
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Pocket: Elastic Ephemeral Storage
for Serverless Analytics

Ana Klimovic and Yawen Wang, Stanford University; Patrick Stuedi, Animesh Trivedi,
and Jonas Pfefferle, IBM Research; Christos Kozyrakis, Stanford University

https://www.usenix.org/conference/osdi18/presentation/klimovic

Pocket: Elastic Ephemeral Storage for Serverless Analytics

Ana Klimovic1 Yawen Wang1 Patrick Stuedi 2

Animesh Trivedi2 Jonas Pfefferle2 Christos Kozyrakis1

1 Stanford University 2 IBM Research

Abstract
Serverless computing is becoming increasingly popu-
lar, enabling users to quickly launch thousands of short-
lived tasks in the cloud with high elasticity and fine-
grain billing. These properties make serverless comput-
ing appealing for interactive data analytics. However
exchanging intermediate data between execution stages
in an analytics job is a key challenge as direct commu-
nication between serverless tasks is difficult. The nat-
ural approach is to store such ephemeral data in a re-
mote data store. However, existing storage systems are
not designed to meet the demands of serverless applica-
tions in terms of elasticity, performance, and cost. We
present Pocket, an elastic, distributed data store that au-
tomatically scales to provide applications with desired
performance at low cost. Pocket dynamically rightsizes
resources across multiple dimensions (CPU cores, net-
work bandwidth, storage capacity) and leverages multi-
ple storage technologies to minimize cost while ensuring
applications are not bottlenecked on I/O. We show that
Pocket achieves similar performance to ElastiCache Re-
dis for serverless analytics applications while reducing
cost by almost 60%.

1 Introduction

Serverless computing is becoming an increasingly popu-
lar cloud service due to its high elasticity and fine-grain
billing. Serverless platforms like AWS Lambda, Google
Cloud Functions, and Azure Functions enable users to
quickly launch thousands of light-weight tasks, as op-
posed to entire virtual machines. The number of server-
less tasks scales automatically based on application de-
mands and users are charged only for the resources their
tasks consume, at millisecond granularity [17, 36, 56].

While serverless platforms were originally developed
for web microservices and IoT applications, their elas-
ticity and billing advantages make them appealing for
data intensive applications such as interactive analytics.
Several recent frameworks launch large numbers of fine-
grain tasks on serverless platforms to exploit all avail-

Pareto frontier

Figure 1: Example of performance-cost trade-off for
a serverless video analytics job using different storage
technologies and VM types in Amazon EC2

able parallelism in an analytics job and achieve near real-
time performance [32, 45, 27]. In contrast to traditional
serverless applications that consist of a single function
executed when a new request arrives, analytics jobs typ-
ically consist of multiple stages and require sharing of
state and data across stages of tasks (e.g., data shuffling).

Most analytics frameworks (e.g., Spark) implement
data sharing with a long-running framework agent on
each node buffering intermediate data in local stor-
age [78]. This enables tasks from different execution
stages to directly exchange intermediate data over the
network. However, in serverless deployments, there is
no long-running application framework agent to manage
local storage. Furthermore, serverless applications have
no control over task scheduling or placement, making di-
rect communication among tasks difficult. As a result of
these limitations, the natural approach for data sharing in
serverless applications is to use a remote storage service.
For instance, early frameworks for serverless analytics
either use object stores (e.g., S3 [16]), databases (e.g.,
CouchDB [1]) or distributed caches (e.g., Redis [51]).

Unfortunately, existing storage services are not a good
fit for sharing short-lived intermediate data in server-
less applications. We refer to the intermediate data as

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 427

ephemeral data to distinguish it from input and out-
put data which requires long-term storage. File sys-
tems, object stores and NoSQL databases prioritize pro-
viding durable, long-term, and highly-available storage
rather than optimizing for performance and cost. Dis-
tributed key-value stores offer good performance, but
burden users with managing the storage cluster scale and
configuration, which includes selecting the appropriate
compute, storage and network resources to provision.

The availability of different storage technologies (e.g.,
DRAM, NVM, Flash, and HDD) increases the complex-
ity of finding the best cluster configuration for perfor-
mance and cost. However, the choice of storage tech-
nology is critical since jobs may exhibit different stor-
age latency, bandwidth and capacity requirements while
different storage technologies vary significantly in terms
of their performance characteristics and cost [48]. As
an example, Figure 1 plots the performance-cost trade-
off for a serverless video analytics application using a
distributed ephemeral data store configured with differ-
ent storage technologies, number of nodes, compute re-
sources per node, and network bandwidth (see §6.1 for
our AWS experiment setup). Each resource configura-
tion leads to different performance and cost. Finding
Pareto efficient storage allocations for a job is non-trivial
and gets more complicated with multiple jobs.

We present Pocket, a distributed data store designed
for efficient data sharing in serverless analytics. Pocket
offers high throughput and low latency for arbitrary size
data sets, automatic resource scaling, and intelligent data
placement across multiple storage tiers such as DRAM,
Flash, and disk. The unique properties of Pocket result
from a strict separation of responsibilities across three
planes: a control plane which determines data placement
policies for jobs, a metadata plane which manages dis-
tributed data placement, and a ‘dumb’ (i.e., metadata-
oblivious) data plane responsible for storing data. Pocket
scales all three planes independently at fine resource and
time granularity based on the current load. Pocket uses
heuristics, which take into account job characteristics, to
allocate the right storage media, capacity, bandwidth and
CPU resources for cost and performance efficiency. The
storage API exposes deliberately simple I/O operations
for sub-millisecond access latency. We intend for Pocket
to be managed by cloud providers and offered to users
with a pay-what-you-use cost model.

We deploy Pocket on Amazon EC2 and evaluate the
system using using three serverless analytics workloads:
video analytics, MapReduce sort, and distributed source
code compilation. We show that Pocket is capable
of rightsizing the type and number of resources such
that jobs achieve similar performance compared to us-
ing ElastiCache Redis, a DRAM-based key-value store,
while saving almost 60% in cost.

In summary, our contributions are as follows:

• We identify the key characteristics of ephemeral
data in serverless analytics and synthesize require-
ments for storage platforms used to share such data
among serverless tasks.

• We introduce Pocket, a distributed data store whose
control, metadata and data planes are designed
for sub-second response times, automatic resource
scaling and intelligent data placement across stor-
age tiers. To our knowledge, Pocket is the first plat-
form targeting data sharing in serverless analytics.

• We show that Pocket’s data plane delivers sub-
millisecond latency and scalable bandwidth while
the control plane rightsizes resources based on the
number of jobs and their attributes. For a video an-
alytics job, Pocket reduces the average time server-
less tasks spend on ephemeral I/O by up to 4.1×
compared to S3 and achieves similar performance
to ElastiCache Redis while saving 59% in cost.

