ASSOCIATION

N
usenix \
.' THE ADVANCED
COMPUTING SYSTEMS

Theseus: an Experiment in Operating System
Structure and State Management

Kevin Boos, Rice University; Namitha Liyanage, Yale University;
Ramla ljaz, Rice University; Lin Zhong, Yale University

https://www.usenix.org/conference/osdi20/presentation/boos

This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems
Design and Implementation
November 4-6, 2020
978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation
is sponsored by USENIX

+

ARTIFACT
EVALUATED
susenix

@ Hssociation

ARTIFACT ARTIFACT
EVALUATED EVALUATED

éJUSenIX éiUSEnIX
ASSOCIATION ASSOCIATION

AVAILABLE REPRODUCED

Theseus: an Experiment in Operating System Structure and State Management

Kevin Boos
Rice University

Namitha Liyanage
Yale University

Abstract

This paper describes an operating system (OS) called The-
seus. Theseus is the result of multi-year experimentation to
redesign and improve OS modularity by reducing the states
one component holds for another, and to leverage a safe pro-
gramming language, namely Rust, to shift as many OS re-
sponsibilities as possible to the compiler.

Theseus embodies two primary contributions. First, an OS
structure in which many tiny components with clearly-defined,
runtime-persistent bounds interact without holding states for
each other. Second, an intralingual approach that realizes
the OS itself using language-level mechanisms such that the
compiler can enforce invariants about OS semantics.

Theseus’s structure, intralingual design, and state manage-
ment realize live evolution and fault recovery for core OS
components in ways beyond that of existing works.

1 Introduction

We report an experimentation of OS structural design, state
management, and implementation techniques that leverage
the power of modern safe systems programming languages,
namely Rust. This endeavor was initially motivated by stud-
ies of state spill [16]: one software component harboring
changed states as a result of handling an interaction from
another component, such that their future correctness depends
on said states. Prevalent in modern systems software, state
spill leads to fate sharing between otherwise modularized and
isolated components and thus hinders the realization of de-
sirable computing goals such as evolvability and availability.
For example, state spill in Android system services causes the
entire userspace frameworks to crash upon a system service
failure, losing the states and progress of all applications, even
those not using the failed service [16]. Reliable microkernels
further attest that management of states spilled into OS ser-
vices is a barrier to fault tolerance [21] and live update [28].
Evolvability and availability of systems software are crucial
in environments where reliability is necessary yet hardware
redundancy is expensive or impossible. For example, sys-
tems software updates must be painstakingly applied without
downtime or lost execution context in pacemakers [26] and
space probes [25, 62]. Even in datacenters, where network
switches are replicated for reliability, switch software failures
and maintenance updates still lead to network outages [27,48].

Ramla [jaz
Rice University

Lin Zhong
Yale University

On the quest to determine to what extent state spill can be
avoided in OS code, we chose to write an OS from scratch.
We were drawn to Rust because its ownership model pro-
vides a convenient mechanism for implementing isolation
and zero-cost state transfer between OS components. Our ini-
tial OS-building experience led to two important realizations.
First, mitigating state spill, or better state management in gen-
eral, necessitates a rethinking of OS structure because state
spill (by definition) depends on how the OS is modularized.
Second, modern systems programming languages like Rust
can be used not just to write safe OS code but also to statically
ensure certain correctness invariants for OS behaviors.

The outcome of our experimentation is Theseus OS, which
makes two contributions to systems software design and im-
plementation. First, Theseus has a novel OS structure of many
tiny components with clearly-defined, runtime-persistent
bounds. The system maintains metadata about and tracks
interdependencies between components, which facilitates live
evolution and fault recovery of these components (§3).

Second, and more importantly, Theseus contributes the in-
tralingual OS design approach, which entails matching the
OS’s execution environment to the runtime model of its im-
plementation language and implementing the OS itself us-
ing language-level mechanisms. Through intralingual design,
Theseus empowers the compiler to apply its safety checks
to OS code with no gaps in its understanding of code be-
havior, and shifts semantic errors from runtime failures into
compile-time errors, both to a greater degree than existing
OSes. Intralingual design goes beyond safety, enabling the
compiler to statically check OS semantic invariants and as-
sume resource bookkeeping duties. This is elaborated in §4.

Theseus’s structure and intralingual design naturally reduce
states the OS must maintain, reducing state spill between
its components. We describe Theseus’s state management
techniques to further mitigate the effects of state spill in §5.

To demonstrate the utility of Theseus’s design, we imple-
ment live evolution and fault recovery (for availability) within
it (§6). With this, we posit that Theseus is well-suited for high-
end embedded systems and datacenter components, where
availability is needed in the absence of or in addition to hard-
ware redundancy. Therein, Theseus’s limitations of being a
new OS and needing safe-language programs have a lesser
impact, as applications can be co-developed with the OS in
an environment under a single operator’s control.

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 1

We evaluate how well Theseus achieves these goals in §7.
Through a set of case studies, we show that Theseus can easily
and arbitrarily live evolve core system components in ways
beyond prior live update works, e.g., joint application-kernel
evolution, or evolution of microkernel-level components. As
Theseus can gracefully handle language-level faults (panics
in Rust), we demonstrate Theseus’s ability to tolerate more
challenging transient hardware faults that manifest in the OS
core. To this end, we present a study of fault manifestation
and recovery in Theseus and a comparison with MINIX 3 of
fault recovery for components that necessarily exist inside the
microkernel. Although performance is not a primary goal of
Theseus, we find that its intralingual and spill-free designs do
not impose a glaring performance penalty, but that the impact
varies across subsystems.

Theseus is currently implemented on x86_64 with support
for most hardware features, such as multicore processing,
preemptive multitasking, SIMD extensions, basic networking
and disk I/O, and graphical displays. It represents roughly
four person-years of effort and comprises ~38000 lines of
from-scratch Rust code, 900 lines of bootstrap assembly code,
246 crates of which 176 are first-party, and 72 unsafe code
blocks or statements across 21 crates, most of which are for
port I/O or special register access.

However, Theseus is far less complete than commercial
systems, or experimental ones such as Singularity [33] and
Barrelfish [8] that have undergone substantially more devel-
opment. For example, Theseus currently lacks POSIX support
and a full standard library. Thus, we do not make claims about
certain OS aspects, e.g., efficiency or security; this paper fo-
cuses on Theseus’s structure and intralingual design and the
ensuing benefits for live evolution and fault recovery.

Theseus’s code and documentation are open-source [61].

2 Rust Language Background

The Rust programming language [40] is designed to provide
strong type and memory safety guarantees at compile time,
combining the power and expressiveness of a high-level man-
aged language with the C-like efficiency of no garbage col-
lection or underlying runtime. Theseus leverages many Rust
features to realize an intralingual, safe OS design and em-
ploys the crate, Rust’s project container and translation unit,
for source-level modularity. A crate contains source code and
a dependency manifest. Theseus does not use Rust’s standard
library but does use its fundamental core and alloc libraries.

Rust’s ownership model is the key to its compile-time mem-
ory safety and management. Ownership is based on affine
types, in which a value can be used at most once. In Rust,
every value has an owner, e.g., the string value "hello!" al-
located in [.4 below is owned by the hello variable. After a
value is moved, e.g., if "hello!" was moved in L5 from hello
to owned_string (L14), its ownership would be transferred
and the previous owner (hello) could no longer use it.

1 fn main() {

2 let hel: &str;

3 {

4 let hello = String::from("hello!");

5 // consume(hello); // > "value moved" error in L6
6 let borrowed_str: &str = &hello;

7 hel = substr(borrowed_str);

8 }

9 // print!("{}", hel); // — lifetime error
0}

11 fn substr<'a>(input_str: &'a str) -> &'a str {

12 &input_str[0..3] // return value has lifetime 'a
13}

14 fn consume(owned_string: String) {...}

When the owner’s scope ends, e.g., at the end of a lexical
block, the owned value is dropped (released) by virtue of the
compiler inserting a call to its destructor. Destructors in Rust
are realized by implementing the Drop trait for a given type,
in which a custom drop handler can perform arbitrary actions
beyond freeing memory. On L8 above, the hello string falls
out of scope and is auto-deallocated by its drop handler.

Values can also be borrowed to obtain references to them
(LL6), and the lifetime of those references cannot outlast the
lifetime of the owned value. The syntax in L11 gives the name
*a to the lifetime of the input_str argument, and specifies
that the returned &str reference has that same lifetime 'a.
That returned &str reference is assigned to hel in L7, which
would result in a lifetime violation in L9 because hel would
be used after the owned value it was originally borrowed
from (hello) was dropped in L8. Rust’s compiler includes a
borrow checker to enforce these lifetime rules, as well as the
core tenet of aliasing XOR mutability, in which there can be
multiple immutable references or a single mutable reference
to a value, but not both at once. This allows it to statically
ensure memory safety for values on the stack and heap.

Theseus also extensively leverages Rust fraits, a decla-
ration of an abstract type that specifies the set of meth-
ods the type must implement, similar to polymorphic in-
terfaces in OOP languages. Traits can be used to place
bounds on generic type parameters. For example, the function
fn print_str<T: Into<String>>(s: T){ } uses the under-
lined trait bound to specify that its argument named s must
be of any abstract type T that can be converted into a String.

3 Theseus Overview and Design Principles

The overall design of Theseus specifies a system architecture
consisting of many small distinct components, called cells,
which can be composed and interchanged at runtime. A cell is
a software-defined unit of modularity that serves as the core
building block of the OS, much like their namesake of biolog-
ical cells in an organism (no relation to Rust’s std: :cell).
Theseus enables all software written in safe Rust, including
applications and libraries, to coexist alongside the core OS
components in a single address space (SAS) and execute at a
single privilege level (SPL), building upon language-provided
type and memory safety to realize isolation instead of hard-
ware protection. Everything presented herein is written in
Rust and runs in the SAS/SPL environment.

2 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Theseus follows three design principles:

P1. Require runtime-persistent bounds for all cells.
P2. Maximize the power of the language and compiler.

P3. Minimize state spill between cells.

The remainder of this section describes how Theseus satisfies
the first principle and why it matters, while §4 and §5 discuss
the second and third principles, respectively.

3.1 Structure of Runtime-Persistent Cells

Cells in Theseus have bounds that are clearly defined at im-
plementation time and persist into and throughout runtime:
a cell exists as a Rust crate at implementation time, a single
object file at compile time, and a set of loaded memory re-
gions with per-section bounds and dependency metadata at
runtime. This applies to all cells, not just a select subset such
as kernel extensions in monolithic and safe-language OSes or
userspace servers in microkernels; there are no exemptions
for components within a “base kernel” image. Explicit cell
bounds identifiable at runtime are the foundation for strong
data/fault isolation and state management in Theseus.

At runtime, Theseus loads and links all cells into the sys-
tem on demand. Briefly, this entails finding and parsing the
cell object file, loading its sections into memory, resolving
its dependencies to write linker relocation entries, recursively
loading any missing cells as needed, and adding new public
symbols to a symbol map. In doing so, Theseus constructs
detailed cell metadata, depicted in Figure 1, which is cru-
cial knowledge for live evolution (§6.1) and fault recovery
(§6.2). The set of loaded cells defines a CellNamespace, a
true namespace containing all cells’ public symbols, used
to quickly resolve dependencies between cells. Each loaded
cell node tracks its constituent sections and the memory re-
gions (§4.3.1) that contain them. The sections in each cell
correspond to those in its crate’s object file, e.g., executable,
read-only data, and read-write data sections. Each loaded sec-
tion node tracks its size, location in memory, and bidirectional
dependencies (incoming and outgoing); additional metadata
exists to accelerate cell swapping and other system functions.

