
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Overload Control for µs-scale RPCs
with Breakwater

Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh,
and Adam Belay, MIT CSAIL

https://www.usenix.org/conference/osdi20/presentation/cho

Overload Control for μs-Scale RPCs with Breakwater

Inho Cho Ahmed Saeed Joshua Fried Seo Jin Park Mohammad Alizadeh Adam Belay
MIT CSAIL

Abstract

Modern datacenter applications are composed of hundreds of

microservices with high degrees of fanout. As a result, they

are sensitive to tail latency and require high request through-

puts. Maintaining these characteristics under overload is dif-

ficult, especially for RPCs with short service times. In this

paper, we consider the challenging case of microsecond-scale

RPCs, where the cost of communicating information and drop-

ping a request is similar to the cost of processing a request. We

present Breakwater, an overload control scheme that can pre-

vent overload in microsecond-scale services through a new,

server-driven admission control scheme that issues credits

based on server-side queueing delay. Breakwater contributes

several techniques to amortize communication costs. It en-

gages in demand speculation, where it assumes clients have

unmet demand and issues additional credits when the server is

not overloaded. Moreover, it piggybacks client-side demand

information in RPC requests and credits in RPC responses.

To cope with the occasional bursts in load caused by demand

speculation, Breakwater drops requests when overloaded us-

ing active queue management. When clients’ demand spikes

unexpectedly to 1.4× capacity, Breakwater converges to sta-

ble performance in less than 20 ms with no congestion col-

lapse while DAGOR and SEDA take 500 ms and 1.58 s to

recover from congestion collapse, respectively.

1 Introduction
Modern datacenter applications are composed of a set of mi-

croservices [15, 16, 36], which use Remote Procedure Calls

(RPCs) to interact. To satisfy the low latency requirements of

modern applications, microservices often have strict Service

Level Objectives (SLOs), some measured in microseconds.

Examples of microsecond-scale microservices include ser-

vices that operate on memory-resident data, such as key-value

stores [2, 25] or in-memory databases [41, 47]. Achieving

microsecond-scale SLOs is possible under normal loads due

to recent advances in operating systems [40] and network

hardware [1]. However, maintaining tight SLOs remains a

challenge during overload, when the load on a server ap-

proaches or exceeds its capacity.

Server overload can cause receive livelock [33], where the

server builds up a long queue of requests that get starved be-

cause the server is busy processing new packet arrivals instead

of completing pending requests. This scenario is especially

challenging for microsecond-scale RPCs because small de-

lays or bottlenecks can cause SLO violations. Further, the

small resource requirements of a short RPC allows a single

server to process millions of requests per second, potentially

from thousands of clients [10, 35, 50]. Thus, server overload

can be caused by “RPC incast” [39, 48], where a large num-

ber of clients make requests simultaneously, leading to large

queue build-up at the server.

The goal of overload control is to shed excess load to ensure

both high server utilization and low latency. Existing over-

load control schemes broadly fall into two categories. One

class of approaches drop requests at an overloaded server or

proxy [11, 32, 38]. Other schemes throttle the sending rate of

requests at clients [4, 29, 46]. Neither of these approaches per-

forms well for short, microsecond-scale RPCs. Dropping very

short requests at the server is not practical as the overhead is

comparable to the service time of the request. On the other

hand, client-based rate limiting requires clients to know the

state of congestion at the server to accurately configure their

rate limit, but it takes at least a network round-trip time (RTT)

to obtain this information. For requests with service times

comparable to the RTT, the delay in reacting to congestion

can hurt performance significantly.

A further challenge is to scale the overload control system

to large numbers of clients. In a large-scale system, many

clients have sporadic demand for a specific server, sending

it requests infrequently. Determining the right rate limit for

such clients is difficult since they have a stale view of the

extent of congestion at the server when making a request.

One solution is to explicitly probe the server before sending

a request. However, exchanging messages per request to ob-

tain congestion information can impose a high overhead for

microsecond-scale RPCs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 299

In this paper, we present Breakwater, an overload control

system for μs-scale RPCs. Breakwater relies on a server-

driven admission control scheme where clients are allowed to

send requests only when they receive credits from the server.

It uses queuing delay at the server as the overload signal. If

queuing delay is below an SLO-dependent threshold, Break-

water issues more credits to clients. Otherwise, it reduces the

number of credits it issues.

Breakwater minimizes the overhead of coordination (i.e.,

the communication overhead for the server to know which

clients need credits) using demand speculation. In particu-

lar, a Breakwater server only receives demand information

from clients when such information can be piggybacked on

requests. When all known demand is satisfied, the server dis-

tributes credits randomly to clients. This approach does not

require coordination messages to determine demand in clients.

However, demand speculation can lead to issuing credits to

clients who do not need them at that moment. These unused

credits lower server utilization. Thus, Breakwater issues extra

credits to ensure high utilization. Such overcommitment in-

troduces the potential for queue buildup at the server if many

clients with credits send requests simultaneously (i.e., RPC

incast). To mitigate the negative side effects of incast, Break-

water employs delay-based AQM to drop requests that arrive

in bursts.

We implemented Breakwater as an RPC library on top of

the TCP transport layer. Our extensive evaluation of vari-

ous workloads demonstrates that Breakwater achieves higher

goodput with lower tail latency compared to SEDA [48] and

DAGOR [51], the best available overload control systems. For

example, Breakwater achieves 6.6% more goodput and 1.9×
lower 99%-ile latency with clients’ demand of 2× capacity,

compared to DAGOR with a synthetic workload. In addition,

Breakwater scales to a large number of clients without de-

grading its benefits. For example, when serving 10,000 clients

with memcached, Breakwater achieves 14.3% more goodput

and 2.9× lower 99%-ile latency than DAGOR. Compared to

SEDA for the same workload, Breakwater achieves 5% more

goodput and 1.8× lower 99%-ile when the clients’ demand is

2× capacity.

Breakwater is available as open-source software at https:
//inhocho89.github.io/breakwater/.

2 Motivation and Background
2.1 Problem Definition and Objectives
Overload control is key to ensuring that backend services

remain operational even when processing demand exceeds

available capacity. Overload was identified as the main cause

of cascading failures in large services [11]. Transient overload

can occur for a variety of reasons. For example, it may not

be cost-effective to provision enough capacity for maximum

load [51]. Services can also experience unexpected overload

conditions (faulty slow nodes, thermal throttling, hashing hot

spots, etc.) despite capacity planning.

Without proper overload control, a system could experience

livelock [33], where incoming requests are starved because

the server is busy processing interrupts for new packet ar-

rivals, producing no useful work as the majority of requests

fail to meet their SLOs. Even when the average of clients’ de-

mand is less than the capacity, short-timescale bursty request

arrival can degrade latency for short requests. Microsecond-

timescale RPCs are much more prone to performance degra-

dation due to short-lived congestion than RPCs with longer

service times [45].

RPCs with microsecond-scale execution time are prevalent

in modern datacenters. Such RPCs span a variety of oper-

ations on data residing in memory or fast storage like M.2

NVMe SSDs (e.g., key-value stores [2, 25] or in-memory

databases [41, 47]). The move towards microservice archi-

tectures has only increased the prevalence of such RPCs

[15, 16, 36]. Further, a single server must process μs-scale

requests at very high rates, possibly from thousands of

clients [10, 35, 50]. To cope with μs-scale RPCs, an ideal

overload control mechanism should provide the following

properties:

1. No loss in throughput. An RPC server should be processing

requests at its full capacity regardless of overload, avoiding

livelock scenarios. Further, the overhead of performing the

overload control must be minimal.

2. Low latency. An ideal overload control scheme should en-

sure that any request that gets processed spends minimal time

queued at the server. Low queuing latency ensures that pro-

cessed RPCs meet their SLOs, and is particularly important

for μs-scale RPCs which tend to have tight SLOs.

3. Scaling to a large number of clients. For such short RPCs,

clients with sporadic demand consume very little resources

at the server. Thus, high server utilization requires scaling to

a large number of clients. The ideal overload control system

should be resilient to “incast” scenarios when a large number

of clients send requests within a short period of time. In par-

ticular, overload control should prevent queue build-ups that

result from incast without harming throughput.

4. Low drop rate. Dropping requests wastes resources at the

server because it must spend time processing and parsing

packets that will eventually be dropped. Furthermore, drop-

ping requests harms the tail latency of RPCs, especially when

network round-trip time (RTT) is comparable to RPC exe-

cution time, making retries more expensive. Thus, overload

control should minimize the drop rate at the server.