Pocket is open-source software. The code is available
at: https://github.com/stanford-mast/pocket.

2 Storage for Serverless Analytics

Early work in serverless analytics has identified the chal-
lenge of storing and exchanging data between hundreds
of fine-grain, short-lived tasks [45, 32]. We build on our
study of ephemeral storage requirements for serverless
analytics applications [49] to synthesize essential prop-
erties for an ephemeral data storage solution. We also
discuss why current systems are not able to meet the
ephemeral I/O demands of serverless analytics applica-
tions. Our focus is on ephemeral data as the original in-
put and final output data of analytics jobs typically has
long-term availability and durability requirements that
are well served by the variety of file systems, object
stores, and databases available in the cloud.

2.1 Ephemeral Storage Requirements
High performance for a wide range of object sizes:
Serverless analytics applications vary considerably in the
way they store, distribute, and process data. This diver-
sity is reflected in the granularity of ephemeral data that
is generated during a job. Figure 2 shows the ephemeral
object size distribution for a distributed lambda compi-
lation of the cmake program, a serverless video analyt-
ics job using the Thousand Island (THIS) video scan-
ner [63], and a 100 GB MapReduce sort job on lamb-
das. The key observation is that ephemeral data ac-
cess granularity varies greatly in size, ranging from hun-
dreds of bytes to hundreds of megabytes. We observe a

428 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/stanford-mast/pocket

101 102 103 104 105 106 107 108

Ephemeral Object Size (bytes)
0.0

0.2

0.4

0.6

0.8

1.0
CD

F
λ-cc cmake
video analytics
sort100GB

Figure 2: Objects are 100s of bytes to 100s of MBs.

straight line for sorting as its ephemeral data size is equal
to the partition size. However, with a different dataset
size and/or number of workers, the location of the line
changes. Applications that read/write large objects de-
mand high throughput (e.g., we find that sorting 100 GB
with 500 lambdas requires up to 7.5 GB/s of ephemeral
storage throughput) while low latency is important for
small object accesses. Thus, an ephemeral data store
must deliver high bandwidth, low latency, and high IOPS
for the entire range of object sizes.

Automatic and fine-grain scaling: One of the key
promises of serverless computing is agility to dynam-
ically meet application demands. Serverless frame-
works can launch thousands of short-lived tasks instan-
taneously. Thus, an ephemeral data store for serverless
applications can observe a storm of I/O requests within a
fraction of a second. Once the load dissipates, the stor-
age (just like the compute) resources should be scaled
down for cost efficiency. Scaling up or down to meet
elastic application demands requires a storage solution
capable of growing and shrinking in multiple resource
dimensions (e.g., adding/removing storage capacity and
bandwidth, network bandwidth, and CPU cores) at a fine
time granularity on the order of seconds. In addition,
users of serverless platforms desire a storage service that
automatically manages resources and charges users only
for the fine-grain resources their jobs actually consume,
so as to match the abstraction that serverless comput-
ing already provides for compute and memory resources.
Automatic resource management is important since nav-
igating cluster configuration performance-cost trade-offs
is a burden for users. For example, finding the Pareto
optimal point outlined in Figure 1 is non-trivial; it is the
point beyond which adding resources only increases cost
without improving execution time while using any lower-
cost resource allocation results in sub-optimal execution
time. In summary, an ephemeral data store must auto-
matically rightsize resources to satisfy application I/O
requirements while minimizing cost.

Storage technology awareness: In addition to right-
sizing cluster resources, the storage system also needs to
decide which storage technology to use for which data.

0 20 40 60 80 100
Ephemeral Object Lifetime (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

λ-cc cmake
video-analytics
sort 100 GB

Figure 3: Objects have short lifetime.

The variety of storage media available in the cloud al-
low for different performance-cost trade-offs, as shown
in Figure 1. Each storage technology differs in terms of
I/O latency, throughput and IOPS per GB of capacity,
and the cost per GB. The optimal choice of storage me-
dia for a job depends on its characteristics. Hence, the
ephemeral data store must place application data on the
right storage technology tier(s) for performance and cost
efficiency.

Fault-(in)tolerance: Typically a data store must deal
with failures while keeping the service up and run-
ning. Hence, it is common for storage systems to use
fault-tolerance techniques such as replication and era-
sure codes [42, 66, 46]. For data that needs to be stored
long-term, such as the original input and final output data
for analytics workloads, the cost of data unavailability
typically outweighs the cost of fault-tolerance mecha-
nisms. However, as shown in Figure 3, ephemeral data
has a short lifetime of 10-100s of seconds. Unlike the
original input and final output data, ephemeral data is
only valuable during the execution of a job and can eas-
ily be regenerated. Furthermore, fault tolerance is typi-
cally baked into compute frameworks, such that storing
the data and computing it become interchangeable [39].
For example, Spark uses a data abstraction called re-
silient distributed datasets (RDDs) to mitigate stragglers
and track lineage information for fast data recovery [78].
Hence, we argue that an ephemeral storage solution does
not have to provide high fault-tolerance as expected of
traditional storage systems.

2.2 Existing Systems

Existing storage systems do not satisfy the combination
of requirements outlined in § 2.1. We describe different
categories of systems and summarize why they fall short
for elastic ephemeral storage in Table 1.

Severless applications commonly use fully-managed
cloud storage services, such as Amazon S3, Google
Cloud Storage, and DynamoDB. These systems extend
the ‘serverless’ abstraction to storage, charging users
only for the capacity and bandwidth they use [16, 28].

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 429

Elastic scaling Latency Throughput Max object size Cost
S3 Auto,

coarse-grain
High Medium 5 TB $

DynamoDB Auto, fine-grain,
pay per hour

Medium Low 400 KB $$

Elasticache
Redis

Manual Low High 512 MB $$$

Aerospike Manual Low High 1 MB $$
Apache Crail Manual Low High any size $$
Desired for λ s Auto, fine-grain,

pay per second
Low High any size $

Table 1: Comparison of existing storage systems and desired properties for ephemeral storage in serverless analytics.

While such services automatically scale resources based
on usage, they are optimized for high durability hence
their agility is limited and they do not meet the perfor-
mance requirements of serverless analytics applications.
For example, S3 has high latency overhead (e.g., a 1
KB read takes ∼12 ms) and insufficient throughput for
highly parallel applications. For example, sorting 100
GB with 500 or more workers results in request rate limit
errors when S3 is used for intermediate data.

In-memory key-value stores, such as Redis and Mem-
cached, provide another option for storing ephemeral
data [51, 8]. These systems offer low latency and high
throughput but at the higher cost of DRAM. They also
require users to manage their own storage instances and
manually scale resources. Although Amazon and Azure
offer managed Redis clusters through their ElastiCache
and Redis Cache services respectively, they do not au-
tomate storage management as desired by serverless ap-
plications [13, 57]. Users must still select instance types
with the appropriate memory, compute and network re-
sources to match their application requirements. In addi-
tion, changing instance types or adding/removing nodes
can require tearing down and restarting clusters, with
nodes taking minutes to start up while the service is
billed for hourly usage.

