
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

PipeSwitch: Fast Pipelined Context Switching
for Deep Learning Applications

Zhihao Bai and Zhen Zhang, Johns Hopkins University; Yibo Zhu,
ByteDance Inc.; Xin Jin, Johns Hopkins University

https://www.usenix.org/conference/osdi20/presentation/bai

PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications

Zhihao Bai⋆ Zhen Zhang⋆ Yibo Zhu† Xin Jin⋆

⋆Johns Hopkins University †ByteDance Inc.

Abstract

Deep learning (DL) workloads include throughput-

intensive training tasks and latency-sensitive inference tasks.

The dominant practice today is to provision dedicated GPU

clusters for training and inference separately. Due to the need

to meet strict Service-Level Objectives (SLOs), GPU clus-

ters are often over-provisioned based on the peak load with

limited sharing between applications and task types.

We present PipeSwitch, a system that enables unused cycles

of an inference application to be filled by training or other

inference applications. It allows multiple DL applications

to time-share the same GPU with the entire GPU memory

and millisecond-scale switching overhead. With PipeSwitch,

GPU utilization can be significantly improved without sacri-

ficing SLOs. We achieve so by introducing pipelined context

switching. The key idea is to leverage the layered structure

of neural network models and their layer-by-layer computa-

tion pattern to pipeline model transmission over the PCIe and

task execution in the GPU with model-aware grouping. We

also design unified memory management and active-standby

worker switching mechanisms to accompany the pipelining

and ensure process-level isolation. We have built a PipeSwitch

prototype and integrated it with PyTorch. Experiments on a

variety of DL models and GPU cards show that PipeSwitch

only incurs a task startup overhead of 3.6–6.6 ms and a total

overhead of 5.4–34.6 ms (10–50× better than NVIDIA MPS),

and achieves near 100% GPU utilization.

1 Introduction

Deep learning (DL) powers an emerging family of intelligent

applications in many domains, from retail and transportation,

to finance and healthcare. GPUs are one of the most widely-

used classes of accelerators for DL. They provide better trade-

off between performance, cost and energy consumption than

CPUs for deep neural network (DNN) models.

DL workloads include throughput-intensive training tasks

and latency-sensitive inference tasks. The dominant practice

today is to provision dedicated GPU clusters for training and

inference separately. Inference tasks cannot be served with

training clusters under flash crowds, and training tasks cannot

utilize inference clusters when the inference load is low. Con-

sequently, inference clusters are often over-provisioned for

the peak load, in order to meet strict Service Level Objectives

(SLOs). Even for inference itself, production systems are typ-

ically provisioned to each application on per-GPU granularity

to limit the interference between applications.

Ideally, multiple DL applications should be able to be

packed to the same GPU server to maximize GPU utiliza-

tion via time-sharing. This is exactly how operating systems

achieve high CPU utilization via task scheduling and con-

text switching. The idea of fine-grained CPU time-sharing

has been further extended to cluster scheduling. For example,

Google Borg [1] packs online services and batch jobs, and

saves 20%-30% machines (compared with not packing them).

Why can’t we use GPUs in the same way?

The gap is that GPU has high overhead when switching

between tasks. Consequently, naively using GPUs in the same

way as CPUs will not satisfy the requirements of DL infer-

ence that have strict SLOs in the range of tens to hundreds of

milliseconds [2, 3]. If a GPU switches to a DNN model (e.g.,

ResNet) that has not been preloaded onto the GPU, it can take

multiple seconds before serving the first inference request,

even with state-of-the-art tricks like CUDA unified mem-

ory [4] (§6). In contrast, CPU applications can be switched in

milliseconds or even microseconds [5].

To avoid such switching overhead, the existing solution is

to spatially share the GPU memory. For example, although

NVIDIA Multiple Process Sharing (MPS) [6] and Salus [7]

allow multiple processes to use the same GPU, they require all

processes’ data (e.g., DNN models) to be preloaded into the

GPU memory. Unfortunately, the GPU memory is much more

limited than host memory and cannot preload many applica-

tions. Sometimes, just one single memory-intensive training

task may consume all the GPU memory. Moreover, the mem-

ory footprints of inference tasks are also increasing—the mod-

els are getting larger, and request batching is prevalently used

to increase throughput [3]. In addition, this approach does not

provide strong GPU memory isolation between applications.

As such, we argue that a context switching design that min-

imizes the switching overhead, especially quickly switching

the contents on GPU memory, is a better approach for effi-

ciently time-sharing GPUs. The DNN models can be held in

host memory, which is much larger and cheaper than GPU

memory, and the GPU can quickly context-switch between

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 499

the models either for training or inference. This way, the num-

ber of applications that can be multiplexed is not limited by

the GPU memory size, and each application is able to use the

entire GPU compute and memory resources during its time

slice. To our best knowledge, no existing solution offers such

context switching abstraction for GPU.

To this end, we propose PipeSwitch, a system that (i) en-

ables GPU-efficient multiplexing of many DL applications on

GPU servers via fine-grained time-sharing, and (ii) achieves

millisecond-scale latencies and high throughput as dedicated

servers. PipeSwitch enables unused cycles of an inference

application to be filled by training or other inference applica-

tions. We achieve so by introducing a new technology called

pipelined context switching that exploits the characteristics

of DL applications to achieve millisecond-scale overhead for

switching tasks on GPUs. Such small switching overhead is

critical for DL applications to satisfy strict SLO requirements.

To understand the problem, we first perform a measure-

ment study to profile the task switching overhead and analyze

the overhead of each component. We divide the switching

overhead into four components, which are old task cleaning,

new task initialization, GPU memory allocation, and model

transmission via PCIe from CPU to GPU. Every component

takes a considerable amount of time, varying from tens of mil-

liseconds to seconds. Such overhead is significant, because

an inference task itself only takes tens of milliseconds on a

GPU and the latency SLOs are typically a small multiple of

the inference time [3].

We take a holistic approach, and exploit the characteristics

of DL applications to minimize the overhead of all the com-

ponents. Our design is based on a key observation that DNN

models have a layered structure and a layer-by-layer compu-

tation pattern. As such, there is no need to wait for the entire

model to be transmitted to the GPU before starting computa-

tion. Based on this observation, we design a pipelined model

transmission mechanism, which pipelines model transmission

over the PCIe and model computation in the GPU. Naive

pipelining on per-layer granularity introduces high overhead

on tensor transmission and synchronization. We divide layers

into groups, and design an optimal model-aware grouping

algorithm to find the best grouping strategy for a given model.

The computation of a DL task is layer by layer, which has

a simple, regular pattern for memory allocation. The default

general-purpose GPU memory management (e.g., CUDA uni-

fied memory [4]) is an overkill and incurs unnecessary over-

head. We design unified memory management with a dedi-

cated memory daemon to minimize the overhead. The daemon

pre-allocates the GPU memory, and re-allocates it to each task,

without involving the expensive GPU memory manager. The

DNN models are stored only once in the memory daemon,

instead of in every worker, to minimize memory footprint.

We exploit that the memory allocation for a DNN model is

deterministic to eliminate extra memory copies between the

daemon and the workers and reduce the IPC overhead .

We use an active-standby mechanism for fast worker

switching and process-level isolation. Each server contains

an active worker and multiple standby workers. The active

worker executes the current task on the GPU; the standby

workers stay on the CPU and wait for the next task. Our

mechanism parallelizes old task cleaning in the active worker

and new task initialization in the standby worker to minimize

worker switching overhead. With separate worker processes,

PipeSwitch enforces process-level isolation.

Pipelining is a canonical technique widely used in com-

puter systems to improve system performance and maxi-

mize resource utilization. Prior work in DL systems such as

PipeDream [8] and ByteScheduler [9] has applied pipelining

to distributed training. These solutions focus on inter-batch

pipelining to overlap computation and gradient transmission

of different batches for training workloads of the same DNN

model. The key novelty of PipeSwitch is that it introduces

intra-batch pipelining to overlap model transmission and com-

putation to reduce the overhead of switching between different

DNN models, which can be either inference or training. Un-

like pipelining for the same task, PipeSwitch requires us to

address new technical challenges on memory management

and worker switching across different processes. We design

new techniques to not only support training, but also inference

that has strict SLOs.

In summary, we make the following contributions.

• We propose PipeSwitch, a system that enables GPU-

efficient fine-grained time-sharing for multiple DL appli-

cations, and achieves millisecond-scale context switching

latencies and high throughput.

• We introduce pipelined context switching, which exploits

the characteristics of DL applications, and leverages

pipelined model transmission, unified memory manage-

ment, and active-standby worker switching to minimize

switching overhead and enforce process-level isolation.

• We implement a system prototype and integrate it with Py-

Torch. Experiments on a variety of DL models and GPU

cards show that PipeSwitch only incurs a task startup over-

head of 3.6–6.6 ms and a total overhead of 5.4–34.6 ms

(10–50× better than NVIDIA MPS), and achieves near

100% GPU utilization.