5. Fast feedback. Clients have more flexibility to decide the

next action if they can discover when a request is unlikely

to be served within its SLO. Thus, if a server expects a re-

quest will violate its SLO, it should notify the client as soon

as possible so that it can decide an alternative action with-

out having to wait for the request to timeout (e.g., giving up

on the request, sending it to another replica, issuing a sim-

300 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
200
400
600
800

1,000

0 0.5 1 1.5 2G
oo

dp
ut

 (k
re

qs
/s

)

Clients' demand (Mreqs/s)

CoDel win-based RL ideal

(a) Goodput vs. clients’ demand

with 1,000 clients

0
200
400
600
800

1,000

100 1k 10kG
oo

dp
ut

 (k
re

qs
/s

)

The Number of Clients

CoDel win-based RL ideal

(b) Goodput vs. # clients with

clients’ demand of 2M reqs/s

Figure 1: Goodput of CoDel and window-based rate limiting

with different clients’ demands and different numbers of clients

pler alternative request, degrading the quality of the service,

etc. [18]).

Next, we examine existing overload control mechanisms,

which were developed for RPCs with relatively long execution

times. Our goal is to understand the challenges of designing

an overload control system for μs-scale RPCs.

2.2 Overload Control in Practice

The fundamental concept in overload control is to shed excess

load before it consumes any resources [33]. This is typically

achieved by either dropping excess load at the server or throt-

tling the sending rate of requests at the client. We look at

the performance impairments of these two popular overload

control approaches, developed for RPCs with long execution

times, when used for μs-scale RPCs.

Active Queue Management (AQM). Such approaches op-

erate as circuit breakers, dropping requests at a server or at a

separate proxy under certain conditions of congestion. The

simplest approach maintains a specific number of outstanding

requests in the queue at the server, typically manually tuned

by the server operator [11,32,37]. More advanced algorithms

can improve performance and avoid the need for manual tun-

ing. For example, CoDel maintains the queuing delay within

a specific target value, dropping requests if the queuing delay

exceeds the target [11, 32, 38]. RPC servers are typically re-

quired to report on success and on failure to avoid expensive

timeouts [2, 37, 51]. This means that packets are processed,

and failure messages are generated for dropped requests. This

overhead is trivial when the message rate is low with a long

execution time. However, it becomes a significant overhead

in the case of μs-scale RPCs.

To demonstrate the limitations of the AQM approach, we

implemented an RPC server that uses CoDel for AQM. Our

main evaluation metric is the goodput of the server, defined

as the throughput of requests whose response time is less

than the SLO. Figures 1 (a) and (b) demonstrate the good-

put of CoDel with different clients’ demands and different

numbers of clients. This experiment uses a synthetic work-

load of requests with exponentially-distributed service time,

with a mean of 10 μs. The drop threshold parameter is tuned

to achieve the highest goodput given an SLO of 200 μs. As

the clients’ demand increases, more CPU is used for packet

processing even though majority of requests are dropped at

server. As a result, less CPU can be used for RPC execution,

which leads to goodput degradation. The goodput degrada-

tion gets worse with more number of clients. The reason is

that the overhead of sending failure messages increases with

more clients since fewer messages can be coalesced with the

increased number of clients.

Client-side Rate limiting. In order to eliminate the over-

head caused by dropping requests at the server, some over-

load control mechanisms limit the sending rate at the clients.

With client-side rate limiting, clients probe the server, detect

its capacity, and adjust their rate to avoid overloading the

server [4, 29, 46, 49]. The reaction of clients to overload is

delayed by a network RTT, which can lead to long delays

when the execution time of RPCs is comparable to or less

than the RTT. Further, the delay in getting feedback increases

with the number of clients; consider the impact this has on

overload control performance.

When the number of clients is small, the load generated

by each individual client is large and each client exchanges

messages with the server at a high frequency. This means

that each client has a fresh view of the state of the server,

allowing it to react quickly and accurately to overload. In this

case, client-based approaches outperform AQM approaches

because they have fresh enough information to prevent over-

load at the server.

As the number of clients increases, the load generated by

each client becomes more sporadic and messages are ex-

changed at a lower frequency between any individual client

and the server. This means that in the presence of a large

number of clients, each client will have a stale or inaccurate

estimate of server overload, leading to clients undershooting

or overshooting the available capacity at the server. When

many clients overshoot server capacity, it can lead to incast

congestion, causing large queueing delays. AQM avoids high

tail latency by dropping excess load at the server, leading to

AQM outperforming client-based approach for a large number

of clients, despite having less than ideal goodput.

To illustrate the limitation of client-side rate limiting with

μs-scale execution time, we implement window-based rate

limiting used in ORCA [29]. The mechanism is similar to

TCP congestion control. The client maintains a window size

representing the maximum number of outstanding requests.

Upon receiving a response, if the response time is less than

the SLO, it additively increases the window size; otherwise,

it multiplicatively decreases the window size. Figure 1 (a)

and (b) depict the goodput of window-based rate limiting

for exponentially-distributed service time of 10 μs (SLO =

200 μs) on average. We optimized the parameters (i.e. addi-

tive factor and multiplicative factor) to achieve the highest

goodput. Window-based schemes typically support a mini-

mum of one open slot in the window (i.e., a minimum of

one outstanding request at the server). This is problematic

when there is a large number of clients as each client can

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 301

always send one request, leading to incast and overwhelming

the server. Rate-based rate limiting [4, 49] overcomes this

limitation, but it still suffers from incast with a larger number

of clients which results in high latency and low goodput.

Hybrid approaches that combine client-side rate limiting

and AQM have also been proposed. We provide a more com-

prehensive evaluation of rate-based rate limiting and hybrid

approaches in §5.

2.3 Challenges
Existing overload control schemes, developed for long RPCs,

suffer significant performance degradation when handling

μs-scale RPCs. The fundamental challenge facing existing

schemes is the need for coordination of clients in order to

schedule access to the server under very tight timing con-

straints. This challenge is exacerbated by the following char-

acteristics of short RPCs:

1. Short average service times. We aim to support execution

times for RPCs on the order of microseconds. This requires

devising an overload control scheme that can react at mi-

crosecond granularity while keeping coordination overheads

significantly less than request service times. Achieving this

compromise is challenging, and any errors in devising or im-

plementing the overload control scheme can lead to either

long queues and overload, or underutilization of the server.

2. Variability in service times. RPC execution times typically

follow a long-tailed distribution [11,17,18]. The stochastic na-

ture of RPC service times limits the accuracy of any coordina-

tion or scheduling at the client or server. Accurate scheduling

requires knowledge of the execution time of each request in

advance, which is not possible in the presence of long-tailed

variability of execution times. Further, this variability creates

ambiguity for overload detection because a single request can

be long enough to cause significant queueing delay.

3. Variability in demand. Scheduling the access of clients

to the server requires some knowledge of both the demand

of clients and the capacity of the server. RPCs have various

arrival patterns, and clients can have sporadic demand with

periods of inactivity [10, 50]. Variability in demand can lead

to low utilization because clients that are granted access to

server capacity might not have enough demand to utilize it.

4. Large numbers of clients. All previous challenges are exac-

erbated as the number of clients increases: accurate coordina-

tion becomes more challenging and overheads become higher

(§5.2). Furthermore, a larger number of clients increases de-

mand variability because it makes the system more suscepti-

ble to bursts (i.e., many clients generating demand simultane-

ously).

The challenges a server overload control system faces bear

some similarities to those observed in network congestion

control. At a surface level, network and compute congestion

can be managed by similar mechanisms, but they each have

fundamentally different requirements. Both are necessary to

achieve good performance. Network congestion control aims

to maintain short packet queues at switches while maximizing

network link utilization. By contrast, overload control aims to

maintain short request queues at the RPC server while max-

imizing CPU utilization. There are two critical differences

between these problems: (a) RPC processing often has high

dispersion in request service times while packet processing

times are constant, and (b) client-side demand can fluctuate

more significantly at the RPC layer because clients may give

up after a timeout or choose to send an RPC to a backup

server. On the other hand, once a network flow starts, it gener-

ally completes. With such high variability in processing time

and demand, designing an overload control system requires

overcoming different challenges than a network congestion

control system.

2.4 Our Approach
Our work begins with insights from receiver-driven mech-

anisms proposed in recent work on datacenter congestion

control. In receiver-driven congestion control, a receiver is-

sues explicit credits to senders for controlling their packet

transmissions, which provides better performance than con-

ventional sender-based schemes [14, 24, 34]. Inspired by this

line of work, our design has the following components:

1. Explicit server-based admission control: A client is only

allowed to send a request if it receives explicit permission

from the server. A server-based scheme allows for coordi-

nation that is based on the accurate estimation of the state

of the server. Explicit admission control means that the load

received by the server is completely controlled by the server

itself. This allows for more accurate control that maintains

high utilization and low latency. Server-based admission con-

trol can add an extra RTT for a client to request admission. We

avoid this through piggybacking and overcommitting credits,

as detailed later.

2. Demand speculation with overcommitment: The server

requires knowledge of clients’ demand in order to decide

which client should be permitted to send requests. This is

comparable to the need for clients to know about the state of

the server in client-based schemes. Exchanging such informa-

tion introduces significant overhead as the number of clients

increases. Furthermore, as the execution time of RPCs de-

creases, the frequency of exchanging the demand information

increases, further increasing overhead. The key difference

between server-based schemes and client-based schemes is

that we can relax the need for the server to have full infor-

mation about clients’ demand without harming performance.