Another category of systems use Flash storage to de-
crease cost, while still offering good performance. For
example, Aerospike is a popular Flash-based NoSQL
database [69]. Alluxio/Tachyon is designed to enable
fast and fault-tolerant data sharing between multiple
jobs [53]. Apache Crail is a distributed storage system
that uses multiple media tiers to balance performance and
cost [2]. Unfortunately, users must manually configure
and scale their storage cluster resources to adapt to elas-
tic job I/O requirements. Finding Pareto optimal deploy-
ments for performance and cost efficiency is non-trivial,
as illustrated for a single job in Figure 1. Cluster con-
figuration becomes even more complex when taking into
account the requirements of multiple overlapping jobs.

3 Pocket Design

We introduce Pocket, an elastic distributed storage ser-
vice for ephemeral data that automatically and dynam-
ically rightsizes storage cluster resource allocations to
provide high I/O performance while minimizing cost.
Pocket addresses the requirements outlined in §2.1 by
applying the following key design principles:

1. Separation of responsibilities: Pocket divides re-
sponsibilities across three different planes: the con-
trol plane, the metadata plane, and the data plane.
The control plane manages cluster sizing and data
placement. The metadata plane tracks the data
stored across nodes in the data plane. The three
planes can be scaled independently based on vari-
ations in load, as described in §4.2.

2. Sub-second response time: All I/O operations are
deliberately simple, targeting sub-millisecond la-
tencies. Pocket’s storage servers are optimized for
fast I/O and are only responsible for storing data
(not metadata), making them simple to scale up or
down. The controller scales resources at second
granularity and balances load by intelligently steer-
ing incoming job data. This makes Pocket elastic.

3. Multi-tier storage: Pocket leverages different stor-
age media (DRAM, Flash, disk) to store a job’s data
in the tier(s) that satisfy the I/O demands of the ap-
plication while minimizing cost (see §4.1).

3.1 System Architecture
Figure 4 shows Pocket’s system architecture. The system
consists of a logically centralized controller, one or more
metadata servers, and multiple data plane storage servers.

The controller, which we describe in §4, allocates stor-
age resources for jobs and dynamically scales Pocket
metadata and storage nodes up and down as the number

430 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of jobs and their requirements vary over time. The con-
troller also makes data placement decisions for jobs (i.e.,
which nodes and storage media to use for a job’s data).

Metadata servers enforce coarse-grain data placement
policies generated by the controller by steering client re-
quests to appropriate storage servers. Pocket’s metadata
plane manages data at the granularity of blocks, whose
size is configurable. We use a 64 KB block size in our
deployment. Objects larger than the block size are di-
vided into blocks and distributed across storage servers,
enabling Pocket to support arbitrary object sizes. Clients
access data blocks on metadata-oblivious, performance-
optimized storage servers equipped with different stor-
age media (DRAM, Flash, and/or HDD).

3.2 Application Interface

Table 2 outlines Pocket’s application interface. Pocket
exposes an object store API with additional functions tai-
lored to the ephemeral storage use-case. We describe
these functions and how they map to Pocket’s separate
control, metadata and data planes.

Control functions: Applications use two API calls,
register job and deregister job, to interact with
the Pocket controller. The register job call accepts
hints about a job’s characteristics (e.g., degree of par-
allelism, latency-sensitivity) and requirements (e.g., ca-
pacity, throughput). These optional hints help the con-
troller rightsize resource allocations to optimize perfor-
mance and cost (see §4.1). The register job call re-
turns a job identifier and the metadata server(s) assigned
for managing the job’s data. The deregister job call
notifies the controller that a serverless job has completed.

Metadata functions: While control API calls are is-
sued once per job, serverless tasks in a job can inter-
act with Pocket metadata servers multiple times during
their lifetime to write and read ephemeral data. Server-
less clients use the connect call to establish a connec-
tion with Pocket’s metadata service. Data in Pocket is
stored in objects which are organized in buckets. Ob-
jects and buckets are identified using names (strings).
Clients can create and delete buckets and enumerate ob-
jects in buckets by passing their job identifier and the
bucket name. Clients can also lookup and delete existing
objects. These metadata operations are similar to those
supported by other object stores like Amazon S3.

In our current design, Pocket stores all of a job’s data
in a top-level bucket identified by the job’s ID, which
is created during job registration by the controller. This
implies each job is assigned to a single metadata server,
since a bucket is only managed by one metadata server, to
simplify consistency management. However, a job is not
fundamentally limited to one metadata server. In general,
jobs can create multiple top-level buckets which hash to

Storage server

Namenode(s)
route requests

Controller
app-driven resource
allocation & scaling

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ
λ λ λ λ

Job C
λ λ λ λ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ

CPU
Net

HDD

Storage server
CPU
Net

Flash

Storage server
CPU
Net

DRAM

Storage server
CPU
Net

DRAM

Metadata server(s)
request routing

1. 2. 3.

PUT ‘x’
i. Register job

ii. Allocate & assign
resources for job

iii. De-register job

Figure 4: Pocket system architecture and the steps to reg-
ister job C, issue a PUT from a lambda and de-register
the job. The colored bars on storage servers show used
and allocated resources for all jobs in the cluster.

different metadata servers. In §6.2 we show that a sin-
gle metadata server in our deployment supports 175K re-
quests per second, which for the applications we study is
sufficient to support jobs with thousands of lambdas.

Storage functions: Clients put and get data to/from
objects at a byte granularity. Clients provide their job
identifier for all operations. Put and get operations first
involve a metadata lookup. Pocket enhances the basic
put and get object store API calls by accepting an op-
tional data lifetime management hint for these two calls.
Since ephemeral data is usually only valuable during the
execution of a job, Pockets default coarse-grained be-
havior is to delete a job’s data when the job deregisters.
However, applications can set flags to override the de-
fault deletion policy for particular objects.

If a client issues a put with the PERSIST flag set to
true, the object will persist after the job completes. The
object is stored on long-running Pocket storage nodes
(see §4.2) and will remain in Pocket until it is explicitly
deleted or a (configurable) timeout period has elapsed.
The ability to persist objects beyond the duration of a
job is useful for piping data between jobs. If a client is-
sues a get with the DELETE flag set to true, the object
will be deleted as soon as it is read, allowing for more
efficient garbage collection. Our analysis of ephemeral
I/O characteristics for serverless analytics applications
reveals that ephemeral data is often written and read only
once. For example, a mapper writes an intermediate ob-
ject destined to a particular reducer. Such data can be
deleted as soon as it is consumed instead of waiting for
the job to complete and deregister.