Persistence of Cell Bounds Reduces Complexity: Theseus’s
persistent cell bounds provide a consistent abstraction of OS
structure throughout all phases of their existence. This re-
duces the complexity of a developer’s mental model of the
OS and simplifies fault recovery and evolution logic, as The-
seus can introspect upon and manage its own code from the
same cell-oriented viewpoint at runtime. The SAS/SPL en-
vironment augments this consistent view with completeness,
in that everything from top-level applications and libraries to
core kernel components are observable as cells. This enables
Theseus to (i) implement a single mechanism, cell swapping,
uniformly applicable to any cell, and (ii) jointly evolve cells
from multiple system layers (e.g., applications and kernel
components) in a safe manner.

CellNamespace
symbol_map: { ... }

LoadedCell
name: my_driver name: my_module

ve:{ LJOIUT} we{ 1}

TextSec RodataSec DataSec TextSec
name: funcl name: stri name: my_var name: foo
size: 1.2kB size: 868 size: 8B size: 406 B

LoadedCell

vaddr: FE54.. vaddr: FE98.. vaddr: FEBC.. vaddr: FF14..

D MappedPages (MP)

LoadedSection C} depends on C}

Figure 1: Theseus constructs detailed metadata that tracks runtime
cell bounds in memory and bidirectional, per-section dependencies
in order to simplify cell swapping logic.

Striking a Balance with Cell Granularity: Theseus cells are
elementary in their scope; we follow separation of concerns to
split functionality into many tiny crates, letting unavoidable
circular dependencies between them halt further decompo-
sition. We do not use Rust’s source-level module hierarchy
in which one crate contains multiple Rust (sub)modules, as
those module bounds are lost when the crate is built into an
object file. Instead, we extract would-be modules into distinct
crates, realizing hierarchy by organizing crates’ source files
into folders in Theseus’s repository. This design offers both
a programmer-friendly hierarchical view of source code and
a simple system view of all cells as a flat set of distinct ob-
ject files. It also strikes a balance between the complexity of
needing to swap myriad tiny cells and the inefficiency and
impracticality of swapping a large monolithic cell.

3.2 Bootstrapping Theseus with the nano_core

Theseus splits the compilation process at the linker stage,
placing raw cell object files directly into the OS image
such that linkage is deferred to runtime. From a practical
standpoint, unlinked object files cannot run, so we must
jump-start Theseus with the nano_core. The nano_core is
a set of normal cells statically linked together into a tiny,
executable “base kernel” image, comprising only components
needed to bootstrap a bare-minimum environment that
supports virtual memory and loading/linking object files.
Because statically linking cells loses their bounds and
dependencies, the nano_core fully replaces itself at the
final bootstrap stage by dynamically loading its constituent
cells one by one, using augmented symbol tables and other
metadata burned into the OS image at build time. This meets
the requirement of runtime-persistent bounds for all cells,
allowing the nano_core to be safely unloaded after bootstrap.

4 Power to the Language

The second design principle Theseus follows is to leverage
the power of the language by enabling the compiler to check
safety and correctness invariants to the fullest extent possible.
We term this approach intralingual, within the language, as it

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 3

involves matching Theseus’s execution environment to that
of the language’s runtime model, and implementing OS se-
mantics fully within the strong, static type system offered by
modern languages like Rust. This extends compiler-checked
invariants (e.g., no dangling references) to all types of re-
sources, not just those built into the language.

Intralingual design offers two primary benefits. First, it
empowers the compiler to take over resource management
duties, reducing the states the OS must maintain, which in
turn reduces state spill and strengthens isolation. Second, it
enables the compiler to apply safety checks with no gaps
in its understanding of code behavior, approaching end-to-
end safety from applications to core kernel components and
shifting semantic runtime errors into compile-time errors.

In contrast, traditional extralingual approaches rely on hard-
ware protection and runtime checks to uphold invariants for
safety, isolation, and correctness. These features are trans-
parent to the compiler and require unsafe code. Even exist-
ing safe-language OSes [3, 13, 33, 44] have a gap between
language-level safe code and the underlying unsafe core that
implements the language’s required abstractions as a black
box. Below, we describe how Theseus closes this gap and
opens up such black boxes to the compiler.

4.1 Matching the Language’s Runtime Model

The compiler for many languages, including Rust, expects that
its output will become (part of) an executable that runs within
one address space and privilege level, e.g., a single userspace
process. Thus, the compiler cannot holistically observe or
check the behavior of independently-compiled components
that run in different address spaces or privilege levels.

To address this shortcoming, we tailor Theseus’s OS exe-
cution environment to match Rust’s runtime model: (i) only
a single address space (SAS) exists and thus a single set of
addresses is visible, for which Theseus guarantees a one-to-
one virtual-to-physical mapping; (ii) all code executes within
a single privilege level (SPL), thus there is no other world
or mode of execution; (iii) only a single allocator instance
exists, matching the compiler’s expectation that a global heap
serves all allocation requests. Note that Theseus does support
multiple arbitrary heaps within that single instance (§7.3).

4.2 Intralingual OS Design

Matching the language’s runtime model only allows the com-
piler to view all Theseus components. For the compiler to
understand those components and apply its safety checks
to them, we must implement them in a manner that exposes
their safety requirements, invariants, and semantics to the
compiler. As an aside, Theseus uses safe code to the fullest
extent possible at all layers of the system, prioritizing safety
over all else, e.g., convenience, performance. It only descends
into unsafety when fundamentally unavoidable: executing in-
structions directly above hardware and select functions within
Rust’s foundational libraries, i.e., core and alloc.

Theseus goes beyond language safety to further empower
the compiler to check our custom OS invariants as if they were
built in. First, for each OS resource, Theseus identifies the set
of invariants that prevent unsafety and incorrect usage. As the
Rust compiler already checks myriad invariants for the usage
of language-provided types and mechanisms, Theseus em-
ploys these existing mechanisms to allow its resource-specific
invariants to be subsumed into those compiler invariants. For
example, Theseus uses Rust’s built-in reference types, such as
&T and Arc<T> (Atomic Reference-Counted pointer), to share
resources (e.g., memory regions, channel endpoints) across
multiple tasks in a safe language-level manner, instead of ex-
tralingual sharing mechanisms like raw pointers or mapping
multiple pages to the same frame. This eliminates possible
use-after-free errors by subsuming resource mismanagement
checks into the compiler’s lifetime invariants.

Second, Theseus employs lossless interfaces for both exter-
nal functions that export a resource’s semantics and internal
functions that implement those semantics. An interface is
lossless if crossing it preserves all language-level context,
e.g., an object’s type, lifetime, or ownership/borrowed status.
Furthermore, the provenance of that language-level context
must be statically determinable, such that the compiler can
authenticate that there was no broken link in the chain of calls
and interface crossings when using a given resource. In other
words, language-level knowledge must not be lost and then
reconstituted extralingually. For example, invoking a system
call in Linux loses the type and lifetime information of its
arguments because they must be reduced to raw integer values
to cross the user-kernel boundary.

Ensuring Resource Cleanup via Unwinding

One major invariant we enforce beyond default Rust safety is
to prevent resource leakage, an acquired resource not being
released even after no references to it remain. Although leak-
age does not violate safety, it is generally incorrect behavior.
Theseus prevents resource leakage by (i) implementing all
cleanup semantics in drop handlers (§2), a lossless language-
level approach that allows the compiler to solely determine
when it is safe to trigger resource cleanup, and (ii) employ-
ing stack unwinding to ensure acquired resources are always
released in both normal and exceptional execution.

When tasks acquire resources in Theseus, they directly own
objects representing those resources on their stack (§5.1). The
Rust compiler tracks ownership of those objects to statically
determine when a resource is dropped and, thus, where to
insert its cleanup routine. Implementing all resource cleanup
in only drop handlers frees developers from the burden of cor-
rectly ordering release operations or considering corner cases
such as exceptional control flow jumps. Applying this to ac-
quired locks allows Theseus to statically prevent many cases
of deadlock: lock guards are auto-released during unwinding,
and domain-specific locks automatically disable/re-enable
preemption or interrupts, e.g., when modifying task runstates.

4 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

We implement Theseus’s unwinder from scratch in Rust,
with custom unwinding logic based on the DWARF stan-
dard [1] but independent from existing unwind libraries; thus,
it works in core OS contexts without a standard library or
allocation. Theseus starts the unwinder only upon a software
or hardware exception or a request to kill a task; it does not
interfere with normal execution performance, unlike garbage
collectors. This prevents failed or uncooperative tasks from
jeopardizing resource release and reclamation, strengthening
fault isolation. The unwinder uses compiler-emitted informa-
tion along with cell metadata to locate previous frames in
the call stack, calculate and restore register values present
during that frame, and discover and invoke cleanup routines
or exception-catching blocks. Cell metadata even enables the
unwinder to traverse through nonstandard stack frames for
hardware-entered asynchronous calling contexts, e.g., inter-
rupts or CPU exception handlers.

Theseus supports intralingual resource revocation in two
forms. First, Theseus can forcibly revoke generic resources
by killing and unwinding an uncooperative task. This avoids
isolation-breaking undefined behavior by ceasing to execute
a task once its assumptions of safe resource access no longer
hold. Second, Theseus can cooperatively revoke reclaimable
resources, such as in-memory caches and buffer pools, which
express the possibility of resource absence within their type
definition, e.g., using Option or weak references. This design
unifies system-level and language-level resource actions to
guarantee that revoked resources are freed exactly once.

4.3 Examples of Intralingual Subsystems

We next describe how Theseus intralingually implements
foundational OS resources, namely memory management and
task management. Additional invariants, details, and exam-
ples, such as inter-task communication (ITC) channels, are
omitted for brevity and available elsewhere [15].

4.3.1 Memory Management

Theseus intralingually implements virtual memory via the
MappedPages type of Listing 2, which represents a region of
virtually-contiguous pages statically guaranteed to be mapped
to (optionally contiguous) real physical frames. MappedPages
is the fundamental, sole way to map and access memory in
Theseus, and serves as the backing representation for stacks,
heaps, and arbitrary memory regions, e.g., device MMIO and
loaded cells. The design of MappedPages empowers the com-
piler’s type system to enforce the following key invariants,
extending Rust’s memory safety checks to al/l OS memory
regions, not just the compiler-known stack and heap.

M.1: The mapping from virtual pages to physical frames
must be one-to-one, or bijective. This prevents aliasing (shar-
ing) from occurring beneath the language, forcing all shared
memory access in Theseus to use only language-level mecha-
nisms, such as references (&MappedPages). In Theseus’s SAS
environment (§4.1), this is both possible and non-restrictive.
In contrast, both conventional and existing safe-language OS

1 fn main() -> Result<()> {

2 let frames = get_hpet_frames()?;

3 let pages = allocate_pages(frames.count())?;

4 let mp_pgs = map(pages, frames, flags, pg_tbl)?;
5

5 {

6 let hpet: &HpetRegisters = mp_pgs.as_type(0)?;

7 print! ("HPET device Vendor ID: {}", hpet.caps_id.read() >> 16);
8 }

9 let (sender, receiver) = rendezvous::new_channel::<MappedPages>();
10 let new_task = spawn_task(receiver_task, receiver)?;

11 sender.send(mp_pgs)?;

12 0k(()) // “mp_pgs' not dropped, it was moved

13}

14 fn receiver_task(receiver: Receiver<MappedPages>) -> Result<()> {
15 let mp: MappedPages = receiver.receive()?;

16 let hpet: &HpetRegisters = mp.as_type(0)?;

17 print!("Current HPET ticks: {}", hpet.main_counter.read());

18 Ok(()) // “mp" auto-dropped and unmapped here

19 }

20 struct HpetRegisters {

21 pub caps_and_id: ReadOnly<u64>,
22 _padding: [u64, ...1,

23 pub main_counter: Volatile<u64>,
24

25 }

Listing 1: Example code that maps a memory region representing
the HPET device, accesses the HPET vendor ID via MMIO, then
spawns a new task and sends that memory region to it over a channel.
The new task receives that memory region and uses it to read the
HPET counter. This refers to code continued in Listing 2 and 3.

designs allow different virtual pages to map the same physical
frame, an extralingual approach that renders sharing transpar-
ent to the compiler and thus uncheckable for safety.

