thus compare
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(always), and BOURBON-cba (cba); (b) and (c) compare the learning time and total time, respectively; (d) shows the fraction
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Figure 14: Macrobenchmark-YCSB. The figure compares the throughput of BOURBON against WiscKey for six YCSB work-
loads across three datasets.

BOURBON’s cba against two strategies: BOURBON-offline and
BOURBON-always. BOURBON-offline performs no learning
as writes happen; models exist only for the initially loaded
data. BOURBON-always re-learns the data as writes happen;
it always decides to learn a file without considering cost.
BOURBON-cba re-learns as well, but it uses the cost-benefit
analysis to decide whether or not to learn a file.

We run a workload that issues 50M operations with vary-
ing percentages of writes on the AR dataset. To calculate the
total amount of work performed for each workload, we sum
together the time spent on the foreground lookups and inserts
(Figure 13(a)), the time spent learning (13(b)), and the time
spent on compaction (not shown); the total amount of work
is shown in Figure 13(c). The figure also shows the fraction
of internal lookups that take the baseline path (13(d)).

First, as shown in 13(a), all BOURBON variants reduce
the workload time compared to WiscKey. The gains are
lower with more writes because BOURBON has fewer lookups
to optimize. Next, BOURBON-offline performs worse than
BOURBON-always and BOURBON-cba. Even with just 1%
writes, a significant fraction of internal lookups take the
baseline path in BOURBON-offline as shown in 13(d); this
shows re-learning as data changes is crucial.

BOURBON-always learns aggressively and thus almost no
lookups take the baseline path even for 50% writes. As
a result, BOURBON-always has the lowest foreground time.
However, this comes at the cost of increased learning time;
for example, with 50% writes, BOURBON-always spends
about 134 seconds learning. Thus, the total time spent in-
creases with more writes for BOURBON-always and is even
higher than baseline WiscKey as shown in 13(c). Thus, ag-

gressively learning is not ideal.
Given a low percentage of writes, BOURBON-cba decides

to learn almost all the files, and thus matches the charac-
teristics of BOURBON-always: both have a similar fraction
of lookups taking the baseline path, both require the same
time learning, and both perform the same amount of work.
With a high percentage of writes, BOURBON-cba chooses not
to learn many files, reducing learning time; for example,
with 50% writes, BOURBON-cba spends only 13.9 seconds in
learning (10× lower than BOURBON-always). Consequently,
many lookups take the baseline path. BOURBON-cba takes
this action because there is less benefit to learning as the data
is changing rapidly and there are fewer lookups. Thus, it al-
most matches the foreground time of BOURBON-always. But,
by avoiding learning, the total work done by BOURBON-cba
is significantly lower.
Summary. Aggressive learning offers fast lookups but with
high costs; no re-learning provides little speedup. Neither is
ideal. In contrast, BOURBON provides high benefits similar
to aggressive learning while lowering total cost significantly.

5.5 Real Macrobenchmarks
We next analyze how BOURBON performs under two real
benchmarks: YCSB [10] and SOSD [28].

5.5.1 YCSB
We use six workloads that have different read-write ratios
and access patterns: A (w:50%, r:50%), B (w:5%, r:95%),
C (read-only), D (read latest, w:5%, r:95%), E (range-heavy,
w:5%, range:95%), F (read-modify-write:50%, r:50%). We
use three datasets: YCSB’s default dataset (created using
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Figure 15: Macrobenchmark-SOSD. The figure compares
lookup latencies from the SOSD benchmark. The numbers on
the top show BOURBON’s improvements over the baseline.

Dataset
WiscKey

latency (µs)
BOURBON

Latency(µs) Speedup
Amazon Reviews (AR) 3.53 2.75 1.28×

NewYork OpenStreetMaps (OSM) 3.14 2.51 1.25×

Table 2: Performance on Fast Storage. The table shows
BOURBON’s lookup latencies when the data is stored on an
Optane SSD.

ycsb-load [3]), AR, and OSM, and load them in a random
order. Figure 14 shows the results.