3.3 Life of a Pocket Application

We now walk through the life of a serverless analytics
application using Pocket. Before launching lambdas, the
application first registers with the controller and option-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 431

Client API Function Description
register job(jobname, hints=None) register job with controller and provide optional hints,

returns a job ID and metadata server IP address
deregister job(jobid) notify controller job has finished, delete job’s

non-PERSIST data
connect(metadata server address) open connection to metadata server
close() close connection to metadata server
create bucket(jobid, bucketname) create a bucket
delete bucket(jobid, bucketname) delete a bucket
enumerate(jobid, bucketname) enumerate objects in a bucket
lookup(jobid, obj name) return true if obj name data exists, else false
delete(jobid, obj name) delete data
put(jobid, src filename, obj name, PERSIST=false) write data, set PERSIST flag if want data to remain

after job finishes
get(jobid, dst filename, obj name, DELETE=false) read data, set DELETE true if data is only read once

Table 2: Main control, metadata, and storage functions exposed by Pocket’s client API.

ally provides hints about the job’s characteristics (step i
in Figure 4). The controller determines the storage tier
to use (DRAM, Flash, disk) and the number of storage
servers across which to distribute the job’s data to meet
its throughput and capacity requirements. The controller
generates a weight map, described in §4.1, to specify the
job’s data placement policy and sends this information
to the metadata server which it assigned for managing
the job’s metadata and steering client I/O requests (step
ii). If the controller needs to launch new storage servers
to satisfy a job’s resource allocation, the job registration
call stalls until these nodes are available.

When registration is complete, the job launches lamb-
das. Lambdas first connect to their assigned metadata
server, whose IP address is provided by the controller
upon job registration. Lambda clients write data by
first contacting the metadata server to get the IP address
and block address of the storage server to write data to.
For writes to large objects which span multiple blocks,
the client requests capacity allocation from the metadata
server in a streaming fashion; when the capacity of a sin-
gle block is exhausted, the client issues a new capacity
allocation request to the metadata server. Pocket’s client
library internally overlaps metadata RPCs for the next
block while writing data for the current block to avoid
stalls. Similarly, lambdas read data by first contacting the
metadata server in a similar fashion. Clients cache meta-
data in case they need to read an object multiple times.

When the last lambda in a job finishes, the job deregis-
ters the job to free up Pocket resources (step iii). Mean-
while, as jobs execute, the controller ontinuously moni-
tors resource utilization in storage and metadata servers
(the horizontal bars on storage servers in Figure 4) to ad-
d/remove servers as needed to minimize cost while pro-
viding high performance (see §4.2).

3.4 Handling Node Failures

Though Pocket is not designed to provide high data dura-
bility, the system has mechanisms in place to deal with
node failures. Storage servers send heartbeats to the con-
troller and metadata servers. When a storage server fails
to send heartbeats, metadata servers automatically mark
its blocks as invalid. As a result, client read operations
to data that was stored on the faulty storage server will
return a ‘data unavailable’ error. Pocket currently ex-
pects the application framework to re-launch serverless
tasks to regenerate lost ephemeral data. A common ap-
proach is for application frameworks to track data lin-
eage, which is the sequence of tasks that produces each
object [78, 39]. For metadata fault tolerance, Pocket sup-
ports logging of all metadata RPC operations on shared
storage. When a metadata server fails, its state can be re-
constructed by replaying the shared log. Controller fault
tolerance can be achieved through master-slave replica-
tion, though we do not evaluate this in our study.

4 Rightsizing Resource Allocations

Pocket’s control plane elastically and automatically
rightsizes cluster resources. When a job registers,
Pocket’s controller leverages optional hints passed
through the API to conservatively estimate the job’s la-
tency, throughput and capacity requirements and find a
cost-effective resource assignment, as described in §4.1.
In addition to rightsizing resource allocations for jobs
upfront, Pocket continuously monitors the cluster’s over-
all utilization and decides when and how to scale stor-
age and metadata nodes based on load. §4.2 describes
Pocket’s resource scaling mechanisms along with its data
steering policy to balance load.

432 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hint Impact on throughput T Impact on capacity C Impact on storage media
No hint (default policy) T = Tdefault

(T = 50× 8 Gb/s)
C =Cdefault

(C = 50× 1960 GB)
Fill storage tiers in order of
high to low performance
(DRAM first, then Flash)

Latency sensitivity - - If latency sensitive, use
default policy above.
Otherwise, choose the
storage tier with the lowest
cost for the estimated
throughput T and capacity C
required for the job.

Maximum number of
concurrent lambdas N

T = N× per-λ Gb/s limit
(T = N ×0.6 Gb/s)

C ∝ N× per-λ Gb/s limit
(C = N×0.6

8 Gb/s × 1960 GB)
Total ephemeral
data capacity D

T ∝ D
(T = D

1960GB ×8 Gb/s)
C = D

Peak aggregate bandwidth B T = B C ∝ B
(C = B

8 Gb/s ×1960GB)

Table 3: The impact that hints provided about the application have on Pocket’s resource allocation decisions for
throughput, capacity and the choice of storage media (with specific examples in parentheses for our AWS deployment
with i3.2xl instances, each with 8 cores, 60 GB DRAM, 1.9 TB Flash and ∼8 Gb/s network bandwidth).

4.1 Rightsizing Application Allocation

When a job registers, the controller first determines its
resource allocation across three dimensions: throughput,
capacity, and the choice of storage media. The controller
then uses an online bin-packing algorithm to translate the
resource allocation into a resource assignment on nodes.

Determining job I/O requirements: Pocket uses
heuristics that adapt to optional hints passed through the
register job API. Table 3 lists the hints that Pocket
supports and their impact on the throughput, capacity,
and choice of storage media allocated for a job, with ex-
amples (in parentheses) for our deployment on AWS.

Given no hints about a job, Pocket uses a default re-
source allocation that conservatively over-provisions re-
sources to achieve high performance, at high cost. In
our AWS deployment, this consists of 50 i3.2xl nodes,
providing DRAM and NVMe Flash storage with 50 GB/s
aggregate throughput. By default, Pocket conservatively
assumes that a job is latency sensitive. Hence, Pocket
fills the job’s DRAM resources before spilling to other
storage tiers, in order of increasing storage latency. If a
job hints that it is not sensitive to latency, the controller
does not allocate DRAM for the job and instead uses the
most cost-effective storage technology for the through-
put and capacity the controller estimates the job needs.

Knowing a job’s maximum number of concurrent
lambdas, N, allows Pocket to compute a less conserva-
tive estimate of the job’s throughput requirement. If this
hint is provided, Pocket allocates throughput equal to N
times the peak network bandwidth limit per lambda (e.g.,
∼600 Mb/s per lambda on AWS). N can be limited by
the job’s inherent parallelism or the cloud provider’s task
invocation limit (e.g., 1000 default on AWS).