2 Motivation

In this section, we identify the inefficiencies in today’s shared

GPU clusters, and motivate running DL workloads on GPUs

in the fine-grained time-sharing model.

2.1 GPU Clusters

Shared GPU clusters. To run DNN workloads in a large

scale, enterprises build GPU clusters that are either pri-

vately [10, 11] or publicly [12–14] shared by multiple users.

Such GPU clusters are usually specifically designed with ded-

icated physical forms and power supplies, along with high

speed networks and specialized task schedulers.

500 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Why build a shared cluster instead of a dedicated one for

each user? The main reason is to bring down the cost. The

demand of training is not well predictable—it would depend

on the progress of different developers. The demand of infer-

ence is more predictable, e.g., an inference task for a partic-

ular application usually has a daily periodical pattern based

on the application usage. Nevertheless, the patterns can still

vary across different tasks. Like traditional CPU workloads, a

shared cluster by different tasks would increase the resource

utilization via time-sharing.

No sharing between training and inference. However, such

“shared” clusters are not shared between training and infer-

ence. Even though training and inference both use GPUs, the

current practice is to build dedicated clusters for training and

inference separately. This brings several inefficiencies.

• Inference clusters are over-provisioned for the peak load,

because they directly serve user requests and need to meet

strict SLOs. Although inference clusters are not always run-

ning at high utilization, they cannot be utilized by training.

• Training clusters are equipped with powerful GPUs to run

training tasks, which are often elastic and do not have strict

deadlines. However, when there is a flash crowd (e.g., an ap-

plication suddenly becomes popular and the demand grows

beyond the operator’s expectation), the training cluster can-

not preempt the training tasks for inference tasks.

• Even for inference tasks, production systems often allocate

GPUs to applications on per-GPU granularity (e.g., binding

GPUs to the VMs, containers or processes of an applica-

tion), in order to limit the interference between different

applications and satisfy the SLO requirements.

One of the reasons for separately provisioning is that GPUs

designed for inference tasks might be too wimpy for training

tasks. This, however, has started to change with the arrival of

new GPU hardware, most notably NVIDIA T4. Compared

with NVIDIA V100 which has up to 32GB GPU memory and

15.7 TFLOPS (single-precision), NVIDIA T4 has compara-

ble performance with 16GB GPU memory and 8.1 TFLOPS

(single-precision). Also, new algorithms and systems for dis-

tributed training [8, 9, 15, 16] enable multiple GPUs to accel-

erate training, if one GPU is not fast enough.

Our industry collaborator, a leading online service provider,

confirms this observation. This service provider currently runs

more than 10K V100 GPUs for training, and at least 5× as

many T4 GPUs for inference. The computation power on both

sides is within the same order of magnitude. The inference

workload fluctuates in correlation with the number of active

users, and shows clear peaks and valleys within each day—

the peak demand during daytime is > 2× of the valley at

midnight. It would be a great match to utilize inference GPUs

during less busy times for training models that require daily

updates with latest data. A good example is to fine-tune BERT

using daily news. This means great opportunity in improving

GPU utilization by Borg-like [1] systems for GPUs.

2.2 Fine-Grained Time-Sharing GPU

We envision to build GPU clusters that can be shared across

different applications including training and inference. We

propose to pack multiple DL applications onto the same GPU

via fine-grained time-sharing abstraction to maximize GPU

utilization. This is inspired by the OS scheduler and context

switching in the CPU world. It has the following advantages.

• It would dramatically improve the resource utilization, es-

pecially because inference and training workloads have

complementary usage patterns. Online inference services

are often more idle during midnight, while many training

developers would start a time-consuming job at night. Be-

sides, inference loads on different models have different

patterns, which also benefits from the time sharing.

• Similar to CPU workloads, fine-grained time-sharing can

provide better utilization than provisioning dedicated re-

sources, while providing necessary process-level isolation.

• It would greatly simplify the design of load balancers and

schedulers as any server would be able to run any task with

low overhead to switch between different applications.

The gap: the precious GPU memory and slow switching.

To achieve this goal, however, we face a major challenge—fast

GPU context switching between different processes. A mod-

ern server can be equipped with several TB of host memory,

enabling it to load many applications. However, task execu-

tion on GPUs require GPU memory, which is very limited

even on high-end GPUs, e.g., 16 GB for T4 and 32 GB for

V100. More importantly, GPU memory is purposed for task

execution, not for storing the state of idle applications. DL

tasks, especially training, require a large amount, or even all

of the memory on a GPU.

Storing the models in the GPU like Salus [7] cannot support

training tasks which are memory-intensive or even multiple

inference tasks which have large models. This is particularly

important as state-of-the-art models are getting deeper and

larger, and thus even idle applications can occupy large mem-

ory space. In addition, request batching is prevalently used

to increase throughput [3], which further increases the GPU

memory requirement of inference applications. Ideally, the

active application should be able to utilize the entire GPU

memory for its purpose, and the number of applications that

can be served by a GPU server should only be limited by

its host memory size. Consequently, switching a task would

require heavy memory swapping.

Unfortunately, many online inference workloads require

strict SLOs that naive memory swapping between the host

memory and the GPU memory cannot meet. For example, we

test the strawman scenario where we stop a training task and

then start an inference task. The first inference batch would

require several seconds to finish (§4.1). Existing support such

as NVIDIA MPS is not optimized for DL workloads, and

incurs hundreds of milliseconds overhead (§6).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 501

Controller

Active
Worker

GPU

Memory
Daemon

Standby
Worker

Standby
Worker

New
Task

Figure 1: PipeSwitch architecture.

The opportunity: DL workloads have well-defined struc-

tures. Fortunately, the structure and computation pattern of

DNN models allow us to highly optimize task switching and

achieve millisecond-scale overhead. DNN models are usually

deep, consisting of multiple layers stacking one on another.

Furthermore, the computation of DNN models takes place

layer by layer as well. Thus, it is possible to build a pipeline

that overlaps the computation and GPU memory swapping

for fast context switching.

In the following sections, we will show that such pipeline

is indeed feasible and effective. In addition, we will also need

to resolve other challenges like memory management and

worker switching. Combining all the ideas into our system,

PipeSwitch, we close the gap of GPU memory sharing and

switching, and enable the design of an efficient time-sharing

GPU cluster for DL workloads.

3 PipeSwitch Overview

PipeSwitch enables GPU-efficient multiplexing of multiple

DL applications on GPU servers. It exploits the characteristics

of DL applications to achieve millisecond-scale task switch-

ing overhead in order to satisfy SLO requirements. Such fast

task switching enables more flexible fine-grained scheduling

to improve GPU utilization for dynamic workloads. It benefits

switching not only between inference and training, but also

between inference on different models. Here we provide an

overview of the architecture and task execution.

System architecture. Figure 1 shows the architecture of a

PipeSwitch server. This server contains four types of compo-

nents: a controller, a memory daemon, an active worker, and

multiple standby workers.

• Controller. The controller is the central component. It re-

ceives tasks from clients, and controls the memory daemon

and the workers to execute the tasks.

• Memory daemon. The memory daemon manages the GPU

memory and the DNN models. It allocates the GPU memory

to the active worker, and transfers the model from the host

memory to the GPU memory.

• Active worker. The active worker is the worker that cur-

rently executes a task in the GPU. Here a worker is a process

that executes tasks on one GPU.

Instance Type g4dn.2xlarge p3.2xlarge

GPU Type NVIDIA T4 NVIDIA V100

Task Cleaning 155 ms 165 ms

Task Initialization 5530 ms 7290 ms

Memory Allocation 10 ms 13 ms

Model Transmission 91 ms 81 ms

Total Overhead 5787 ms 7551 ms

Inference Time 105 ms 32 ms

Table 1: Measurement results of task switching overhead and

the breakdown of individual components. All components

should be optimized to meet the SLOs.

• Standby worker. A server has one or more standby work-

ers. A standby worker is idle, is initializing a new task, or

is cleaning its environment for the previous task.

Task execution. The controller queues a set of tasks received

from the clients. It uses a scheduling policy to decide which

task to execute next. It supports canonical scheduling policies

such as first come first serve (FCFS) and earliest deadline first

(EDF), and can be easily extended to support new policies.

We focus on fast context switching, and the specific schedul-

ing algorithm is orthogonal to this paper. The scheduling is

preemptive, i.e., the controller can preempt the current task

for the next one based on the scheduling policy. For example,

if the current task is a training task, the controller can preempt

it for an inference task that has a strict latency SLO.

To start a new task, the controller either waits for the current

task to finish (e.g., if it is inference) or preempts it by notifying

the active worker to stop (e.g., if it is training). At the same

time, the controller notifies an idle standby worker to initialize

its environment for the new task. After the active worker

completes or stops the current task, the controller notifies the

memory daemon and the standby worker to load the task to

GPU to execute with pipelined model transmission (§4.2).