We realize this invariant via the map() function (1.26),
which leverages type safety to take ownership of the allo-
cated pages and frames in order to return a new MappedPages
object. The lossless map() interface statically ensures the
provenance of this relationship between AllocatedPages,
AllocatedFrames, and MappedPages, guaranteeing they can-
not be reused for duplicate mappings.

M.2: Memory must not be accessible beyond the mapped
region’s bounds. To access a memory region, one must use
MappedPages methods like as_type() (I.45) or as_slice()
(L52) that overlay a statically-sized struct or dynamically-
sized slice atop it; mutable versions exist, see M.4 below.
The in-bounds invariant (L.46) is checked dynamically un-
less elided when the size and offset are statically known, as
in some MMIO cases. These access functions are lossless
because they return sized types that preserve the lifetime rela-
tionship described below.

M.3: A memory region must be unmapped exactly once,
only after there remain no outstanding references to it.
MappedPages realizes its release and cleanup semantics only
within its drop handler (I.38), ensuring that a MappedPages
object, such as mp in .15 of Listing 1, is unmapped in both
normal execution (L18) and exceptional execution. Corre-
spondingly, memory must not be accessible after it has been
unmapped. The above access methods tie the lifetime of the
re-typed borrowed reference &'m T to the lifetime of its back-
ing MappedPages memory region, allowing compiler lifetime
checks to statically prevent use-after-free. As such, obtaining
ownership of an overlaid struct is impossible by design, as

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 5

26 pub fn map(pages: AllocatedPages, frames: AllocatedFrames,
flags: EntryFlags, ...) -> Result<MappedPages> {
27 for (page, frame) in pages.iter().zip(frames.iter()) {

28 let mut pg_tbl_entry = pg_tbl.walk_ to(page, flags)?
.get_pte_mut(page.pte_offset());
29 pg-tbl entry.set(frame.start_addr(), flags)?;

}
31 Ok (MappedPages { pages, frames, flags })
}

33 pub struct MappedPages {

34 pages: AllocatedPages,
35 frames: AllocatedFrames,
36 flags: EntryFlags,

37 }

38 impl Drop for MappedPages {
39 fn drop(&mut self) {

40 // unmap here: clear page table entry, invalidate TLB.

41 // AllocatedPages/Frames are auto-dropped and deallocated.
42 }

43}

44 impl MappedPages {
45 pub fn as_type<'m, T>(&'m self, offset: usize) -> Result<&'m T> {

46 if offset + size of::<T>() > self.size in_bytes() {
47 return Error::0utOfBounds;
48 }
49 let typed_mem: &T = unsafe {
&*((self.pages.start_addr() + offset) as *const T) };
50 Ok (typed_mem)
51 }
52 pub fn as_slice<'m, T>(&'m self, offset: usize, count: usize)
-> Result<&'m [T]> { ... }
53)

Listing 2: The basic MappedPages type (L.33) exposes an interface
(L44-53) for safely accessing its underlying memory region. The
map () function (L26) maps a range of virtual pages to physical
frames and returns a new MappedPages instance that represents that
memory region. Sanity checks and details omitted for brevity.

that would lossily discard the above lifetime relationship.
M.4: A memory region must only be mutable or ex-
ecutable if mapped as such. We ensure this using dedi-
cated types, MappedPagesMut and MappedPagesExec, that of-
fer as_type_mut() and as_function(), which statically pre-
vents page protection violations as described elsewhere [15].
In summary, MappedPages bridges the semantic gap be-
tween the compiler’s and OS’s knowledge of memory, guar-
anteeing at compile time that unexpected invalid page faults
cannot occur. Note that the necessary unsafe code in 49 is
innocuous (see §8) as it merely indicates that the compiler
cannot ensure the overlaid struct type has valid contents. Cor-
rectness of struct contents (e.g., HpetRegisters in [.20) is
unavoidably left to the developer. Regardless of developer
mistakes, the compiler can still check that this unsafe code
does not violate fault or data isolation because other invariants
ensure it cannot produce dangling references (M.3) or access
out-of-bounds addresses (M.2) beyond the reach of safe code.
All other memory management code is safe down to the low-
est level, where page table walks require extralingual code to
accommodate hardware-defined page table formats.

4.3.2 Task Management

While MappedPages is the center of intralingual memory man-
agement, the Task struct in Theseus is minimized in both
content and significance. Rather, task management centers
around intralingual functions that leverage a consistent set of
generic type parameters to handle each stage of the task life-

54 pub trait TFunc<A,R> = FnOnce(A) -> R;
55 pub trait TArg = Send + 'static;
56 pub trait TRet = Send + 'static;

57 pub fn spawn_task<F,A,R>(func: F, arg: A, ...) -> Result<TaskRef>
where A: TArg, R: TRet, F: TFunc<A, R> {
58 let stack = alloc_stack(stack_size)?;

59 let mut new_task = Task::new(task_name, stack, ...)?;

60 let trampoline_offset = new_task.stack.size_in_bytes() -
size of::<usize>() - size_of::<RegisterCtx>();

61 let initial_context: &mut RegisterCtx = new_task.stack

.as_type_mut(trampoline_offset)?;
62 *initial_context = RegisterCtx::new(task_ wrapper::<F,A,R>);
63 new_task.saved_stack_ptr = initial_context as *const RegisterCtx;
64 let func_arg: &mut Option<(F, A)> = new_task.stack.as_type_mut(0)?;
65 *func_arg = Some((func, arg));
66 Ok (TaskRef: :new(new_task))
67 }
68 fn task_wrapper<F,A,R>() -> ! where A: TArg, R: TRet, F: TFunc<A,R> {
69 let opt: &mut Option<(F, A)> = current_task.stack
.as_type(0).unwrap();
70 let (func, arg) = opt.take().unwrap();

71 let res: Result<R, KillReason> = catch_unwind_with_arg(func, arg);
72 match res {

73 Ok(exit_value) => task_cleanup_success::<F,A,R>(exit_value),
74 Err(kill_reason) => task_cleanup_failure::<F,A,R>(kill_reason),
75 }

76 }

77 fn task_cleanup_success<F,A,R>(exit_value: R) ->
where A: TArg, R: TRet, F: TFunc<A, R> {

78 current_task.set_as_exited(exit_value);

79 task_cleanup_final::<F,A,R>()

80 }

8

fn task_cleanup_failure<F,A,R>(kill_reason: KillReason) -> !
where A: TArg, R: TRet, F: TFunc<A, R> {
82 current_task.set_as_killed(kill_reason);
83 task_cleanup_final::<F,A,R>()
84 }
85 fn task_cleanup_final<F,A,R>(curr_task: TaskRef) -> !
where A: TArg, R: TRet, F: TFunc<A, R> {
86 runqueue: : remove_task(current_task());
87 scheduler::schedule(); // task is descheduled, will never run again
88 loop { }
89 }

Listing 3: The interface to spawn a task (L57) creates a new task and
sets up its stack such that it will jump to task_wrapper () upon first
context switch, which will then invoke its entry function normally.
Every function that handles a task lifecycle stage is parameterized
with the same set of trait bounds (L.54-56), ensuring that a task’s type
information (function, argument, return type) is losslessly preserved
across its entire lifecycle. Code simplified for brevity.
cycle, as shown in Listing 3: spawning and entering new tasks
(L57,68), modifying task runstates as they run, and exiting and
cleaning up tasks (I.77,81,85). Theseus enforces the following
invariants to empower the compiler to uphold memory safety
and prevent resource leaks throughout the task lifecycle.

T.1: Spawning a new task must not violate memory safety.
Rust already ensures this for multiple concurrent userspace
threads, as long as they were created using its standard library
thread type. Instead of using the standard library, Theseus
provides its own task abstraction, overcoming the standard li-
brary’s need to extralingually accommodate unsafe, platform-
specific thread interfaces, e.g. fork(). Theseus does not offer
fork because it is known to be unsafe and unsuitable for
SAS systems [7], as it extralingually duplicates task context,
states, and underlying memory regions without reflecting that
aliasing at the language level.

Theseus’s task abstraction preserves safety similarly to
and as an extension of Rust threads. The spawn_task() in-
terface (LL57) requires specifying the exact type of the entry

6 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

function F, argument A, and return type R, with the following
constraints: (i) the entry function must be runnable only once
(FnOnce in L.54), (i) the argument and return type must be safe
to transfer between threads (Send in .55-56), and (iii) the life-
time of said three types must outlast the duration of the task it-
self. All task lifecycle functions are lossless and have identical
type parameters (F,A,R), allowing the compiler to naturally
extend its safety guarantees to concurrent execution across
multiple Theseus tasks and to statically prevent invalidly-
typed task entry functions, arguments, and return values.

T.2: All task states must be released in all possible execu-
tion paths. Releasing task states requires special consideration
beyond simply dropping a Task object to prevent resource
leakage (§4.2). Task states such as the stack are used during
unwinding and can only be cleaned up once unwinding is
complete, and task cleanup comprises multiple stages that
each permit varying levels of resource release. For example, a
task’s stack and saved register context can be released when it
is exited (I.78) or killed (I.82), but its runstate and exit value
must persist until it has been reaped (not shown).

In addition, there exist multiple potential paths in the end
stages of the task lifecycle that each require different cleanup
actions. When a task runs to completion, its entry function nat-
urally returns execution to the task_wrapper (L.73), which
can then safely mark the task as exited with its exit value.
When a task crashes, the exception handler starts the unwind-
ing procedure to release all task-held resources, after which
it invokes the task failure function (.8 1) that marks the task
as crashed. Both normal and exceptional execution paths in-
voke a final task cleanup function (L.85) that removes the task
from runqueues and deschedules it. All of these functions are
parameterized with <F, A, R> types, a key part of intralingual
fault recovery mechanisms like restartable tasks (§6.2).

T.3: All memory transitively reachable from a task’s entry
function must outlive that task. Although all memory regions
in Theseus are represented by MappedPages, which prevents
use-after-free via lifetime invariants, it is difficult to use Rust
lifetimes to sufficiently express the relationship between a
task and arbitrary memory regions it accesses. This is because
a Rust program running as a task cannot specify in its code
that its variables bound to objects in memory are tied to the
lifetime of an underlying MappedPages instance, as they are
hidden beneath abstractions like stacks, heaps, or program
sections. Even if possible, this would be highly unergonomic
and inconvenient, rendering ownership useless. For example,
all local stack variables would need to be defined as borrowed
references with lifetimes derived from that of the Mapped-
Pages representing the stack.

Thus, to uphold this invariant, we instead establish a chain
of ownership: each task owns the cell that contains its entry
function, and that cell owns any cells it depends on, given by
the per-section dependencies in the cell metadata (§3.1). As
such, the MappedPages regions containing all functions and
data reachable from a task’s entry function are guaranteed

to outlive that task itself. This avoids littering lifetime con-
straints across all program variables, and allows Rust code
to be written normally with the standard assumption that the
stack, heap, data, and text sections will always exist.

In contrast, conventional task management leaves the en-
forcement of these invariants to the OS programmer, an ex-
tralingual approach. In Theseus, only swapping stack pointer
registers during a context switch is not intralingual.

5 State Management in Theseus

The third design principle Theseus follows is to minimize
and ideally eliminate state spill in its cells. As Theseus’s
component structure is based on cells, state spill can only
occur in interactions (e.g., function calls) that cross a cell
boundary and result in changed state(s) in the receiving cell.

5.1 Opaque Exportation through Intralinguality

Theseus employs opaque exportation to avoid state spill
in client-server interactions: each client is responsible for
owning the state that represents its progress with the server,
hence exportation, but cannot arbitrarily introspect into or
modify that server-private state due to type safety, hence
opaque. Opaque exportation is only possible because The-
seus’s safe, intralingual design enables shifting the burden of
resource/progress bookkeeping from the OS into the compiler.
This allows bookkeeping states to be distributed, or offloaded
to each client, e.g., held only on a client task’s stack. Theseus’s
unwinder can still find and invoke cleanup routines without
needing OS knowledge about which resources a client has
acquired, thus the server and OS at large need not maintain
bookkeeping states for each client.