Pocket’s API also accepts hints for the aggregate
throughput and capacity requirements of a job, which
override Pocket’s heuristic estimates. This informa-
tion can come from profiling. When Pocket receives a

throughput hint with no capacity hint, the controller allo-
cates capacity proportional to the job’s throughput allo-
cation. The proportion is set by the storage throughput to
capacity ratio on the VMs used (e.g., i3.2xl instances
in AWS provide 1.9 TB of capacity per ∼ 8 Gb/s of net-
work bandwidth). Vice versa, if only a capacity hint is
provided, Pocket allocates throughput based on the VM
capacity:throughput ratio. In the future, we plan to allow
jobs to specify their average per-lambda throughput and
capacity requirements, as these can be more meaningful
than aggregate throughput and capacity hints for a job
when the number of lambdas used is subject to change.

The hints in Table 3 can be specified by applica-
tion developers or provided by the application frame-
work. For example, the framework we use to run lambda-
distributed software compilation automatically infers and
synthesizes a job’s dependency graph [31]. Hence, this
framework can provide Pocket with hints about the job’s
maximum degree of parallelism, for instance.

Assigning resources: Pocket translates a job’s re-
source allocation into a resource assignment on specific
storage servers by generating a weight map for the job.
The weight map is an associative array mapping each
storage server (identified by its IP address and port) to
a weight from 0 to 1, which represents the fraction of a
job’s dataset to place on that storage server. If a storage
server is assigned a weight of 1 in a job’s weight map,
it will store all of the job’s data. The controller sends
the weight map to metadata servers, which enforce the
data placement policy by routing client requests to stor-
age servers using weighted random selection based on
the weights in the job’s weight map.

The weight map depends on the job’s resource re-
quirements and the available cluster resources. Pocket
uses an online bin-packing algorithm which first tries to
fit a job’s throughput, capacity and storage media allo-
cation on active storage servers and only launches new
servers if the job’s requirements cannot be satisfied by

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 433

sharing resources with other jobs [67]. If a job requires
more resources than are currently available, the con-
troller launches the necessary storage nodes while the
application waits for its job registration command to re-
turn. Nodes take a few seconds or minutes to launch,
depending on whether a new VM is required (§6.2).

4.2 Rightsizing the Storage Cluster

In addition to rightsizing the storage allocation for each
job, Pocket dynamically scales cluster resources to ac-
commodate elastic application load for multiple jobs
over time. At its core, the Pocket cluster consists of a
few long-running nodes used to run the controller, the
minimum number of metadata servers (one in our de-
ployment), and the minimum number of storage servers
(two in our deployment). In particular, data written with
the PERSIST flag described in §3.2, which has longer
lifetime, is always stored on long-running storage servers
in the cluster. Beyond these persistent resources, Pocket
scales resources on demand based on load. We first de-
scribe the mechanism for horizontal and vertical scaling
and then discuss the policy Pocket uses to balance cluster
load by carefully steering requests across servers.

Mechanisms: The controller monitors cluster re-
source utilization by processing heartbeats from storage
and metadata servers containing their CPU, network, and
storage media capacity usage. Nodes send statistics to
the controller every second. The interval is configurable.

When launching a new storage server, the controller
provides the IP addresses of all metadata servers that the
storage server must establish connections with to join the
cluster. The new storage server registers a portion of
its capacity with each of these metadata servers. Meta-
data servers independently manage their assigned capac-
ity and do not communicate with each other. Storage
servers periodically sends heartbeats to metadata servers.

To remove a storage server, the controller blacklists
the storage server by assigning it a zero weight in the
weight maps of incoming jobs. This ensures that meta-
data servers do not steer data from new jobs to this node.
The controller instructs a randomly selected metadata
server to set a ‘kill’ flag in the heartbeat responses of the
blacklisted storage server. The blacklisted storage server
waits until its capacity is entirely freed, as jobs termi-
nate and their ephemeral data are garbage collected. The
storage server then terminates and releases its resources.

When the controller launches a new metadata server,
the metadata server waits for new storage servers to also
be launched and register their capacity. To remove a
metadata server, the controller sends a ‘kill’ RPC to the
node. The metadata server waits for all the capacity it
manages to be freed, then notifies all connected storage
servers to close their connections. When all connections

close, the metadata server terminates. Storage servers
then register their capacity that was managed by the old
metadata server across new metadata servers.

In addition to horizontal scaling, the controller man-
ages vertical scaling. When the controller observes that
CPU utilization is high and additional cores are available
on a node, the controller instructs the node via a heart-
beat response to use additional CPU cores.

Cluster sizing policy: Pocket elastically scales the
cluster using a policy that aims to maintain overall uti-
lization for each resource type (CPU, network band-
width, and the capacity of each storage tier) within a tar-
get range. The target utilization range can be configured
separately for each resource type and managed sepa-
rately for metadata servers, long-running storage servers
(which store data written with the PERSIST flag set) and
regular storage servers. For our deployment, we use a
lower utilization threshold of 60% and a upper utiliza-
tion threshold of 80% for all resource dimensions, for
both the metadata and storage nodes. The range is em-
pirically tuned and depends on the time it takes to add/re-
move nodes. Pocket’s controller scales down the cluster
by removing a storage server if overall CPU, network
bandwidth and capacity utilization is below the lower
limit of the target range. In this case, Pocket removes
a storage server belonging to the tier with lowest capac-
ity utilization. Pocket adds a storage server if overall
CPU, network bandwidth or capacity utilization is above
the upper limit of the target range. To respond to CPU
load spikes or lulls, Pocket first tries to vertically scale
CPU resources on metadata and storage servers before
horizontally scaling the number of nodes.

Balancing load with data steering: To balance load
while dynamically sizing the cluster, Pocket leverages
the short-lived nature of ephemeral data and serverless
jobs. As ephemeral data objects only live for tens to
hundreds of seconds (see Figure 3), migrating this data
to re-distribute load when nodes are added or removed
has high overhead. Instead, Pocket focuses on steering
data for incoming jobs across active and new storage
servers joining the cluster. Pocket controls data steering
by assigning specific weights for storage servers in each
job’s weight map. To balance load, the controller assigns
higher weights to under-utilized storage servers.

The controller uses a similar approach, at a coarser
granularity, to balance load across metadata servers. As
noted in §3.2, the controller currently assigns each job
to one metadata server. The controller estimates the
load a job will impose on a metadata server based on
its throughput and capacity allocation. Combining this
estimate with metadata server resource utilization statis-
tics, the controller selects a metadata server to use for
an incoming job such that the predicted metadata server
resource utilization remains within the target range.