The memory daemon allocates the memory to the standby

worker (§4.3), and transmits the model used by the new task

from the host memory to the GPU memory. The standby

worker becomes the new active worker to execute the new task,

and the active worker becomes a standby worker and cleans

the environment for the previous task (§4.4). The primary

goal of this paper is to design a set of techniques based on

the characteristics of DL applications to minimize the task

switching overhead in this process.

4 PipeSwitch Design

We first perform a measurement study to profile the task

switching overhead and break it down to individual compo-

nents. Then we describe our design to systematically mini-

mize the overhead of each component.

4.1 Profiling Task Switching Overhead

In order to understand the problem, we perform a measure-

ment study to profile the task switching overhead. The mea-

502 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

surement considers a typical scenario that a server stops a

training task running on the GPU, and then starts an in-

ference task. The DNN model used in the measurement

is ResNet152 [17]. The measurement covers two types of

instances on Amazon AWS, which are g4dn.2xlarge with

NVIDA T4 and p3.2xlarge with NVIDIA V100. We assume

the inference task has arrived at the server, and focus on mea-

suring the time to start and execute it on the GPU. We exclude

the network time and the task queueing time.

Table 1 shows the results. The total times to start the infer-

ence task on the GPUs are 5787 ms and 7551 ms, respectively.

We break the overhead down into the four components.

• Task cleaning. The training task stops and cleans its GPU

environment, such as freeing the GPU memory.

• Task initialization. The inference task creates and ini-

tializes its environment (i.e., process launching, PyTorch

CUDA runtime loading, and CUDA context initialization).

• Memory allocation. The inference task allocates GPU

memory for its neural network model.

• Model transmission. The inference task transmits the

model from the host memory to the GPU memory.

The inference time on V100 is lower than that on T4, and

both of them are significantly lower than the total overheads.

The reason for lower overhead on T4 is that task switching

largely depends on CPU, and g4dn.2xlarge is equipped with

better CPU than p3.2xlarge (Intel Platinum 8259CL vs. Intel

Xeon E5-2686 v4). A strawman solution that simply stops the

old task and starts the new task would easily violate SLOs.

Because all the components take considerable time com-

pared to the inference time, we emphasize that all the com-

ponents should be optimized to achieve minimal switching

overhead and meet the SLOs.

4.2 Pipelined Model Transmission

Transmitting a task from CPU to GPU is bounded by the

PCIe bandwidth. The PCIe bandwidth is the physical limit

on how fast an arbitrary task can be loaded to the GPU. We

exploit the characteristics of DL applications to circumvent

this physical limit. Our key observation is that DNN models

have a layered structure. The computation is performed layer

by layer. An inference task only performs a forward pass

from the first layer to the final layer to make a prediction;

each iteration in a training task performs a forward pass and

then a backward pass. In both cases, a task does not need to

wait for the entire model to be transmitted to the GPU before

beginning the computation. Instead, the task can start the com-

putation of a layer as soon as the layer is loaded in the GPU

and the input of the layer is ready (i.e., the previous layers

have finished their computation), regardless of its following

layers. Figure 2 illustrates the advantage of pipelining over

the strawman solution.

PipeSwitch requires the knowledge of models. PipeSwitch

does not modify the model structure, and only adds hooks for

PyTorch to wait for transmission or synchronize the execution.

T0 E0

model transmission
over PCIe

task execution
on GPU

T1 Tn-1 E1 En-1T2 E2

(a) Transmit model to GPU, and then execute task on GPU.

PCIe

GPU E0 E1 En-1E2

(b) Pipeline model transmission and task execution.

T0 T1 Tn-1T2

Figure 2: PipeSwitch pipelines model transmission and task

execution. The example shows an inference task that only has

a forward pass in task execution.

Adding hooks can be automated, and PipeSwitch can be im-

plemented as a part of the DNN framework, e.g., PyTorch, so

it can gather the model structure information while remaining

transparent to users and cluster managers.

Optimal model-aware grouping. The basic way for pipelin-

ing is to pipeline on per-layer granularity, i.e., the system

transmits the layers to the GPU memory one by one, and the

computation for a layer is blocked before the layer is trans-

mitted. Pipelining brings two sources of system overheads.

One is the overhead to invoke multiple calls to PCIe to trans-

mit the data. For a large amount of data (e.g., combining the

entire model to a large tensor to transmit together), the trans-

mission overhead is dominated by the data size. But when

we divide the model into many layers, invoking a PCIe call

for each layer, especially given that some layers can be very

small, would cause significant extra overhead. The other is the

synchronization overhead between transmission and computa-

tion, which is necessary for the computation to know when a

layer is ready to compute. Pipelining on per-layer granularity

requires synchronization for every layer.

We use grouping to minimize these two sources of over-

head. We combine multiple layers into a group, and the

pipelining is performed on per-group granularity. In this way,

the pipelining overhead is paid once for each group, instead of

each layer. Grouping introduces a trade-off between pipelin-

ing efficiency and pipelining overhead. On one hand, using

small groups (e.g., per-layer in the extreme case) enables

more overlap between transmission and computation, which

improves pipelining efficiency, but it also pays more pipelin-

ing overhead. On the other hand, using big groups (e.g., the

entire model in one group in the extreme case) has minimal

pipelining overhead, but reduces the chance for overlapping.

Grouping must be model-aware, because models have dif-

ferent structures in terms of the number of layers and the size

of each layer. Naively, we can enumerate all possible com-

binations to find the optimal grouping strategy. This is not

amenable because large models can have hundreds of layers

and the time complexity for enumeration is exponential.

In order to find the optimal grouping strategy efficiently,

we introduce two pruning techniques based on two insights.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 503

PCIe

GPU

lower bound of F({Group(0, i)}, i+1)

PCIe

GPU Group(0, i) Group(i+1, j*)

Group(0, i) Group(i+1, j*) j*, j*+1, …, n-1

j*, j*+1, …, n-1

(a) Prune this case if lower bound ≥ current optimal time.

(b) Prune the cases that group from i to j < j*.

batch at least from layer i+1 to j*

Group(0, i) Group(i+1, n-1)

Group(0, i) Group(i+1, n-1)

Figure 3: Examples for two pruning techniques.

Before we dive into the details, we first formulate the problem.

Let the number of layers be n. Let F(B, i) be a function that

returns the total time of the optimal grouping strategy from

layer i to n-1 given that layer 0 to i-1 have formed groups rep-

resented by B. Then we have the following recursive formula.

F({},0) = min
i

F({group(0, i)}, i+1) (1)

Specifically, to find the optimal grouping strategy for the en-

tire model (i.e., F({}, 0)), we divide all possible combinations

into n cases based on how the first group is formed, i.e., case

i means the first group contains layer 0 to i. This formula can

be applied recursively to compute F({group(0, i)}, i+1).
Our first insight is that it is not necessary to examine all the

n cases, because if the first group contains too many layers, the

computation of the first group would be delayed too much to

compensate the pipeline efficiency. Let T (i, j) and E(i, j) be

the transmission and execution times for a group from layer i

to j respectively, where T (i, j) is calculated based on the size

of layer i to j and PCIe bandwidth, and E(i, j) is profiled on

the GPU. Note that the overhead of invoking multiple calls is

included in T (i, j). As illustrated by Figure 3(a), we compute

a lower bound for the total time for each case in Equation 1.

F({group(0, i)},i+1)≥
min(T (0, i)+T (i+1,n−1),

T (0, i)+E(0, i)+E(i+1,n−1))

(2)

The lower bound considers the best case that all the remaining

layers are combined in one group for transmission and com-

putation, and that the computation and communication can be

perfectly overlapped, i.e., its computation can happen right

after the computation of the first group finishes. If the lower

bound of case i is already larger than the total time of the best

grouping strategy found so far, then case i (i.e., the recursive

computation for F({group(0, i)}, i+1)) can be pruned.

Our second insight is that other than the first group, we can

safely pack multiple layers in a group based on the progress of

computation without affecting pipeline efficiency. Figure 3(b)

shows an example for this insight. Suppose that we have

already fixed the first group to be from layer 0 to i, and we

apply Equation 1 recursively to enumerate the cases for the

PCIe

GPU

B.delay
(group at least from layer x to j* to fill)

0, 1, …, x-1

0, 1, …, x-1

Group(a, i) Group(i+1, n-1)

Group(x, i) Group(i+1, n-1)

lower bound of F(B + Group(a,i), i+1)

Figure 4: General case for the two pruning techniques.

second group. We can hide the transmission of the second

group into the computation of the first group, as long as the

transmission finishes no later than the computation of the first

group. The least number of layers to group can be computed

using the following equation.

j∗ = argmax
j

T (i+1, j)≤ E(0, i) (3)

Group from layer (i+1) to j < j∗ is no better than grouping

from (i+ 1) to j∗ because it does not increase the pipeline

efficiency and has higher pipeline overhead. Therefore, we

can prune the cases that group from layer (i+ 1) to j < j∗

and only search for j ≥ j∗.