Conversely, Theseus eschews traditional state encapsula-
tion, in which a server holds all states representing its clients’
progress and resource usage [16, 17]. Such encapsulation
constitutes state spill and causes fate sharing that breaks iso-
lation: when a server crashes and loses its state, its clients
will also fail. Opaque exportation still preserves information
hiding [52], a primary benefit of encapsulation.

A corollary of opaque exportation is stateless communica-
tion (ala RESTful web architectures [24]), which dictates that
everything necessary for a given request to be handled should
be included in that request. Servers that employ stateless
communication need not store intermediary states between
successive client interactions, as future interactions will be
self-sufficient, containing previously-exported states.

Opaque exportation enables Theseus to avoid common
spillful abstractions such as handles. Client-side handles to
server-owned data forces the server to maintain a global ta-
ble that associates each client’s handle with its underlying
resource object, a form of state spill. Theseus rejects handles
in favor of a client directly owning the underlying resource
object; for example, an application task owns a MappedPages
object instead of a virtual address handle, as shown by mp_pgs
in L4 of Listing 1. This relieves the server (mm cell) from

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 7

the burden of maintaining a handle table, e.g., a list of vir-
tual memory areas (VMAS) that correspond to the virtual ad-
dresses given to clients as handles for mapped regions. Note
that clients are only responsible for owning, not cleaning up,
objects that represent resources they acquired; when said ob-
ject falls out of scope (or during unwinding), it is cleaned up
via compile-time insertion of a server-provided cleanup rou-
tine, i.e., the object’s drop handler. Thus, Theseus decouples
the duty of owning and holding a state from the responsibility
of implementing and invoking its cleanup functionality.
Accommodating Multi-Client States: Server-defined re-
sources may pertain to or be shared across more than one
client. Thus, Theseus extends opaque exportation to enable
all pertinent clients to jointly own that resource state, i.e.,
multi-client states. Joint ownership and resource sharing in
general can be realized via heap-allocated objects with auto-
matic reference counting (e.g., Arc); while this can be viewed
as state spill into the heap, considering spill into the allocator
itself is not useful for two reasons. First, heap allocations are
represented by owned objects elsewhere that point back to
the heap, e.g., types like Box or Arc. Therefore, it suffices to
consider only the propagation of those owned objects when
determining where state spill occurred, rather than observing
the internal state of the heap itself. Second, state spill into the
heap is unavoidable; every basic action from creating a new
local string variable to invoking a function would constitute
state spill into the heap or stack, rendering it a useless metric.

5.2 Management of Special States in Theseus

Theseus cells often hold soft states, those that can be lost or
discarded without error [19, 55]. Soft states exist for the sake
of convenience or performance, e.g., an in-memory cache of
a clock source’s period read from hardware. Although soft
states technically constitute state spill, they can be idempo-
tently re-obtained or recalculated with no impact on correct-
ness. Therefore, Theseus permits soft states as harmless state
spill with no adverse effects on evolution or availability.

We identify unavoidable states in two general forms: (i)
clientless states, those that hardware requires the OS to main-
tain on its behalf, and (ii) states needed to handle asyn-
chronous, hardware-invoked entry points that do not provide
sufficient context. The former renders opaque exportation im-
possible and the latter violates stateless communication. In
the first case, we cannot modify the behavior or capacity of
underlying hardware to accommodate exported states. Thus,
Theseus must hold these states to ensure they persist through-
out all execution. Examples include low-level x86 structures
like the Global Descriptor Table (GDT), Task State Segment
(TSS), Interrupt Descriptor Table (IDT). In the second case,
Theseus must store necessary contextual states with a static
lifetime and scope that exceeds that of the asynchronous hard-
ware event’s entry function, e.g., an interrupt handler.

To preserve the interchangeability of server cells in both
such cases, Theseus assigns their states a well-defined owner

and static lifetime by moving them into state_db, a state
storage facility with minimal semantics akin to key value
databases. Any singleton cell can move its static state into
state_db and get a weak reference in return, a form of soft
state. The state_db retains interchangeability despite har-
boring states spilled from other cells, as it uniquely must
cooperate in its own swapping process by hardening itself via
serialization to nonvolatile storage. The only other similar cell
is the cell manager, which must also serialize its cell metadata.
This design decouples a hardware state’s lifetime from that
of the server cell interacting with it, enabling said cell to be
evolved without losing mandatory system-wide states.

5.3 Intralinguality and Spill Freedom: Examples

We further illustrate the relationship between intralingual
design and state spill freedom with two example subsystems:
memory and task management.

Memory Management: Theseus’s MappedPages type (§4.3)
eliminates state spill through opaque exportation: the client
requesting the mapping owns the resultant MappedPages ob-
ject, e.g., mp_pgs on L4, rather than the server (mm cell) that
created it. In contrast, mm entities in existing OSes harbor
state spill in the form of metadata representing each memory
mapping, e.g., a list or table of virtual memory area (VMA)
objects; clients must blindly trust that the underlying map-
ping and VMA persist throughout the usage of their virtual
address handle. Importantly, we consider page tables to be
hardware-required MMU states, much like x86’s GDT or TSS.
Page table entries are not language-level objects with lasting
variable name bindings in Theseus; thus, writing to a page
table is a hardware-externalized side effect rather than state
spill. Crucially, the state representing this side effect — the
transition from “unmapped” to “mapped” — is not lost, but
reflected in the client-side MappedPages object rather than a
hidden server-side state change.

Task Management: Theseus’s intralingual design and its
ensuing opaque exportation significantly reduce the scope and
size of its Task struct, thus avoiding most instances of state
spill from other subsystems into its task management cells.
This is possible because the unwinder and compiler together
retain the ability to fully clean up a task’s acquired resources,
even those shared across tasks, without needing to consult its
task structure for resource bookkeeping states. Theseus also
moves task-related states specific to other OS features, e.g.,
runqueue and scheduler information, out of the task struct and
into those components themselves. This better follows sepa-
ration of concerns than conventional OSes that hoard a huge
list of OS states needed for manual resource bookkeeping and
task cleanup into a centralized, all-encompassing task struct.
Such a task struct design causes myriad OS operations to spill
state into the task management entities and results in cross-
cutting dependencies that closely entangle entities together,
hindering their evolution or recovery. Thus, Theseus’s task
struct can contain only the bare necessities, e.g., the task’s

8 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

runstate, stack, and saved execution context (register values).
Correspondingly, it excludes lists of open files, open sockets,
memory mappings, wait queues, etc.

6 Realizing Evolvability and Availability

To demonstrate the utility of Theseus’s design, we implement
mechanisms inside it to realize challenging computing goals:
live evolution and fault recovery.

6.1 Live Evolution via Cell Swapping

The fundamental evolutionary mechanism in Theseus is cell
swapping, a multi-stage procedure that replaces O “old” ex-
isting cells with N “new” ones; O need not equal N. (i) First,
Theseus loads all new cells into a new empty CellNames-
pace (§3.1), an isolated linking environment. (if) Theseus
then verifies dependencies bidirectionally: new cells must
satisfy existing dependencies fulfilled by the old cells, and ex-
isting cells must satisfy the new cells’ dependencies. Isolated
loading allows this to occur before making invasive changes
to the running system. (iii) Theseus redirects all cells that
depend on the old cells to depend on the corresponding new
cells, which involves rewriting their relocation entries and
dependency metadata, updating on-stack references to the old
cells, and transferring states if necessary. (iv) Finally, The-
seus atomically removes the old cells and symbols from the
CellNamespace whilst moving in the new cells.

Evolving a running instance of Theseus is as easy as com-
mitting to its repository, which triggers our build server tool
to re-compile Theseus and generate an evolution manifest
file specifying which new cells shall replace which old ones.
Maintainers can also select individual cells to evolve, and all
others that must be evolved alongside them are automatically
included to ensure a well-formed evolution manifest.

Theseus’s design facilitates cell swapping and simplifies
known live update techniques like quiescence and state trans-
fer. In stage (i), runtime cell bounds let Theseus’s dynamic
loader ensure that a cell’s sections will not overlap or be inter-
leaved in memory with those of another, allowing each cell to
claim sole ownership of its memory regions and be cleanly re-
movable in stage (iv). Dynamic loading also produces precise
dependency information, needed in stages (ii) and (iif).

Spill-free design of cells in Theseus simplifies state transfer.
As previously mentioned, opaque exportation allows a server
cell to be more easily swapped because it need not maintain
state between successive interactions with clients, increas-
ing its quiescent periods. Stateless communication reduces
a given function’s dependencies on other cells because it re-
ceives necessary states and function callbacks or closures via
its arguments. Overall, this hastens the dependency rewriting
and state transfer steps in stage (ii).

The cell metadata accelerates cell swapping. In stage (ii),
dependency verification amounts to a quick search for fully-
qualified symbols in the CellNamespace’s symbol map. In
stage (iii), Theseus need not scan every task’s stack, rather

only a limited subset for which the old cells’ public functions
or data are reachable from the task’s entry function; reacha-
bility is trivially determined by following dependency links
in the metadata. Compile-time ownership semantics allow
Theseus’s cell manager to fearlessly remove old cells and
their symbols in stage (iv) without first checking for their
usage elsewhere, as the compiler has already ensured a re-
moved old cell will not be actually dropped and unloaded
until it is no longer referred to by any other cells; this avoids
a computationally-complex graph traversal over all metadata.

Theseus’s intralingual design extends to transfer functions
needed for evolving a data structure in stage (iii). We allow
and require such functions to be implemented intralingually
using Rust’s type conversion traits, e.g., Into. Generation of
transfer functions is ongoing work, thus the results reported
in §7.1 use manually-implemented transfer functions.

6.2 Availability via Fault Recovery

We next describe how Theseus recovers from language-level
exceptions (Rust panics) and hardware-induced faults like
CPU exceptions. Theseus follows a multi-stage, cascading
approach towards fault recovery, taking increasingly drastic
measures until normal execution is recovered. A system-wide
fault log records fault context (e.g., instruction pointer, current
task) and the recovery action taken in order to track progres-
sion through recovery stages and avoid recurring fault loops.

The first recovery stage is to simply tolerate the fault by
fully cleaning up a failed task via unwinding. This form of
fault isolation allows other tasks that depend on resources
shared with the failed task to continue running.

The second recovery stage is to respawn a new instance
of the failed task. We extend the existing task infrastructure
(Listing 3) to provide a fully intralingual implementation of
restartable tasks, in which the spawn interface further con-
strains the <F,A,R> type parameters to enable the compiler
to check that tasks are well-formed and safely restartable.
The augmented trait bounds are F: Fn(A) -> R + Clone and
A: Send + Clone + 'static, which require that the entry
function can be safely executed multiple times (F: Fn, not
FnOnce) and the argument can be safely duplicated (Clone).

The most significant recovery stage reuses the cell swap-
ping mechanism (§6.1) to replace corrupted cells with freshly-
loaded instances at different memory locations. This approach
addresses faults that occur on invalid accesses of cell data or
text sections, indicating they have been corrupted (e.g., due
to a hardware memory failure). This represents the simplest
possible case of cell swapping, with no possibility of missing
dependencies or changes to code or data types. Following
this, the failed task is restarted (as above), which allows it to
successfully execute atop the new cell instance(s).