In particular, we allow the server to speculate about clients’

demand and avoid lowering server utilization by allowing the

server to overcommit, issuing more credits than its capacity.

3. AQM: Due to overcommitment, the server can occasionally

receive more load than its capacity. Thus, we rely on AQM

to shed the excess load. In our scheme, the need for AQM

to drop requests is rare, as credits are only issued when the

server is not overloaded.

302 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Client Server
request + demand

With credit

response + credit

Admission
Controller

AQM

Worker

Assign credit

① ② ③④⑤⑥

Figure 2: Breakwater overview

3 System Design
We present Breakwater, a scalable overload control system for

μs-scale RPCs. Figure 2 depicts an overview of the interaction

between a Breakwater client and server pair. A new client

joining the system sends a register message to the server,

indicating the number of requests it has in its queue. The

client piggybacks its first request to the registration message.

The server adds the client to its client list, and if it is not

overloaded it executes the request. The server then replies to

the client with the execution result or a failure message. The

server piggybacks with the response any credits it issued to

the client depending on the demand indicated by the client.

The client issues more requests depending on the number of

credits it received. When the client has no further requests, it

sends a deregister message to the server returning back any

unused credits.

For the rest of the section, we present how Breakwater

detects overload and how it reacts to it. In particular, we

present how a server determines the number of credits it can

issue, how to distribute them among clients, and how clients

react to credits or the lack thereof.

3.1 Overload Detection
There are multiple signals we can utilize to determine whether

a server is congested. CPU load is a popular congestion

signal—it is often used to make auto-scaling decisions in

cloud computing [5]. However, CPU utilization indicates only

one type of resource contention that can affect RPC latency.

For instance, requests contending for a hard disk can have high

latency, but CPU utilization will remain low [22]. Moreover,

using CPU utilization as a signal does not allow an overload

controller to differentiate between the ideal scenario of 100%

utilization with no delayed RPCs and a livelock state.

Another potential congestion signal is queue length at the

server. A similar signal is widely used in network congestion

control [8, 52]. Unfortunately, when RPC service times have

high dispersion, queue length is a poor indicator of request la-

tency. A more reliable signal is queuing delay, as it is accurate

even under RPC service time variability. Furthermore, it is

intuitive to map a target SLO to a target queueing delay at the

server. Thus, Breakwater uses queuing delay as its congestion

signal.

Effective overload control requires accurate measurement

of the queuing delay signal. In particular, the signal should

account for the sum of each of the queueing delay stages

a request experiences, ignoring non-overload induced de-

lays. This ensures that the system only curbs incoming re-

quests when it is overloaded. This is especially critical for

microsecond-scale RPCs, as they leave little room for error.

Breakwater has two stages of queueing. Packets are queued

while they await processing to create a request. Then, threads

created to process requests are queued awaiting execution.

Breakwater tracks and sums queuing delay at both of these

stages. In particular, for every queue in the system, each item

(e.g., a packet or a thread) is timestamped when it is enqueued.

Each queue maintains the oldest timestamp of enqueued ele-

ments in a shared memory region, and this timestamp is up-

dated on every dequeue. When the delay of a queue needs to

be calculated, Breakwater computes it by taking the difference

between the current time and the queue’s oldest timestamp.

We use this approach instead of measuring explicit delays

of each request (i.e., the timestamp difference between re-

quest arrival and the request execution) because we must keep

track of the total queueing delay as a request moves from one

queueing stage to another.

There are multiple sources of delay that are not caused by

high utilization or overload. For example, long delays due to

head-of-line blocking do not indicate a thread is waiting for

resources, but rather it is a sign of poor load balancing. Accu-

rate queueing delay measurement requires the system to avoid

such delays. We find that the biggest source of such delays is

the threading model used by the system. Our initial approach

for developing Breakwater relied on the in-line threading

model [19, 25] where a single thread handles both packet

processing and request processing. This choice was made as

the in-line model provides the lowest CPU cost. However, it

leads to head-of-line blocking as a single request with a large

execution time can block other requests waiting at the same

core. The alternative is relying on the dispatcher threading

model [41] where a dispatcher thread processes packets and

spawns a new thread for request processing incurring inter-

thread communication overhead. However, this overhead is

minimal when the dispatcher model is implemented using

lightweight threads in recently proposed low-latency stacks

(e.g., Shenango [40] and Arachne [43]). Thus, Breakwater

employs the dispatcher model for request processing.

3.2 Overload Control
During overload, the system has to decide which requests to

admit for processing and which requests to drop or possibly

queue at the client. In this section, we explain our design for

Breakwater’s approach to overload control.

3.2.1 Server-driven Credit-based Admission Control
A Breakwater server controls the admission of incoming re-

quests through a credit-based scheme. Server-driven admis-

sion control avoids the need for clients to probe the server to

know what rate to send at. It also allows the server to receive

the exact load it can handle. A credit represents availability

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 303

at the server to process a single request by the client that

receives the credit. A Breakwater server manages a global

pool of credits (Ctotal) that is then distributed to individual

clients. Ctotal represents the load the server can handle while

maintaining its SLO. This is achieved by controlling Ctotal
such that the measured queuing delay (dm) remains close to a

target queuing delay (dt), which is set based on the SLO of

the RPC.

Every network RTT, Breakwater updates Ctotal based on the

measured queuing delay (dm). If dm is less than dt , Breakwater

increases Ctotal additively.

Ctotal ←Ctotal +A (1)

Otherwise, it decreases Ctotal multiplicatively, proportional to

the level of overload.

Ctotal ←Ctotal ·max(1.0−β · dm −dt

dt
,0.5) (2)

Note that A controls the overcommitment and aggressiveness

of the generation of credits. On the other hand, β controls the

sensitivity of Breakwater to queue build-up. We explain how

we select A and β in the next section.

Once Ctotal is decided, credits are distributed to clients.

When Ctotal increases, new credits are issued to clients by

piggybacking the issued credits to response messages sent to

the clients. Explicit credit messages are only generated when

piggybacking is not possible (i.e., server has no messages

bound for the client). When Ctotal decreases, the server does

not issue additional credits to the clients, or if the clients have

unused credits, the server sends negative credits to revoke the

credits issued earlier. The server can tell how many unused

credits each client has by keeping track of the number of

credits issued and the number of requests received. In the

following section, we explain how Breakwater decides which

client should be issued credits.

3.2.2 Demand Speculation with Overcommitment
There is a tradeoff between accurate credit generation and

messaging overhead. Choosing which client should receive

a credit can be simply determined based on the demand at

the client. This requires clients to inform the server whenever

their number of pending requests changes. The server can

then select which clients to send a credit to based on demand.

This ensures that all issued credits are used, allowing the

server to generate credits that accurately represent its capacity.

However, as we scale the number of clients, the overhead of

exchanging demand messages overwhelms the capacity of the

server.

In our design of Breakwater, we choose to eliminate the

messaging overhead completely. A client notifies the server

of its demand only if the demand information can be piggy-

backed on a request (i.e., the client already has a credit and

can send a request to the server). The server therefore does

not have accurate information about clients with sporadic de-

mand as they can’t update the server as soon as their demand

changes. Thus, Breakwater speculatively issues credits based

on the latest demand information even though it may be stale.

Speculative generation of credits means that some clients that

receive credits will not be able to use them immediately. If

credits are generated to exactly match capacity, the server may

experience underutilization because some credits are left un-

used when they are issued to clients with no queued requests.

To achieve high utilization, speculative demand estimation is

coupled with credit overcommitment to ensure that enough

clients receive credits to keep the server utilized.

Overcommitment is achieved by setting the A and β pa-

rameters of the admission control algorithm. In particular, we

set A to be proportional to the number of clients (nc).

A = max(α ·nc,1) (3)

where α controls the aggressiveness of the algorithm. Further,

each client is allowed to have more credits than its latest

demand. The number of overcommitted credits per client

(Coc) is based on the number of clients (nc), the total number

of credits in the credit pool (Ctotal), and the total number of

credits presently issued to clients (Cissued).

Coc = max(
Ctotal −Cissued

nc
,1) (4)

The server makes sure that each client does not have unused

credits more than its (latest) demand plus Coc by revoking

already issued credits if necessary.

Further, Breakwater attempts to avoid generating explicit

credit messages whenever possible. This means that a new

credit will be given to a client to whom the server is about to

send a response unless that client has reached the maximum

number of credits it can receive. Explicit credit messages are

only generated when piggybacking a credit on a response is

not possible. In the current version of Breakwater, the client

that receives an explicit credit message is selected randomly,

but we expect the selection could be smarter with per-client

statistics. For example, the server can choose a client based

on its average request rate to increase the likelihood of the

client using the credit immediately.