Algorithm. Based on these two insights, we design an algo-

rithm to find the optimal grouping strategy for a given model.

We emphasize that this algorithm runs offline to find the strat-

egy, and the resulting strategy is used online by PipeSwitch

for context switching. Algorithm 1 shows the pseudo code.

The function FindOptGrouping recursively finds the opti-

mal grouping strategy based on Equation 1 (line 1-27). It

takes two inputs: B represents the groups that have already

formed, x is the first layer that have not formed a group. It uses

opt_groups to store the best grouping strategy from layer x

given B, which is initialized to none (line 2). The algorithm

applies the second pruning insight to form the first group

from layer x (line 3-9). Equation 3 and Figure 3(b) illustrate

this insight with a special example that B only contains one

group from layer 0 to i. In general, B can contain multiple

groups formed by previous layers, and we use B.delay to de-

note the time to which the group can be formed, as shown in

Figure 4. The algorithm finds j∗ based on B.delay (line 4-9),

and the enumeration for i can skip the layers from x to j∗-1
(line 11). For case i, the algorithm applies the first insight to

compute the lower bound (line 12-17). Again, the example

in Equation 2 and Figure 3(a) is a special case when x is 0.

For the general case, the computation from x has to wait for

both its transmission (i.e., T (x, i)) and the computation of

the previous groups (i.e., B.delay), as shown in Figure 4. If

the lower bound is already bigger than the current optimal

time, then case i is pruned (line 18-19). Given the group from

layer x to i is formed, the function recursively applies itself

to find the optimal groups from layer i+1 to n-1 (line 21-23),

and updates opt_groups if the current strategy is better (line

24-26). Finally, it returns opt_groups (line 27). In practice,

we use a heuristic that bootstraps opt_groups with a relative

504 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 Optimal Model-Aware Grouping

1: function FINDOPTGROUPING(B, x)

2: opt_groups← /0, opt_groups.time← ∞

3: // find first group from layer i to j∗

4: j∗← x

5: for layer i from x to n−1 do

6: if T (x, i)≤ B.delay then

7: j∗← i

8: else

9: break

10: // recursively find the optimal grouping

11: for layer i from j∗ to n−1 do

12: if opt_groups 6= /0 then

13: // compute lower bound

14: trans_time← T (x, i)+T (i+1,n−1)
15: exec_time← max(T (x, i),B.delay)
16: +E(x, i)+E(i+1,n−1)
17: lower_bound← min(trans_time,exec_time)
18: if lower_bound > opt_groups.time then

19: continue

20: // recursively find rest groups

21: f irst_group← Group(x, i)
22: rest_groups← FindOptGrouping(
23: B+ f irst_group, i+1)
24: cur_groups← f irst_group+ rest_groups

25: if cur_groups.time < opt_groups.time then

26: opt_groups← cur_groups

27: return opt_groups

good strategy (e.g., group every ten layers). Given n layers,

there are 2n−1 different grouping strategies, so the time com-

plexity of Algorithm 1 is O(2n), as in the worst case it needs

to enumerate all strategies. The two pruning techniques are

able to prune most of the strategies, and can quickly find the

optimal one as we will show in §6. We have the following

theorem for the algorithm.

Theorem 1. Algorithm 1 finds the optimal grouping strategy

that minimizes the total time for the pipeline.

Proof. Algorithm 1 computes the recursive function

FindOptGrouping(B,x). Let m = n− x, which is the num-

ber of layers the function considers. We use induction on

m to show that FindOptGrouping(B,x) outputs the optimal

grouping strategy from layer x to n− 1 given that previous

layers have formed groups represented by B.

Base case. When m = 1, the function only examines one

layer. Because there is only one strategy which is layer x itself

is one group, this strategy is the optimal strategy.

Inductive step. Assume that for some k≥ 1 and any m≤ k,

FindOptGrouping(B,x) outputs the optimal strategy. Con-

sider m = k+1, i.e., the algorithm now considers k+1 layers.

The algorithm divides the problem into k+ 1 cases, where

case i (0≤ i≤ k) forms the first group from layer x to x+ i.

For case i where 0 ≤ i ≤ k − 1, because

FindOptGrouping(B + Group(x,x + i),x + i + 1) only

considers k− i ≤ k layers, it outputs the optimal grouping

strategy for case i based on the assumption.

For case i = k, the first group contains all layers from x to

n−1. The optimal strategy for this case is one group.

Because these cases are exclusive and cover the entire

search space, by choosing the optimal grouping strategy from

these cases, the algorithm outputs the optimal grouping strat-

egy for m = k+1.

The algorithm uses two pruning techniques. The first tech-

nique prunes the cases if their lower bounds are no better

than the current found optimal. It is obvious that this tech-

nique does not affect the optimality. The second technique

prunes the case if their first groups are from layer x to j < j∗.
Because these cases cannot advance the computation to an

earlier point than grouping from x to at least j∗, pruning these

cases also do not affect the optimality.

Generality. Algorithm 1 achieves optimality for a given list

of layers. This, however, does not require the models to be

linear. In general, the layers or operators in a DNN model can

be connected as an arbitrary computation graph, instead of a

simple chain. Models like ResNet and Inception are techni-

cally non-linear directed acyclic graph (DAGs). Yet, there is

an execution order that the layers/operators in the DAG are

issued to the GPU one by one. Algorithm 1 does not have

any special assumptions on the execution order. It is only

interested in finding out how to group the layers given the

execution order (and corresponding data dependencies) to

achieve high pipelining efficiency and low pipelining over-

head. It even applies for graphs with loops, in which the order

is based on the first time an operator is executed. The order

does not affect correctness, because an operator can be exe-

cuted only when it is transmitted to the GPU and the input is

ready. Thus, our pipelined model transmission is applicable

to the general case.

4.3 Unified Memory Management

Task execution in a GPU requires GPU memory. A GPU

has its own memory management system, and provides a

malloc function (e.g., cudaMalloc for NVIDIA GPUs) sim-

ilar to CPUs for memory allocation. NVIDIA also provides

CUDA unified memory [4] to automatically handle memory

movement between the host memory and the GPU memory

for applications. A naive solution for GPU memory manage-

ment is that each task uses the native cudaMallocManaged

function for GPU memory allocation, and delegates model

transmission to CUDA unified memory. This solution incurs

high overhead for DL applications because of two reasons.

First, DL applications have large models and generate large

amounts of intermediate results, which require a lot of GPU

memory. Second, the native cudaMalloc function and CUDA

unified memory are designed for general-purpose applications,

and may incur unnecessary overhead for DL applications.

We exploit two characteristics of DL applications to mini-

mize GPU memory management overhead. A DL task stores

two important types of data in the GPU memory: the DNN

model (including the model parameters), and the intermediate

results. First, the amount of memory allocated to the DNN

model is fixed, and does not change during task execution. An

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 505

inference task only uses the model for inference, and does

not change the model itself. While a training task updates the

model, it only updates the model parameters (i.e., the weights

of the neural network), not the DNN structure, and the amount

of memory needed to store them stays the same.

Second, the intermediate results change in a simple, regular

pattern, which do not cause memory fragmentation. For an

inference task, the intermediate results are the outputs of each

layer, which are used by the next layer. After the next layer is

computed, they are no longer needed and can be safely freed.

A training task differs in that the intermediate results gener-

ated in the forward pass cannot be immediately freed, because

they are also used by the backward pass to update the weights.

However, the backward pass consumes the intermediate re-

sults in the reverse order as that the forward pass generates

them, i.e., the intermediate results are first-in-last-out. The

memory allocation and release can be handled by a simple

stack-like mechanism, without causing memory fragmenta-

tion. The general-purpose GPU memory management does

not consider these characteristics, and is too heavy-weight for

DL applications that require fast task switching.

Minimize memory allocation overhead. Based on these

two characteristics, we design a memory management mech-

anism tailored for DL applications. PipeSwitch uses a ded-

icated memory daemon to manage the GPU memory. To

be compatible with the existing system and incur minimal

changes, instead of replacing the GPU memory manager, the

memory daemon uses cudaMalloc to obtain the GPU mem-

ory when the system starts, and then dynamically allocates

the memory to the workers at runtime. This eliminates the

overhead for each worker to use cudaMalloc to get a large

amount of memory to store their models and intermediate

results. The memory daemon only needs to pass memory

pointers to the workers, which is light-weight. The daemon

ensures that each time only one worker owns the GPU mem-

ory to guarantee memory isolation between workers. Each

worker uses a memory pool to allocate the memory to store

its model and intermediate results, and recycles the memory

to the pool after the intermediate results are no longer needed.