434 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Implementation

Controller: Pocket’s controller, implemented in Python,
leverages the Kubernetes container orchestration system
to launch and tear down metadata and storage servers,
running in separate Docker containers [7]. The controller
uses Kubernetes Operations (kops) to spin up and down
virtual machines that run containers [6]. As explained
in §4.2, Pocket rightsizes cluster resources to maintain a
target utilization range. We implement a resource moni-
toring daemon in Python which runs on each node, send-
ing CPU and network utilization statistics to the con-
troller every second. Metadata servers also send stor-
age tier capacity utilization statistics. We empirically
tune the target utilization range based on node startup
time. For example, we use a conservative target utiliza-
tion range when the controller needs to launch new VMs
compared to when VMs are running and the controller
simply launches containers.

Metadata management: We implement Pocket’s
metadata and storage server architecture on top of the
Apache Crail distributed data store [2, 71]. Crail is de-
signed for low latency, high throughput storage of arbi-
trarily sized data with low durability requirements. Crail
provides a unified namespace across a set of heteroge-
neous storage resources distributed in a cluster. Its mod-
ular architecture separates the data and metadata plane
and supports pluggable storage tier and RPC library im-
plementations. While Crail is originally designed for
RDMA networks, we implement a TCP-based RPC li-
brary for Pocket since RDMA is not readily available in
public clouds. Like Crail, Pocket’s metadata servers are
implemented in Java. Each metadata server logs its meta-
data operations to a file on a shared NFS mount point,
such that the log can be accessed and replayed by a new
metadata server in case a metadata server fails.

Storage tiers: We implement three different storage
tiers for Pocket. The first is a DRAM tier implemented
in Java, using NIO APIs to efficiently serve requests
from clients over TCP connections. The second tier uses
NVMe Flash storage. We implement Pocket’s NVMe
storage servers on top of ReFlex, a system that allows
clients (i.e., lambdas) to access Flash over commodity
Ethernet networks with high performance [47]. ReFlex
is implemented in C and leverages Intel’s DPDK [43]
and SPDK [44] libraries to directly access network and
NVMe device queues from userspace. ReFlex uses a
polling-based execution model to efficiently process net-
work storage requests over TCP. The system also uses
a quality of service (QoS) aware scheduler to manage
read/write interference on Flash and provide predictable
performance to clients. The third tier we implement is
a generic block storage tier that allows Pocket to use
any block storage device (e.g., HDD or SATA/SAS SSD)

Pocket
server

EC2
server

DRAM
(GB)

Storage
(TB)

Network
(Gb/s)

$ / hr

Controller m5.xl 16 0 ∼8 0.192
Metadata m5.xl 16 0 ∼8 0.192
DRAM r4.2xl 61 0 ∼8 0.532
NVMe i3.2xl 61 1.9 ∼8 0.624
SSD i2.2xl 61 1.6 . 2 1.7051

HDD h1.2xl 32 2 ∼8 0.468

Table 4: Type and cost of EC2 VMs used for Pocket

via a standard kernel device driver. Similar to ReFlex,
this tier is implemented in C and uses DPDK for effi-
cient, userspace networking. However, instead of using
SPDK to access NVMe Flash devices from userspace,
this tier uses the Linux libaio library to submit asyn-
chronous block storage requests to a kernel block device
driver. Leveraging userspace APIs for the Pocket NVMe
and generic block device tiers allows us to increase per-
formance and resource efficiency. For example, ReFlex
can process up to 11× more requests per core than a con-
ventional Linux network-storage stack [47].

Client library: Since the serverless applications we
use are written in Python, we implement Pocket’s ap-
plication interface (Table 2) as a Python client library.
The core of the library is implemented in C++ to opti-
mize performance. We use Boost to wrap the code into
a Python library. The library internally manages TCP
connections with metadata and storage servers.

6 Evaluation

6.1 Methodology
We deploy Pocket on Amazon Web Service (AWS). We
use EC2 instances to run Pocket storage, metadata, and
controller nodes. We use four different kinds of storage
media: DRAM, NVMe-based Flash, SATA/SAS-based
Flash (which we refer to as SSD), and HDD. DRAM
servers run on r4.2xl instances, NVMe Flash servers
run on i3.2xl instances, SSD servers run on i2.2xl in-
stances, and HDD servers run on h1.2xl instances. We
choose the instance families based on their local storage
media, shown in Table 4. We choose the VM size to pro-
vide a good balance of network bandwidth and storage
capacity for the serverless applications we study.

We run Pocket storage and metadata servers as con-
tainers on EC2 VMs, orchestrated with Kubernetes v1.9.
We use AWS Lambda as our serverless computing plat-
form. We enable lambdas to access Pocket EC2 nodes by
deploying them in the same virtual private cloud (VPC).

1The cost of the i2 instance is particularly high since it is an old
generation instance that is being phased out by AWS and replaced by
the newer generation i3 instances with NVMe Flash devices.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 435

We configure lambdas with 3 GB of memory. Ama-
zon allocates lambda compute resources proportional to
memory resources [18]. We compare Pocket’s perfor-
mance and cost-efficiency to ElastiCache Redis (cluster-
mode enabled) and Amazon S3 [13, 51, 16]. We present
results from experiments conducted in April 2018.

We study three different serverless analytics applica-
tions, described below. The applications differ in their
degree of parallelism, ephemeral object size distribution
(Figure 2), and throughput requirements.

Video analytics: We use the Thousand Island Scanner
(THIS) for distributed video processing [63]. Lambdas
in the first stage read compressed video frame batches,
decode, and write the decoded frames to ephemeral stor-
age. Each lambda fetches a 250 MB decoder executable
from S3 as it does not fit in the AWS Lambda deploy-
ment package. Each first stage lambda then launches
second stage lambdas, which read decoded frames from
ephemeral storage, compute a MXNET deep learning
classification algorithm and output an object detection
result. We use a 25 minute video with 40K 1080p frames.
We tune the batch size for each stage to minimize the
job’s end-to-end execution time; the first stage consists
of 160 lambdas while the second has 305 lambdas.

MapReduce Sort: We implement a MapReduce sort
application on AWS Lambda, similar to PyWren [45].
Map lambdas fetch input files from long-term storage
(we use S3) and write intermediate files to ephemeral
storage. Reduce lambdas merge and sort intermediate
data and upload output files to long-term storage. We
run a 100 GB sort, which generates 100 GB of ephemeral
data. We run the job with 250, 500, and 1000 lambdas.

Distributed software compilation (λ -cc): We use
gg to infer software build dependency trees and in-
voke lambdas to compile source code with high par-
allelism [4, 31]. Each lambda fetches its dependen-
cies from ephemeral storage, computes (i.e., compiles,
archives or links), and writes its output to ephemeral stor-
age, including the final executable for the user to down-
load. We present results for compiling the cmake project
source code. This build job has a maximum inherent par-
allelism of 650 tasks and generates a total of 850 MB
ephemeral data. Object size ranges from 10s of bytes to
MBs, as shown in Figure 2.