3.2.3 AQM

The drawback of credit overcommitment is that the server

may occasionally receive a higher load than its capacity, lead-

ing to long queues. To ensure low tail latency at all times,

Breakwater relies on delay-based AQM to drop requests if

the queueing delay exceeds an SLO-derived threshold. In our

results, we find that drops are rare because our credit-based

admission control scheme avoids creating bursts. Drops can

be further reduced with by setting a large SLO budget. In

particular, a system administrator can set a large threshold for

AQM to reduce the drop rate at the expense of having a looser

SLO.

304 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.3 Breakwater Client
Breakwater allows a client to queue requests if it does not

have a credit for it. Client-side queuing is critical in a server-

driven system as the client has to wait for the server to admit

a request before it can send it. However, if the client queue is

too long, the request will experience high end-to-end latency.

In Breakwater, in order to achieve high throughput and low

end-to-end latency, we allow requests to expire at the client.

The request expiration time is set based on its SLO.

When a client receives credits, it can immediately consume

them if its queue length is equal to or larger than the number

of credits it receives. Due to overcommitment, a client can

receive credits which it cannot immediately consume (cunused).

When a client receives negative credits with decreased Ctotal
at the server, the client decrements cunused . However, if a client

has already consumed all of its credits (i.e., cunused = 0), no

action is taken by the client.

4 Implementation
Breakwater requires a low-latency network stack in order

to ensure accurate estimation of the queuing delay signal.

This requires minimal variability in packet processing and no

head-of-line-blocking between competing requests. We use

Shenango [40], an operating system designed to provide low

tail latency for μs-scale applications with fast core allocations,

lightweight user-level threads, and an efficient network stack.

Shenango achieves low latency by dedicating a busy-spinning

core to reallocate cores between applications every 5 μs to

achieve high utilization and minimize the latency of packets

arriving into the server.

We implement Breakwater as an RPC library on top of

the TCP transport layer. Breakwater handles TCP connection

management, admission control with credits, and AQM at the

RPC layer. Breakwater abstracts connections and provides

a simple individual RPC-oriented interface to applications,

leaving applications to only specify request processing logic.

Breakwater provides a single RPC layer per application (i.e.,

overload signal, credit pool, etc.) regardless of the number of

cores allocated to the application and the number of clients

of that application. A request arriving at a Shenango server

is first queued in a packet queue. Then a Shenango kernel

thread processes packets and moves the payload to the socket

memory buffer of the connection. Once all the payload of a

request is prepared in the memory buffer, a thread in Break-

water parses the payload to a request and creates a thread to

process it. Threads are queued pending execution, and when

they execute, they execute to completion.

Threading model. As explained earlier, Breakwater relies

on a dispatcher threading model for accurate queueing delay

measurement. A Breakwater server has a listener thread and

the admission controller thread running. When a new connec-

tion arrives, the listener thread spawns a receiver thread and a

sender thread per connection. Receiver threads read incoming

packets and parse them to create requests. After parsing a

request, AQM is performed, dropping requests if the current

queueing delay is greater than the AQM drop threshold. If

a request is not dropped, the receiver thread spawns a new

thread for the request. The new thread is enqueued to the

thread queue. The sender thread is responsible for sending

responses (either success or reject) back to the clients. If there

are multiple responses, the sender thread coalesces them to

reduce the messaging overhead. For all threads in Breakwater,

we use lightweight threads provided by Shenango’s runtime

library.

Queueing Delay Measurement. With a separate receiver

thread minimizing the delay from the socket memory buffer,

the two main sources of queueing delay in Shenango are

packet queueing delay (i.e., time between when a packet ar-

rives till it is processed by a Shenango kernel thread) and

thread queueing delay (i.e., time between when a thread is cre-

ated to process a request until it starts executing). In Shenango,

each core has a packet queue and a thread queue shared with

IOKernel. We instrumented packet queues and thread queues

so that each queue maintains the timestamp of the oldest item,

and we modified Shenango’s runtime library to export the

queueing delay signal to the RPC layer. When Shenango’s

runtime is asked for the queueing delay, it returns the maxi-

mum of the packet queue’s delays plus the maximum of the

thread queue’s delays.

Lazy credit distribution. The admission controller updates

Ctotal every RTT. Once the credit pool size is updated, the

admission controller can re-distribute credits to clients to

achieve max-min fairness based on the latest demand infor-

mation. However, this requires the admission controller to

scan the demand information of all clients, requiring O(N)
steps. To reduce the credit distribution overhead, Breakwater

approximates max-min fair allocation with lazy credit dis-

tribution. In particular, Breakwater delays determining the

number of credits a client can receive until it has a response to

send to that client. The sender thread, responsible for sending

responses to a client, decides whether to issue new credits,

not to issue any credits, or to revoke credits based on Cissued ,

Ctotal , and the latest demand information. It first calculates

the total number of credits the server should grant to client x
(cnew

x). If Cissued is less than Ctotal , cnew
x becomes

cnew
x = min(demandx +Coc,cx +Cavail) (5)

where demandx is the latest demand of client x, cx is the

number of unused credits already issued to client x and Cavail
is the number of available credits the server can issue (Cavail =
Ctotal −Cissued). If Cissued is greater than Ctotal , cnew

x becomes

cnew
x = min(demandx +Coc,cx −1) (6)

The sender thread then piggybacks the number of credits

newly issued for client x (cnew
x − cx) to the response. It also

updates cx to cnew
x and Cissued accordingly.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 305

5 Evaluation
Our evaluation answers the following questions:

• Does Breakwater achieve the objectives of overload con-

trol defined in §2 even given tight SLOs?

• Can Breakwater maintain its advantages regardless of load

characteristics (i.e., average RPC service time and service

time distribution)?

• Can Breakwater scale to large numbers of clients?

• Can Breakwater react quickly to a sudden load shift?

• What is the impact of Breakwater’s key design decisions:

demand speculation and credit overcommitment?

• How sensitive is Breakwater’s performance to different

parameters?

5.1 Evaluation Setup
Testbed: We use 11 nodes from the Cloudlab xl170 clus-

ter [20]. Each node has a ten-core (20 hyper-thread) Intel

E5-2640v4 2.4 GHz CPU, 64 GB ECC RAM, and a Mellanox

ConnectX-4 25 Gbps NIC. Nodes are connected through a

Mellanox 2410 25 Gbps switch. The RTT between any two

nodes is 10μs. We use one node as the server and ten nodes as

clients. The server application uses up to 10 hyper-threads (5

physical cores) for processing requests, and the client applica-

tion uses up to 16 hyper-threads (8 physical cores) to generate

load. All nodes dedicate a hyper-thread pair for Shenango’s

IOKernel.

Baseline. We compare Breakwater to DAGOR [51] and

SEDA [48]. DAGOR is a priority-based overload control sys-

tem used for WeChat microservices. Priorities are assigned

based on business requirements across applications and at

random across clients. We only consider a single application

in our evaluation. DAGOR uses queueing delay to adjust the

priority threshold at which a server drops incoming requests

(i.e., requests with a priority lower than the threshold are

dropped). To reduce the overhead of dropped requests, the

server advertises its current threshold to clients, piggybacked

it in responses. Clients use that threshold to drop the requests.

Note that DAGOR does not drop its threshold to zero, mean-

ing that a request with the highest priority value (i.e., a priority

of one) will never be dropped. SEDA uses a rate-based rate

limiting algorithm. It sets rates based on the 90%-ile response

time. Since we evaluate the performance of Breakwater using

the 99%-ile latency metric, we modified SEDA’s algorithm

so that it adjusts rates based on 99%-ile response time. We

implement DAGOR and SEDA as an RPC layer in Shenango

with the same dispatcher model as Breakwater.

Setting end-to-end SLO. We set tight SLOs to support low-

latency RPC applications. We budget SLOs based on the

server-side request processing time and the network RTT. An

SLO is set as 10× the sum of the average RPC service time

measured at the server and the network RTT; the multiplica-

tive factor of 10 was inspired by recent work on μs-scale RPC

work [17, 42]. The RTT in our setting is 10μs, leading to

SLOs of 110μs, 200μs, and 1.1ms for workloads with 1μs,

10μs, and 100μs average service times, respectively. These

are comparable with SLO values used in practice [30].

Evaluation metrics: We report goodput, 99%-ile latency,

drop rate, and reject message delay. Goodput represents the

number of requests processed per second that meet their SLO.

Reported latency captures all delays faced by a request from

the moment it is issued till its response is received by the client.

This includes any queuing delay at the client, communication

delay, and all delays at the server. We report drop rate at the

server only, as it is the factor the directly impact overall system

performance. Note that SEDA does not support any AQM at
the server and has zero drop rate in all experiments. Reject

message delay represents the delay between the departure of

a request from a client and the arrival of a reject message back

to the client when that request is dropped at the server.

