
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Determinizing Crash Behavior with a Verified
Snapshot-Consistent Flash Translation Layer

Yun-Sheng Chang, Yao Hsiao, Tzu-Chi Lin, Che-Wei Tsao, Chun-Feng Wu,
Yuan-Hao Chang, Hsiang-Shang Ko, and Yu-Fang Chen, Institute of

Information Science, Academia Sinica, Taiwan
https://www.usenix.org/conference/osdi20/presentation/chang

Determinizing Crash Behavior with a
Verified Snapshot-Consistent Flash Translation Layer

Yun-Sheng Chang Yao Hsiao Tzu-Chi Lin Che-Wei Tsao Chun-Feng Wu
Yuan-Hao Chang Hsiang-Shang Ko Yu-Fang Chen

Institute of Information Science, Academia Sinica, Taiwan

Abstract
This paper introduces the design of a snapshot-consistent
flash translation layer (SCFTL) for flash disks, which has a
stronger guarantee about the possible behavior after a crash
than conventional designs. More specifically, the flush opera-
tion of SCFTL also has the functionality of making a “disk
snapshot.” When a crash occurs, the flash disk is guaranteed
to recover to the state right before the last flush. The major
benefit of SCFTL is that it allows a more efficient design of
upper layers in the storage stack. For example, the file system
built on SCFTL does not require the use of a journal for crash
recovery. Instead, it only needs to perform a flush operation
of SCFTL at the end of each atomic transaction. We use a
combination of a proof assistant, a symbolic executor, and an
SMT solver, to formally verify the correctness of our SCFTL
implementation. We modify the xv6 file system to support
group commit and utilize SCFTL’s stronger crash guarantee.
Our evaluation using file system benchmarks shows that the
modified xv6 on SCFTL is 3 to 30 times faster than xv6 with
logging on conventional FTLs, and is in the worst case only
two times slower than the state-of-the-art setting: the ext4 file
system on the Physical Block Device (pblk) FTL.

1 Introduction
In modern computer systems, data storage usually needs to go
through multiple layers, starting from a specific application,
going through the file system, and eventually reaching the
physical device. Usually, we refer to those layers as the stor-
age stack. The design of a correct storage stack is non-trivial.
For instance, in order to maintain efficiency, I/O operations
sending from one layer can be reordered to reduce the overall
waiting time. More importantly, under a sudden power loss
or a system crash, a storage system should correctly recover
the stored data. Due to the high complexity of the system de-
sign, in recent years, a significant amount of research effort is
devoted to applying formal methods to provide rigorous cor-
rectness guarantees about storage stacks. Among those, one
crucial direction is proving crash safety [3, 9, 10, 12, 13, 42].

Crash recovery is a critical issue; no one wants to lose
important data after one accidental power loss. In the state-
of-the-art system design, each component in the storage stack
has its crash recovery mechanism and usually makes only
minimal assumptions about its lower layers. For instance, the

file system usually assumes the underlying physical device
follows the asynchronous disk model. The model provides
only minimal guarantees about its possible behavior when the
system crashes. As a result, the file system needs to implement
a heavyweight crash recovery mechanism.

The more recent design of physical devices offers much
stronger guarantees while maintaining similar performance.
For instance, the prefix-preserving disk model [11] guarantees
to recover to some state after the last flush operation without
operation reordering. The snapshot-consistent disk model we
propose in this paper provides an even stronger guarantee.
The advance in the physical device design provides us with
an excellent opportunity to rethink the design of the entire
storage stack. The stronger guarantees of the physical device
enable a cleaner and more efficient design of file systems,
database systems, and applications built on top of them. For
instance, the upper layer can remove some write barriers and
data replication to achieve higher performance.

In this paper, we introduce the snapshot-consistent flash
translation layer (SCFTL). The flash translation layer (FTL)
is the interface between flash memory and upper layers in the
storage stack, providing operations such as write, read, and
flush. As the name suggests, SCFTL implements the snapshot-
consistent disk model, which ensures that a crashed disk will
recover to the state right before the last flush operation.

Our snapshot-consistent disk model has the benefit that the
flush operation can be used to take a “disk snapshot.” The
feature is particularly useful for upper layers to implement
atomic operations/transactions—they only need to invoke a
flush at the end of each operation/transaction. Upper-layer
systems can utilize this feature to obtain a more efficient
design, e.g., removing the journal from a file system.

Next, we compare the snapshot-consistent disk model with
other disk models used in the literature. At first glance, one
might think that the synchronous disk model can provide a
similar crash guarantee, as it also confines the number of post-
crash states to one. The synchronous disk model, however,
can ensure only the atomicity of a single disk write, whereas
our proposed snapshot-consistent disk model guarantees the
atomicity of multiple writes between two consecutive flushes.

The asynchronous disk model guarantees only that writes
before a flush are durable. For those after the last flush op-
eration, even the order is not guaranteed. In the worst case,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 81

it might have 2n post-crash states, where n is the number of
writes after the last flush. The prefix-preserving disk model
guarantees that writes after the last flush will not be reordered,
so the possible post-crash states reduce to, in the worst case,
n. The post-crash states of the two disk models are “non-
deterministic,” and the upper layers have to consider all pos-
sible scenarios in their crash recovery mechanisms.

Our SCFTL allows an efficient implementation (§3) utiliz-
ing the out-of-place update feature of FTLs. An FTL usually
maintains an in-memory logical-to-physical address transla-
tion table (or L2P for short). On a write of data d to a logical
address l, due to the physical constraint of the flash memory,
the FTL cannot just update the value pointed to by l to d.
Instead, it finds a new physical location, puts d there, and
updates L2P to remap l to that new location. The old data
pointed to by l remains there. The main idea of our imple-
mentation is to remember the L2P right before the last flush
operation, which we refer to as the stable L2P. When the
system crashes, we use the stable L2P to recover to the state
before the last flush. Writing the entire L2P to the flash mem-
ory is an expensive operation, so we design a mechanism to
store only the changes to the last stored L2P table, and store
the full L2P to the flash memory only occasionally. We also
designed a mechanism to ensure that the garbage collector
will not erase the data pointed by the stable L2P.

We have formally verified the correctness of our SCFTL
implementation using a combination of a proof assistant, a
symbolic executor, and an SMT solver, which achieves a good
balance between the degree of automation and the expressive
power for stating and proving desired properties. The formal
framework is set up manually using an interactive proof as-
sistant, while the proof obligations involving the detail of
SCFTL are discharged automatically with an SMT solver.

In the formal framework, we start with a simple mathemati-
cal specification of the snapshot-consistent disk model, which
we briefly illustrate here using Figure 1. The state of the
specification has two sector arrays, stable and volatile. The
flush() operation copies volatile to stable; then the opera-
tion write(0,x9) changes volatile[0] to x9 and nothing else,
while the read(2) operation returns volatile[2]; finally, the
recovery() operation overwrites volatile with stable. In con-
trast to the specification, the SCFTL implementation stores
the two arrays using more sophisticated data structures to
achieve better performance and to satisfy the constraints of
the flash memory. For instance, the stable array is imple-
mented as an in-flash L2P and a list of L2P changes. Using a
proof assistant, we reduce a behavioral correctness property
over multiple FTL operations—which asserts that the SCFTL
implementation behaves as the specification describes—to
simpler per-operation correctness properties about each FTL
operation (§4). We also prove that the behavioral correctness
of SCFTL implies its snapshot consistency.

We then use more automatic tools to prove per-operation
correctness (§5). More specifically, the relationship between

x8 y6 z0 x8 y6 z0 x9 y6 z0 x8 y6 z0volatile

Original state
write(0,x9) read(2)

flush() recovery()

x0 y2 z0 x8 y6 z0x8 y6 z0 x8 y6 z0stable

Figure 1. Illustration of the SCFTL operations.

the two arrays in the specification and the data structures in
our implementation is described as a logical formula called
the abstraction relation, and one type of the per-operation
correctness formulae has the form “if the abstraction relation
holds for the states before executing an operation, the relation
will remain true for the states after executing the operation.”
We use a symbolic executor [8, 32] to translate the C program
of our SCFTL implementation to logical formulae describing
how the states change after executing an SCFTL operation.
Then we use an SMT solver to ensure that our implementation
does satisfy the per-operation correctness formulae.

Our experimental results (§7) show that when a workload
does not flush the disk too frequently, SCFTL is as efficient
as an FTL implementing the asynchronous disk model. To
understand the usefulness of SCFTL, we modify the xv6 [16]
file system to support group commit and utilize the stronger
crash guarantee granted by SCFTL. By changing less than
30 lines of code, we show that the modified xv6 on SCFTL
outperforms xv6 with logging on conventional FTLs by 3 to
30 times using our file system benchmarks; the performance
improvement is less obvious for workloads that frequently
flush the disk (e.g., smallfiles repeatedly creates a file, writes
100 bytes of data to it, and calls fsync), and more obvious for
workloads with lower flush frequency (e.g., largefile writes
4 MB of data to a file and calls fsync for every 1 MB). This
observation suggests an important guideline for building sys-
tems and applications on top of SCFTL: reducing the flush
frequency to extract more benefits from SCFTL. Finally, we
use the same file system benchmarks to compare the perfor-
mance of the modified xv6 on SCFTL with the state-of-the-art
setting: the ext4 file system on the pblk [6] FTL. The result
is encouraging. Although xv6 is a file system known to be
simple but slow, our xv6 on SCFTL is in the worst case only
two times slower than ext4 on pblk. Moreover, xv6 on SCFTL
has a stronger crash guarantee than that of ext4 on pblk.

In summary, the main contributions of this paper are the
design, specification, and verification of SCFTL:
• The design exploits the out-of-place update feature of FTLs

and uses an efficient checkpointing algorithm to provide a
stronger crash guarantee at the disk level (§3). We validate
its efficiency with disk and file system benchmarks (§7).

• The specification is simple and useful as it involves only the
manipulation of two arrays and a counter, and it naturally
ensures the atomicity of multiple disk writes. We formal-
ize snapshot consistency and show that the specification
satisfies the property with a proof assistant (§4).