The memory management of PipeSwitch extends that of Py-

Torch. It is designed and optimized for efficient GPU memory

allocation between different tasks, while the memory man-

agement in PyTorch handles memory allocation for a task

itself. PipeSwitch inserts GPU memory blocks to PyTorch

GPU memory pool, and PyTorch creates tensors on them.

Minimize memory footprint and avoid extra memory

copies. The server stores the DNN models in the host memory.

Replicating the models in each worker incurs high memory

footprint, and reduces the number of models a server can store,

and consequently the types of tasks the server can execute. On

the other hand, storing the models in a dedicate process has

minimal memory footprint as each model is only stored once,

but it incurs an extra memory copy from this process to a

worker to start a task, which hurts the task switching time. We

use unified memory management with the memory daemon to

both achieve minimal memory footprint and eliminate extra

memory copies. PipeSwitch stores the models in the memory

daemon so that the server only needs to keep one copy of each

model in the host memory. Because the memory daemon also

manages the GPU memory, it directly transmits the model

from the host memory to the GPU memory for task startup,

which eliminates the extra memory copy from the memory

daemon to the worker.

Minimize IPC overhead. After the model is transmitted to

the GPU, the memory daemon needs to notify the worker

and export the relevant GPU memory handlers to the worker,

so that the worker can access the model to execute its task.

This can be implemented by IPC APIs provided by GPUs,

e.g., cudaIpcOpenMemHandle for NVIDIA GPUs. We have

measured the performance of these IPC APIs and found that

they incur high overhead (§6). The overhead is exacerbated

by the pipeline because the pipeline needs to invoke the IPCs

frequently to synchronize model transmission and task exe-

cution for every pipeline group, instead of invoking the IPC

only once for the entire model transmission.

We leverage a property of DL applications to minimize the

IPC overhead. The property is that the memory allocation

process for a neural network model is deterministic. Specif-

ically, given the same GPU memory region and the same

model, as long as the memory daemon and the worker uses

the same order to allocate memory for the model parameters,

the memory pointers for the parameters would be the same. It

is easy to keep the same order for the memory daemon and

the worker because the neural network model is known and

given, and the memory daemon only needs to use the same

order to transmit the model as the worker would. As a result,

the memory daemon can minimize the usage of expensive

GPU IPCs. It only uses the GPU IPC once to initialize the

worker, and then uses cheap CPU IPCs to notify the worker

which pipeline group has been transmitted.

Pin memory. The OS would swap a memory page to disk

if the page is inactive for a certain amount of time. GPUs

require a page in the host memory to be pinned (or page-

locked) in order to transmit the data in the page to the GPU

memory. Otherwise, a temporary pinned page is created for

the transmission. We pin the pages of the memory daemon to

the host memory, to eliminate this overhead.

4.4 Active-Standby Worker Switching

PipeSwitch aims to provide fast task switching and ensure

process-level isolation. Process-level isolation is desirable

because it ensures that one task cannot read the memory of

another task, and that the crashing of one task, e.g., because

of a bug, does not affect other tasks or the entire system.

A naive solution is to use separate processes and start the

new task after the current task is stopped. As we have profiled

506 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

No Task No Task Process-

Cleaning Initialization Level

Overhead Overhead Isolation

Two Processes × × √

One Process × √ ×
Active-Standby

√ √ √

Table 2: Comparison of worker switching mechanisms.

in Table 1, such sequential execution incurs long delay due to

old task cleaning and new task initialization.

Another possible solution is to let the current and new tasks

share the same process with a warm CUDA context, so that

the new task can reuse the GPU environment of the current

task. This avoids the new task initialization, but it still has the

overhead for the current task to clean its status. In addition, it

does not provide process-level isolation between tasks.

We design an active and standby worker switching mecha-

nism that hides the overhead of both task cleaning and task

initialization, and also ensures process-level isolation. Similar

to the naive solution, we use separate processes to achieve

process-level isolation. PipeSwitch has an active worker and

multiple standby workers. Each worker is a separate process,

and initializes its own GPU environment (i.e., CUDA context)

when it is first created. This eliminates the GPU environ-

ment initialization overhead when a new task is assigned to a

worker. When a current task is stopped, a major job is to clear

asynchronous CUDA functions queued on the GPU. We in-

sert synchronization points into training tasks, so the number

of queued functions are limited and can be quickly cleared.

Synchronization points are not needed for inference tasks as

they are short and not preempted. Another job is to free its

GPU memory. An important property of the cleaning proce-

dure is that it does not modify the content of the memory, but

only cleans the metadata, i.e., GPU memory pointers. As the

GPU memory is managed by PipeSwitch, the cleaning pro-

cedure deletes the pointers pointing to the tensor data rather

than freeing the actual data. Therefore, it is safe for the new

task to transmit its model to the GPU memory at the same

time. In other words, we can parallelize the task cleaning of

the current task and the pipelined model transmission of the

new task, to hide the task cleaning overhead. This choice is

optimized for performance, and is not a problem for a trusted

environment. It is possible that a latter process can read the

memory data of a previous process. If this is a concern, an

additional zero-out operation can be added. GPU has high

memory bandwidth (e.g., 900GB/s for V100). It would incur

sub-millisecond overhead for zeroing-out most models like

ResNet-152 (around 240MB). On the other hand, for a trusted

environment, it is unnecessary to release all allocated memory

for the preempted process if the new process does not require

entire GPU memory, and this could be achieved by some sim-

ple coordination. Table 2 summarizes the differences between

these three solutions.

In summary, to switch workers, the controller signals the

current active worker to stop, deletes the GPU memory allo-

cated to it, and allocates the GPU memory to the new active

worker. The controller ensures only one active worker to guar-

antee exclusive occupation of the GPU.

There is a trade-off between the number of standby work-

ers and their GPU memory consumption. On one hand, task

cleaning takes time. If a new task arrives before a standby

worker finishes cleaning a previous task, the new task needs

to wait, which increases its startup time. On the other hand,

it is possible to have many standby workers so that there

is always at least one idle standby worker. However, every

standby worker needs to maintain its own CUDA context,

which consumes a few hundred MB GPU memory. Our expe-

rience is that two standby workers are sufficient to ensure at

least one idle worker, which eliminates the waiting time and

has moderate GPU memory consumption.

4.5 Discussion

PipeSwitch is focused on single-GPU tasks for training and

inference. For inference tasks, strict SLOs require requests to

be handled in small batches for low latency, so it is common to

execute an inference task with a single GPU [18]. Multi-GPU

inference tasks can be supported by performing PipeSwitch

on each GPU with transactions. A transaction here means a

model is switched in or out on all of its GPUs to enable or

disable inference on this model.

For training tasks, PipeSwitch supports single-GPU train-

ing and asynchronous multi-GPU training for data parallel

strategies, as preempting one GPU does not affect other GPUs.

However, it does not work out of the box with synchronous

multi-GPU training. We have analyzed a production GPU

training trace from Microsoft [19, 20]. Among 111,883 tasks

in this trace, 96,662 tasks (or 86% of all the tasks) are single-

GPU training tasks. Thus, a significant fraction of tasks in real-

world workloads currently use a single GPU, and PipeSwitch

is applicable to them out of the box. However, these jobs

only account for 18% of total GPU hours and we expect the

share of multi-GPU jobs to increase in the future. One way

to seamlessly use PipeSwitch for synchronous multi-GPU

training is to use elastic synchronous training, which allows

the dynamic changing of the number of GPUs used for train-

ing. Unfortunately, current training frameworks do not have

mature support of elastic training. This remains an active

research topic and is orthogonal to PipeSwitch.

5 Implementation

We have implemented a system prototype for PipeSwitch

with ∼3600 lines of code in C++ and Python, and we have

integrated it with PyTorch [21].

PyTorch Plugins. We add C++ and Python functions to the

GPU memory management module of PyTorch. To share

GPU memory between the controller and the workers, we

add functions for allocating GPU memory, sharing the GPU

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 507

memory to workers through CUDA IPC API, and getting the

shared GPU memory. We also add functions which insert

the received GPU memory into PyTorch GPU memory pool

for a specific CUDA stream or clear the GPU memory from

the pool. Note that the shared GPU memory can be inserted

into the PyTorch GPU memory pool for multiple times for

different CUDA streams, and the controller guarantees that

only one of these CUDA streams is active.