Parameter tuning. We tune the parameters of all systems

so that they achieve the highest possible goodput. We re-tune

the parameters when we change the average service time,

service time distribution, and the number of clients. Note that

Breakwater and DAGOR do not require parameter re-tuning

for a different number of clients while SEDA does. Specifi-

cally, we need to scale ad ji parameter in SEDA based on the

number of clients to get the best goodput. For Breakwater, we

set α = 0.1%, β = 2%, dt to 40% of SLO, and AQM thresh-

old to 2 ·dt (e.g., dt = 80μs and AQM threshold = 160μs for

exponential service time distribution with 10μs average and

200 μs SLO). For DAGOR and SEDA, which are devised for

ms-scale RPCs, we scale down the hyperparameters from the

default values. For DAGOR, we update the priority threshold

every 1ms (instead of 1 s) or every 2,000 requests and use

α = 5% and β = 1%. We assign random priority for each

request ranging from 1 to 128, which is the default priority

setting with one type of service in DAGOR [51]. We tune

DAGORq for each workload (e.g., DAGORq = 70μs for ex-

ponential service time distribution with 10μs on average).

For SEDA, we used the same default parameter from [48]

except for timeout, ad ji, and ad jd . We set timeout = 1ms

(instead of 1 s) and tune ad ji and ad j j for each workload

(e.g., ad ji = 40, ad jd = 1.04 for exponential workload with

10μs average with 1,000 clients). AQM in Breakwater and

DAGOR drops requests right after parsing packets to requests,

following the drop-as-early-as-possible principle [33]. We

run all the experiments for four seconds. We measure steady

state performance with converged adaptive parameters by

collecting data two seconds after an experiment starts.

5.2 Performance for Synthetic Workload
Workload: We run 1,000 clients divided equally between the

ten nodes in our CloudLab setup. We generate the workload

with exponential, constant, and bimodal service time distri-

butions with 1μs, 10μs, and 100μs average where each client

generates the load with an open-loop Poisson process. We

change the demand by varying the average arrival rate of

requests at the server between 0.1× to 2× of server capac-

306 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
200
400
600
800

0 0.4 0.8 1.2 1.6G
oo

dp
ut

 (k
re

qs
/s

)

Clients' demand (Mreqs/s)

Breakwater DAGOR SEDA

(a) Goodput

0
100
200
300
400
500

0 0.4 0.8 1.2 1.6

99
%

-il
e

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

SLO

(b) 99%-ile Latency

0%

1%

2%

3%

4%

0 0.4 0.8 1.2 1.6

D
ro

p
R

at
e

Clients' demand (Mreqs/s)
(c) Drop Rate

Figure 3: Performance of Breakwater, DAGOR, and SEDA for synthetic workloads with the exponential distribution of 10μs average

0
200
400
600
800

G
oo

dp
ut

 (k
re

qs
/s

) Breakwater DAGOR SEDA
+1.7% +3.0% +1.6%

0%
1%
2%
3%

Constant Exponential Bimodal

D
ro

p
R

at
e

Service Time Distribution

(a) demand = 0.9× capacity

0

200

400

600

800

G
oo

dp
ut

 (k
re

qs
/s

) +4.0% +4.2% +4.7%

0%
1%
2%
3%

Constant Exponential Bimodal

D
ro

p
R

at
e

Service Time Distribution

(b) demand = 1.2× capacity

0

200

400

600

800

G
oo

dp
ut

 (k
re

qs
/s

) +4.7% +6.2% +7.0%

0%
1%
2%
3%

Constant Exponential Bimodal

D
ro

p
R

at
e

Service Time Distribution
(c) demand = 2× capacity

Figure 4: Goodput and drop rate with different service time distribution of 10μs average with 1,000 clients (The label represents the

goodput gain compared to the worst of baselines.)

ity. Exponential service time distribution models applications

waiting for a shared resource while busy-spinning; constant

distribution models applications with a fixed amount of la-

tency such as fetching value from memory or flash drive; bi-

modal distribution models applications that caches frequently

requested values, which will have shorter execution time com-

pared non-cached results. In particular, 20% of the requests

take four times the average service time, and 80% of the re-

quests take one fourth of the average following the Pareto

principle.

Overall performance: Figure 3 shows the performance for

a workload whose service time follows an exponential distri-

bution with 10μs average. The capacity of the server in this

case is around 850k requests per second.

When the clients’ demand is less than the capacity, all three

systems perform comparably in terms of goodput, latency,

and drop rate. The only noticeable difference among them is

that, at 700k reqs/s, SEDA has a 15% higher 99%-ile latency

than Breakwater or DAGOR. This is because SEDA doesn’t

drop requests at servers.

When the clients’ demand is around the capacity of the

server, Breakwater achieves 801k requests per second for

goodput (or 808k reqs/s of throughput), which is around 5%

overhead when compared to the maximum throughput with

no overload control. Other systems have higher overhead than

Breakwater.

When the demand exceeds the capacity, incast becomes the

dominant factor impacting performance. Breakwater handles

incast well by preventing clients from sending requests unless

they have credits, limiting the maximum queue size. Thus,

Breakwater achieves higher goodput with lower and bounded

tail latency. On the other hand, SEDA experiences high tail

latency because clients do not coordinate their rate increase,

making multiple clients increase their rate simultaneously

and overwhelm the server. Delayed reaction to overload does

not allow SEDA to react quickly to incast. DAGOR’s high

tail latency is also explained by delayed reaction as it up-

dates its priority threshold every 1 ms or every 2,000 requests.

Breakwater is also impacted by incast due to the overcom-

mitted credits, which lead to increased tail latency and higher

drop rate with overload. However, Breakwater relies on delay-

based AQM which effectively bounds the tail latency while

maintaining a comparable drop rate to DAGOR.

Impact of Workload Characteristics: To verify that Break-

water’s performance benefits are not confined to a specific

workload, we repeat the experiments with different service

time distributions and different average service time values.

Figure 4 shows goodput and drop rate with three different

distributions of the service time whose average is 10μs, where

the load generated by 1,000 clients is 0.9×capacity, 1.2× ca-

pacity, and 2× capacity. The service time distributions are

aligned over the x-axis in ascending order of variance. Break-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 307

0

1

2

3

G
oo

dp
ut

 (M
re

qs
/s

)

Breakwater DAGOR SEDA

0%
3%
6%
9%

0 1 2 3 4 5 6D
ro

p
R

at
e

Clients' demand (Mreqs/s)

(a) 1 μs

0
200
400
600
800

G
oo

dp
ut

 (k
re

qs
/s

)

0%
3%
6%
9%

0 0.4 0.8 1.2 1.6D
ro

p
R

at
e

Clients' demand (Mreqs/s)
(b) 10 μs

0
20
40
60
80

100

G
oo

dp
ut

 (k
re

qs
/s

)

0%
3%
6%
9%

0 60 120 180D
ro

p
R

at
e

Clients' demand (kreqs/s)

(c) 100 μs

Figure 5: Goodput and drop rate with different average service time with 1,000 clients

water achieves the highest goodput regardless of the load and

service time distribution. All three systems experience small

goodput reduction with a higher variance, especially when

the load is 2× the server capacity. The goodput reduction

of DAGOR and SEDA comes from their poor reaction to in-

cast, whose size increases as the load increases. As a result,

Breakwater’s goodput benefit becomes larger as the clients’

demand increases. Breakwater achieves 5.7% more goodput

compared to SEDA and 6.2% more goodput compared to

DAGOR with exponential distribution at a load of 2× capac-

ity. With a higher variance of the service time distribution, the

drop rate of the Breakwater tends to increase because a larger

number of credits are overcommitted with higher variance,

but it is still comparable to DAGOR.

Figure 5 depicts performance with an exponential service

time distribution and different average service times with

1,000 clients. Breakwater outperforms DAGOR and SEDA re-

gardless of the clients’ demand and the average service time.

As the average service time increases, clients and servers

exchange messages less frequently, exposing the delayed re-

action problem in SEDA and DAGOR. With short service

times (i.e., 1μs), clients and servers exchange messages very

frequently, giving clients a fresh view of the state of the

server in case of DAGOR and SEDA, allowing clients to react

quickly to overload. With high demand, the size of incast gets

larger which is poorly handled by SEDA and DAGOR. With

clients’ demand of 2× capacity with 100μs (i.e., 180k reqs/s),

Breakwater achieves 17.5% more goodput than SEDA and

10.2% more goodput with a comparable drop rate compared

to DAGOR.