6.2 Microbenchmarks

Storage request latency: Figure 5 compares the 1
KB request latency of S3, Redis, and various Pocket
storage tiers measured from a lambda client. Pocket-
DRAM, Pocket-NVMe and Redis latency is below 540
µs, which is over 45× faster than S3. The latency of
the Pocket-SSD and Pocket-HDD tiers is higher due to
higher storage media access times. Pocket-HDD get

10000

20000

30000

La
te

nc
y

(u
s) 25819

232 437 539 604 712

 12102

230 317 422 516
1975

PUT
GET

S3 Redis Pocket
DRAM

Pocket
NVMe

Pocket
SSD

Pocket
HDD

0

1000

2000

25819

232
437 539 604 712

12102

230 317 422 516

1975

Figure 5: Unloaded latency for 1KB access from lambda

1 2 3 4 5 6
Number of nodes

0

1

2

3

4

5

Cu
m

ul
at

iv
e

Th
ro

ug
hp

ut
 (G

B/
s) S3

Redis
Pocket-DRAM
Pocket-NVMe
Pocket-SSD-i2.2xl
Pocket-SSD-i2-8xl
Pocket-HDD

Figure 6: Total GB/s for 1MB requests from 100 lambdas

latency is higher than put latency since lambdas issue
random reads while writes are sequential; the metadata
server routes writes to sequential logical block addresses.
Pocket-DRAM has higher latency than Redis mainly due
to the metadata lookup RPC, which takes 140 µs. While
Redis cluster clients simply hash keys to Redis nodes,
Pocket clients must contact a metadata server. While this
extra RPC increases request latency, it allows Pocket to
optimize data placement per job and dynamically scale
the cluster without redistributing data across nodes.

Storage request throughput: We measure the get

throughput of S3, Redis (cache.r4.2xl) and various
Pocket storage tiers by issuing 1 MB requests from 100
concurrent lambdas. In Figure 6, we sweep the num-
ber of nodes in the Redis and Pocket clusters and com-
pare the cumulative throughput to that achieved with
S3. Pocket-DRAM, Pocket-NVMe and Redis all achieve
similar throughput. With a single node, the bottle-
neck is the 1 GB/s VM network bandwidth. With two
nodes, Pocket’s DRAM and NVMe tiers achieve higher
throughput than S3. Pocket’s SSD and HDD tiers have
significantly lower throughput. The HDD tier is limited
by the 40 MB/s random access bandwidth of the disk on
each node. The SSD tier is limited by poor network-
ing (less than ∼2 Gb/s) on the old generation i2.2xl

instances. Hence, we also plot the throughput using
i2.8xl instances which have 10 Gb/s networking. The

436 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Metadata Server DRAM Server NVMe Server0

50

100

150

200

250
Ti

m
e

(s
)

VM Startup
Container Image Pull
Container Startup
Datanode Registration

Figure 7: Node startup time breakdown

bottleneck becomes the 500 MB/s throughput limit of the
SATA/SAS SSD.

We focus the rest of our evaluation of Pocket on the
DRAM and NVMe Flash tiers as they demand the high-
est data plane software efficiency due to the technology’s
low latency and high throughput. We also find that in our
AWS deployment, the DRAM and NVMe tiers offer sig-
nificantly higher performance-cost efficiency compared
to the HDD and SSD tiers. For example, NVMe Flash
servers, which run on on i3.2xl instances, provide 1
GB/s per 1900 GB capacity at a cost of $0.624/hour.
Meanwhile, HDD servers, which run on h1.2xl in-
stances, provide only 40 MB/s per 2000 GB capacity at
a cost of $0.468/hour. Thus, the NVMe tier offers 19.7×
higher throughput per GB per dollar.

Metadata throughput: We measure the number of
metadata operations that a metadata server can handle
per second. A single core metadata server on the m5.xl
instance supports up to 90K operations per second and
up to 175K operations per second with four cores. The
peak metadata request rate we observe for the serverless
analytics applications we study is 75 operations per sec-
ond per lambda. Hence, a multi-core metadata server can
support jobs with thousands of lambdas.

Adding/removing servers: Since Pocket runs in con-
tainers on EC2 nodes, we measure the time it takes to
launch a VM, pull the container image, and launch the
container. Pocket storage servers must also register their
storage capacity with metadata servers to join the cluster.
Figure 7 shows the time breakdown. VM launch time
varies across EC2 instance types. The container image
for the metadata server and DRAM server has a com-
pressed size of 249 MB while the Pocket-NVMe com-
pressed container image is 540 MB due to dependencies
for DPDK and SPDK to run ReFlex. The image pull
time depends on the VM’s network bandwidth. The VM
launch time and container image pull time only need to
be done once when the VM is first started. Once the VM
is warm, meaning the image is available locally, starting
and stopping containers takes only a few seconds. The
time to terminate a VM is tens of seconds.

Sort Video Analytics λ-cc0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Re

so
ur

ce
 C

os
t

($
/h

r)

No Knowledge
Num Lambdas

Latency Sensitivity
Data Capacity + Peak Throughput

Figure 8: Pocket leverages cumulative hints about job
characteristics to allocate resources cost-efficiently.

6.3 Rightsizing Resource Allocations

We now evaluate Pocket with the three different server-
less applications described in §6.1.

Rightsizing with application hints: Figure 8 shows
how Pocket leverages user hints to make cost-effective
resource allocations, assuming each hint is provided in
addition to the previous ones. With no knowledge of ap-
plication requirements, Pocket defaults to a policy that
spreads data for a job across a default allocation of 50
nodes, filling DRAM first, then Flash. With knowledge
of the maximum number of concurrent lambdas (250,
160, and 650 for the sort, video analytics and λ -cc jobs,
respectively), Pocket allocates lower aggregate through-
put than the default allocation while maintaining simi-
lar job execution time (within 4% of the execution time
achieved with the default allocation). Furthermore, these
jobs are not sensitive to latency; the sort job and the
first stage of the video analytics job are throughput in-
tensive while λ -cc and the second stage of the video
analytics job are compute limited. The orange bars in
Figure 8 show the cost savings of using NVMe Flash as
opposed to DRAM when the latency insensitivity hint is
provided for these jobs. The green bar shows the rela-
tive resource allocation cost when applications provide
explicit hints for their capacity and peak throughput re-
quirements; such hints can be obtained from a profiling
run. Across all scenarios, each job’s execution time re-
mains within 4% of its execution time with the default
resource allocation.