For the read-only workload (YCSB-C), all operations ben-
efit and BOURBON offers the most gains (about 1.6×). For
read-heavy workloads (YCSB-B and D), most operations
benefit, while writes are not improved and thus BOURBON

is 1.24× – 1.44× faster than the baseline. For write-heavy
workloads (YCSB-A and F), BOURBON improves perfor-
mance only a little (1.06× – 1.18×). First, a large fraction
of operations are writes; second, the number of the inter-
nal lookups taking the model path decreases (by about 30%
compared to the read-heavy workload because BOURBON

chooses not to learn some files). YCSB-E consists of range
queries (range lengths varying from 1 to 100) and 5% writes.
BOURBON reaches 1.16× – 1.19× gain. In summary, as ex-
pected, BOURBON improves the performance of read opera-
tions; at the same time, BOURBON does not affect the perfor-
mance of writes.

5.5.2 SOSD
We next measure BOURBON’s performance on the SOSD
benchmark designed for learned indexes [28]. We use the
following six datasets: book sale popularity (amzn32), Face-
book user ids (face32), lognormally (logn32) and normally
(norm32) distributed datasets, uniformly distributed dense
(uden32) and sparse (uspr32) integers. Figure 15 shows the
average lookup latency. As shown, BOURBON is about 1.48×
– 1.74× faster than the baseline for all datasets.

5.6 Performance on Fast Storage
Our analyses so far focused on the case where the data re-
sides in memory. We now analyze if BOURBON will offer
benefit when the data resides on a fast storage device. We run
a read-only workload on sequentially loaded AR and OSM
datasets on an Intel Optane SSD. Table 2 shows the result.
Even when the data is present on a storage device, BOURBON

offers benefit (1.25× – 1.28× faster lookups than WiscKey).
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Figure 16: Mixed Workloads on Fast Storage. The figure
compares the throughput of BOURBON against WiscKey for
four read-write mixed YCSB workloads. We use the YCSB
default dataset for this experiment.

Workload WiscKey
latency (µs)

BOURBON
Latency(µs) Speedup

Uniform 98.6 94.4 1.04×
Zipfian 18.8 15.1 1.25×

Table 3: Performance with Limited Memory. The ta-
ble shows BOURBON’s average lookup latencies from the AR
dataset on a machine with a SATA SSD and limited memory.

Figure 16 shows the result for read-write mixed YCSB work-
loads on the same device with the default YCSB datasest. As
expected, while BOURBON’s benefits are marginal for write-
heavy workloads (YCSB-A and YCSB-F), it offers consid-
erable speedup (1.16× – 1.19×) for read-heavy workloads
(YCSB-B and YCSB-D). With the emerging storage tech-
nologies (e.g., 3D XPoint memory), BOURBON will offer
even more benefits.

5.7 Performance with Limited Memory
We further show that, even with no fast storage and lim-
ited available memory, BOURBON can still offer benefit with
skewed workloads, such as zipfian. We experiment on a ma-
chine with a SATA SSD and memory that only holds about
25% of the database. We run a uniform random workload,
and a zipfian workload with consecutive hotspots where 80%
of the requests access about 25% of the database. Table 3
shows the result. With the uniform workload, BOURBON is
only 1.04× faster because most of the time is spent loading
the data into the memory. With the zipfian workload, in con-
trast, indexing time instead of data-access time dominates
because a large number of requests access the small portion
of data that is already cached in memory. BOURBON is able
to reduce this significant indexing time and thus offers 1.25×
lower latencies.