Scalability to a Large Number of Clients: We vary the

number of clients from 100 to 10,000 with synthetic work-

load whose service time follows exponential service time

distribution of 10μs average. Note that the server capacity is

around 850k requests per second. Figure 6 depicts the good-

put with different numbers of clients. As clients’ demand

nears and exceeds the capacity, the goodput of all systems

degrades as the number of clients increases. As the number

of clients increases, the size of incast increases, leading to

0
200
400
600
800

1000

100 1k 10kG
oo

dp
ut

 (k
re

qs
/s

)
The number of clients

Breakwater DAGOR SEDA

(a) demand = capacity

0
200
400
600
800

1000

100 1k 10k

G
oo

dp
ut

 (k
re

qs
/s

)

The number of clients
(b) demand = 2× capacity

Figure 6: Goodput with different numbers of clients for expo-

nential workload with 10 μs average service time

performance degradation. This is problematic for Breakwater

as well since overcommitment can occasionally result in large

bursts of incoming requests. The performance of DAGOR and

SEDA drops more than Breakwater as the number of clients

increases. This is because each client exchanges messages

with the server less frequently as the number of clients in-

creases. The stale view of the server status leads clients to

overwhelm the server. Note that for SEDA’s best performance,

we scale the additive rate increase factor (ad ji) to the number

of clients. This helps mitigate any bursty behavior that can

result from multiple clients sharply increasing their rate simul-

taneously. A small increase factor is not practical for a small

number of clients as it will lead to slow ramp-up of rates after

an overload, leading to lower utilization of the server. Because

of this issue, SEDA has a much slower convergence time to

the right rate, making it impractical for load shift scenarios as

we show next.

Further, it is hard to tune SEDA dynamically. The rate

control algorithm in SEDA is implemented at the client, and

dynamic tuning requires each client to know the total num-

ber of active clients. Such a dynamic approach will lead to

performance degradation as the client will retune its param-

eter to at least an RTT after the number of clients changes.

The drawbacks of such a delayed reaction can be seen in the

behavior of DAGOR. Further, exchanging such information

might not feasible in practice due to messaging overhead as

well as privacy concerns (e.g., a FaaS cloud provider will not

want any of its clients to know the total number of clients).

Note that even though Breakwater also scales the number

308 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of newly issued credits to the number of clients (Equation 1

and 3), Breakwater is server-driven, and the server has per-

fect knowledge of the number of active clients at all times

with no need to expose this information outside. In SEDA,

by contrast, each client cannot have perfect knowledge of the

number of active clients. Each client would have to guess or

receive feedback from the server to scale the increment factor.

Reaction to Sudden Shifts in Demand: An RPC server may

experience sudden shifts in demand for many reasons, such

as load imbalance, packet bursts, unexpected user traffic, or

redirected traffic due to server failure. To verify Breakwater’s

ability to converge after a shift in demand, we measure its

performance with a shifting load pattern. We use a workload

whose service time follows an exponential distribution with

10μs average and calculate goodput, 99%-ile latency, and

mean reject message delay every 20 ms. When the experiment

starts, 1,000 clients generate requests at 400k reqs/s (0.5×
capacity). Then, clients double their request rate to 800k reqs/s

(0.9× capacity) at time = 2 s, then triple their demand to

1.2M reqs/s (1.4× capacity) at time = 4 s. Clients sustain their

demand at 1.2M reqs/s for 2 seconds. Then, clients reduce

their demand back to 800k reqs/s at time = 6 s and finally

to 400k reqs/s at time = 8 s. Figure 7 depicts a time series

behavior of all systems.

When the clients’ demand is far less than the capacity, all

three overload control schemes maintain comparable goodput

and tail latency at a steady state. When demand increases to

near server capacity, Breakwater converges fast, exhibiting

a stable behavior in terms of both goodput and tail latency.

On the other hand, DAGOR and SEDA experience higher tail

latency because of the poor reaction to the transient server

overload. As the server becomes persistently overloaded with

a sudden spike at time = 4 s, Breakwater converges quickly

while DAGOR and SEDA suffer from congestion collapse.

Breakwater experiences a momentary tail latency increase

(reaching 1.4× the SLO) with the sudden increase of clients’

demand due to more incast caused by overcommitted credits.

However, credit revocation and AQM rapidly limit the impact

of any further incast. When demand returns back below the

capacity at time = 6 s, Breakwater doesn’t show a noticeable

goodput drop while the DAGOR and SEDA experience a

temporary goodput drop down to 77.5% and 82.6% of the

converged goodput, respectively.

SEDA reacts slowly to the demand spike since each client

needs to wait for a hundred responses or 1 ms to adjust its

rate. After the demand spikes beyond the capacity, the server

builds up long queues, and the latency goes up beyond SLO,

resulting in almost zero goodput. SEDA takes around 1.6 s

to recover its goodput. DAGOR also has the delayed reac-

tion problem, but its goodput converges more quickly than

SEDA thanks to AQM, taking 500 ms to recover its goodput.

During the congestion collapse period, the 99%-ile latency

of DAGOR soars up to 300 ms and its mean delay of reject

message reaches 220 ms. This is problematic as clients cannot

0
200
400
600
800

1000
1200

G
oo

dp
ut

 (k
re

qs
/s

)

SEDADagorBreakwater
Demand Ideal

0.01
0.1

1
10

100
1000

99
%

-il
e

L
at

en
cy

 (m
s)

SLO

0.01
0.1

1
10

100
1000

0 2 4 6 8 10

M
ea

n
R

ej
ec

t
D

el
ay

 (m
s)

Time (s)

SLO

Figure 7: Goodput, 99%-ile latency, and mean rejection delay

with a sudden shift in demand with 1,000 clients

receive the feedback in a timely manner, making them rely

on expensive timeout.

The Value of Demand Speculation: To quantify the per-

formance benefits of demand speculation, we compare the

two strategies for collecting demand information: demand

synchronization and demand speculation. With demand syn-

chronization, clients notify the server whenever their demand

changes using explicit demand messages, and the server gen-

erates explicit credit messages to clients if it cannot be pig-

gybacked to responses. With demand speculation, the server

speculatively estimates client demands based on the latest

demand information and piggybacks credits to the responses

as much as possible. The load is generated by 1,000 clients

where the service time per request follows an exponential

distribution with an average of 10μs. The message overhead

is measured by the number of packets received (RX) and sent

(TX) at the server. With demand synchronization, both RX

and TX message overhead increase as the clients’ demand

increases, leading to goodput degradation (Figure 8 (a)). In

particular, explicit demand and credit messages doubles RX

and TX message overhead below and at the capacity (i.e.,

850k requests per second). As the system gets overloaded,

the overhead of demand messages keeps increasing because

per-client demand changes more frequently with increased

clients’ demand. Further, the overhead of generating credits

contributes to the cost of synchronization. The server sends

more credit messages during low demand as they cannot be

piggybacked on responses due to low request rates. As load

increases beyond capacity, more credits can be piggybacked

to the responses, which results in the reduction of TX over-

head. Demand synchronization has a smaller number of over-

committed credits, leading to a lower drop rate than demand

speculation (Figure 8 (c)). Overall, the cost of synchroniza-

tion between the clients and the server is high in terms of

goodput degradation and network overhead, with the small

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 309

0
200
400
600
800

0 0.4 0.8 1.2 1.6G
oo

dp
ut

 (k
re

qs
/s

)

Clients' demand (Mreqs/s)

Demand spec. Demand sync.

(a) Goodput

0
1
2
3
4

0 0.4 0.8 1.2 1.6

M
sg

 O
ve

rh
ea

d
(M

pp
s)

Clients' demand (Mreqs/s)

Demand spec. (RX) Demand spec. (TX)
Demand sync. (RX) Demand sync. (TX)

(b) Message Overhead

0%
1%
2%
3%
4%

0 0.4 0.8 1.2 1.6

D
ro

p
R

at
e

Clients' demand (Mreqs/s)

Demand spec. Demand sync.

(c) Drop Rate

Figure 8: Goodput, message overhead, and drop rate with demand speculation and demand synchronization in Breakwater

0
200
400
600
800

0 0.4 0.8 1.2 1.6

T
hr

ou
gh

pu
t

(k
re

qs
/s

)

Clients' demand (Mreqs/s)

No control
Credit + Demand spec.

(a) Throughput

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6

99
%

-il
e

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

Credit
Credit + Demand spec. + AQM

(b) 99%-ile Latency

Figure 9: Breakwater performance breakdown

benefit of lowering the drop rate at the server.

Performance Breakdown: To quantify the contribution of

each component of Breakwater to its overall performance, we

measure the throughput and 99%-ile latency after incremen-

tally activating its three major components: credit-based ad-

mission control, demand speculation, and delay-based AQM.

The results are shown in Figure 9. We use the synthetic work-

load whose service time is exponentially distributed with

10 μs average (SLO = 200 μs). With no overload control at all,

throughput starts to degrade, and tail latency soars, making al-

most all requests violate their SLO as demand becomes higher

than server capacity. Credit-based admission control effec-

tively lowers and bounds the tail latency, but throughput still

suffers due to the messaging overhead. Demand speculation

with message piggybacking reduces the messaging overhead,

but it worsens tail latency due to incast caused by credit over-

commitment. By employing delay-based AQM, Breakwater

effectively handles incast, leading to high throughput and low

tail latency.

Parameter Sensitivity: Breakwater parameters are set ag-

gressively to maximize the goodput, resulting in a relatively

high drop rate. With less aggressive parameters, Breakwater

can drop fewer requests sacrificing goodput. Figure 10 demon-

strates the trade-off between the goodput and the drop rate

for the workload with exponential service time distribution

with 10μs average with 1M reqs/s demand from 1,000 clients.