82 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• We verify that our implementation of SCFTL meets its
specification using automatic verification tools. To scale
the verification of SCFTL, we propose a novel approach to
model crash behavior and describe some techniques to sim-
plify the proof obligations, including using ghost variables
to craft efficient SMT encodings, categorizing invariants to
remove unnecessary conditions, and partitioning the proofs
to avoid non-determinism (§5).
SCFTL has several limitations. First, SCFTL does not al-

low concurrent SCFTL operations, although it does allow
flash operations to be executed concurrently (more detail in
§6.2). Second, SCFTL assumes the underlying flash memory
is free of error. Finally, SCFTL does not implement standard
optimizations of FTLs, such as hot-cold data separation and
wear leveling, although its design does not prohibit them.

2 Related Work
We first discuss the recent advance of disk models; in par-
ticular, we will focus on transactional and order-preserving
models. To the best of our knowledge, our work is the first to
address the verification of the crash safety issue at the physical
device layer. Most previous work on crash safety verification
assumes a correct asynchronous disk is given and put their
focus on other layers in the storage stack, e.g., the file system.
We will discuss some recent work in this direction.

The transactional models [15, 17, 25, 38, 41] guarantee
the atomicity of multiple write operations. They provide a
non-standard disk interface, which has two consequences:
(i) their semantics (e.g., isolated concurrent transactions and
transaction abortion) is hard to formally specify or verify, and
(ii) system developers have to learn a new interface, increasing
the burden of porting existing or developing new software.

The order-preserving disk models [11, 45] guarantee the
preservation of operation orders across a crash. They expose
the standard read-write-flush disk interface, but with fewer
possible post-crash states than the asynchronous disk model.
Upper layers in the storage stack can utilize this feature to
reduce the number of flushes invoked in their crash recovery
mechanisms (e.g., copy-on-write and journaling).

Compared with the transactional models, the snapshot-
consistent model uses the standard read-write-flush interface.
It, moreover, guarantees the atomicity of multiple writes be-
tween two consecutive flushes and thus provides a stronger
guarantee than the order-preserving models.

Recent research work has discovered many crash vulner-
abilities in widely used applications such as LevelDB and
Git [36], as well as ACID violations in many relational
database systems [46].These vulnerabilities mainly stem from
the vague and weak crash guarantees provided by the under-
lying file systems. File systems themselves, even for mature
ones such as ext4, btrfs [39] and F2FS [28], also contain bugs
that may result in severe consequences [24, 27, 31].

In the past decades, a significant amount of research effort

is devoted to the development of a verified crash-safe storage
stack. To name a few, the verified file systems Yxv6 [42],
FSCQ [13], and DFSCQ [12] assume an asynchronous disk
model and use a log-based design to guarantee crash safety.
Instead of the asynchronous disk model, both the BilbyFS [3]
and Flashix [19] file systems assume the underlying layer is a
raw flash device (without an FTL) and implement an atomic
transaction mechanism to ensure crash safety.

SCFTL differs from previous work on verifying the storage
stack in that it targets the physical device layer. This approach
has three notable benefits: First, the code and the data struc-
ture of an FTL are usually simpler and more manageable than
that of a file system; thus it is easier to develop an efficient yet
verifiable layer. Second, providing the standard disk interface
is more modular than directly building file systems on a raw
flash device; developers can build their own systems with var-
ious features and optimizations, and leave crash safety to the
underlying verified disk. Finally, this approach allows us to
exploit useful device characteristics (e.g., the out-of-place up-
date feature of FTLs); it enables SCFTL to provide a stronger
crash guarantee without compromising the performance.

Regarding the verification methodology and framework,
the closest work to ours is Yggdrasil [42], which establishes
a forward simulation and discharges the proof obligations
using an SMT solver, achieving a high degree of automation.
Compared with Yggdrasil, we have additionally formalized
our simulation argument, snapshot consistency, and relevant
theorems using a proof assistant, providing more correctness
guarantees. The proof obligations have to be manually mas-
saged into a form that can be handled by an SMT solver;
strictly speaking, this leaves a gap in our formal proof (but
we bridge the gap by pen-and-paper reasoning).

By contrast, there has been work on storage system ver-
ification [9, 10, 13, 19] where the entire proof is formally
verified with a proof assistant and does not have any gaps, al-
though their verification cost is also significantly higher since
the whole proof structure has to be carefully designed and
constructed by programmers. Our framework is not as sophis-
ticated as Argosy [9], which treats layered storage systems,
or Perennial [10], which supports concurrency; extending our
framework to support these features are interesting future
directions. There are also differences in modeling decisions
between our framework and the others—for example, in Ar-
gosy a crash is modeled as an individual event whereas we
incorporate crashes into operations, and in Yggdrasil the ef-
fect of a lower-level operation may not be visible at a higher
level whereas we always relate such an operation to a corre-
sponding higher-level operation that is specified not to change
the state. These differences in modeling decisions do not lead
to vital differences in correctness guarantees, however.

3 SCFTL Design and Implementation
SCFTL is designed with high performance, strong crash guar-
antees, and provable correctness in mind. Below we give an

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 83

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

Figure 2. Flash memory layout of SCFTL.

overview of flash disks and describe the techniques we use
that set SCFTL apart from traditional FTLs.

3.1 Flash disk overview
Usually, a flash disk contains two main components, a fast
dynamic random-access memory (DRAM) to store temporary
data and a slower flash memory to store permanent data. In this
paper, we use the keywords in-memory or buffer to mean the
data is stored in the DRAM and in-flash to mean it is stored
in the flash memory. Flash memory is usually structured as
a list of blocks, each of which consists of multiple pages. A
page further contains one or multiple sectors, the basic unit
the upper layers (e.g., the file system) use to access data. One
can access flash memory through commands such as READ
and WRITE a page, ERASE a block, and SYNC to wait for the
completion of all ongoing flash commands. Due to physical
limitations, flash commands need to follow several intricate
constraints. For instance, a page must be erased before being
written. However, the basic unit for ERASE is a block, while
that for WRITE is a page. It would be inefficient if we erase
the entire block whenever we write to a page within it.

In order to free users from handling the intricate device
characteristics of flash memory, a flash disk usually comes
with a flash translation layer (FTL) to hide the complexity.
Typical operations supported by an FTL include a write and
a read operation to store and retrieve a sector of data, a flush
operation to wait until all unprocessed changes is made to
the flash memory, a recovery procedure that will be invoked
after a crash, and a garbage collection (GC) procedure gc that
will only be invoked by its internal garbage collector. Every
FTL should at least support the main functionalities, namely
address translation, crash recovery, and garbage collection.
Below we introduce how SCFTL implements those functions.

3.2 Address translation
To comply with the erase-before-write constraint of flash
memory, SCFTL maintains an in-memory logical-to-physical
table (L2P) and writes data in a log-structured manner [40]
to avoid in-place updates. Address translation can be done
at the granularity of sectors, pages, blocks, or a mixture of
them [26]. Often finer granularity leads to better performance,
but at the cost of higher memory usage due to a larger L2P.
SCFTL uses a sector-level L2P to achieve better performance.

SCFTL handles the request write(la,d), i.e., writing a sec-
tor of data d to the logical sector address la, as follows. It
first stores d into a page-sized merge buffer employed to re-
solve the size mismatch between a sector and a page. Then

SCFTL finds a new location pa for placing d using the triplet
(blk,pg,sec), called an active pointer, where the first two to-
gether point to the next free page to be written, and the last
one points to the next free slot in the merge buffer. We call
the block blk the active block. Then SCFTL also updates the
in-memory L2P with the entry la 7→ pa.

When the merge buffer is full, SCFTL invokes the com-
mand WRITE(blk,pg,d) to write the buffered data to the flash
memory, where d is the content of the merge buffer. Then
SCFTL increases pg by one to follow the sequential write
constraint (within one block) of flash memory, unless pg is
already the last page in a block, in which case blk is assigned
a new block address dequeued from the free block queue and
pg is reset to 0. The free block queue is an in-memory data
structure that SCFTL uses to track currently available blocks.

Finally, SCFTL would have to remember that the address
storing old data (if any) is no longer valid, and the one for
the new data is now valid. The garbage collector needs this
information to relocate all valid data before erasing a block. In
SCFTL, this is realized by an in-memory physical-to-logical
table (P2L), which is the “reverse” mapping of L2P. Flash
disks usually have more available physical locations than
logical locations. So it can happen that a mapping p 7→ l is
in P2L, but l 7→ p is not in L2P. In such a case, we know that
this physical address p is invalid. We also use an in-memory
table, called the valid count table, to remember the number of
valid sectors in each block. The valid count table will be used
by the garbage collector to select the victim block to recycle.

Handling a read(la) request is simpler: SCFTL first checks
if the requested data is still stored in the merge buffer; if so,
it directly returns the data in the merge buffer. Otherwise,
SCFTL performs an L2P lookup to find the corresponding
physical address p, followed by a READ(p) command to re-
trieve the requested data stored in the flash memory. For a
flush() request, SCFTL first stores the buffered data in the
flash memory and advances the active pointer in the same way
as handling a write request. Then it issues a SYNC command
to ensure all data written before this point is persistent.

SCFTL maintains another L2P (the stable L2P) to reflect
the state of the in-memory L2P right before the last flush for
ensuring snapshot consistency. To distinguish the two kinds
of L2P, we will call the in-memory L2P the volatile L2P. The
cost of physically storing the stable L2P in the flash memory
can be prohibitively high. Thus, SCFTL logically maintains
the stable L2P through checkpointing in an efficient way.

Figure 2 shows the flash memory layout of SCFTL, includ-
ing a delta region that records L2P differences, and a full

84 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Store new L2P
in the shadow

Commit the
new L2P

Uncommit
the old L2P

Erase the
old L2P

Erase the first
delta block

Erase the remaining
delta blocks

Store a committed
dummy delta page

1 2 3 4 5

Figure 3. Full checkpoint protocol. The occurrence of crashes is partitioned to stages 1 - 5 .

checkpoint region that stores an entire L2P. SCFTL can cre-
ate two kinds of checkpoints: a lightweight delta checkpoint
and a heavyweight full checkpoint. SCFTL always creates
a delta checkpoint when a flush is invoked. Under rare cir-
cumstances where the delta region nearly runs out of space,
SCFTL creates a full checkpoint and clears the delta region.