Notably, Theseus’s fault recovery mechanisms operate with
few dependencies, allowing it to tolerate faults in the lowest
system layers in the face of multiple failed subsystems. The
fault-critical TCB of components for each recovery stage are

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 9

as follows: (i) cleanup of a failed task’s states relies upon the
unwinder, which only needs a basic execution environment
to access the stack and invoke functions; (ii) restartable tasks
rely upon task spawning; (iii) cell replacement relies upon
object file parsing, loading, and linking. All of this can safely
execute within the context of a CPU exception handler in
Theseus. In comparison, fault recovery approaches in reliable
microkernels like MINIX 3 [30] require support for context
switches, interrupts, IPC, and userspace to work properly.

7 Evaluation

We evaluate Theseus to show that it achieves easy and arbi-
trary live evolution and increases system availability through
fault recovery. We assess the impact of intralingual, state spill-
free designs on memory and task management performance
and compare Theseus’s base performance with that of Linux
through a series of benchmarks. All experiments were con-
ducted on an Intel NUC 6i17KYK [2] with 4 (8§ SMT) 2.6 GHz
cores and 32 GB memory, unless otherwise stated.

7.1 Live Evolution

Theseus’s evolutionary mechanisms are implemented in-band,
that is, within the OS core and using its own features, which
differs from existing works that implement live update func-
tionality out-of-band or on a mature OS. As such, it is difficult
to conduct a statistical analysis showing which historical com-
mits can be supported by Theseus’s live evolution. Instead, we
use case studies (as in Baumann et al. [9]) to demonstrate that
Theseus is able to evolve core system components in unique
manners beyond prior live update works. Figure 2 shows the
time scale of evolutionary stages for three case studies: (a)
ITC channels, (b) scheduler and runqueue infrastructure, and
(c) an Ethernet driver and network update client.

Inter-Task Communication (ITC) Channels: We show how
Theseus can evolve its ITC channel layer (the equivalent of
IPC) from an existing synchronous, unbuffered rendezvous
channel into a new asynchronous buffered channel. We chose
this because the histories of MINIX 3, selL.4, and QNX Neu-
trino reveal significant, necessary evolution in their micro-
kernel cores, most notably the addition of or change from
synchronous to asynchronous IPC [4,22]; all require a stan-
dard reboot to apply the change. Here, Theseus advances the
state of the art by live evolving (i) a fundamental OS primitive
that must be implemented within a microkernel, (i) a kernel
API that necessitates joint evolution of dependent userspace
and kernel entities, and (iii) a widely-used component whilst
preserving the execution context of those that depend on it.
During this experiment, we spawn multiple applications
that exchange messages with each other over multiple syn-
chronous channels, in addition to system tasks (e.g., input
event manager) that already use said channel. We then issue
a live evolution command at a random point while messages
are in flight. Because Theseus can evolve cells independently

from execution contexts, it can swap the channel implementa-
tion out from underneath a running application without having
to kill it. As shown in Figure 2(a), this improves availability by
reducing median downtime to 385 us because it preserves the
application’s runtime progress, avoiding the domino effect of
needing to restart multiple other dependent tasks transitively.

Scheduling and Runqueue Subsystems: In this experiment
of Figure 2(b), we replace the existing round-robin scheduler
with a new priority scheduler and the existing dequeue-based
runqueue with a priority queue. All the while, Theseus runs
multiple tasks of varying priorities that print messages, il-
lustrating the visible difference in task execution order and
frequency before and after evolution. This showcases The-
seus’s ability to evolve at runtime the modularity of the OS
itself (by changing multiple cell bounds) and core cells used
incessantly by many others.

At first glance, this appears trivial because existing OSes
can already switch between multiple schedulers at runtime.
The key distinction is that Theseus booted as an OS that did
not originally contain a priori knowledge of or in-band sup-
port for multiple schedulers, whereas existing OSes require a
scheduler infrastructure with a pre-defined common interface
to accommodate multiple scheduler policies. This illustrates
a significant benefit: subsystems in Theseus need not incor-
porate a special design or interface to support multiple ver-
sions of a given component, e.g., functions like schedule()
or task_switch() can be unaware of multiple schedulers.
Instead, Theseus components can rely upon an arbitrary, out-
of-band cell swapping mechanism to evolve or flexibly switch
between multiple alternatives, resulting in a simpler design.

Ethernet Driver and Network Update Client: In this experi-
ment of Figure 2(c), we evolve Theseus to fix unreliable net-
work downloads, comprising two cells that must be evolved
simultaneously: (7) the core Ethernet driver underneath the
network stack, and (ii) Theseus’s evolution client application
that sits atop the network stack to communicate with the build
update server. This demonstrates Theseus’s capacity for co-
ordinated, multi-part evolution (as does the above scheduler
case) versus small-scope live updates that only patch one
driver function. The new Ethernet driver fixes an insidious
bug that caused inconsistent connectivity due to incorrectly
setting head and tail registers for the ring buffer of received
packets; the new evolution client fixes its HTTP layer usage
to properly recover from unexpected remote socket disconnec-
tions. We achieve this without losing any NIC configuration
settings or packet data progress, tested by downloading files
during the evolution and verifying them with checksums.

This case shows that Theseus can provide availability with-
out redundancy, e.g., for solitary embedded systems in the
field, and better availability atop hardware redundancy, e.g.,
for datacenter network switches that must be brought down
during driver updates. Moreover, it shows that Theseus can
perform “meta-evolution,” i.e., loading a new evolution client

10 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Load new cells (i) o 19.5 ms o 21.3 ms
Verify dependencies (ii)
Rewrite relocations (iii)
State transfer (iii)
Update dependencies (iii)
Cell/symbol cleanup (iv)
0o - 18 19 20 ms 0 21 22 ms 0 - 64 65 66 67 ms
(a) Inter-Task Communication (b) Scheduler (¢) Network

Figure 2: The time taken for each step in Theseus’s live evolution procedure, with cell swapping stages marked (i-iv) (§6.1). The first two steps
are performed in isolation and do not affect the running system. Only the middle two steps (shaded) are critical and may impact execution by
requiring atomicity, i.e., a system pause, but this can be avoided when the evolved components robustly handle state unavailability errors, as in
the scheduler (b) case. The last two steps must lock the cell metadata to prevent overlapping evolution, but do not affect execution.

using that client’s own evolutionary features. This procedure
is facilitated by state spill freedom that results in network
states being owned by the application task, except for mini-
mal states necessary to handle asynchronous receive buffers.

7.2 Fault Recovery

We demonstrate Theseus’s ability to tolerate faults within
low-level core components, e.g., those that necessarily exist
inside a microkernel. We focus on stress-testing whether The-
seus can recover from unexpected hardware-induced faults
beneath the language, as Theseus can recover from language-
level faults easily because the compiler understands and can
account for them, guaranteeing that unwinding will work.
Our fault injection method is to run Theseus atop the
QEMU emulator [11] to enable us to automate arbitrary
changes to hardware state, including randomly flipping one
bit or overwriting full quadwords in memory, and randomly in-
crementing the instruction pointer register to skip instructions.
We inject faults while running a workload of graphical render-
ing, task spawning, in-memory FS access, and ITC channel
usage, and monitor the workload/OS behavior to determine if
and how the fault manifests. This follows common practices
in the literature [21, 30, 65]. As found in other fault injec-
tion works [30], very few randomly injected faults (< 0.5%)
manifest into observable failures; thus, we augment our fault
injector to target specific regions in memory where faults are
likely to manifest, namely a given task’s working set of stack,
heap, and cell memory (text, data, and rodata sections).

Theseus Recovers from Microkernel-level Faults: Literature
on fault-tolerant microkernels, e.g., MINIX 3 [31] and Cu-
riOS [21], only evaluate recovery from faults injected into
userspace system servers, not the microkernel itself. To show
that Theseus supports recovery from faults in such low-level
components, we inject faults into both MINIX 3’s IPC layer
and Theseus’s ITC channels and evaluate their ability to re-
cover. To ensure a fair comparison, we manually inspect all
layers of MINIX 3’s IPC implementation and Theseus’s ITC
channel implementation to discover 13 faults [45] that cause
deterministic failures in both systems.

Out of the 13, Theseus recovers correctly in all but two
cases, in which the receiver and sender tasks hang but do not
crash; this can be solved via timeouts or resetting the channel.

MINIX 3 fails to recover correctly in all 13; its kernel crashes
in 11 cases and loses a message in the other two. For example,
corrupting the pointer to a passed message that is accessed in
the IPC receive routine manifests as an invalid page fault in
both Theseus and MINIX 3; MINIX 3’s kernel crashes and
reboots whereas Theseus unwinds and properly restarts the
ITC receiver task, allowing the sender to progress.

General Fault Recovery: To comprehensively assess The-
seus’s fault recovery, we injected 800,000 faults into subsys-
tems actively used by the above workloads, of which 0.083%
manifested as observable failures. Table | shows that Theseus
successfully recovered from 69% of total manifested faults.
Restarting the failed task sufficed in 11% of cases, indicating
corrupted stack or heap values; in the remaining 89%, Theseus
needed to reload one or more cells, indicating corruption of
text or data sections. The observable downtime of Theseus’s
fault recovery mechanisms is evaluated elsewhere [15].

Theseus failed to recover from 31% of manifested faults,
primarily due to the lack of asynchronous unwinding in
Rust/LLVM. The compiler generates synchronous unwinding
tables that only cover instructions where language-level excep-
tions (Rust panics) may occur. As hardware faults can occur
at any instruction, Theseus’s unwinder may only find an inex-
act match for a faulted instruction pointer in the unwinding
table, with a cleanup routine that may not completely release
all resources acquired at the point of failure. Note that only
local variables in the excepted stack frame may be missed, all
other stack frames are properly handled. Though the known
solution of asynchronous unwinding is unsupported, we are
exploring OS and compiler solutions to augment coverage of
unwinding information, beyond the scope of this work.

In another 30 cases, the fault caused the system or workload
task to hang, recoverable via complementary hardware mecha-
nisms like watchdog timers. In the remaining 18 and 62 cases
respectively, Theseus failed to reload a new cell to replace the
corrupted cell or suffered a fault in the unwinder’s code path
itself, for which recovery failures are expected. Collectively,
these represent the limitations of Theseus’s fault recovery.

7.3 Cost of Intralinguality & State Spill Freedom

Though performance is not a primary goal of Theseus, its
intralingual and spill-free designs naturally raise performance

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 11

Successful Recovery 461
Restart task 50
Reload cell 411

Failed Recovery 204
Incomplete unwinding 94
Hung task 30
Failed cell replacement 18
Unwinder failure 62

Total manifested faults 665

Table 1: Theseus recovers from 69% of manifested faults in our
fault injection trials that emulate hardware failures.

questions. In general, we observe and expect a trend in which
many spill-free designs incur mild overhead, such as task
and heap management, while some perform better, such as
MappedPages. We compare multiple versions of Theseus
with controlled differences to tease out the performance im-
pact of these specific design choices. We also compare against
Linux by porting LMBench microbenchmarks to Rust and
running them on both Linux and Theseus; as Theseus is exper-
imental and lacks POSIX support, results should be regarded
as informative rather than conclusive. Overall, we do not
observe any glaring performance penalties herein.

MappedPages: Better Performance and Scalability: Figure 3
compares our MappedPages design with a conventional spill-
ful memory mapping implementation that encapsulates a red-
black tree of VMAs, carefully modeled after and optimized
to match Linux’s behavior. MappedPages performs slightly
better because (i) clients directly own MappedPages objects,
a form of distributed bookkeeping that obviates the need to
search the VMA tree for the memory region that contains a
given virtual address, and (ii) memory safety invariants are
upheld at compile-time. Overall, this difference is unlikely to
significantly impact real system workloads.