Controller and memory daemon. The controller process

consists of a TCP thread and a scheduler thread. For better

performance, the scheduler and the memory daemon are im-

plemented together. The TCP thread accepts task through TCP

from clients, and sends the task to the scheduler thread. The

scheduler thread allocates and shares the GPU memory with

workers, activates or deactivates workers, sends the task to a

worker, and transfers parameters for the corresponding model

to the GPU memory. Before starting a task, the user should

register the model in the scheduler to notify the controller to

load the model from the disk to the CPU memory. When the

controller schedules a task, it determines whether to switch

to another worker. There is no need for context switching if

the application is already loaded in the GPU. If a new model

should be loaded to the GPU, the controller will notify the

current active worker to stop, and transfers the parameters

of the new model to the GPU after receiving the current ac-

tive worker’s reply. Parameters are transmitted to the GPU

memory in groups in a pipeline. After each group is trans-

ferred, the controller notifies the worker to start computing

the corresponding layers.

Worker. The worker process consists of two threads. The ter-

mination thread waits for the termination signal from the con-

troller, and notifies the main thread. The main thread manages

the DNN models and performs the computation for inference

or training. Similar to the controller, the worker also requires

the user to register the model before starting a task, so the

worker can load the models and add the hooks to wait for

parameter transmission or terminate on notification. Note that

the worker only loads the model structures, which is small,

not the model parameters. The parameters are only stored

once in the memory daemon for minimal memory footprint.

When the models are loaded, they are attached to different

CUDA streams, and their parameters are assigned to locations

in the shared GPU memory. Different models might use the

same GPU memory location, but the value is not valid until

the controller transfers the corresponding parameters to these

locations. After loading the models, the worker waits for the

scheduler to transfer required parameters for DNN models,

and performs inference or training.

6 Evaluation

In this section, we first use end-to-end experiments to demon-

strate the benefits of PipeSwitch, and then show the effective-

ness of the design choices on each component.

Setup. All experiments are conducted on AWS. We use two

EC2 instance types. One is p3.2xlarge, which is configured

with 8 vCPUs (Intel Xeon E5-2686 v4), 1 GPU (NVIDIA

V100 with 16 GB GPU memory), PCIe 3.0 ×16, and 61 GB

memory. The other is g4dn.2xlarge, which is configured with

8 vCPUs (Intel Platinum 8259CL), 1 GPU (NVIDIA T4 with

16 GB GPU memory), PCIe 3.0 ×8, and 32 GB memory. The

software environment includes PyTorch-1.3.0, torchvision-

0.4.2, scipy-1.3.2, and CUDA-10.1. We use PyTorch with our

plugins for all mechanisms in comparison for consistency,

which provides better results for stop-and-start than native

PyTorch from Python-PyPI used in Table 1.

Workloads. The models include ResNet152 [17], Incep-

tion_v3 [22] and Bert_base [23], which are standard bench-

marks for evaluating DL systems. We use representative con-

figurations for each model. The experiments cover both train-

ing and inference. We use single-GPU inference and training

tasks as discussed in §4.5. Training tasks periodically check-

point their models to the host memory, and restart from the

latest checkpoint after preemption. The checkpointing fre-

quency of training tasks is set according to the scheduling

cycle to minimize checkpointing overhead. The default batch

size for training is 32, and that for inference is 8.

Metrics. We use throughput and latency as evaluation metrics.

Each number is reported with the average of 100 runs. For

Figure 6(b), we additionally report the minimum and maxi-

mum latencies using the error bar, because the latency of the

first batch and those of later batches in one scheduling cycle

can differ significantly due to switching overhead.

6.1 End-to-End Experiments

Minimizing end-to-end overhead. In this experiment, a

client sends an inference task to a GPU server, and the GPU

server preempts the training task to execute the inference

task and sends a reply back to the client. We measure the the

end-to-end latency experienced by the client. We compare the

following mechanisms.

• Ready model. There is no training task. The process with

the required model is already loaded in the GPU. This solu-

tion provides the lower bound, which is the lowest latency

we can achieve for an inference task.

• Stop-and-start. It stops the training task in the GPU, and

then starts the inference task. This solution is used by ex-

isting systems like Gandiva [24] for task switching, which

reported similar second-scale overhead.

• NVIDIA MPS. This is the multi-process support from

NVIDIA which allows the inference process to share the

GPU with the training process. We initialize separate pro-

cesses in advance. The training task occupies the entire

GPU memory and does not stop when inference tasks come.

CUDA unified memory is used for memory swapping.

• PipeSwitch. This is the proposed system. The properties

are described in §4.

508 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7500

10000
La

te
nc

y
(m

s)
Ready model
PipeSwitch

MPS
Stop-and-start

ResNet152 Inception_v3 Bert_base
0

200

400

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

5000

10000

La
te

nc
y

(m
s)

Ready model
PipeSwitch

MPS
Stop-and-start

ResNet152 Inception_v3 Bert_base
0

200

400

600

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 5: Total latency experienced by the client for different mechanisms.

p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8)

ResNet152 Inception_v3 Bert_base ResNet152 Inception_v3 Bert_base

Stop-and-start 6475.40 ms 7536.07 ms 6371.32 ms 5486.74 ms 6558.76 ms 5355.95 ms

NVIDIA MPS 307.02 ms 232.25 ms 204.52 ms 259.20 ms 193.05 ms 338.25 ms

PipeSwitch 6.01 ms 5.40 ms 10.27 ms 5.57 ms 7.66 ms 34.56 ms

Table 3: Total overhead, i.e., the difference on total latency between different mechanisms and ready model.

ResNet152 Inception_v3 Bert_base

p3.2xlarge 3.62 ms 4.82 ms 3.62 ms

g4dn.2xlarge 2.53 ms 5.49 ms 6.57 ms

Table 4: The startup overhead for PipeSwitch to start comput-

ing the first layer.

Salus [7] is not directly comparable because it requires the

models to be preloaded to the GPU, and has several limitations

described in §2.2. Its performance is similar to the ready

model when the model is preloaded, and is similar to NVIDIA

MPS when the model is in the host memory. Figure 5 shows

the latency experienced by the client, and Table 3 shows the

total overhead. The total overhead is the difference between

the latency of a mechanism and that of the ready model. It is

obvious that stop-and-start performs the worst, which takes

several seconds. The main source of the overhead is CUDA

context initialization and first-time library loading operations

in PyTorch. NVIDIA MPS has lower overhead compared to

stop-and-start, but still incurs several hundred milliseconds

overhead, which prevents MPS from meeting strict SLOs.

One source of the overhead is the contentions both on the

computation and memory of the GPU, as the training task

do not stop when an inference task comes. Another source is

GPU memory swapping. PipeSwitch performs the best and

is close to the lower bound. The overhead of PipeSwitch for

most configurations is up to 10ms, except for BERT on T4,

which is due to the large model size and the smaller PCIe

bandwidth on T4 than that on V100. Since it also takes longer

(120ms) to compute BERT on T4 even with the ready model,

the relative overhead is acceptable.

We also show the task startup overhead for PipeSwitch

in Table 4, which is the difference between the time for

ResNet152 Inception_v3 Bert_base

of Layers 464 189 139

Algorithm 1 1.33 s 0.18 s 0.34 s

Only Pruning 1 2.09 s 0.30 s 0.88 s

Only Pruning 2 3.44 h 5.07 s > 24 h

No Pruning > 24 h > 24 h > 24 h

Table 5: Effectiveness of two pruning techniques.

PipeSwitch to start computing the first layer and that for

the ready model to start computing. The startup overhead

of PipeSwitch is only a few milliseconds.

Enabling fine-grained scheduling cycles. In this experi-

ment, we compare throughput and end-to-end latency of dif-

ferent mechanisms under different scheduling cycles. We use

ResNet152 for both training and inference on eight p3.2xlarge

instances, and switch between these two tasks after each

scheduling cycle. Figure 6(a) shows the inference throughput.

The dashed line is the upper bound, which is the throughput of

the ready model assuming no task switching. The throughput

of stop-and-start is nearly zero for scheduling cycles smaller

than 10 s, because it takes several seconds for task switching.

MPS keeps poor throughput around 100 batches per second.

We define GPU utilization as the ratio to the upper bound.

PipeSwitch has high throughput close to the upper bound,

achieving near 100% GPU utilization.

Figure 6(b) shows the average latency of the inference tasks.

The dashed line is the lower bound, which is the average

latency of the ready model assuming no task switching. The

error bar indicates the minimum and maximum latency. Stop-

and-start has poor latency because the first batch has several

seconds overhead. MPS has about 80 ms average latency, and

has several hundred milliseconds latency for the first batch.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 509

1s 2s 5s 10s 30s
0

100

200

300

400

Th
ro

ug
hp

ut
 (b

at
ch

es
/s

ec
)

Upper bound

PipeSwitch
MPS

Stop-and-start

(a) Throughput (eight p3.2xlarge instances).

7500

10000

La
te

nc
y

(m
s)

PipeSwitch
MPS

Stop-and-start

1s 2s 5s 10s 30s0

200

400 Lower bound

(b) Latency.

Figure 6: Throughput and latency under different scheduling

cycles for ResNet on p3.2xlarge.