Delta checkpoint Whenever a volatile L2P entry is modified
due to a write or a gc operation, SCFTL also inserts a delta
pair, which consists of a logical and a physical address, into
the page-sized delta buffer. When the delta buffer is full,
SCFTL invokes a WRITE command to store all buffered pairs
along with a tentative tag into the in-flash delta region in
a sequential manner and clears the buffer. We illustrate this
operation in Figure 2.

On receiving a flush request, SCFTL first makes sure host
data is safely stored in the flash memory. It then follows the
same procedure above to store the buffered pairs in the flash
memory, except here the delta page is tagged as committed. A
committed delta page activates previous tentative delta pages,
i.e., all delta pages before a committed one are treated as
committed. When the committed delta page is safely kept in
the flash memory, a delta checkpoint is successfully created.

Full checkpoint A full checkpoint of SCFTL consists of
a complete L2P table and a commit flag. When making a
full checkpoint, i.e., storing the volatile L2P together with
a commit flag to the flash memory, we employ a shadow to
prevent modification to the old L2P before the new one is
settled. The detailed steps can be found in Figure 3. In short,
we first store the new (volatile) L2P to the flash memory
and start to erase the old L2P and the delta region only after
the new L2P is committed. To ensure the correctness of our
recovery procedure, we allow only flush operations to create
a full checkpoint; write and gc operations are not allowed to
create a full checkpoint. One potential issue is that the delta
region might become full after a write or a gc operation. We
address this issue by imposing upper bounds on the number of
write and gc invocations (hence the number of created delta
pairs) within an epoch, i.e., between two consecutive flushes.
To ensure these bounds are respected, SCFTL uses a write
counter and a GC counter to keep track of the number of
write and gc invocations in the current epoch, respectively,
and resets both counters on a flush or a recovery. If the upper
layer calls a write after the write counter exceeds the bound,
SCFTL simply treats that write as a no-op.

Systems that use SCFTL to implement atomic transactions
should be aware of the write bound, to make sure an opera-
tion can fit into the current epoch before executing it. If an
operation is too large to fit into an entire epoch (e.g., writing
a large amount of data to a file), then it should be broken into
multiple smaller ones. We believe that this requirement is not

too restrictive, given that some systems also face a similar sit-
uation; for example, because of the log size limit, ext4 always
checks that the current running transaction has sufficient ca-
pacity left before atomically updating its metadata [35, §3.1].
Similarly, systems built on SCFTL can record the number of
writes issued to SCFTL since the last flush, and before exe-
cuting an operation, calculate the number of writes required
to complete the operation. If the operation does not fit into
the current epoch, then the system should call a flush to form
a new epoch. This avoids calling a flush in the middle of an
operation, which may expose intermediate states on a crash.

3.3 Crash recovery
The recovery procedure first recovers the volatile L2P with
full and delta checkpoints. To explain how to reconstruct the
L2P, we begin by specifying what is visible to the recovery
procedure. A full checkpoint is visible if and only if it is
committed. For the delta region, we treat its first page specially
to ensure we can erase the entire delta region atomically. The
only important information on the first page is the commit
flag. All delta pairs on the first page are dummy delta pairs
that will be ignored in the recovery procedure. Visibility of
delta pairs can be determined by examining the commit flag
of the first page of the delta region and, if the commit flag is
on, performing a sequential scan over the entire delta region
to find the last committed page.

In most cases, the recovery procedure simply restores a
base L2P from a full checkpoint and applies all visible delta
pairs in sequential order. The only exception is when a crash
occurs during a full checkpoint. Below we analyze the behav-
ior of the recovery procedure against each crash point during
a full checkpoint, as shown in Figure 3:
1 : The old L2P and all delta pairs are visible. Restoring the

old L2P and applying each delta pair yields the new L2P.
2 : Both the old and new L2P, and all delta pairs are visi-

ble. Although we do not leave other information (e.g., a
timestamp) to distinguish the old L2P from the new one,
our checkpoint design ensures that starting from either
L2P and applying each delta pair restores the new L2P.

3 : The new L2P and all delta pairs are visible. For the same
reasoning in 2 , it restores the new L2P and applies each
delta pair, yielding the new L2P.

4 : The new L2P is visible and all delta pairs are invisible. It
simply restores the new L2P.

5 : The new L2P and the dummy pairs are visible. It restores
the new L2P and ignores all dummy delta pairs.

Selective persistence The idea of selective persistence [34]
is to persistently keep only primary data, which is the mini-
mal set of data structures required for correct crash recovery,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 85

and rebuild non-primary data from the primary one. This way,
the protocol to correctly maintain consistency between multi-
ple data structures can be greatly simplified. In SCFTL, the
primary data is simply the L2P. After restoring the volatile
L2P, the recovery procedure proceeds to rebuild the block
queues (explained later), P2L table, and valid counts table.

3.4 Garbage collection
The GC procedure of standard FTLs consists of the following
steps: (i) find a victim block, (ii) relocate all valid sectors
(those pointed to by the volatile L2P) in the victim block
similarly to the write operation (the relocation phase), and
(iii) erase the victim block (the erasure phase). In SCFTL, the
standard GC procedure cannot be used, as the data pointed to
by the stable L2P might be erased by a garbage collector.

To prevent such an issue, one design option is to keep ad-
ditional information on what is allowed to be erased. This
approach is taken by TxFlash [38, §3.3] to prevent back point-
ers from being erased. The downside of this approach is that
it can incur notable memory and performance overhead.

Another approach, adopted by OPTR [11, §3.4], is to in-
voke an internal flush (i.e., a flush operation issued by the
FTL) before GC is activated. While an internal flush is al-
lowed by the prefix-preserving guarantee that OPTR offers, it
is not allowed by the snapshot consistency SCFTL is trying
to achieve, as otherwise SCFTL might rollback to the state
right before an internal flush on a recovery.

Two-phase garbage collection Instead, we use a simple pro-
tocol called two-phase garbage collection (2PGC), which de-
lays the erasure phase until a flush is invoked. This is correct
because after a flush operation, the old stable L2P will be
discarded and hence all the previously selected victim blocks
can be safely erased. To implement this idea, in the 2PGC
mechanism, we use two functions gcrl and gces to handle the
relocation and erasure phases, respectively. We, moreover,
maintain four queues to remember the status of blocks. Ini-
tially, all blocks are in the free block queue, except the active
block, which does not belong to any of the state queues. When
the active block is fully written, we add it to the used block
queue and pick another block from the free block queue as
the new active block.

When the garbage collector invokes the gcrl function, it first
removes a victim block from the used queue and performs the
relocation of valid sectors. After all valid sectors are removed
from the victim block, the gcrl function adds the victim block
to the invalid block queue. As the name suggests, all blocks in
the invalid queue do not have any valid sector. Nevertheless,
those blocks might still contain sectors pointed to by the stable
L2P and hence cannot be immediately erased. All blocks in
the invalid queue will be moved to the erasable block queue
at the end of a flush operation. After a flush, the stable L2P
will be updated, and all invalid blocks are no longer pointed
to by the new stable L2P and are now erasable. All blocks
in the erasable block queue can be safely erased. When the

garbage collector invokes the gces function, it finds a block b
in the erasable queue, performs an ERASE(b) command, and
puts b in the free block queue.

The remaining problem of 2PGC is that garbage collected
blocks cannot be immediately reused in the current epoch. To
address this issue, SCFTL exploits the upper bounds on the
number of write and gcrl allowed in one epoch to ensure that
there is sufficient space for newly written data and relocated
data. These two bounds already exist to avoid overflowing
the delta region (§3.2). Below we describe the constraints
that need to be satisfied when picking the values for the two
bounds, W (for write, in terms of sectors) and K (for gcrl, in
terms of blocks).

The first constraint ensures that write and gcrl do not con-
sume space more than what gcrl can produce in one epoch:

W︸︷︷︸
consumed by write

+ KN︸︷︷︸
consumed by gcrl

≤ KS︸︷︷︸
produced by gcrl

(1)

where N is the maximum number of valid sectors in every
victim block (we will explain how to obtain this bound later);
S is the number of sectors per block. Each write occupies
one sector and each gcrl relocates at most N sectors; thus at
most W +KN sectors will be consumed in one epoch. Each
gcrl also turns one used block into one invalid block, which
becomes an erasable block in the next epoch; thus at most KS
sectors can be produced in one epoch.

To obtain the bound N, we introduce a GC threshold U : gcrl
can be activated only when the number of used blocks is larger
than or equal to U . Let L be the number of entries of L2P (i.e.,
the number of logical sectors). Recall that a valid sector is a
physical sector mapped by the volatile L2P. The pigeonhole
principle states that there exists a used block (i.e., the hole)
whose number of valid sectors (i.e., the pigeons) is no more
than bL/Uc. One design choice is to force gcrl to always pick
the block with the least number of valid sectors as the victim
block (i.e., the greedy policy). A more flexible alternative
allows gcrl to pick any block providing the block has no more
than bL/Uc valid sectors; the pigeonhole principle ensures the
existence of such block. Either way, we obtain N = bL/Uc.

The threshold may disable gcrl before there is enough space
for the next epoch; SCFTL would fail to proceed to the next
epoch in this situation. To avoid such a situation, we can
choose a proper U , W , and K such that gcrl must be enabled
when there is not enough space for the next epoch:

U︸︷︷︸
GC threshold

≤ P−1−d(W +KN)/Se︸ ︷︷ ︸
lower bound of used blocks when not enough space

(2)

where P is the number of data blocks. First observe that
free, erasable, and invalid blocks are all available to the next
epoch as all invalid blocks become erasable after a flush.
The condition of “not enough space” essentially means that
the total number of these three kinds of blocks is less than
d(W +KN)/Se. Given that the total number of free, erasable,
invalid, and used blocks is equal to P− 1 (we always have

86 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

one active block), we know that the number of used blocks is
more than P−1−d(W +KN)/Se when there is not enough
space for the next epoch.