Avoiding Task State Spill has Negligible Overhead: As de-
scribed in §5.3, Theseus eliminates runqueue and scheduler
states spilled into the task struct, subverting the conventional
all-inclusive task struct. This imposes the overhead of iter-
ating through and removing a dead task from al/ runqueues
rather than just the runqueue(s) it is known to be on. We
evaluate the worst case in which a task is known to be on
only one runqueue; the more runqueues a task is on, the less
relative overhead Theseus has. We run Theseus on a 36-core
(72 SMT) Supermicro 119u-7 server with one runqueue per
hardware thread, to accurately reflect caching effects when
searching through runqueues on other cores. The experiment
of Figure 4(a) repeatedly removes a non-running task from its
runqueue; while this is a contrived scenario impossible in any
OS workload, it does show that overhead increases with the
number of runqueues. The experiment of Figure 4(b) spawns
and runs a dummy task that immediately exits, measuring the
worst possible realistic overhead. Here, the impact is negligi-
ble because the prerequisite of spawning a task dominates the
overhead of removing it from every runqueue.

Heap Designs threadtest shbench
unsafe 20.27 £0.009s | 3.99 +0.001 s
partially-safe 20.52 £ 0.010s | 4.54 £0.002 s
safe 24.82 £ 0.006s | 4.89 +0.002 s

Table 2: Heap microbenchmark results for various design points.
Threadtest [12] allocates and deallocates 100 million 8-byte objects;
shbench [34] does so for 20 million objects of size 1 to 1000 bytes.

Intralingual Heap Bookkeeping causes Overhead: Table 2
shows that an intralingual, safe heap implementation can im-
pose up to 22.5% overhead in bookkeeping costs over an
unsafe version. Each heap design variant is based on The-
seus’s slab [14] allocator that tracks available memory as
lists of MappedPages, one per slab, which serves allocation re-
quests of a specific size. Multiple heap instances exist within
a single alloc/dealloc interface, matching Rust’s language
model (§4.1). The unsafe heap design maintains raw pointers
to allocation metadata and neither owns its backing Mapped -
Pages nor knows of their lifetimes. The partially-safe heap
owns its backing MappedPages but embeds raw pointers to
them within the allocation metadata, discarding lifetime in-
formation. The safe heap maintains a collections type (e.g.,
red-black tree) that maps a virtual address to its allocation
metadata and its backing MappedPages, allowing the compiler
to observe and check that the association between an alloca-
tion and its backing MappedPages is never lost. This is crucial
for Theseus to safely exchange memory between multiple
per-core heaps, but causes overhead during deallocation when
looking up the allocation metadata for a given address.

Microbenchmark Comparisons with Linux: We reimplement
select LMBench benchmarks [47] in safe Rust on both Linux
and Theseus, omitting those irrelevant to core OS components
or with no equivalent in Theseus (e.g., RNG latency, futexes),
and those that test subsystems still rudimentary in Theseus
(e.g., networking, filesystems). Table 3 shows the results of
each benchmark as the mean value across 100,000 iterations;
full details are available elsewhere [15]. We do not claim that
Theseus generally outperforms existing OSes like Linux, as
larger-scale workloads may reveal different trends, but our
results do not indicate significant performance drawbacks.
The differences shown stem from eliminating the overhead of
switching between hardware protection modes and address
spaces; these are known benefits of SAS/SPL OSes [33].

In addition, we compare against microkernel IPC fastpaths
by implementing an ITC fastpath within Theseus that by-
passes the disconnection semantics of Theseus’s channels.
We realize this fastpath in fully safe code via shared refer-
ences to an atomic type that holds a small message, achieving
a 1-byte RTT of 687 cycles compared to seL.4’s [41] one-
way IPC fastpath latency of 401 cycles on the same hardware
(without Meltdown mitigations). For reference, Theseus’s
asynchronous channel has an RTT of 1664 cycles, close to
Singularity’s reported 1415-cycle channel RTT [5].

12 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

[with state spill (VMAs) E=3 state spill free (MappedPages)

2500

2000 r r a M

1500 r r

Time (ns)

1000 r r

~1abih) (LELL|

0
total mappings: ‘)09 05 \707 o5 309 \70& \’07 o5
(a) Map (b) Remap

Yoo Y05 Yoy Yos
(¢) Unmap

Figure 3: The time to map, remap, and unmap a 4 KiB page is con-
stant for Theseus’s spill-free MappedPages approach, slightly better
than a traditional spillful approach based on a red-black VMA tree.

1 with state spill =73 state spill free

5 70
A 60 - |
50
40 -
P 30
20 |

1,
i} ~Ll
o Lo oL
4

cores: 4 8 16 32 64 72 cores:

Time (us)
Time (us)

8 16 32 64 72

(a) Remove task from runqueue (b) Spawn empty task
Figure 4: (a) The time to remove a task from the runqueue(s) in-
creases when eliminating runqueue states from the task struct, but is
minor in the worst realistic case of (b) spawning an empty task.

LMBench Ported behavior on Theseus; (Linux behavior, if different) Linux (Rust) Theseus These.u s
Benchmark (static)
null syscall call curr_task() function; (invoke getpid() syscall in vDSO) 0.28 £+ 0.01 0.02 £+ 0.00 0.02 £+ 0.00
context switch | switch between two threads that continuously yield 0.61 £ 0.06 0.35 £ 0.00 0.34 £ 0.00
create process | spawn ‘“Hello, World!” application; (fork + exec) 567.78 £40.4 | 242.11 £ 0.88 | 244.35 £ 0.06
memory map map, write, then unmap 4KiB page; (use MAP_POPULATE flag) 2.04 £0.15 1.02 +0.00 0.99 £+ 0.00
IPC 1-byte RTT over async ITC; (non-blocking pipe between threads) 3.65 +0.35 1.06 + 0.00 1.03 + 0.00

Table 3: Microbenchmark results in microseconds, smaller is better. Linux (Rust) is LMBench benchmarks reimplemented in safe Rust on
Linux, Theseus is those benchmarks on Theseus, and Theseus (static) is those benchmarks on a statically-linked build of Theseus. Standard
deviations of zero indicate values smaller than the timer period of 42 ns, and cannot be accurately measured.

Finally, the rightmost column of Table 3 shows that the
overhead of runtime-linked code due to dynamic cell loading
in Theseus is generally negligible. For this, we run the same
set of benchmarks atop a build of Theseus in which all kernel
cells are statically linked into a monolithic kernel binary.

8 Limitations and Discussion

Unsafe Code is an Unfortunate Necessity in a low-level kernel
environment, needed to interface with hardware because the
compiler understandably lacks a model of hardware seman-
tics. Not all unsafe code is equal; we distinguish between
two types of unsafe code: innocuous and infectious, in which
infectious code may violate isolation but innocuous cannot.
Unsafe code is infectious if it can circumvent the type system
to access data inside another component, thereby “infecting”
it, e.g., by dereferencing arbitrary pointers, but is innocuous
if it merely accesses data reachable from safe code, e.g., writ-
ing the address of a variable to an I/O port. Innocuous code
can still cause incorrect behavior. As part of ongoing work,
we develop a compiler plugin to automate checks for the
reachability and type safety of addresses accessed in unsafe
blocks; this currently supports language-level unsafe blocks,
e.g., within MappedPages, but requires manual whitelisting
of inline assembly, e.g., context switch routines.

Reliance on Safe Language: Theseus must trust the Rust
compiler and its core/alloc libraries to uphold safety with-
out soundness holes. Fortunately, the risk of trusting Rust is

continually decreasing as multiple ongoing works strive to
improve and verify the Rust compiler and its base libraries by
checking unsafe usage [36,37,53]. To enjoy Theseus’s bene-
fits, components must be implemented in safe Rust. Legacy
code in other safe or managed languages could be supported
by implementing their VMs/runtimes in Rust, but unsafe lan-
guages require hardware protection or dynamic interposition
on memory accesses (a la SFI [60]) if isolation was desired.

Spillful Abstractions: There is tension between achiev-
ing spill freedom and supporting existing abstractions that
need or benefit from state spill. One example is each task’s
runnability state that represents whether it is blocked. Choos-
ing a fully spill-free implementation would remove that state
altogether, resulting in wasted CPU cycles as tasks would
have no alternative but to endlessly spin while waiting on
unavailable resources (e.g., acquired locks). As this impacts
performance and convenience, we resolve the tension by seek-
ing the middle ground: a minimal boolean state is spilled into
each task that represents its runnability. This avoids the high
cost of fruitlessly spinning but stops short of a traditional,
fully-spillful design that spills information into the task struct
about who blocked it and why (the conditions). In Theseus,
the state of that blocked condition exists in and is owned by
each entity that blocked that task, as per intralingual design.

Similar tensions exist in other subsystems, such as filesys-
tems (FS) and memory. A fully spill-free FS would break
existing POSIX interfaces by granting sole ownership of a file

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 13

to the client currently accessing it, meaning that the file would
appear to be absent until the client releases it. We have not
yet deeply explored custom filesystems, so Theseus’s current
tradeoft is to support legacy FS standards at the cost of accept-
ing state spill in the FS cells. For memory mapping, Theseus
fully embraces the spill-free design choice, MappedPages.

Limitations of Intralinguality go beyond the overhead im-
posed by select designs (§7.3) or runtime bounds checks [20].
First, integrating existing unsafe components or libraries into
the system can break the chain of compiler knowledge, i.e.,
intermixed extralinguality limits the benefits of other intralin-
gual components. Second, not all knowledge is available stat-
ically; runtime checks may be necessary for nondeterministic
input, such as user-specified memory mapping flags. Third,
additional design effort is needed to express invariants using
the type system versus using simple runtime checks, though
this quickly becomes advantageous in OS contexts with com-
plex runtime conditions that are tricky to get right.

9 Related Work

Theseus draws inspiration from much prior work. Related
to its use of safe language, i.e., Rust, numerous prior works
use safe languages in OSes: Modula-3 in SPIN [13], Java
in JX [29], C# in Singularity [33], Rust in Tock [44] and
Redox [3], and Go in Biscuit [20]. Many recent works have
specifically leveraged Rust’s safety to realize efficient isola-
tion [42,49,51,66]. Theseus’s intralingual design approach
(§4.2) goes beyond using a safe language, empowering the
compiler to subsume resource-specific invariants into existing
ones and thus check safety and correctness to a greater extent.

Theseus’s use of a single address space and single privilege
level was inspired by SPIN [13] and Singularity [33], but for
a different purpose than performance: matching the OS’s
runtime model to that of the language (§4.1).

Our work is motivated by recently diagnosed problems in
systems software due to state spill [16] and the ensuing ar-
gument for a spill-free OS [17]. Other works have implicitly
targeted symptoms of state spill, e.g., CuriOS [21] shows that
holding client-relevant states in server processes complicates
fault recovery. CuriOS moves said states into each client’s
address space, temporarily mapping them into a given server’s
address space during an interaction; this offers effective isola-
tion but incurs overhead, and only works for userspace servers
in a microkernel OS. Theseus isolates client and server states
within the same SAS and SPL using type and memory safety.

Theseus employs dynamic loading for runtime-persistent
bounds of its cells. Dynamic loading is common in OSes
to support kernel extensibility [13, 50, 56, 64], but only to
load new modules, such as drivers and extensions, alongside
(not in place of) a large, monolithic kernel without clear run-
time bounds. Jacobsen et al. embed a microkernel within
the Linux kernel as an indirection layer to decompose Linux
into lightweight capability domains [35]; this helps to isolate

kernel subsystems but not to evolve or recover them.

Microkernel OSes [21,31,41] have persistent bounds for
OS services that run in hardware-isolated userspace processes.
Genode [23] is a similarly-modularized OS framework that
creates a hierarchical tree of processes for strong access con-
trol. These OS structures make it easier to recover from ser-
vice failures or update an OS service by restarting its process,
but modularizing along coarse-grained process bounds limits
their ability to evolve and recover from faults in core microker-
nel components. Also, Theseus’s finer-grained components
make hardware-enforced process bounds uneconomical.