5.8 Error Bound and Space Overheads
We finally discuss the characteristics of BOURBON’s ML
model, specifically its error bound (δ ) and space overheads.
Figure 17(a) plots the error bound (δ ) against the average
lookup latency (left y-axis) for AR dataset. As δ increases,
fewer line segments are created, leading to fewer searches,
thus reducing latency. However, beyond δ = 8, although the
time to find the segment reduces, the time to search within
a segment increases, thus increasing latency. We find that
BOURBON’s choice of δ = 8 is optimal for other datasets too.
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Figure 17: Error-bound Tradeoffs and Space Overheads.
(a) shows how the PLR error bound affects lookup latency
and memory overheads; (b) shows the space overheads for
different datasets.

Figure 17(a) also shows how space overheads (right y-axis)
vary with δ . As δ increases, fewer line segments are created,
leading to low space overheads. Table 17(b) shows the space
overheads for different datasets. As shown, for a variety of
datasets, the overhead compared to the total dataset size is
little (0% – 2%).

6 Related Work
Learned indexes. The core idea of our work, replacing in-
dexing structures with ML models, is inspired from the pi-
oneering work on learned indexes [31]. However, learned
indexes do not support updates, an essential operation that
an storage-system index must support. Recent research tries
to address this limitation. For instance, XIndex [45], FITing-
Tree [20], and AIDEL [35] support writes using an additional
array (delta index) and with periodic re-training, whereas
Alex [13] uses gapped array at the leaf nodes of a B-tree
to support writes.

Most prior efforts optimize B- tree variants, while our
work is the first to deeply focus on LSMs. Further, while
most prior efforts implement learned indexes to stand-alone
data structures, our work is the first to show how learning
can be integrated and implemented into an existing, opti-
mized, production-quality system. While SageDB [30] is
a full database system that uses learned components, it is
built from scratch with learning in mind. Our work, in con-
trast, shows how learning can be integrated into an exist-
ing, practical system. Finally, instead of “fixing” new read-
optimized learned index structures to handle writes (like pre-
vious work), we incorporate learning into an already write-
optimized, production-quality LSM.

LSM optimizations. Prior work has built many LSM op-
timizations. Monkey [11] carefully adjusts the bloom filter
allocations for better filter hit rates and memory utilization.
Dostoevsky [12], HyperLevelDB [16], and bLSM [42] de-
velop optimized compaction policies to achieve lower write
amplification and latency. cLSM [23] and RocksDB [18] use
non-blocking synchronization to increase parallelism. We
take a different yet complimentary approach to LSM opti-

mization by incorporating models as auxiliary index struc-
tures to improve lookup latency, but each of the others are
orthogonal and compatible to our core design.

Model choices. Duvignau et al. [14] compare a variety
of piecewise linear regression algorithms. Greedy-PLR,
which we utilize, is a good choice to realize fast lookups,
low learning time, and small memory overheads. Neural
networks are also widely used to approximate data distri-
butions, especially datasets with complex non-linear struc-
tures [34]. However, theoretical analysis [36] and exper-
iments [43] show that training a complex neural network
can be prohibitively expensive. Similar to Greedy-PLR, re-
cent work proposes a one-pass learning algorithm based on
splines [29] and identifies that such an algorithm could be
useful for learning sorted data in LSMs; we leave their ex-
ploration within LSMs for future work.

7 Conclusion
In this paper, we examine if learned indexes are suitable for
write-optimized log-structured merge (LSM) trees. Through
in-depth measurements and analysis, we derive a set of
guidelines to integrate learned indexes into LSMs. Using
these guidelines, we design and build BOURBON, a learned-
index implementation for a highly-optimized LSM system.
We experimentally demonstrate that BOURBON offers signif-
icantly faster lookups for a range of workloads and datasets.

BOURBON is an initial work on integrating learned indexes
into an LSM-based storage system. More detailed stud-
ies, such as more sophisticated cost-benefit analysis, general
string support, and different model choices, could be promis-
ing for future work. In addition, we believe that BOURBON’s
learning approach may work well in other write-optimized
data structures such as the Bε -tree [6] and could be an inter-
esting avenue for future work. While our work takes initial
steps towards integrating learning into production-quality
systems, more studies and experience are needed to under-
stand the true utility of learning approaches.
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