We demonstrate a configuration that satisfies the above
constraints: A 4-GB flash disk has 220 logical sectors (L =
220); suppose each block has 512 sectors (S = 512) and we
have 6 GB of flash memory for storing data, then the number
of data blocks will be 3072 (P = 3072). We can set the GC
threshold at 2500 (U = 2500) and we know the number of
valid sectors in every victim block would not exceed 419
(bL/Uc= b220/2500c= 419). Next we pick suitable values
for W and K. Let W = 4000 and K = 50 and check whether
they satisfy the above two constraints:

24950 =W +KN ≤ KS = 25600
2500 =U ≤ P−1−d(W +KN)/Se= 3022

Both constraints are satisfied.

Recovery of block queues After the recovery procedure
reconstructs the volatile L2P, it proceeds to reconstruct other
data structures, including the aforementioned block queues.
The recovery procedure simply scans through the blocks. If
a block contains some sectors pointed to by the L2P, then it
is a used block; otherwise, the recovery procedure treats it
as an erasable block. Note that after the reconstruction of the
volatile L2P, the stable and volatile L2Ps are identical and
hence we do not have any invalid blocks. We do not have any
free blocks after the recovery procedure; we do not have the
information whether a block was in the erasable or free block
queue before the crash. So we have to play it safe and put
them in the erasable queue to follow the erase-before-write
flash constraint.

4 Formal Verification Framework
The design of SCFTL (§3) is fairly sophisticated; to provide a
strong guarantee of its reliability, we have formally verified its
correctness. Our formal verification framework starts with the
definition of a disk model S (similar to Figure 1) that specifies
the intended disk behavior. S is defined as a particular kind
of state transition system (§4.1) on which snapshot consis-
tency can be formulated and proven (§4.2). As opposed to S,
which is merely an abstract, mathematical specification that
is meant to be understood easily, the SCFTL implementation
constitutes a more realistic transition system P. We prove that
P is behaviorally correct with respect to S, and moreover, this
behavioral correctness is strong enough to imply the snapshot
consistency of P (§4.3). Behavioral correctness is a compli-
cated property about sequences of state transitions, which
cannot be easily verified with automatic verification tools.
We can, however, reduce its proof to one about the behavior
of individual operations (§4.4), the latter of which is more
amenable to automatic verification (§5). The content of this
section is formally verified with the Agda proof assistant [33],
but here we provide only a high-level sketch.

4.1 Specification of disk behavior
To model the behavior of a disk as a state transition system, we
should define the possible states of a disk and the operations
that can be performed on the disk states. In S, which is our
abstract disk model that acts as a definition of intended behav-
ior, a state t of a disk is a pair of arrays t .volatile and t .stable
representing the volatile and stable copies of disk data respec-
tively and a number t .wcnt that counts the number of writes
since the last flush. There is a set N S of states that represent
the possible contents of a new disk, where only the stable
array is initialized to some default value. Reading a disk state
is just retrieving the data at a given address in the volatile
part; since the operation does not change the disk state, we
simply define it as a function read(t,a), t .volatile[a] rather
than a kind of state transition.

Mirroring the FTL operations except read, the operations
of S are shown in Figure 4: they are classified as regular, flush,
and recovery operations, and have a successfully executed
version and a crashed version. Writing t op−→ t ′ to mean that
there is a transition from t to t ′ through the operation op, that
is, t ′ is the state resulting from applying the operation op to
the state t, we define the effect of an operation by specifying
how t and t ′ are related: A write operation wa,d , which writes
the piece of data d to the address a in the volatile part, is
defined by saying that t wa,d−−→ t ′ amounts to
• t ′ .volatile = t .volatile[a 7→ d], where the right-hand side is

the array whose values are the same as t .volatile except at
the address a, where the value is d,

• t ′ .stable= t .stable, meaning that the stable data is not mod-
ified, and

• t ′ .wcnt = t .wcnt+1, meaning that wcnt, the write counter
mentioned at the end of §3.2, is incremented by one

when a and t .wcnt are within bounds, or otherwise t ′ = t.
The garbage-collecting operations rl and es do not change
the (abstract) disk state. The flush operation f copies the
volatile data to the stable part, and the recovery operation r
does the opposite; both operations reset the write counter to 0.
The crashed operations wc

a,d , rlc, esc, and rc may disrupt the
volatile data arbitrarily, and thus their definitions only specify
that the stable data remains the same (and the transitions
become non-deterministic); for fc there are two kinds of post-
crash state because the update to the flash disk may have
finished, in which case the system behaves as if the flush
operation is successfully executed.

4.2 Snapshot consistency
Snapshot consistency is essentially a property about execu-
tion fragments (or fragments for short), which are consec-
utive sequences of transitions t1

op1−−→ t2
op2−−→ ·· · opn−−→ tn+1;

we often omit unimportant intermediate states and write
t1

op1,op2, ...,opn−−−−−−−−→ tn+1. Informally, snapshot consistency says
that when recovered from a crash, reading the state after the
recovery operation will be the same as reading the state right

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 87

Regular Flush Recovery
Write Relocate/Erase (GC) Flush Recover

Su
cc

es
sf

ul t wa,d−−−→ t ′ ,

(InBounds(a, t.wcnt) ∧ t ′ .volatile = t .volatile[a 7→ d]

∧ t ′ .stable = t .stable ∧ t ′ .wcnt = t .wcnt+1)

∨ (¬InBounds(a, t.wcnt) ∧ t ′ = t)

t rl/es−−−→ t ′ ,

t ′ = t

t f−−−→ t ′ ,

t ′ .volatile = t .volatile

∧ t ′ .stable = t .volatile

∧ t ′ .wcnt = 0

t r−−−→ t ′ ,

t ′ .volatile = t .stable

∧ t ′ .stable = t .stable

∧ t ′ .wcnt = 0

C
ra

sh
ed t wc

a,d−−−→ t ′ ,

t ′ .stable = t .stable

t rlc/esc−−−→ t ′ ,

t ′ .stable = t .stable

t fc−−−→ t ′ ,

t ′ .stable = t .volatile

∨ t ′ .stable = t .stable

t rc−−−→ t ′ ,

t ′ .stable = t .stable

Figure 4. Definitions of operations in S. GC stands for Garbage Collection. The definition of the predicate InBounds(a,wcnt) is
a≤ amax∧wcnt ≤ wcntmax where amax and wcntmax are the upper bounds on the addresses and the write counter respectively.
Note that in the definitions a write operation has no effect (t ′ = t) when the write counter exceeds the bound (wcnt > wcntmax).

before the last flush operation prior to the crash. More pre-
cisely, the disk may have operated normally for some time
before the crash happens, and the recovery may fail several
times before it succeeds. This whole behavior is described as
a one-recovery fragment of the form

t1
a1, ...,ak−1−−−−−−→ t2

ak(= f),b1, ...,b`−−−−−−−−−→ t3
c,(rc)m, r−−−−−→ t4

where a1, . . . , ak are a sequence of successful regular or flush
operations ending with f (that is, ak = f), b1, . . . , b` are suc-
cessful regular operations, c is a crashed regular or flush op-
eration, and (rc)m is the crashed recovery operation repeated
m times; this is abbreviated to t1 t4 later on. Writing t ≈ t ′

to mean that read(t,a) = read(t ′,a) for all addresses a within
bounds, snapshot consistency of a one-recovery fragment of
the above form is defined as follows:
• if c is a crashed regular operation, then t2 ≈ t4;
• if c is the crashed flush operation fc, then either t2 ≈ t4 or

t3 ≈ t4.
Note that in the definition k can be 0, in which case no flush
is performed before the crash c, and the definition requires,
for instance in the first case, that the disk be reverted to the
first state t1 (which equals t2) observationally.

We can now formulate snapshot consistency of a disk
model. The typical way of using a disk can be represented as
a multi-recovery fragment of the form

t0
(rc)`, r−−−→ t1 t2 · · · tn tn+1

a1, ...,am−−−−−→ tn+2

which starts with performing the recovery operation on a
state t0 ∈N S (until it succeeds) to bring the disk to a usable
state, and continues with an arbitrary number of one-recovery
fragments and some trailing regular and flush transitions rep-
resenting uses of the disk. We say that a multi-recovery frag-
ment of this form is snapshot-consistent if all the one-recovery
sub-fragments t1 t2, . . . , tn tn+1 are snapshot-consistent,
and that a disk model is snapshot-consistent if its every multi-
recovery fragment is snapshot-consistent. With the definitions
in place, we can now state our first result (whose proof is
straightforward and omitted here).

Lemma 1. S is snapshot-consistent.

Note that the definitions of snapshot consistency make

sense for any disk model that has the same structure as S, in
particular for the model P that we will describe next.

4.3 Behavioral correctness and
snapshot consistency of SCFTL

S is a simplistic transition system: it gives a concise definition
of the intended disk behavior, but is unsuitable for direct
implementation. In SCFTL (§3), we use more practical states
that consist of various in-memory and in-flash data structures,
and sophisticated operations implemented in C. All these give
rise to another transition system P, which has the same set
of operations as S (as well as a read function for reading the
states of P) and also a set N P of possible states of a new disk
(where only the in-flash part is initialized). The definition
of P is a formal version of what has been presented in §3; the
exact definition is not needed in this section though, and will
be described later in §5.

We have proven that P is behaviorally correct with respect
to S: if we perform a legitimate sequence of operations in P
to obtain a fragment and read the normal states, which are
states that immediately follow a successful operation, the
results will be the same as performing the same sequence of
operations in S and reading the corresponding states. This
property allows the behavior of P to be understood in terms
of S. More formally, we have the following theorem.

Theorem 1 (behavioral correctness of P). For every multi-
recovery fragment s0

(rc)m,r−−−−→ s1
op1−−→ . . .

opn−−→ sn+1 in P, there
exists a fragment t0

(rc)m,r−−−−→ t1
op1−−→ . . .

opn−−→ tn+1 in S (which
has the same sequence of operations) such that si ≈ ti for
every corresponding pair of normal states si and ti.