PipeSwitch incurs only a few milliseconds overhead for task

switching, and achieves low latency close to the lower bound.

6.2 Pipelined Model Transmission

To evaluate the effectiveness of pipelined model transmission,

we keep all other components of PipeSwitch the same, and

compare the following mechanisms discussed in §4.2.

• No optimization. It transmits the model layer by layer

(with many PCIe calls), and then executes the task.

• Grouped transmission. It groups the entire model in one

transmission, and then executes the task.

• Per-layer pipeline. It transits model parameters layer by

layer. Computation starts, once parameters are transmitted.

• PipeSwitch. It is the pipelining mechanism with optimal

model-aware grouping in PipeSwitch.

Figure 7 shows the total time measured by the client for an in-

ference task to preempt a training task and finish its inference.

No optimization performs the worst in most cases. Grouped

transmission improves no optimization by combining the lay-

ers of the model into one big tensor and transmitting it in

one group. Per-layer pipeline overlaps transmission and com-

putation at the granularity of layer. But because it has PCIe

overhead and synchronization overhead for every layer, for

the models with many layers but relatively light computa-

tion such as ResNet152 and Inception, it can perform worse

than grouped transmission and sometimes even no pipeline.

PipeSwitch uses model-aware grouping and achieves the best

trade-off between pipeline overhead and efficiency. It reduces

the total time by up to 38.2 ms compared to other solutions.

ResNet152 Inception_v3 Bert_base0

20

40

60

80

100

La
te

nc
y

(m
s)

PipeSwitch
Per-layer pipeline
Grouped transmission
No optimization

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

ResNet152 Inception_v3 Bert_base0

50

100

150

200

250

La
te

nc
y

(m
s)

PipeSwitch
Per-layer pipeline
Grouped transmission
No optimization

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 7: Effectiveness of pipelined model transmission.

Note that this reduction is significant, especially consider-

ing that it is evaluated when the optimizations on memory

management and worker switching have already been applied.

We would like to emphasize that to meet strict SLOs, it is

important to reduce all overheads for task switching, not only

the most significant one.

Table 5 shows the running time of Algorithm 1, as well as

the effects of the two pruning techniques mentioned in § 4.2.

Note that the number of layers includes both weighted and

unweighted layers, as both contribute to the computation time.

We measure the parameter size and running time for each

layer in advance. Algorithm 1 takes only several seconds to

compute an optimal grouping strategy, even for ResNet152

which has hundreds of layers. On the contrary, no pruning

does not finish for all three models after running for 24 hours.

6.3 Unified Memory Management

To evaluate the effectiveness of unified memory management.

we keep all other components of PipeSwitch the same, and

compare the following five mechanisms discussed in §4.3.

• No unified memory management. Each worker uses

cudaMalloc to allocate GPU memory, and transmits the

model to GPU by its own.

• No IPC optimization. The memory daemon handles GPU

memory allocation and model transmission, but creates

and sends GPU memory handlers to workers. To compare,

PipeSwitch simply sends an 64-bit integer offset for the

shared GPU memory to workers.

• No pin memory. It has all optimizations on unified memory

management except that the pages of the memory daemon

are not pinned to the main memory.

510 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ResNet152 Inception_v3 Bert_base0

100

200

300

400

La
te

nc
y

(m
s)

PipeSwitch
No memory management
No IPC optimization

No pin memory
CUDA unified memory

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

ResNet152 Inception_v3 Bert_base0

100

200

300

400

La
te

nc
y

(m
s)

PipeSwitch
No memory management
No IPC optimization

No pin memory
CUDA unified memory

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 8: Effectiveness of unified memory management.

• CUDA unified memory. Each worker allocates GPU mem-

ory with cudaMallocManaged, and CUDA automatically

transmits the model to GPU when needed.

• PipeSwitch. It is the unified memory management mecha-

nism used by PipeSwitch.

Figure 8 shows the total time measured by the client. First,

compared to no unified memory management, PipeSwitch

saves 2–23 ms by eliminating the memory allocation over-

head with the memory daemon. It is also important to note

that no unified memory management requires each worker

to keep a copy for each DNN model, which increases the

memory footprint. Second, IPC optimization is important,

which reduces the latency by 16–48 ms. Without IPC opti-

mization, the latency is even higher than no unified memory

management. Third, pinning the pages to the host memory can

reduce the latency with a few milliseconds. Finally, CUDA

unified memory is not optimized for DL applications, and in-

troduces more than one hundred milliseconds overhead than

PipeSwitch. Overall, this experiment demonstrates that all the

optimizations on memory management are effective.

6.4 Active-Standby Worker Switching

To evaluate the effectiveness of active-standby worker switch-

ing, we keep all other components of PipeSwitch the same,

and compare the following mechanisms discussed in §4.4.

• Two processes. The process of the old task cleans the GPU

environment, and then another process is created and ini-

tialized for the new task.

• One process. The process cleans the GPU environment for

the old task, and reuses the environment for the new task.

6000

8000

La
te

nc
y

(m
s)

PipeSwitch
One process

Two processes

ResNet152 Inception_v3 Bert_base
0

100

200

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

5000

7500

La
te

nc
y

(m
s)

PipeSwitch
One process

Two processes

ResNet152 Inception_v3 Bert_base
0

200

400

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 9: Effectiveness of active-standby switching.

• PipeSwitch It is the active-standby worker switching mech-

anism used by PipeSwitch.

Figure 9 shows the results. Two processes perform the worst

as it stops the training task and initializes a new process for

the new task. The new process needs to create a new CUDA

environment, which dominates the total time. One process

reuses the CUDA environment, but still pays the overhead

to clean the environment. PipeSwitch uses an active-standby

worker switching mechanism to parallelize old task cleaning

and new task initialization, and incurs minimal overhead. It

reduces the latency by 116–307 ms compared to one process,

and 5–7 s compared to two processes.

7 Related Work

Many frameworks have been developed for deep learning,

such as TensorFlow [25], PyTorch [21] and MXNet [26]. Sev-

eral algorithms and systems have been designed for executing

and scheduling deep learning tasks on clusters, including

both training and inference tasks [3, 10, 24, 27–32]. These

scheduling solutions are orthogonal and complementary to

PipeSwitch. They focus on what scheduling decisions to

make, while PipeSwitch focuses on how to realize a schedul-

ing decision. Importantly, PipeSwitch enables the scheduler

to change the resource allocation more often with millisecond-

scale task switching. Many techniques and systems have

been proposed to optimize communication and improve dis-

tributed training [8, 9, 15, 33–42]. The most relevant ones are

PipeDream [8], ByteScheduler [9] and Poseidon [40]. They

use inter-batch pipelining for training of the same task, while

PipeSwitch introduces intra-batch pipelining to fast start both

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 511

training and inference tasks and enables fast switching across

tasks. Other works like vDNN [43] and SwapAdvisor [44]

also have GPU memory management module, but they focus

on memory management for a single training task of large

models, which are not directly comparable to PipeSwitch.

Cluster managers [45–48] typically allocate GPUs to VMs

or containers at device granularity. Several solutions have

been proposed to share a GPU at application granularity us-

ing techniques like library interception [6, 49–53]. They are

general-purpose and focus on sharing only a few kernels. As

such, they are not suitable for deep learning applications that

typically require hundreds of kernels. NVIDIA MPS [6] pro-

vides official support for sharing a GPU between multiple

processes. It is also not specially designed for deep learning

and thus cannot meet strict SLOs of inference tasks as shown

in §6. There are many efforts on GPU optimization to im-

prove the performance of running a single task, such as tensor

fusion and kernel-level concurrency and scheduling [54–58].

These solutions are complementary to PipeSwitch.

8 Conclusion

We present PipeSwitch, a system that enables GPU-efficient

fine-grained time-sharing for multiple DL applications. We

introduce pipelined context switching to minimize task switch-

ing overhead on GPUs for DL applications. Pipelined context

switching includes three key techniques, which are pipelined

model transmission, unified memory management and active-

standby worker switching. With these techniques, PipeSwitch

is able to achieve millisecond-scale task switching time, and

enables DL applications on time-sharing GPUs to meet strict

SLOs. We demonstrate the performance of PipeSwitch with

experiments on a variety of DNN models and GPU cards.

PipeSwitch can significantly increase GPU utilization and

improve the agility of DL applications.

Acknowledgments. We thank our shepherd Madan Musu-

vathi and the anonymous reviewers for their valuable feed-

back. Zhihao Bai, Zhen Zhang and Xin Jin were supported in

part by an AWS Machine Learning Research Award.

References

[1] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,

E. Tune, and J. Wilkes, “Large-scale cluster management

at Google with Borg,” in EuroSys, 2015.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Commu-

nications of the ACM, vol. 56, 2013.

[3] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-

pose, A. Krishnamurthy, and R. Sundaram, “Nexus: A

GPU cluster engine for accelerating DNN-based video

analysis,” in ACM SOSP, 2019.