The values of pairs of α and β are aligned in descending order

of aggressiveness over the x-axis. Breakwater achieves 0.7%

of drop rate by sacrificing 2.2% of goodput (with α = 0.1%,

β= 8%) and 0.4% of drop rate by sacrificing 5.1% of goodput

(with α = 0.05%, β = 10%).

In practice, it is not easy to find the best parameter con-

0.0%
0.4%
0.8%
1.2%
1.6%
2.0%

0
200
400
600
800

1,000

0.1% 0.1% 0.1% 0.05% 0.05%

D
ro

p
R

at
e

G
oo

dp
ut

 (k
re

qs
/s

)

Goodput Drop Rate

:: 2% 4% 8% 8% 10%

-0.9% -2.2% -4.3% -5.1%

More aggressive Less aggressive
Figure 10: Goodput and drop rate with different aggressive

parameters of Breakwater

figuration for an operational system. It is even more difficult

when traffic patterns change over time because parameter

adjustments could be required to achieve the best possible

performance. Thus, it is desirable to develop systems that are

robust to parameter misconfiguration and changes in traffic

patterns, providing consistently good performance even with

small errors in parameter settings. Breakwater is robust. In

particular, it provides high throughput and low tail latency

despite parameter misconfiguration. We compare it against

DAGOR and SEDA, measuring their performance for the

same workload while varying their parameters. Specifically,

we measure the throughput and 99%-ile latency after recon-

figuring the three most sensitive parameters for each system:

target delay, increment factor, and decrement factor (dt ,α,β
for Breakwater; threshold of the average queueing time, α,β
for DAGOR; and target,ad ji,ad jd for SEDA). Given the set

of parameters producing best goodput, we measure 27 data

points with -10, 0, +10 μs of target queueing delay, 0.5×, 1×,

2× of the increment factor, and 0.5×, 1×, 2× of the decre-

ment factor. We use a synthetic workload with exponentially

distributed service times with 10 μs average with 1,000 clients.

The results are shown in Figure 11 where the circles filled

with light color indicate the performance with the parameters

tuned for the best goodput. All configurations of Breakwater

achieve comparable performance in terms of both throughput

and tail latency, achieving better throughput and latency trace-

offs and more consistent performance with different sets of

parameters. DAGOR tends to provide high throughput, but

its tail latency is as high as four times the SLO in the worst

case. SEDA’s worst case tail latency is lower than DAGOR,

310 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
100
200
300
400
500
600
700
800

0 200 400 600 800 1000

99
%

-il
e

L
at

en
cy

 (u
s)

Throughput (kreqs/s)

Breakwater DAGOR SEDA

Ideal latency

Id
ea

lt
hr

ou
gh

pu
t

Figure 11: Throughput and 99%-ile latency trade-off with dif-

ferent sets of parameters (circle with light color indicates the

point producing best goodput)

but it suffers from severe throughput degradation when its

parameters are too conservative.

5.3 Performance under Realistic Workload
To evaluate Breakwater in a more realistic scenario, we cre-

ate a scenario where one memcached instance serves 10,000

clients. We use the USR workload from [9] where 99.8% of

the requests are GET, and other 0.2% are SET. Each client

generates the load according to an open-loop Poisson pro-

cess. We set an SLO of 50μs considering that the latency of

GET operation of memcached is less than 1μs. Figure 12

shows goodput, median latency, 99%-ile latency, and drop

rate of Breakwater, DAGOR, and SEDA. Breakwater achieves

steady goodput, low latency, and low drop rate, whereas both

DAGOR and SEDA suffer from goodput degradation with

high tail latency caused by incast when the server becomes

overloaded. With clients’ demand of 2× capacity, Breakwater

achieves 5% more goodput and 1.8× lower 99%-ile latency

than SEDA; and 14.3% more goodput and 2.9× lower 99%-

ile latency than DAGOR. Because of bimodally distributed

service time with a mix of GET and SET requests, Breakwater

shows around 25 μs higher 99%-ile latency than its SLO and

about 1.5% point higher drop rate than DAGOR.

6 Discussion and Future Work
Auto-scaling. We do not consider auto-scaling [5, 23, 31]

in this paper, where more resources are provisioned as load

increases, as a potential solution for overload control. Auto-

scaling can allocate enough capacity over time, but because

it operates at the timescale of minutes, it is too slow to

resolve microsecond-scale imbalances. Furthermore, over-

provisioning resources can be cost-inefficient if used to han-

dle transient spikes in demand, such as those that occur during

temporary failures [3].

Fairness. When the server has a sufficient number of credits,

it tries to approximate max-min fairness when distributing

credits to clients. However, when the number of available

credits is less than the number of clients, Breakwater does not

provide fairness to clients. Instead, it favors clients for which

it is currently processing requests. This allows the server to

piggyback credits to the responses and avoid sending explicit

0

1

2

3

0 1 2 3 4 5 6G
oo

dp
ut

 (M
re

qs
/s

)

Clients' demand (Mreqs/s)

Breakwater DAGOR SEDA

(a) Goodput

0

10

20

30

0 1 2 3 4 5 6M
ed

ia
n

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

(b) Median Latency

0

100

200

300

0 1 2 3 4 5 6

99
%

-il
e

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

SLO

(c) 99%-ile Latency

0%

2%

4%

6%

8%

0 1 2 3 4 5 6

D
ro

p
R

at
e

Clients' demand (Mreqs/s)

(d) Drop Rate

Figure 12: Memcached performance for USR workload with

10,000 clients (SLO = 50μs)

credit messages. This preference toward a subset of clients

is common in production services [51]. If a service operator

wants to provide fairness among clients, the clients receiving

the most credits could be timed-out over a longer timescale,

so clients starved of credits can get a chance to send instead.

Overload control for multi-layer services. In this paper, we

only consider a single-layer, single-server overload control

scenario. Breakwater’s receiver-driven, credit-based approach

can be applied to multiple layers of microservices, preventing

overload at each individual layer. However, when an overload

occurs in an intermediate layer of a multi-layer service, the

work performed in earlier layers is wasted. We leave prop-

agating overload signals and coordinating overload control

across several layers of microservices for future work.

7 Related Work
Receiver-driven transport protocols. Homa [34],

NDP [24], and ExpressPass [14] schedule network packets

with a receiver-driven mechanism to achieve high throughput

and low latency. While Homa and Breakwater share some

similarities including a credit-based, receiver-driven scheme

and credit overcommitment, they are different in three

significant aspects. First, Homa handles network congestion,

whereas Breakwater handles server overload, which means

that Breakwater must handle the additional challenges posed

by overload control discussed in §2.3. Second, Homa relies

on full knowledge of clients’ demand, whereas Breakwater

does not. Instead, the Breakwater server speculates clients’

demand based on the latest demand information, the number

of clients, and the number of available credits to minimize

the message overhead. Third, both the motivation and

the mechanism of overcommitment are different. Homa

overcommits a fixed number of credits to handle an all-to-all

workload, where a sender may get credits from multiple

receivers and therefore not be able to send to all of them

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 311

simultaneously. In Breakwater, however, the server does

not know which clients have demand. Thus, it dynamically

increases the amount of overcommitted credits until it

receives sufficient requests to keep itself busy with demand

speculation.

Transport protocol for μs-scale RPCs. R2P2 [28] is a

request/response-aware transport protocol designed for μs-

scale RPCs. It implements JBSQ inside a programmable

switch to better load balance requests among multiple servers.

R2P2 limits the number of requests in a server’s queue by

explicitly pulling the requests from the switch. Through this

mechanism, R2P2 provides bounded request queueing and

low tail latency when the clients’ demand is less than the

servers’ capacity. However, R2P2 does not provide any server

overload control mechanism. If the clients’ demand exceeds

the servers’ capacity, the request queue will build up at the

switch, causing requests to violate their SLO. SVEN [27]

builds upon R2P2 by adding a server overload control mecha-

nism. Specifically, it drops requests at the switch if sampled

tail latency exceeds an SLO-derived threshold. SVEN avoids

the cost of request drops at the server by dropping requests

early at the switch. However, unlike Breakwater, message

overhead increases as clients’ demand increases.

Circuit breaker in proxy. Envoy [6], HAProxy [7], NG-

INX [44], and GateKeeper [21] provide circuit breaker mech-

anisms to prevent back-end server overload. These proxies sit

in front of a back-end server and stop forwarding requests to

the server when one of the load metrics (e.g., the number of

connections, the number of outstanding requests, the response

time, estimated load) exceeds a threshold. However, since

those thresholds must be set manually, it’s challenging to find

the right threshold value that maximizes resource utilization

while keeping latency low.

Server overload control. Session-based admission con-

trol [12, 13] prevents web server overloads by limiting the

creation of new sessions based on the number of successfully

completed sessions or QoS metrics. However, they are not

compatible with request-response models as they cannot pre-

vent server overloads caused by a single session from a proxy

that forwards requests from multiple clients. CoDel [38] con-

trols the queuing delay of a server to prevent server overloads.