We will see how Theorem 1 is proven in §4.4 and §5.
Before we do so, we show that the behavioral correctness of P
is strong enough to allow P to inherit snapshot consistency
from S.

Theorem 2. P is snapshot-consistent.

Proof. We must show that any multi-recovery fragment in P
is snapshot-consistent, that is, the results of reading the states
mentioned by the definitions of snapshot consistency are the
same. Observe that all these states are normal, so reading
these states in the fragment (in P) is the same as reading the

88 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

corresponding states in the fragment in S that is guaranteed to
exist by the behavioral correctness of P. This means that the
P-fragment is snapshot-consistent if the S-fragment is, and
the latter is indeed the case because S is snapshot-consistent
(Lemma 1).

4.4 Per-operation correctness
Theorem 1 is proven with a forward simulation argument [30],
which, though fairly standard, is described below for the sake
of completeness. Given a multi-recovery fragment in P, we
construct a fragment in S with the same sequence of opera-
tions while ensuring that every corresponding pair of normal
states in the two fragments is related by an abstraction re-
lation AR (to be described below) such that AR(s, t) implies
s≈ t for all s and t, and moreover, any corresponding pair of
abnormal states is related by a weaker abstraction relation CR.
This forms a stepwise relationship between the two fragments,
as illustrated, for example, in

s0 s1 s2 s3 s4 s5 s6

t0 t1 t2 t3 t4 t5 t6

CR

r

r
AR

wa,d

wa,d

AR

f

f
AR

wc
a′ ,d′

wc
a′ ,d′

CR

rc

rc
CR

r

r
AR · · · (3)

Intuitively, the abstraction relation AR captures how a normal
state in P is interpreted as a state in S. For example, one part
of AR describes where the current data at a logical address—
i.e., an entry in the volatile array of an S-state—can be found
in a P-state. On the other hand, for abnormal states in P,
only the in-flash data are reliable, and the crash abstraction
relation CR describes only how the in-flash part of a P-state is
interpreted as the stable part of an S-state. Back to diagram (3):
The in-memory part of s0 (∈N P) is not yet initialized, and
thus s0 only satisfies CR with some t0 (∈N S). A successful
recovery operation brings the disk to a normal P-state that
satisfies AR with an S-state. This AR relationship is preserved
by successful regular and flush operations, but deteriorates
to CR when a regular or flush operation crashes. Recovery
attempts may fail but CR is preserved, and the relationship is
restored to AR after the recovery succeeds, from which point
we can resume using the disk.

The stepwise relationship is established inductively by
showing (i) that initially CR holds for all s ∈N P and t ∈N S
(to establish, for example, the leftmost CR(s0, t0) in dia-
gram (3)), and (ii) that each operation preserves AR or CR, or
transforms AR into CR or vice versa (giving rise to each of
the squares in diagram (3)). The inductive cases (ii) are called
type A per-operation correctness. For example, the type A
per-operation correctness formula for the crashed flush opera-
tion fc is

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ s fc−→ s′

=⇒ ∃t ′. t fc−→ t ′ ∧ CR(s′, t ′) (4)

where RI is the representation invariant describing properties
that should be satisfied by the various data structures in a

P-state, and is needed in the antecedent to make per-operation
correctness provable. For example, a part of RI states that
the in-memory L2P should agree with the in-flash L2P in
addition to all the delta pairs. Like AR and CR, there is also a
weaker version of RI called CI that describes only the prop-
erties about the in-flash part of a P-state, and is used in the
relevant per-operation correctness formulae. Note that per-
operation correctness is about the behavior of an operation
in general, not about its effect on particular states. We have
thus reduced reasoning about fragments, of which there is a
myriad possibilities, to reasoning about operations, of which
there is only a handful.

Finally, to make the induction go through, we need to es-
tablish RI on all normal states and CI on all abnormal states
so that the RI and CI premises in the type A per-operation
correctness formulae are satisfied. This is done by showing
that the invariants are suitably preserved or transformed by
each operation, for example,

∀s,s′. RI(s) ∧ s f−→ s′ =⇒ RI(s′) (5)

These formulae are called type B per-operation correctness.
Up to this point, what we have proven is that P is behav-

iorally correct if (i) AR(s, t) implies s ≈ t for all s and t,
(ii) CR(s, t) for all s∈N P and t ∈N S and CI(s) for all s∈N P,
and (iii) (type A and type B) per-operation correctness holds
for each operation. The three conditions are discharged using
automatic verification techniques described next in §5.

5 Verifying the SCFTL Implementation
We use the SMT solver Z3 [18] to prove the correctness of
the aforementioned three conditions. The first two conditions
are easy to check: once we have the formulae describing the
invariants RI and CI and the abstraction relations AR and CR,
we can easily construct the corresponding formulae and let
Z3 prove their validity automatically. For the third condition,
i.e., the per-operation correctness, we need to construct the
formulae s op−→ s′ in P from the C implementation for all
operations op. We use the symbolic executor Serval [32] to
build these formulae (§5.1). If we naively construct the per-
operation correctness formulae, often the generated formulae
would be too difficult for Z3 to solve. We explain in §5.2–§5.4
how to simplify the formulae so that Z3 can handle them.

5.1 Modeling flash states and crashes
To perform symbolic execution for SCFTL, we need to trans-
late C statements into formulae describing how they update
the P-states. A P-state includes a memory state and a flash
state. The memory state is a mapping from variable names
to their in-memory value. For example, it maps L2P to an
in-memory table. Serval can handle the update of memory
states and produce the corresponding formula automatically.
We model a flash state as a function content(bk,pg) that maps
a flash location, which is a pair (bk,pg) where bk is a block
address and pg is a page address, to the data stored in that

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 89

page, and modify Serval to support the flash commands SYNC,
ERASE, READ, and WRITE. More concretely, we need to tell
Serval how those commands update flash states.

The WRITE(bk, pg,d) command updates the flash state
content(b, p) to ite(bk = b∧ pg= p, d, content(b, p)), where
ite(g, e1, e2) is a shorthand for “if g then e1 else e2.” The
ERASE(bk) command updates the flash state content(b, p)
to ite(bk = b, empty, content(b, p)), where empty is a page
(which can be modeled as, e.g., an array) with all cells val-
ued −1. Neither the READ(bk,pg) nor the SYNC commands
change content(b, p) in the flash state.
Handling asynchronous flash operations The flash com-
mands are asynchronous, i.e., the invoked commands first
wait in a queue and start to update the flash memory only
when the scheduler selects them. Updates to the same page
will be executed in the same order in which they come into the
queue, but there is no restriction regarding when the updates
happen for different pages. If the system crashes, it will lose
all commands in the queue.

The flash command SYNC blocks the system until the queue
becomes empty. If the system crashes right after a SYNC
command, there will be only one possible flash state. However,
when it happens between two SYNC commands, there can be
multiple possibilities, because we do not know which of those
queued commands are processed.

Example 1. Suppose the content at the location (b1, p1)
is empty before invoking the sequence of flash commands
WRITE(b1, p1,d1), ERASE(b1, p1), WRITE(b1, p1,d2), SYNC.
If the system crashes right before SYNC, the content at (b1, p1)
can be either empty, d1, or d2.

One way to model crash behavior is to use crash sched-
ules [42, §3.1], which are a set of boolean variables represent-
ing the occurrence of crash events during the execution of an
operation. A special case where all the boolean variables are
true indicates a successful execution, in which all the WRITEs
invoked by the operation are synchronized. If we adopted this
approach, then SCFTL would have to issue a SYNC at the
end of each operation, limiting concurrency within a single
operation. However, in our SCFTL implementation, it often
happens that a SYNC is invoked only after multiple operations.
Thus, this modeling would reduce performance significantly.

An alternative approach represents each flash page as a
history of values [13, §3.2], which are the values written asyn-
chronously to the flash page since the last SYNC. The history
can be implemented as a list, and a crash non-deterministically
chooses a value from the list. This modeling does not require
synchronization at the end of an operation, and therefore does
not limit concurrency. However, lists are not well supported
by SMT solvers.

We propose a novel approach to model crash behavior,
which does not limit concurrency and is amenable to SMT
reasoning. The main idea is to “over-approximate” possi-
ble flash states when they are affected by asynchronous up-

dates. We implement the idea by adding to the flash state
a mapping sync(b, p) that maps a flash location (b, p) to a
boolean value denoting whether the page is synchronized,
i.e., it is not affected by asynchronous updates since the last
SYNC. The WRITE(bk, pg,d) command updates sync(b, p) to
ite(bk = b∧ pg = p, false, sync(b, p)) and the ERASE(bk)
command updates it to ite(bk = b, false, sync(b, p)). The
READ(b, p) command does not change sync(b, p) and always
returns content(b, p) no matter sync(b, p) is true or not. The
SYNC command remaps all locations of sync to true.

If op is a successfully executed operation, we collect all
P-states produced after executing op symbolically and use
them to construct the formula for s op−→ s′.

If op is a crashed operation, we collect all possible crash
states in two steps. We first collect all flash states (i) right
before every SYNC command and (ii) after executing op. We
then update the content(b, p) function of the collected states
to ite(sync(b, p), content(b, p), any), where any means the
content can be any value. We model any with fresh variables,
whose values can be arbitrarily assigned. The formula s op−→ s′

can then be constructed from all the content(b, p) functions of
the collected states. We also designed a suitable crash repre-
sentation invariant CI for SCFTL operations that records flash
disk information that is just sufficient for the recovery oper-
ation. For instance, it states that “at least one of the two full
checkpoints is committed.” The CI can be guaranteed even
with the over-approximated flash state we just introduced.

As said, the formulae produced with the approach we just
described may be too difficult for SMT solvers to solve. Below
(§5.2–§5.4) we introduce the techniques we use to simplify
the formulae and make automatic verification feasible. These
techniques are very general and should be usable by other
automatic verification projects.