[4] “CUDA Unified Memory.” https://

devblogs.nvidia.com/unified-memory-cuda-

beginners/.

[5] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan, “Shenango: Achieving high CPU efficiency

for latency-sensitive datacenter workloads,” in USENIX

NSDI, 2019.

[6] “CUDA Multi-Process Service.” https:

//docs.nvidia.com/deploy/pdf/

CUDA_Multi_Process_Service_Overview.pdf.

[7] P. Yu and M. Chowdhury, “Salus: Fine-grained GPU

sharing primitives for deep learning applications,” in

Conference on Machine Learning and Systems, 2020.

[8] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,

N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-

haria, “PipeDream: generalized pipeline parallelism for

DNN training,” in ACM SOSP, 2019.

[9] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,

and C. Guo, “A generic communication scheduler for

distributed DNN training acceleration,” in ACM SOSP,

2019.

[10] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,

J. Qian, H. Liu, and C. Guo, “Tiresias: A GPU clus-

ter manager for distributed deep learning,” in USENIX

NSDI, 2019.

[11] M. Jeon, S. Venkataraman, A. Phanishayee, u. Qian,

W. Xiao, and F. Yang, “Analysis of large-scale multi-

tenant GPU clusters for DNN training workloads,” in

USENIX ATC, 2019.

[12] “Amazon Web Services.” https://aws.amazon.com/.

[13] “Microsoft Azure.” https://azure.microsoft.com/.

[14] “Google Cloud Platform.” https://

cloud.google.com/.

[15] A. Sergeev and M. Del Balso, “Horovod: fast and easy

distributed deep learning in tensorflow,” arXiv preprint

arXiv:1802.05799, 2018.

[16] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,

A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and

B.-Y. Su, “Scaling distributed machine learning with the

parameter server,” in USENIX OSDI, 2014.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2016.

[18] “Nvidia data center deep learning product perfor-

mance.” https://developer.nvidia.com/deep-

learning-performance-training-inference.

512 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://cloud.google.com/
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference

[19] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,

W. Xiao, and F. Yang, “Analysis of large-scale multi-

tenant GPU clusters for DNN training workloads,” in

USENIX ATC, 2019.

[20] “Philly traces.” https://github.com/msr-fiddle/

philly-traces.

[21] “PyTorch.” https://pytorch.org/.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-

jna, “Rethinking the inception architecture for computer

vision,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of deep bidirectional transformers

for language understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2019.

[24] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,

N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,

et al., “Gandiva: Introspective cluster scheduling for

deep learning,” in USENIX OSDI, 2018.

[25] “TensorFlow.” https://www.tensorflow.org/.

[26] “MXNet.” https://mxnet.apache.org/.

[27] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq:

quality-driven scheduling for distributed machine learn-

ing,” in ACM Symposium on Cloud Computing, 2017.

[28] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Opti-

mus: an efficient dynamic resource scheduler for deep

learning clusters,” in EuroSys, 2018.

[29] K. Mahajan, A. Balasubramanian, A. Singhvi,

S. Venkataraman, A. Akella, A. Phanishayee, and

S. Chawla, “Themis: Fair and efficient GPU cluster

scheduling,” in USENIX NSDI, 2020.

[30] R. Liaw, R. Bhardwaj, L. Dunlap, Y. Zou, J. E. Gonza-

lez, I. Stoica, and A. Tumanov, “HyperSched: Dynamic

resource reallocation for model development on a dead-

line,” in ACM Symposium on Cloud Computing, 2019.

[31] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter,

S. Maleki, M. Musuvathi, and T. Mytkowicz, “CHET:

An optimizing compiler for fully-homomorphic neural-

network inferencing,” in ACM Conference on Program-

ming Language Design and Implementation, 2019.

[32] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,

M. Cowan, L. Wang, Y. Hu, L. Ceze, et al., “TVM:

An automated end-to-end optimizing compiler for deep

learning,” in USENIX OSDI, 2018.

[33] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen,

M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al.,

“Gpipe: Efficient training of giant neural networks using

pipeline parallelism,” in Advances in Neural Informa-

tion Processing Systems, 2019.

[34] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin,

N. Devanur, and I. Stoica, “Blink: Fast and generic col-

lectives for distributed ML,” in Conference on Machine

Learning and Systems, 2020.

[35] “NVIDIA Collective Communications Library (NCCL).”

https://developer.nvidia.com/nccl.

[36] J. Liu, J. Wu, and D. K. Panda, “High performance

RDMA-based MPI implementation over infiniband,” Int.

J. Parallel Program., vol. 32, 2004.

[37] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gib-

bons, G. A. Gibson, G. Ganger, and E. P. Xing, “More

effective distributed ML via a stale synchronous parallel

parameter server,” in Advances in Neural Information

Processing Systems, 2013.

[38] A. A. Awan, C.-H. Chu, H. Subramoni, and D. K. Panda,

“Optimized broadcast for deep learning workloads on

dense-GPU infiniband clusters: MPI or NCCL?,” in Pro-

ceedings of the 25th European MPI Users’ Group Meet-

ing, 2018.

[39] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Am-

atya, “GossipGraD: Scalable deep learning using gossip

communication based asynchronous gradient descent,”

CoRR, vol. abs/1803.05880, 2018.

[40] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,

Z. Hu, J. Wei, P. Xie, and E. P. Xing, “Poseidon: An ef-

ficient communication architecture for distributed deep

learning on GPU clusters,” in USENIX ATC, 2017.

[41] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and

X. Jin, “Is network the bottleneck of distributed train-

ing?,” in ACM SIGCOMM Workshop on Network Meets

AI & ML (NetAI), August 2020.

[42] Y. Chen, Z. Liu, B. Ren, and X. Jin, “On efficient con-

structions of checkpoints,” in International Conference

on Machine Learning (ICML), July 2020.

[43] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and

S. W. Keckler, “vDNN: Virtualized deep neural net-

works for scalable, memory-efficient neural network de-

sign,” in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2016.

[44] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing

deep learning beyond the GPU memory limit via smart

swapping,” in ACM ASPLOS, 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 513

https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces
https://pytorch.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://developer.nvidia.com/nccl

[45] “Kubernetes.” https://kubernetes.io/.

[46] “NVIDIA Container Runtime for Docker.” https://

github.com/NVIDIA/nvidia-docker.

[47] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,

A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica,

“Mesos: A platform for fine-grained resource sharing in

the data center.,” in USENIX NSDI, 2011.

[48] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,

et al., “Apache Hadoop YARN: Yet another resource

negotiator,” in ACM Symposium on Cloud Computing,

2013.

[49] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A

GPGPU transparent virtualization component for high

performance computing clouds,” in European Confer-

ence on Parallel Processing, 2010.

[50] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,

N. Tolia, V. Talwar, and P. Ranganathan, “GViM: GPU-

accelerated virtual machines,” in Proceedings of the 3rd

ACM Workshop on System-level Virtualization for High

Performance Computing, 2009.

[51] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.

Quintana-Ortí, “rCUDA: Reducing the number of GPU-

based accelerators in high performance clusters,” in

2010 International Conference on High Performance

Computing & Simulation, 2010.

[52] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar,

“Supporting GPU sharing in cloud environments with a

transparent runtime consolidation framework,” in Pro-

ceedings of the 20th international symposium on High

performance distributed computing, 2011.

[53] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-

accelerated high-performance computing in virtual ma-

chines,” IEEE Transactions on Computers, vol. 61,

2011.

[54] “TensorFlow XLA.” https://www.tensorflow.org/

xla/.

[55] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,

T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “MXNet:

A flexible and efficient machine learning library for

heterogeneous distributed systems,” arXiv preprint

arXiv:1512.01274, 2015.

[56] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-

grained resource sharing for concurrent GPGPU kernels,”

in Presented as part of the 4th USENIX Workshop on

Hot Topics in Parallelism, 2012.

[57] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Im-

proving GPGPU concurrency with elastic kernels,” ACM

SIGARCH Computer Architecture News, vol. 41, 2013.

[58] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia,

and A. Aiken, “TASO: optimizing deep learning compu-

tation with automatic generation of graph substitutions,”

in ACM SOSP, 2019.

514 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://kubernetes.io/
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://www.tensorflow.org/xla/
https://www.tensorflow.org/xla/

	Introduction
	Motivation
	GPU Clusters
	Fine-Grained Time-Sharing GPU

	PipeSwitch Overview
	PipeSwitch Design
	Profiling Task Switching Overhead
	Pipelined Model Transmission
	Unified Memory Management
	Active-Standby Worker Switching
	Discussion

	Implementation
	Evaluation
	End-to-End Experiments
	Pipelined Model Transmission
	Unified Memory Management
	Active-Standby Worker Switching

	Related Work
	Conclusion