Still, if the incoming packet rate is high and CPU is used

more for packet processing, the server becomes less CPU

efficient and degrades throughput. ORCA [29], SEDA [48],

and Doorman [4] rate limit clients so that their sending rates

do not exceed the server capacity. Doorman requires man-

ually setting of the server capacity threshold. Both ORCA

and SEDA may suffer from long queueing delays or under-

utilization if clients make mistakes on their sending rate with

stale congestion information from the server. DAGOR [51]

takes a hybrid approach using both AQM and client-side rate

limiting using adaptive parameter based on queueing delay.

However, as DAGOR server updates congestion status with

responses, clients still can undershoot or overshoot the server

capacity with stale information on server congestion when

client demand is sporadic.

Flow control. TCP flow control prevents the sender from

transmitting more bytes than the receiver can accommodate.

The objective of TCP flow control is to avoid memory overrun

at the server, not to prevent server overload or SLO viola-

tions. More recently, an SLO-aware TCP flow control mech-

anism [26] was proposed where the server adjusts receive

window size in TCP header based on SLO and the queueing

delay at the server. This approach limits the “bytes” of the

incoming requests to prevent server overload, but it’s challeng-

ing to decide the appropriate receive window size, especially

when the request size is variable.

8 Conclusion
In this paper, we presented Breakwater, a server-driven, credit-

based overload control system for microsecond-scale RPCs.

Breakwater achieves high throughput and low latency regard-

less of the RPC service time, the load at the server, and the

number of clients generating the load. Breakwater generates

credits based on queueing delay at the server, maintaining

high utilization by targeting non-zero queueing delay while

avoiding queue buildup. To minimize the overhead of co-

ordination between the clients and the server, we propose

demand speculation and credit overcommitment to realize

the credit-based design for overload control with minimal

overhead. By estimating clients’ demand and issuing more

credits than their capacity, Breakwater eliminates the extra

messaging cost which is often required with a credit-based

approach. Additionally, Breakwater reduces its remaining

messaging overhead significantly by piggybacking demands

and credits to requests and responses, respectively. Our evalu-

ation of Breakwater shows that it outperforms state-of-the-art

overload control systems. In particular, Breakwater achieves

25× faster convergence with 6% higher converged goodput

than DAGOR and 79× faster convergence with 3% higher

converged goodput than SEDA when the clients’ demand

suddenly spikes to 1.4× capacity.

Acknowledgments
We thank our shepherd Rachit Agarwal and the anonymous

reviewers for their valuable feedback, and Cloudlab [20] for

providing us with infrastructure for development and evalu-

ation. We also thank the anonymous artifact evaluators for

verifying our artifacts. This work was supported by the Cisco

Research Center Award, NSF grants (CNS-1563826, CNS-

1751009, and CNS-1910676), a Facebook Research Award, a

Microsoft Faculty Fellowship, and a VMWare Systems Re-

search Award.

References
[1] High-performance, feature-rich netxtreme®

e-series dual-port 100g pcie ethernet nic.

https://www.broadcom.com/products/

312 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ethernet-connectivity/network-adapters/
100gb-nic-ocp/p2100g.

[2] Memcached. http://memcached.org/.

[3] More on today’s gmail issue, 2009.

https://gmail.googleblog.com/2009/09/
more-on-todays-gmail-issue.html.

[4] Doorman: Global distributed client side rate limiting.,

2016. https://github.com/youtube/doorman.

[5] AWS Auto Scaling, 2020. https://aws.amazon.com/
autoscaling/.

[6] Envoy Proxy, 2020. https://www.envoyproxy.io/.

[7] HAProxy, 2020. http://www.haproxy.org/.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.

Data center tcp (DCTCP). In SIGCOMM, 2010.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In SIGMETRICS, 2012.

[10] T. Benson, A. Akella, and D. A. Maltz. Network traffic

characteristics of data centers in the wild. In IMC, 2010.

[11] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy. Site
Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media, Inc., 2016.

[12] H. Chen and P. Mohapatra. Session-based overload

control in qos-aware web servers. In INFOCOM, 2002.

[13] L. Cherkasova and P. Phaal. Session-based admission

control: A mechanism for peak load management of

commercial web sites. IEEE Transactions on Comput-
ers, 51(6):669–685, 2002.

[14] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-

bounded congestion control for datacenters. In SIG-
COMM, 2017.

[15] J. Cloud. Decomposing twitter: Adventures in service-

oriented architecture. In QCon New York, 2013.

[16] A. Cockroft. Microservices workshop:

Why, what, and how to get there. http:
//www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[17] A. Daglis, M. Sutherland, and B. Falsafi. RPCValet: Ni-

driven tail-aware balancing of μs-scale rpcs. In ASPLOS,

2019.

[18] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 2013.

[19] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson.

Farm: Fast remote memory. In NSDI, 2014.

[20] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,

E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, et al.

The design and operation of cloudlab. In ATC, 2019.

[21] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.

A method for transparent admission control and request

scheduling in e-commerce web sites. In International
conference on World Wide Web, 2004.

[22] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,

N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,

et al. An open-source benchmark suite for microservices

and their hardware-software implications for cloud &

edge systems. In ASPLOS, 2019.

[23] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang.

Adaptive, model-driven autoscaling for cloud applica-

tions. In ICAC, 2014.

[24] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.

Moore, G. Antichi, and M. Wójcik. Re-architecting

datacenter networks and stacks for low latency and high

performance. In SIGCOMM, 2017.

[25] A. Kalia, M. Kaminsky, and D. G. Andersen. Using

rdma efficiently for key-value services. In SIGCOMM,

2014.

[26] M. Kogias and E. Bugnion. Flow control for latency-

critical rpcs. In KBNets, 2018.

[27] M. Kogias and E. Bugnion. Tail-tolerance as a systems

principle not a metric. In APNet, 2020.

[28] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and

E. Bugnion. R2p2: Making rpcs first-class datacenter

citizens. In ATC, 2019.

[29] B. C. Kuszmaul, M. Frigo, J. M. Paluska, and A. S.

Sandler. Everyone loves file: File storage service (FSS)

in oracle cloud infrastructure. In ATC, 2019.

[30] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and

C. Kozyrakis. Heracles: Improving resource efficiency

at scale. In ISCA, 2015.

[31] M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling

with deadline and budget constraints. In GridCom, 2010.

[32] B. Maurer. Fail at scale. Queue, 2015.

[33] J. C. Mogul and K. Ramakrishnan. Eliminating receive

livelock in an interrupt-driven kernel. ACM Transac-
tions on Computer Systems, 1997.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 313

[34] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.

Homa: A receiver-driven low-latency transport protocol

using network priorities. In SIGCOMM, 2018.

[35] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. Acceltcp:

Accelerating network applications with stateful TCP

offloading. In NSDI, 2020.

[36] D. Namiot and M. Sneps-Sneppe. On micro-services

architecture. International Journal of Open Information
Technologies, 2014.

[37] NGINX Documentation: Limiting Access to Proxied

HTTP Resources, 2020. https://docs.nginx.
com/nginx/admin-guide/security-controls/
controlling-access-proxied-http.

[38] K. Nichols and V. Jacobson. Controlling queue delay.

Communications of the ACM, 2012.

[39] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, et al. Scaling memcache at facebook. In NSDI,
2013.

[40] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan. Shenango: Achieving high CPU efficiency

for latency-sensitive datacenter workloads. In NSDI,
2019.

[41] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,

C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,

M. Rosenblum, et al. The RAMCloud storage system.

ACM Transactions on Computer Systems, 2015.

[42] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achiev-

ing low tail latency for microsecond-scale networked

tasks. In SOSP, 2017.

[43] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.

Arachne: core-aware thread management. In OSDI,
2018.

[44] W. Reese. Nginx: the high-performance web server and

reverse proxy. Linux Journal, 2008.

[45] A. Sriraman and T. F. Wenisch. μtune: Auto-tuned

threading for OLDI microservices. In OSDI, 2018.

[46] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu.

Distributed resource management across process bound-

aries. In SoCC, 2017.

[47] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases.

In SOSP, 2013.

[48] M. Welsh and D. Culler. Overload management as a

fundamental service design primitive. In SIGOPS Euro-
pean Workshop, 2002.

[49] M. Welsh and D. E. Culler. Adaptive overload control

for busy internet servers. In USENIX Symposium on
Internet Technologies and Systems, 2003.

[50] T. Zhang, J. Wang, J. Huang, J. Chen, Y. Pan, and G. Min.

Tuning the aggressive tcp behavior for highly concurrent

http connections in intra-datacenter. Transactions on
Networking, 2017.

[51] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu,

R. Gu, B. C. Ooi, and J. Yang. Overload control for

scaling wechat microservices. In SoCC, 2018.

[52] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

M. Zhang. Congestion control for large-scale rdma

deployments. In SIGCOMM, 2015.

314 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	osdi20_cover_pages.P17
	osdi20-cho.pdf