5.2 Crafting the abstraction relations and
representation invariants

To avoid overwhelming the SMT solvers, care must be taken
to put the abstraction relations and representation invariants
in a suitable form. Below we look at a concrete example. A
part of the abstraction relations asserts that the stable L2P in
S should agree with its concrete representation in P, which
is the in-flash L2P stored in a committed full checkpoint, in
addition to all the committed delta pairs stored in the delta
region (Figure 2). As opposed to representing the assertion
as a relation, we could define a function that computes the
physical address for a given logical address la from a P-
state by starting with the in-flash L2P and then sequentially
applying the delta pairs, and assert that the stable L2P in S
agrees with the results of the function. Serval compiles the
assertion to the following constraint (assuming for simplicity
that there are only two delta pairs (la0,pa0) and (la1,pa1)):

∀la. L2Pstable[la]

= ite(la = la1, pa1, ite(la = la0, pa0, L2Pflash[la]))

90 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The number of ites is the same as the number of delta pairs,
which in the implementation is set to be large enough to avoid
frequent full checkpointing. The resultant formula turns out
to be too large for the SMT solvers to handle, though.

We thus choose to represent the assertion as a relation,
which is divided into two disjoint parts. The first part consid-
ers logical addresses that appear in the delta region, and the
second part considers those that do not. In more detail:

• For every (∀) logical address la that appears in the re-
gion, there exists (∃) a pair (la,pa) in the region such that
L2Pstable[la] = pa. Moreover, this pair should be the last
one about la in the sense that for any (∀) subsequent pair
(la′,pa′) we have la′ 6= la.

• For every (∀) logical address la that does not appear in the
region, we have L2Pstable[la] = L2Pflash[la].

The first part of the relation is still not amenable to effi-
cient SMT solving as it contains quantifier alternation of
the form ∀x.∃y.∀z. . . . , which is often too hard for the SMT
solvers [4, 44] to deal with. The key observation is that the
existential quantifier ∃ can be avoided with the ghost variable
technique [20]: because pa is determined by la and the P-state,
we can extend the S-states with an auxiliary array aux (along
with some other ghost variables required to determine pa) and
modify the transition relation of S to keep track of the last
pa associated with each la; the formula can then simply use
aux[la] (instead of an existentially quantified variable) wher-
ever it needs to refer to the last pa associated with la. Note
that the transitions of the non-ghost variables (i.e., volatile,
stable, and wcnt) must not depend on the ghost variables (e.g.,
aux), so that the specification of interest (Figure 4) is essen-
tially a projection of the S-states, in which ghost variables are
removed from the state space.

5.3 Categorizing the invariants

We use the observation that, usually, the invariants and ab-
straction relations can be grouped into different categories and
handled separately in verification. For example, the RI may
include constraints for different components of SCFTL, e.g.,
checkpoint and garbage collection. To simplify the presenta-
tion, here we assume RI(s) = RIchk(s)∧ RIgc(s)∧RIother(s),
where RIchk(s) are invariants related to checkpoints, RIgc(s)
are those related to garbage collection, and RIother(s) are
other invariants. Now we can divide Formula 5 into three
simpler formulae: ∀s,s′. RI(s) ∧ s op−→ s′ =⇒ RIx(s′), where
x ∈ {chk,gc,other}, and prove their correctness separately.
We can further simplify the formulae by using only a subset
of the constraints in RI to show the preservation of invariants.
The reason is that to show RIx(s′) holds after the execution of
op, we usually do not need the starting state s to also satisfy
the invariants related to other components. Hence we can use
the formula ∀s,s′. RIx(s) ∧ s op−→ s′ =⇒ RIx(s′) instead.

5.4 Partitioning the proofs
Both the implementation and specification of SCFTL involve
“non-determinism” when a flush operation crashes. In the
implementation, we collect multiple flash states to produce
the formula s fc−→ s′. In the specification (Figure 4), when
a flash operation crashes, the stable data may remain un-
changed (t ′ .stable = t .stable) or change to the volatile data
(t ′ .stable = t .volatile). We found that such non-determinism
induces verification bottlenecks. We tried to prove the cor-
rectness of flush using Z3 with the presence of such non-
determinism, but the solver failed to solve it given a few
days of time budget. In our experience, this usually means
the problem is too difficult for Z3 and needs to be simpli-
fied. For SCFTL, such non-determinism can be avoided by
partitioning the proofs. We need to figure out (i) which
flash states of the implementation correspond to the spec-
ification t ′ .stable = t .stable and (ii) which correspond to
t ′ .stable = t .volatile. More concretely, assuming that we col-
lect two flash states, represented as f1(s) and f2(s), during
the execution of the crashed flush operation, we can substitute
the transition relations in Formula 4 properly to obtain:

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ (s′ = f1(s) ∨ s′ = f2(s))

=⇒ ∃t ′.
(

t ′ .stable = t .stable
∨ t ′ .stable = t .volatile

)
∧ CR(s′, t ′) (6)

Instead of directly proving Formula 6, which involves non-
determinism (∨), we can use Z3 to prove the following two
sufficient conditions separately—if we know that the first
flash state corresponds to t ′ .stable = t .stable, and the second
corresponds to t ′ .stable = t .volatile:

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ s′ = f1(s)

=⇒ ∃t ′. t ′ .stable = t .stable ∧ CR(s′, t ′) (7)

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ s′ = f2(s)

=⇒ ∃t ′. t ′ .stable = t .volatile ∧ CR(s′, t ′) (8)

Although this technique requires manual inspection of each
crash state generated during an operation, it significantly im-
proves the scalability of the verification of SCFTL.

6 Discussion
Using an SMT solver has the advantage that once the formu-
lae are constructed, their proofs are done fully automatically.
If some of the constructed formulae cannot be solved in a
reasonable time, we apply the techniques mentioned above
to simplify them systematically. In total, the representation
invariant (RI) and the abstraction relation (AR) contain 98
conditions; their weaker versions (CI and CR, respectively)
contain 17 conditions. We also use loop invariants and an
inductive proof rule [23] to handle large loops. With these, all
but three conditions can be proven correct.

The three unverified conditions are: (i) after a successful
recovery, the L2P table is an one-to-one mapping except for

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 91

invalid entries; (ii) after a successful recovery, there is suffi-
cient space to accommodate the follow-up writes and gcrls;
(iii) after a successful flush, there is sufficient space to accom-
modate the follow-up writes and gcrls. For the three unverified
conditions, we use the validation technique [37] to ensure
their correctness. The validator itself is formally verified (ex-
plained in §6.1) and will notify the user when our SCFTL
implementation violates the property. Such notification never
occurs in all of our experiments.

The Z3 verification time is 4640 seconds for a 8 GB flash
disk and 6302 seconds for a 256 GB flash disk. We choose
to verify a particular flash disk size at a time (rather than
for all sizes) to reduce the number of quantifiers and thus
improve the verification time. We also tried to change other
parameters (e.g., several write bounds ranging from 2048 to
20480), the verification time ranges from 1 hour to 2 hours;
interestingly, a larger value does not imply a longer time.

Table 1. Lines of code for SCFTL.

Component Lines of code

SCFTL implementation 950 (C)

Snapshot consistency theorems 652 (Agda [33])

SCFTL specification 22 (Rosette [43])
Invariants & Relations 2010 (Rosette)
Ghost variables 538 (Rosette)
Proof partitions 96 (Rosette)
Flash memory model 232 (Rosette)
Core framework 1048 (Rosette)
Total 3946 (Rosette)

Table 1 shows the lines of code for SCFTL. We count the
specification, loop invariants, representation invariants, ab-
straction relations, ghost variables, and proof partitions as our
proof, resulting in a proof-to-implementation ratio of 2.8:1.
The total development effort is about 6 person-months; a sig-
nificant part is devoted to finding (an efficient SMT encoding
of) the required invariants and scaling the verification with
the techniques we introduced in §5. For the trusted computing
base, we assume that (i) the flash memory is free of error, (ii)
the verification tools Z3, Agda, and Serval are correct, (iii)
the translation from LLVM to machine code is correct, and
(iv) the LightNVM [6] Linux kernel module, which we used
to host our SCFTL, is correct.

6.1 Validating unverified conditions
For each of the unverified conditions, we implement a val-
idator to monitor if the condition is indeed satisfied during
runtime. More specifically, we add to the P-states a set of
validation variables, including a flag indicating whether the
validation fails or succeeds. The validators are not allowed to
modify the P-states other than the validation variables. We
prove that the validator establishes the following postcon-
dition: if the flag indicates a successful validation, then the

condition holds. Although the validation approach is not as
useful for storage systems as for compilers, we regard the
approach as a last resort to circumvent the limitation of auto-
matic verification.

Validation can also be used to incorporate unverified com-
ponents into SCFTL. For example, an unverified block alloca-
tor may keep track of the block usage and allocate the block
with the least amount of usage for wear leveling. A valida-
tor can then validate whether the allocated block is actually
in the free block queue, and if so, returns the block. Other-
wise, SCFTL falls back to the default verified behavior, e.g.,
allocating the first block in the free block queue.

6.2 Support for concurrency
Our verification methodology does not support concurrent
SCFTL operations, and our specification has a sequential na-
ture. However, both of them do not limit an implementation
from exploiting the high degree of hardware parallelism com-
monly seen in modern flash disks (e.g., multiple channels and
flash chips). More specifically, executing a single step (e.g.,
a write operation) in the specification corresponds to per-
forming a top-level C function in the SCFTL implementation.
The C function usually uses asynchronous flash commands to
avoid waiting for slow flash operations to finish. This design
allows multiple flash operations to be executed concurrently
until a SYNC. Reordering due to the concurrency of flash
operations can only be observed when a crash occurs. We
describe our technique to capture reordering in §5.1.