Live update of systems software has been extensively stud-
ied. Many works retrofit live update into legacy OSes like
Linux [6, 18,39,46, 54,58, 63]. Existing solutions need deep
kernel expertise or tedious manual effort to generate or ap-
ply an update [18, 46, 54]; some impose overhead due to
intermediary layers of indirection [18,32,57] or full-system
checkpointing [39]; others are unable change kernel APIs,
internal data structures, or non-function entities [6, 54, 58].
Overall, these works target small, localized security patches.
In contrast, Theseus can apply sweeping evolutionary changes
to core kernel components, their modularity, and kernel APIs
by virtue of its new OS structure and spill-free design.

K42 [9, 10, 32, 57] is an object-oriented OS that deeply
explores live update via hot-swapping of objects, similar to
Theseus’s cell swapping. Unlike Theseus, K42 requires a
uniform indirection layer atop all objects and can swap only
objects, not low-level code beneath the OOP language layer,
e.g., exception handling or hardware interaction. Similarly,
microkernel solutions like PROTEOS [28], based on MINIX 3,
can accommodate complex system updates for userspace
server processes. Theseus builds upon PROTEOS’s novel
techniques for state transfer, but can evolve finer-grained
components, including those within a microkernel.

Fault-tolerant OS literature spans a wide variety of ap-
proaches, including using software domains to isolate and
recover from failures in drivers and select OS subsystems [43,
59, 60], hardware isolation between OS service processes in
microkernels [21,31], and checkpoint/restore of drivers [38]
or OS services [30] for faster, stateful recovery. Theseus uses
intralingual mechanisms like unwinding and restartable tasks
to ensure that language-level safety assumptions and compiler-
provided isolation are not violated by recovery actions. The-
seus also distinguishes between recovering a component (cell)
and an execution context (task), can recover and replace finer-
grained components than processes, and leverages novel state
management techniques to simplify recovery logic.

Acknowledgments

This work is supported in part by NSF Awards #1422312,
#2016422, and their REU supplements. We are grateful to the
anonymous reviewers and our shepherd Malte Schwarzkopf,
whose input strengthened our final paper.

14 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

The DWARF debugging standard. http://dwarfstd.org/.
Accessed: 2020-05-08.

Intel NUC Kit NUC6i7KYK technical specifica-
tions. https://www.intel.com/content/www/us/en/
products/boards-kits/nuc/kits/nuc6i7kyk.html. Ac-
cessed: 2020-04-26.

Redox - your next(gen) os. https://www.redox-os.org/.
Accessed: 2017-08-11.

The QNX Neutrino Microkernel — QNX Neutrino
IPC. http://www.qnx.com/developers/docs/6.3.2/
neutrino/sys_arch/kernel.htmI#NTOIPC. Accessed:
2020-05-22.

Mark Aiken, Manuel Fihndrich, Chris Hawblitzel,
Galen Hunt, and James Larus. Deconstructing process
isolation. In Proc. ACM Workshop on Memory System
Performance and Correctness, 20006.

Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic
rebootless kernel updates. In Proc. ACM EuroSys, 2009.

Andrew Baumann, Jonathan Appavoo, Orran Krieger,
and Timothy Roscoe. A fork() in the road. In Proc.
HotOS, 2019.

Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schiipbach, and Akhilesh Singhania.
The Multikernel: A new OS architecture for scalable
multicore systems. In Proc. ACM SOSP, 2009.

Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, Robert W Wisniewski,
and Jeremy Kerr. Providing dynamic update in an oper-
ating system. In Proc. USENIX ATC, 2005.

Andrew Baumann, Jeremy Kerr, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, and Robert W Wis-
niewski. Module hot-swapping for dynamic update and
reconfiguration in K42. In 6th Linux. Conf. Au, 2005.

Fabrice Bellard. QEMU: a fast and portable dynamic
translator. In Proc. USENIX ATC, 2005.

Emery D Berger, Kathryn S McKinley, Robert D Blu-
mofe, and Paul R Wilson. Hoard: A scalable memory
allocator for multithreaded applications. In Proc. ACM
ASPLOS, 2000.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility, safety and performance in the SPIN operating
system. In Proc. ACM SOSP, 1995.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Jeff Bonwick. The slab allocator: An object-caching
kernel memory allocator. In Proc. USENIX Summer
Technical Conf., 1994.

Kevin Boos. Theseus: Rethinking Operating Systems
Structure and State Management. PhD thesis, Rice Uni-
versity, 2020.

Kevin Boos, Emilio Del Vecchio, and Lin Zhong. A
characterization of state spill in modern operating sys-
tems. In Proc. ACM EuroSys, 2017.

Kevin Boos and Lin Zhong. Theseus: a state spill-free
operating system. In Proc. ACM PLOS, 2017.

Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,
and Pen-Chung Yew. Live updating operating systems
using virtualization. In Proc. ACM VEE, 2006.

David Clark. The design philosophy of the DARPA
internet protocols. In Proc. ACM SIGCOMM, 1988.

Cody Cutler, M. Frans Kaashoek, and Robert T. Morris.
The benefits and costs of writing a POSIX kernel in a
high-level language. In Proc. USENIX OSDI, 2018.

Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle,
and Roy H. Campbell. CuriOS: Improving reliability
through operating system structure. In Proc. USENIX
0OSDI, 2008.

Kevin Elphinstone and Gernot Heiser. From L3 to seL4:
What have we learnt in 20 years of L4 microkernels? In
Proc. ACM SOSP, 2013.

Norman Feske. Genode operating system frame-
work. https://genode.org/documentation/genode-
foundations-19-05.pdf, 2015. Accessed: 2017-08-19.

Roy Fielding. Representational state transfer. Architec-
tural Styles and the Design of Network-based Software
Architecture, 2000.

Glenn Fleishman. In space, no one can hear you ker-
nel panic. https://increment.com/software-architecture/
in-space-no-one-can-hear-you-kernel-panic/, February
2020.

U.S. Food and Drug Administration. Firmware
update to address cybersecurity vulnerabilities iden-
tified in Abbott’s (formerly St. Jude Medical’s)
implantable cardiac pacemakers: FDA safety com-
munication. https://www.fda.gov/medical-devices/
safety-communications/firmware-update-address-
cybersecurity-vulnerabilities-identified-abbotts-
formerly-st-jude-medicals. Published: 2017-08-29.

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 15

http://dwarfstd.org/
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc6i7kyk.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc6i7kyk.html
https://www.redox-os.org/
http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/kernel.html#NTOIPC
http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/kernel.html#NTOIPC
https://genode.org/documentation/genode-foundations-19-05.pdf
https://genode.org/documentation/genode-foundations-19-05.pdf
https://increment.com/software-architecture/in-space-no-one-can-hear-you-kernel-panic/
https://increment.com/software-architecture/in-space-no-one-can-hear-you-kernel-panic/
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: mea-
surement, analysis, and implications. In Proc. ACM
SIGCOMM, 2011.

Cristiano Giuffrida, Anton Kuijsten, and Andrew S.
Tanenbaum. Safe and automatic live update for op-
erating systems. In Proc. ACM ASPLOS, 2013.

Michael Golm, Meik Felser, Christian Wawersich, and
Jiirgen Kleindder. The JX operating system. In Proc.
USENIX ATC, 2002.

Jorrit Herder. Building a dependable operating system:
fault tolerance in MINIX 3. PhD thesis, Vrije Univer-
siteit Amsterdam, 2010.

Jorrit N Herder, Herbert Bos, Ben Gras, Philip Hom-
burg, and Andrew S Tanenbaum. MINIX 3: A highly
reliable, self-repairing operating system. ACM SIGOPS
Operating Systems Review, 40(3):80-89, 2006.

K. Hui, J. Appavoo, R. Wisniewski, M. Auslander,
D. Edelsohn, B. Gamsa, O. Krieger, B. Rosenburg, and
M. Stumm. Supporting hot-swappable components for
system software. In Proc. HotOS, 2001.

Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the software stack. ACM SIGOPS Operating
Systems Review, 2007.

MicroQuill Inc. Microquill smartheap 4.0 benchmark.
http://microquill.com/.

Charles Jacobsen, Muktesh Khole, Sarah Spall, Scotty
Bauer, and Anton Burtsev. Lightweight capability do-
mains: Towards decomposing the Linux kernel. SIGOPS
Oper. Syst. Rev., 2016.

Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek
Dreyer. Stacked borrows: An aliasing model for Rust.
In Proc. ACM POPL, 2020.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. RustBelt: Securing the foundations of
the Rust programming language. In Proc. ACM POPL,
2017.

Asim Kadav, Matthew J. Renzelmann, and Michael M.
Swift. Fine-grained fault tolerance using device check-
points. In Proc. ACM ASPLOS, 2013.

Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee,
Taesoo Kim, and Pavel Emelyanov. Instant OS updates
via userspace checkpoint-and-restart. In Proc. USENIX
ATC, 2016.

[40]

[41]

(42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

[51]

[52]

Steve Klabnik and Carol Nichols. The Rust program-
ming language. https://doc.rust-lang.org/book/. Ac-
cessed: 2020-05-22.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
selL.4: Formal verification of an OS kernel. In Proc.
ACM SOSP, 2009.

Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: bare-
metal extensions for multi-tenant low-latency storage.
In Proc. USENIX OSDI, 2018.

Andrew Lenharth, Vikram S Adve, and Samuel T King.
Recovery domains: an organizing principle for recover-
able operating systems. In Proc. ACM ASPLOS, 20009.

Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64KB computer safely and
efficiently. In Proc. ACM SOSP, 2017.

Namitha Liyanage. Fault recovery in the Theseus oper-
ating system. Master’s thesis, Rice University, 2020.

Kristis Makris and Kyung Dong Ryu. Dynamic and
adaptive updates of non-quiescent subsystems in com-
modity operating system kernels. In Proc. ACM Eu-
roSys, 2003.

Larry W McVoy, Carl Staelin, et al. LMbench: Portable
tools for performance analysis. In Proc. USENIX ATC,
1996.

Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A large scale study of data center network
reliability. In Proc. ACM IMC, 2018.

Samantha Miller, Kaiyuan Zhang, Danyang Zhuo,
Shibin Xu, Arvind Krishnamurthy, and Thomas Ander-
son. Practical safe Linux kernel extensibility. In Proc.
HorOS, 2019.

George C Necula and Peter Lee. Safe kernel extensions
without run-time checking. In Proc. USENIX OSDI,
1996.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the V out of NFV. In Proc. USENIX OSDI, 2016.

David Lorge Parnas. On the criteria to be used in de-
composing systems into modules. Communications of
the ACM, 15(12):1053-1058, 1972.

16

14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

http://microquill.com/
https://doc.rust-lang.org/book/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and
Yiying Zhang. Understanding memory and thread safety
practices and issues in real-world Rust programs. In
Proc. ACM PLDI, 2020.

RedHat. Introducing kpatch: Dynamic kernel patch-
ing. https://www.redhat.com/en/blog/introducing-
kpatch-dynamic-kernel-patching, 2014.

Angela Schuett, Suchitra Raman, Yatin Chawathe,
Steven McCanne, and Randy Katz. A soft-state pro-
tocol for accessing multimedia archives. In Proc. ACM
NOSSDAV, 1998.

Margo 1. Seltzer, Yasuhiro Endo, Christopher Small,
and Keith A. Smith. Dealing with disaster: Surviving
misbehaved kernel extensions. In Proc. USENIX OSDI,
1996.

Craig A. N. Soules, Jonathan Appavoo, Kevin Hui,
Robert W Wisniewski, Dilma Da Silva, Gregory R
Ganger, Orran Krieger, Michael Stumm, Marc A Aus-
lander, Michal Ostrowski, Bryan Rosenburg, and Jimi
Xenidis. System support for online reconfiguration. In
Proc. USENIX ATC, 2003.

SUSE. SUSE releases kGraft for live patching of Linux
kernel. https://www.suse.com/c/news/suse-releases-
kgraft-for-live-patching-of-linux-kernel/, 2014.

Michael M. Swift, Muthukaruppan Annamalai, Brian N.
Bershad, and Henry M. Levy. Recovering device drivers.
In Proc. USENIX OSDI, 2004.

Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity operating
systems. In Proc. ACM SOSP, 2003.

Theseus Operating System. https://github.com/theseus-
os/Theseus, 2020.

Kim Tingley. The New York Times: The loyal
engineers steering NASA’s Voyager probes access
the universe. https://www.nytimes.com/2017/08/03/
magazine/the-loyal-engineers-steering-nasas-voyager-
probes-across-the-universe.html, 2017.

Steven J. Vaughan-Nichols. Kernelcare: New no-reboot
Linux patching system. https://www.zdnet.com/article/
kernelcare-new-no-reboot-linux-patching-system/,
2014.

Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isola-
tion. In Proc. ACM SOSP, 1993.

Long Wang, Zbigniew Kalbarczyk, Weining Gu, and
Ravishankar K Iyer. An OS-level framework for provid-
ing application-aware reliability. In Proc. IEEE PRDC,
2006.

[66] Minhong Yun and Lin Zhong. Ginseng: Keeping secrets

in registers when you distrust the operating system. In
Proc. NDSS, February 2019.

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 17

https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.suse.com/c/news/suse-releases-kgraft-for-live-patching-of-linux-kernel/
https://www.suse.com/c/news/suse-releases-kgraft-for-live-patching-of-linux-kernel/
https://github.com/theseus-os/Theseus
https://github.com/theseus-os/Theseus
https://www.nytimes.com/2017/08/03/magazine/the-loyal-engineers-steering-nasas-voyager-probes-across-the-universe.html
https://www.nytimes.com/2017/08/03/magazine/the-loyal-engineers-steering-nasas-voyager-probes-across-the-universe.html
https://www.nytimes.com/2017/08/03/magazine/the-loyal-engineers-steering-nasas-voyager-probes-across-the-universe.html
https://www.zdnet.com/article/kernelcare-new-no-reboot-linux-patching-system/
https://www.zdnet.com/article/kernelcare-new-no-reboot-linux-patching-system/

A Artifact Appendix
A.1 Abstract

The full source code and documentation for Theseus OS is
available online as a GitHub repository [61], where we invite
contributions from the public. All OS components, source
artifacts, and experiments described in the paper are present
in the repository, along with detailed instructions on how to
run or use them.

A.2 Artifact check-list
* Program: The Theseus Operating System
* Compilation: Rust, Make, no_std, freestanding, bare-metal
* Binary: OS .iso images
* Run-time environment: x86_64 bare-metal
¢ Hardware: Virtual or real x86_64 machine with BIOS
* Experiments: microbenchmarks, live evolution, fault recovery
* Required disk space: under 1GB
* Expected experiment run time: 10-12 hours

* Public link: https://github.com/theseus-os/Theseus/tree/
osdi20ae/osdi20ae

¢ Code licenses: MIT

A.3 Description

A.3.1 How to access

The Theseus repository is hosted on GitHub at https://github.com/
theseus-os/Theseus. The top level README contains detailed in-
structions on building and running Theseus. The branch osdi20ae
contains pre-built Theseus images with instructions that specify
how to easily reproduce each evaluation experiment, available at
https://github.com/theseus-os/Theseus/tree/osdi20ae. The source-
level documentation and high-level Theseus book are hosted online
at https://theseus-os.github.io/Theseus/, but is best viewed using the
commands make doc and make book, as specified in our README.

A.3.2 Hardware dependencies

We have tested Theseus on a variety of real machines, including Intel
NUC devices, various Thinkpad laptops, and Supermicro servers.
Currently, the only known limiting factor is support for booting via
USB or PXE using traditional BIOS rather than UEFI; support for
UEFI is a work in progress.

A.3.3 Software dependencies
‘We have tested building and then running Theseus in QEMU atop of
the following host OSes:
* Linux, 64-bit Debian-based distributions like Ubuntu, tested
on Ubuntu 16.04, 18.04, 20.04.
* Windows, using the Windows Subsystem for Linux (WSL),
tested on the Ubuntu version of WSL and WSL2.
* MacOS, tested on versions High Sierra (10.13) and Catalina
(10.15.2).

¢ Docker container environments.

The specific set of package dependencies are listed in the top-level
README. Additional packages needed for artifact evaluation only are
specified in the READMEs for each experiment.

A.4 Installation

Standard installation procedures are not required; steps to build and
run a functional Theseus OS image are listed in our README.

A.5 Experiment workflow

All experiments described in the paper are implemented directly
within the source code of Theseus and gated by compile-time config-
uration settings, so they are straightforward to inspect and run. The
experiments are divided into the following groups, each of which
has an accompanying script and set of instructions describing how to
run it within its respective artifact folder in the repository. To further
simplify reproduction of results, we provide pre-built OS images
that are properly configured for each experimental setup.

* Case studies of live evolution of core OS components
* General fault injection and recovery
* Comparison with IPC fault recovery in MINIX 3

* Overhead of state spill and intralingual designs

— The cost of MappedPages for memory mapping

— The cost of removing runqueue/scheduler state spill
from the task struct

— The cost of safety and intralinguality in heap allocation

* LMBench microbenchmarks ported to Theseus and Linux

The documentation as well as a pre-built image of Theseus for
each experiment can be found in the subfolder with the same name in
the osdi20ae folder: https://github.com/theseus-os/Theseus/tree/
osdi20ae/osdi20ae. Some experiments require Theseus to be built
with special flags or need to be passed certain parameters to match the
test cases in the paper. The requirements for running each benchmark
as it was run in the paper are given in the documentation.

A.6 Evaluation and expected result

Due to differences in hardware and execution environments, the
exact results presented in the paper may differ from those reproduced
on other machines. However, the relative performance trends and
conclusions drawn in our evaluation should hold.

A.6.1 Live evolution case studies

In these case studies, which correspond to §7.1 and Figure 2 in the
paper, we start with a standard build of Theseus and evolve it into a
different version with completely different functionality. This pro-
cess downloads a set of modified crates as specified by an evolution
manifest generated by our build tool, and then applies them to the
running system using the upd application. The experiments can ei-
ther be reproduced using a host machine that runs our build server
alongside a virtualized instance of Theseus within QEMU, or using
two separate physical machines with network access, one for the
build server and one for Theseus. We provide detailed instructions on
how to set up and reproduce each case study, as well as screenshots
that describe what new behavior is expected after the evolutionary
procedure has completed. We also explain how to obtain the raw
values and calculate the measurements in Figure 2; one expects a
general trend in which the first step of loading and linking crate
object files takes the longest, and the critical third and fourth steps
are very fast, within tens of us to a few hundred us.

18 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae
https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae
https://github.com/theseus-os/Theseus
https://github.com/theseus-os/Theseus
https://github.com/theseus-os/Theseus/tree/osdi20ae
https://theseus-os.github.io/Theseus/
https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae
https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae

A.6.2 Fault injection and recovery

In this experiment, Theseus runs atop the QEMU emulator, and we
attach GDB to the virtualized instance of Theseus and use a script
to inject faults into it by modifying the contents of memory and
other hardware components like the instruction pointer register. We
provide pre-built images of Theseus that run two of the sample work-
loads described in §7.2: accessing an in-memory filesystem and
using inter-task communication channels. Each image is accompa-
nied by a script that will inject faults into the system components
used by the workloads run in that image. At the end of the experi-
ment, each script should output the number of successful recoveries
and failed recoveries. We also provide a full CSV table listing every
fault injected and its outcome in our own trials.

A.6.3 TIPC fault comparison

In this experiment, we compare 13 deterministic faults injected
into Theseus’s ITC channels and MINIX 3’s IPC channels. A ta-
ble describing the nature of each fault and the expected response
observed in both Theseus and MINIX 3 is given in the README
in this experiment’s folder. As described in that README, modified
source code of MINIX 3 is available at https://github.com/theseus-
os/minix_osdi_ae, which contains a separate branch for each fault
and instructions on how to build and run both systems to reproduce
said fault recovery behavior.

A.6.4 Evaluation of MappedPages

This experiment measures the time to map, remap, and unmap a 4KiB
page in two configurations: using the state spill-free, intralingual
MappedPages implementation in Theseus, and using a traditional
spillful approach based on a red-black tree of VMAs (see Figure 3).
We provide a pre-built image for automated use with QEMU, with
an accompanying script that runs this benchmark multiple times,
parses the results, and calculates the statistics given in the paper.
One should expect to observe similar trends as Figure 3, in which the
MappedPages approach scales to many concurrent mappings better
than the VMA-based approach.

A.6.5 Evaluation of runqueue state spill in tasking

This experiment measures the overhead of eliminating state spill into
the tasking subsystem from the runqueue and scheduler subsystems,
i.e., the overhead measured in Figure 4. We provide two pre-built
images of Theseus (and instructions to re-create them manually),
one using our standard spill-free implementation of runqueue and
task states and one with a traditional spillful approach of a large
stateful task struct. One should expect to observe similar trends as
Figure 4(a), in that simply removing an exited task in the spill-free
version will scale roughly linearly with the number of total runqueues
in the system, whereas the spillful version should remain constant.
The more important trend to observe is that of Figure 4(b), in which
the overall effect of runqueue-task state spill is relatively minor
because the cost of spawning a task dominates that of searching
runqueues to remove an exited task.

A.6.6 Heap microbenchmarks

In this experiment, we run the threadtest and shbench microbench-
marks to measure the performance of three different versions of
heap allocators that vary in their levels of safety and intralinguality,
as given in Table 2 of the paper. We provide pre-built images for
each configuration and instructions on how to build them manually.
Overall, the expected trend is that the unsafe heap is the fastest, fol-
lowed by the partially-safe heap and then the safe heap; the absolute
runtimes may change but the relative overhead should remain similar
to the paper.

A.6.7 LMBench microbenchmarks

In this experiment, we port a core subset of LMBench benchmarks
to safe Rust code and compare their execution times across three en-
vironments: as Linux userspace applications, as applications atop the
standard dynamically-loaded version of Theseus, and as applications
atop a statically-linked version of Theseus, as shown in Table 3. We
provide pre-built images for both configurations of Theseus as well
as the ported LMBench source code, plus scripts and instructions for
building and running it. In these microbenchmarks, we expect The-
seus to be generally faster than Linux due to its SAS/SPL design that
avoids extra boundary crossings (address spaces and privilege levels)
imposed by traditional hardware-protected systems like Linux.

A.7 Experiment customization

The test executables and scripts for each experiment in Theseus can
be customized with command-line parameters, e.g., the number of
iterations, the size of trial operations, etc. Running each test com-
mand with a solitary - -help argument will output a help menu that
describes those parameters, along with in-source documentation at
the top of each test application.

A.8 AE Methodology

Submission, reviewing and badging methodology:

* https://www.usenix.org/conference/osdi20/call-for-artifacts

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 19

https://github.com/theseus-os/minix_osdi_ae
https://github.com/theseus-os/minix_osdi_ae
https://www.usenix.org/conference/osdi20/call-for-artifacts

	Introduction
	Rust Language Background
	Theseus Overview and Design Principles
	Structure of Runtime-Persistent Cells
	Bootstrapping Theseus with the nano_core

	Power to the Language
	Matching the Language's Runtime Model
	Intralingual OS Design
	Examples of Intralingual Subsystems
	Memory Management
	Task Management

	State Management in Theseus
	Opaque Exportation through Intralinguality
	Management of Special States in Theseus
	Intralinguality and Spill Freedom: Examples

	Realizing Evolvability and Availability
	Live Evolution via Cell Swapping
	Availability via Fault Recovery

	Evaluation
	Live Evolution
	Fault Recovery
	Cost of Intralinguality & State Spill Freedom

	Limitations and Discussion
	Related Work
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected result
	Live evolution case studies
	Fault injection and recovery
	IPC fault comparison
	Evaluation of MappedPages
	Evaluation of runqueue state spill in tasking
	Heap microbenchmarks
	LMBench microbenchmarks

	Experiment customization
	AE Methodology