7 Evaluation
To evaluate SCFTL, we conducted experiments designed to
answer the following questions:

• Is SCFTL actually correct? (§7.1)
• How does SCFTL perform compared to other FTLs imple-

menting different disk models? (§7.2)
• Is the guarantee of snapshot consistency provided by

SCFTL useful to its upper layers? (§7.3)

All experiments were done on a host machine with a 12-core
3.2 GHz Intel i7-8700 CPU and 16 GB of DRAM. To emulate
the flash memory, we run experiments on Linux 4.15 hosted
by FEMU [29], a QEMU-based emulator that can emulate an
Open-Channel SSD (OCSSD). We used liblightnvm [2] with
the libaio [1] backend to access the underlying OCSSD in an
asynchronous way. The original version of FEMU supports la-
tency emulation for OCSSD commands, but as libaio can only
issue NVMe base commands, we followed FEMU’s approach
to emulate latency for NVMe base commands. We validated
that the results produced by the two sets of commands are
consistent. The OCSSD has 4 channels, 4 dies per channel,
and a total of 8 GB flash memory. We reserved 16 MB of
flash memory for the full checkpoint region, 256 MB for the
delta region, and set the write bound to 2048.

92 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

WI = 2048 WI = 256 WI = 16 WI = 10

5

10

15

20

25
Th

ro
ug

hp
ut

 (K
 IO

PS
)

pblk (4 thrds) pblk (1 thrd) async sync scftl

Figure 5. Throughput of FTLs under random writes with
different write intervals (WI).

7.1 Stress testing and crash state simulation
To validate the correctness of SCFTL, we designed a testing
framework that allows fast stress testing and crash state simu-
lation. The framework hosts SCFTL by emulating the flash
memory with DRAM, and simulates a crash by overwriting
all pages affected by asynchronous WRITE or ERASE since the
last SYNC with garbage data. The framework uses a workload
generator to issue a sequence of writes and flushes to SCFTL,
and simulates a crash based on a given probability. We set a
higher probability for configurations that are more likely to
result in corner cases (e.g., crashes during recovery).

The framework maintains a pair of arrays, volatile and
stable, as golden results, and changes their states according
to Figure 4. A result checker is then periodically activated to
read every sector of SCFTL and check whether the results
produced by SCFTL is consistent with the volatile array. To
speed up testing, the checker only compares the first few
bytes of the read data. We ran the test with 4 configurations
for about 8 hours. In total, the workload generator wrote more
than 1.4 TB of data, issued about 12 millions of flushes and
simulated about 10 thousands of crashes. SCFTL successfully
recovered from every crash state and passed all checks.

7.2 Comparing SCFTL with other FTLs
Besides SCFTL, we implemented two additional FTLs with
different crash guarantees. The two FTLs implement the asyn-
chronous (denoted by async) and synchronous (denoted by
sync) disk models respectively. async is implemented in a way
similar to SCFTL, except async (i) does not do checkpointing,
(ii) does not comply with 2PGC (i.e., victim blocks are erased
immediately after all valid data is relocated), and (iii) has no
write count constraint. sync is the same as async, except sync
always uses synchronous operations to access the underlying
flash memory. We assume the one-page merge buffer of sync
is backed by a battery (i.e., data copied to the buffer is guar-
anteed to be persistent); thus sync can safely ignore any flush
request. We also used the state-of-the-art FTL pblk [6], which
has similar features to async (e.g., both of them implement
the asynchronous disk model and use a sector-level L2P), to
understand the quality of our FTL implementation.

We wrote a small program to randomly issue 4 KB writes to
a disk, and periodically flush the disk after a fixed number of
writes. We call this period the write interval. For pblk, we also
used a concurrent version (employing 4 threads) of the same

128 256 384 512
Size of Delta Region (MB)

0

5

10

15

20

B
oo

t
Ti

m
e

(s
)

256-GB flash disk
128-GB flash disk
4-GB flash disk

Figure 6. Boot time of SCFTL.

program as a way to identify the limitation of SCFTL’s sequen-
tial nature. Figure 5 shows the average throughput. We first
draw two conclusions: (i) Our baseline FTL, async (3rd bars),
has a performance characteristic similar to pblk (2nd bars).
(ii) Concurrent workloads (1st bars), in general, have higher
total throughput than sequential workloads (2nd bars); but
the improvement is less obvious when the write interval is
higher (e.g., WI = 2048 and WI = 256) because the underlying
flash memory has fewer idle resources to serve the concurrent
requests. Next, we compare SCFTL with async and sync.

When the write interval is set to 2048, SCFTL throughput
is within 5% of async on average; with the write interval
set to 256, SCFTL throughput is still within 11%. In both
settings, SCFTL outperforms sync by more than 14x. With
the write interval set to 16, SCFTL throughput drops to 53%
of async, but still outperforms sync by 3.8x. When the write
interval is reduced to 1, SCFTL throughput is only one half
of async and one quarter of sync, because SCFTL writes one
additional delta page on receiving a flush. Note that the last
setting is not a reasonable usage of SCFTL, but it shows the
overhead of SCFTL under the worst-case scenario.

We also analyze the write and flush latency and make the
following observations: (i) SCFTL has a slightly higher aver-
age flush latency (12 ms) than async (10 ms) because SCFTL
writes an additional delta page during a flush. (ii) SCFTL
has a higher maximum flush latency (398 ms) due to full
checkpointing; we can reduce the latency with a hybrid set-
ting (similarly to the WAFL file system [22] which puts a
log of requests on non-volatile memory and other data on
slower disks), in which the full checkpoints go to memory
technologies with a lower latency (e.g., SLC flash and 3D
XPoint memory [21]), and other data stays in ones with a
higher latency but a lower cost (e.g., MLC and TLC flash).

Finally, Figure 6 shows the boot time of SCFTL. We have
not yet implemented optimizations for recovery to reduce the
boot time, so the boot time is nearly the same regardless of
whether there is a graceful shutdown or where a crash occurs.
In general, the boot time is directly proportional to the size of
the delta region and the size of the logical address space.

7.3 Modifying xv6 with SCFTL
To understand the usefulness of snapshot consistency guar-
anteed by SCFTL, we used xv6 [16], a simple log-based file
system, as our example. In order to prevent any file system
inconsistency (e.g., a directory entry pointing to a free inode)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 93

SQLite smallfiles largefile mailbench0

3

6

9

12
R

el
at

iv
e

Pe
rf

or
m

an
ce

9
tx

n/
s

77
 fi

le
/s

0.
6

M
B

/s

16
 m

sg
/s

11
 t

xn
/s

77
 fi

le
/s

1.
2

M
B

/s

17
 m

sg
/s

11
 t

xn
/s

68
 fi

le
/s

1.
2

M
B

/s

14
 m

sg
/s

61
 t

xn
/s

26
4

fil
e/

s

39
 M

B
/s

12
3

m
sg

/s

xv6/async xv6/sync xv6-xlog xv6-group

Figure 7. Performance of xv6 on different FTLs. SQLite
generates 1K insert transactions followed by 1K update trans-
actions; smallfiles repeatedly creates a file, writes 100 bytes
of data to it, and calls fsync; largefile writes 4 MB of data
to a file and calls fsync for every 1 MB; mailbench models
a mail server running on the sv6 operating system [14]. To
ensure durability, mailbench invokes an fsync for each mes-
sage. We ran each workload 5 times and reported the average.
The standard deviation is less than 8%.

due to a crash occurring in the middle of a system call, xv6
uses a write-ahead log for atomically writing multiple sectors
of data to its underlying disk. Such atomicity, however, can be
easily achieved with SCFTL. We thus modified xv6 to bypass
its log so that data does not need to be written twice, once to
the log and once to its actual location. We further modified
xv6 to support a common optimization known as group com-
mit, which groups multiple system calls into one transaction,
to reduce the number of flushes. With group commit, xv6 only
issues a flush when a transaction is full or on receiving an
fsync. The implementation is rather easy with SCFTL; we
changed less than 30 lines of code of xv6. We compared the
two modified versions of xv6 on SCFTL (denoted by xv6-
xlog and xv6-group, respectively) with the original xv6 on the
asynchronous and synchronous disks used in §7.2 (denoted
by xv6/async and xv6/sync, respectively). We used existing
file system benchmarks [14, 40] to evaluate the performance.

Figure 7 shows the results. The performance of xv6-xlog is
only on par with that of xv6/async and xv6/sync. Although
xv6-xlog has reduced the use of writes and flushes via by-
passing the log, issuing a flush at the end of each system call
would inevitably result in a small write interval, for which
SCFTL does not perform very well as shown in Figure 5.
xv6-group performs much better than the other three as the
write interval becomes larger when multiple system calls are
grouped together. The performance difference is particularly
obvious for largefile, where fsyncs are less frequent.

Note that while xv6/async, xv6/sync, and xv6-xlog guaran-
tee immediate durability, that is, the result of a system call
is successfully stored in the disk after the call returns, xv6-
group only guarantees system calls before the last fsync are
persisted, and system calls after the last fsync will not be
reordered. This property is also known as sequential crash
consistency [7]. In practice, sequential crash consistency is a
very strong property and is what most application developers
actually require [35].

Finally we compare our group commit version of xv6 with

SQLite smallfiles largefile mailbench0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
Pe

rf
or

m
an

ce

93
 t

xn
/s

51
2

fil
e/

s

63
 M

B
/s

13
2

m
sg

/s14
2

tx
n/

s

46
9

fil
e/

s

27
 M

B
/s

15
3

m
sg

/s

61
 t

xn
/s

26
4

fil
e/

s

39
 M

B
/s

12
3

m
sg

/s

ext4-metadata ext4-data xv6-group

Figure 8. xv6 on SCFTL vs. ext4 on pblk. When running
mailbench on ext4-metadata that does not guarantee the or-
dering between data and metadata, we invoked one additional
fdatasync on the temporary file [12, Figure 1].

the state-of-the-art storage stack: ext4 on pblk. We mounted
ext4 with two configurations: The default metadata journal-
ing mode data=ordered (denoted by ext4-metadata), and the
data journaling mode data=journal,journal_async_commit

(denoted by ext4-data). ext4-metadata does not journal data
but it issues one more flush than ext4-data when committing
an ext4 transaction.

Figure 8 shows the results. xv6-group performance is 7%
to 49% lower than ext4-metadata. Compared with ext4-data,
the performance difference is more divergent. For SQLite,
xv6-group performance is only 43% of ext4-data; but for
largefile, xv6-group is more than 1.4x of ext4-data. Such
divergence can be explained by the behavior of the workloads:
SQLite frequently issues fsyncs and causes the performance
of SCFTL to degrade; on the other hand, largefile issues much
less fsyncs and a huge amount of data is written in the journal
of ext4-data. We believe the performance difference between
our modified xv6 and ext4 is mainly owing to the simplicity
of xv6. This can be improved by, e.g., optimizing xv6 with
in-memory representations for file system operations [5].

8 Conclusion
We believe that our verified SCFTL brings new opportunities
for the design of the storage stack. We demonstrate that
starting at a lower-level of abstraction can make verifying
crash safety easier while still resulting in an efficient system.
Formal specification and verification give the user a clear
picture and strong confidence of what he/she can assume
while designing the upper layers of the storage stack. Our
experimental results show that SCFTL can provide a strong
crash guarantee without compromising its performance if
upper layers can carefully reduce the flush frequency.

There are several avenues for future work. For instance, we
would like to extend the work to cover upper layers, such as
file systems or database systems, of the storage stack. With
a careful design that fully utilizes the advantage of SCFTL,
we believe it is likely that we can obtain a verified and yet
efficient upper-layer system. The FTLs used in commercial
products usually come with several optimizations, e.g., hot-
cold data separation and wear leveling. We plan to extend
SCFTL to use those optimizations.

94 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Acknowledgments

We thank our shepherd, Frans Kaashoek, and the anony-
mous reviewers for their valuable feedback. This work was
supported in part by Academia Sinica under grant no. AS-
CDA-107-M05 and the Ministry of Science and Technol-
ogy (MOST) of Taiwan under grant nos. 109-2628-E-001-
001-MY3, 109-2222-E-001-002-MY3, 107-2923-E-001-001-
MY3, 108-2221-E-001-001-MY3, and 108-2221-E-001-004-
MY3.

References

[1] Aio. http://man7.org/linux/man-pages/man7/aio.7.html.

[2] liblightnvm. http://lightnvm.io/liblightnvm/.

[3] Sidney Amani, Alex Hixon, Zilin Chen, Christine
Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren,
Yutaka Nagashima, Japheth Lim, Thomas Sewell,
Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. Cogent: Verifying high-
assurance file system implementations. In Proceedings
of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’16, page 175–188, New York,
NY, USA, 2016. Association for Computing Machinery.

[4] Peter Backeman, Philipp Rummer, and Aleksandar
Zeljic. Bit-vector interpolation and quantifier elimina-
tion by lazy reduction. In Formal Methods in Computer
Aided Design, FMCAD ’18, pages 1–10, 2018.

[5] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,
M. Frans Kaashoek, and Nickolai Zeldovich. Scaling
a file system to many cores using an operation log. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, page 69–86, New York, NY,
USA, 2017. Association for Computing Machinery.

[6] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The linux open-channel SSD subsystem. In
Proceedings of the 15th Usenix Conference on File and
Storage Technologies, FAST ’17, page 359–373, USA,
2017. USENIX Association.

[7] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. Specify-
ing and checking file system crash-consistency mod-
els. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, page
83–98, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’08, page
209–224, USA, 2008. USENIX Association.

[9] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Argosy: Verifying layered storage
systems with recovery refinement. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’19, page
1054–1068, New York, NY, USA, 2019. Association for
Computing Machinery.

[10] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 243–258, New York, NY, USA, 2019. Association
for Computing Machinery.

[11] Yun-Sheng Chang and Ren-Shuo Liu. OPTR: Order-
preserving translation and recovery design for SSDs
with a standard block device interface. In Proceedings
of the 2019 USENIX Conference on Usenix Annual Tech-
nical Conference, USENIX ATC ’19, page 1009–1023,
USA, 2019. USENIX Association.

[12] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 270–286, New York, NY,
USA, 2017. Association for Computing Machinery.

[13] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
crash hoare logic for certifying the FSCQ file system.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 18–37, New York,
NY, USA, 2015. Association for Computing Machinery.

[14] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. The scal-
able commutativity rule: Designing scalable software
for multicore processors. ACM Trans. Comput. Syst.,
32(4), January 2015.

[15] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh
Gupta, and Steven Swanson. From ARIES to MARS:
Transaction support for next-generation, solid-state
drives. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13,
page 197–212, New York, NY, USA, 2013. Association
for Computing Machinery.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 95

[16] Russ Cox, M. Frans Kaashoek, and Robert Morris. Xv6,
a simple unix-like teaching operating system, 2020.
https://pdos.csail.mit.edu/6.828/2020/xv6.html.

[17] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C.
Hsieh. The logical disk: A new approach to improving
file systems. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, SOSP ’93,
page 15–28, New York, NY, USA, 1993. Association
for Computing Machinery.

[18] Leonardo De Moura and Nikolaj Bjørner. Z3: An ef-
ficient SMT solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analy-
sis of Systems, TACAS ’08/ETAPS ’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[19] Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, and Wolf-
gang Reif. Inside a verified flash file system: Trans-
actions and garbage collection. In Revised Selected
Papers of the 7th International Conference on Verified
Software: Theories, Tools, and Experiments - Volume
9593, VSTTE ’15, page 73–93, Berlin, Heidelberg, 2015.
Springer-Verlag.

[20] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei
Paskevich. The spirit of ghost code. Formal Methods in
System Design, 48(3):152–174, oct 2016.

[21] F. T. Hady, A. Foong, B. Veal, and D. Williams. Plat-
form storage performance with 3D XPoint technology.
Proceedings of the IEEE, 105(9):1822–1833, 2017.

[22] Dave Hitz, James Lau, and Michael Malcolm. File sys-
tem design for an NFS file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Conference
on USENIX Winter 1994 Technical Conference, WTEC
’94, page 19, USA, 1994. USENIX Association.

[23] Charles Antony Richard Hoare. An axiomatic basis for
computer programming. Communications of the ACM,
12(10):576–580, 1969.

[24] Ben Hutchings. [patch 3.2 027/115] jbd2: fix fs cor-
ruption possibility in jbd2_journal_destroy() on umount
path. April 2016. https://lkml.org/lkml/2016/4/26/1230.

[25] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite databases. In Proceedings of the 2013
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, page 97–108, New York,
NY, USA, 2013. Association for Computing Machinery.

[26] Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min,
and Yookun Cho. A space-efficient flash translation
layer for compactflash systems. IEEE Trans. on Consum.
Electron., 48(2):366–375, May 2002.

[27] Greg Kroah-Hartman. [patch 4.14 138/267] jbd2: Fix
possible overflow in jbd2_log_space_left(). December
2019. https://lkml.org/lkml/2019/12/16/1638.

[28] Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST ’15, page 273–286,
USA, 2015. USENIX Association.

[29] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
natahan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The case of FEMU: Cheap, accurate, scal-
able and extensible flash emulator. In Proceedings of
the 16th USENIX Conference on File and Storage Tech-
nologies, FAST ’18, page 83–90, USA, 2018. USENIX
Association.

[30] Nancy Lynch and Frits Vaandrager. Forward and back-
ward simulations: I. untimed systems. Information and
Computation, 121(2):214–233, 1995.

[31] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
crash-consistency bugs with bounded black-box crash
testing. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI ’18, page 33–50, USA, 2018. USENIX Associa-
tion.

[32] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling sym-
bolic evaluation for automated verification of systems
code with serval. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP ’19,
page 225–242, New York, NY, USA, 2019. Association
for Computing Machinery.

[33] Ulf Norell. Dependently typed programming in Agda.
In Advanced Functional Programming, volume 5832
of Lecture Notes in Computer Science, pages 230–266.
Springer, 2009.

[34] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A hybrid
SCM-DRAM persistent and concurrent b-tree for stor-
age class memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD
’16, page 371–386, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[35] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation crash consistency and performance with CCFS.
ACM Trans. Storage, 13(3), September 2017.

96 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[36] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI ’14,
page 433–448, USA, 2014. USENIX Association.

[37] Amir Pnueli, Michael Siegel, and Eli Singerman. Trans-
lation validation. In Proceedings of the 4th International
Conference on Tools and Algorithms for Construction
and Analysis of Systems, TACAS ’98, page 151–166,
Berlin, Heidelberg, 1998. Springer-Verlag.

[38] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional flash. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’08, page 147–160, USA,
2008. USENIX Association.

[39] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The linux b-tree filesystem. ACM Trans. Storage, 9(3),
August 2013.

[40] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26–52, February 1992.

[41] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and
Hakim Weatherspoon. Isotope: ACID transactions for
block storage. ACM Trans. Storage, 13(1), February
2017.

[42] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file sys-
tems via crash refinement. In Proceedings of the
12th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI ’16, page 1–16, USA,
2016. USENIX Association.

[43] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’14, page 530–541, New York, NY, USA, 2014.
Association for Computing Machinery.

[44] Christoph M. Wintersteiger, Youssef Hamadi, and
Leonardo Moura. Efficiently solving quantified bit-
vector formulas. Form. Methods Syst. Des., 42(1):3–23,
February 2013.

[45] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-enabled IO stack for flash storage. In
Proceedings of the 16th USENIX Conference on File

and Storage Technologies, FAST ’18, page 211–226,
USA, 2018. USENIX Association.

[46] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin,
Mark Lillibridge, Elizabeth S. Yang, Bill W. Zhao, and
Shashank Singh. Torturing databases for fun and profit.
In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI ’14,
page 449–464, USA, 2014. USENIX Association.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 97

	Introduction
	Related Work
	SCFTL Design and Implementation
	Flash disk overview
	Address translation
	Crash recovery
	Garbage collection

	Formal Verification Framework
	Specification of disk behavior
	Snapshot consistency
	Behavioral correctness and snapshot consistency of SCFTL
	Per-operation correctness

	Verifying the SCFTL Implementation
	Modeling flash states and crashes
	Crafting the abstraction relations and representation invariants
	Categorizing the invariants
	Partitioning the proofs

	Discussion
	Validating unverified conditions
	Support for concurrency

	Evaluation
	Stress testing and crash state simulation
	Comparing SCFTL with other FTLs
	Modifying xv6 with SCFTL

	Conclusion