Reclaiming capacity using hints: Figure 9 shows
the capacity used over time for the video analytics job,
with and without data lifetime management hints. All
ephemeral data in this application is written and read
only once, since each first stage lambda writes ephemeral
data destined to a single second stage lambda. Hence for
all get operations, this job can make use of the DELETE
hint which informs Pocket to promptly garbage collect an
object as soon as it has been read. By default, when the
DELETE hint is not specified, Pocket waits until the job
deregisters to delete the job’s data. The job in Figure 9

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 437

0 20 40 60 80 100 120 140 160 180
Time (s)

0

5

10

15

20

25
Ca

pa
cit

y
us

ed
 (G

B)
No data lifetime hints
With data lifetime hints

Figure 9: Example of using the DELETE hint for get
operations in a video analytics job, enabling Pocket to
readily reclaim capacity by deleting objects after they
have been read versus waiting for the job to complete.

completes at the 158 second mark. We show that leverag-
ing the DELETE hint allows Pocket to reclaim capacity
more promptly, making more efficient use of resources
as this capacity can be offered to other jobs.

Rightsizing cluster size: Elastic and automatic re-
source scaling is a key property of Pocket. Figure 10
shows how Pocket scales cluster resources as multiple
jobs register and deregister with the controller. Job regis-
tration and deregistration times are indicated by upwards
and downwards arrows along the x-axis, respectively. In
this experiment, we assume Pocket receives capacity and
throughput hints for each job’s requirements. The first
job is a 10 GB sort application requesting 3 GB/s, the
second job is a video analytics application requesting 2.5
GB/s and the third job is a different invocation of a 10
GB sort also requesting 3 GB/s. Each storage server pro-
vides 1 GB/s. We use a minimum of two storage servers
in the cluster. We provision seven VMs for this exper-
iment and ensure that storage server containers are lo-
cally available, such that when the controller launches
new storage servers, only container startup and capacity
registration time is included.

Figure 10 shows that Pocket quickly and effectively
scales the allocated storage bandwidth (dotted line) to
meet application throughput demands (solid line). The
spike surpassing the allocated throughput is due to a
short burst in EC2 VM network bandwidth. The VMs
provide ‘up to 10 Gb/s’, but since we typically observe
a ∼8 Gb/s bandwidth limit in practice, the controller al-
locates throughput assuming each node provides 8 Gb/s.
As the controller rightsizes resources for each job, job
execution time stays within 5% of its execution time
when running on 50 nodes, the conservative default re-
source allocation. If the controller had to spin up new
VMs to accommodate a job’s requirements instead of
just launching containers, the job’s start time would be
delayed by up to 215 seconds (see EC2 NVMe server
startup time in Figure 7) since the register job call
blocks until the required storage servers are available.

0 50 100 150 200 250 300 350
Time (s)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (G

B/
s)

Job1 Job1 Job2 Job3 Job3 Job2

Total GB/s allocated
Total GB/s used

Figure 10: Pocket’s controller dynamically scales cluster
resources to meet I/O requirements as jobs come and go.

6.4 Comparison to S3 and Redis
Job execution time: Figure 11 plots the per-lambda ex-
ecution time breakdown for the MapReduce 100 GB sort
job, run with 250, 500, and 1000 concurrent lambdas.
The purple bars show the time spent fetching original in-
put data and writing final output data to S3 while the blue
bars compare the time for ephemeral data I/O with S3,
Redis and Pocket-NVMe. S3 does not support sufficient
request rates when the job is run with 500 or more lamb-
das. S3 returns errors, advising to reduce the I/O rate.
Pocket provides similar throughput to Redis, however
since the application is not sensitive to latency, Pocket
uses NVMe Flash instead of DRAM to reduce cost.

Similarly, for the video analytics job, we observe that
Pocket-NVMe achieves the same performance as Redis.
However, using S3 for the video analytics job increases
the average time spent on ephemeral I/O by each lambda
in the first stage (video decoding) by 3.2× and 4.1×
for lambdas in the second stage (MXNET classification),
compared to using Pocket or Redis.

The performance of the distributed compilation job
(λ -cc cmake) is limited by lambda CPU resources [49].
A software build job has inherently limited parallelism;
early-stage lambdas compile independent files in paral-
lel, however lambdas responsible for archiving and link-
ing are serialized as they depend on the outputs of the
early-stage lambdas. We observe that the early-stage
lambdas are compute-bound on current serverless infras-
tructure. Although using Pocket or Redis reduces the
fraction of time each lambda spend on ephemeral I/O,
the overall execution time for this job remains the same
as when using S3 for ephemeral storage, since the bottle-
neck is dependencies on compute-bound lambdas.

Cost analysis: Table 4 shows the hourly cost of run-
ning Pocket nodes on EC2 VMs in April 2018. Our min-
imum size Pocket cluster, consisting of one controller
node, one metadata server and two i3.2xl storage nodes
costs $1.632 per hour on EC2. However, Pocket’s fixed
cost can be amortized as the system is designed to sup-
port multiple concurrent jobs from one or more tenants.
We intend for Pocket to be operated by a cloud provider

438 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 S3 Redis Pocket-NVMe
250 lambdas

 Redis Pocket-NVMe
 500 lambdas

 Redis Pocket-NVMe
 1000 lambdas

0

20

40

60

80

100
Av

er
ag

e
Ti

m
e

pe
r L

am
bd

a
(s

)
S3 I/O
Compute
Ephemeral Data I/O

Figure 11: Execution time breakdown of 100GB sort.

Job S3 Redis Pocket
100 GB sort 0.05126 5.320 2.1648
Video analytics 0.00034 1.596 0.6483
λ -cc cmake 0.00005 1.596 0.6480

Table 5: Hourly ephemeral storage cost (in USD)

and offered as a storage service with a pay-what-you-use
cost model for users, similar to the cost model of server-
less computing platforms. Hence, for our cost analysis,
we derive fine-grain resource costs, such as the cost of
a CPU core and the cost of storage per GB, using AWS
EC2 instance pricing. For example, we calculate NVMe
Flash $/GB by taking the difference between i3.2xl and
r4.2xl instance costs (since these VMs have the same
CPU and DRAM configurations but i3.2xl includes a
1900 GB NVMe drive) and dividing by the GB capacity
of the i3.2xl NVMe drive.

Using this fine-grain resource pricing model for
Pocket, Table 5 compares the cost of running the 100
GB sort, video analytics and distributed compilation jobs
with S3, ElastiCache Redis, and Pocket-NVMe. We use
reduced redundancy pricing for S3 and assume the GB-
month cost is charged hourly [15]. We base Redis costs
on the price of entire VMs, not only the resources con-
sumed, since ElastiCache Redis clusters are managed
by individual users rather than cloud providers. Pocket
achieves the same performance as Redis for all three jobs
while saving 59% in cost. S3 is still orders of magnitude
cheaper. However, S3’s cloud provider based cost is not
a fair comparison to the cloud user based cost model we
use for Pocket and Redis. Furthermore, while the λ -cc
job has similar performance with Pocket, Redis and S3
due to a lambda compute bottleneck, the video analytics
and sort job execution time is 40 to 65% higher with S3.

7 Discussion

Choice of API: Pocket’s simple get/put interface pro-
vides sufficient functionality for the applications we
studied. Lambdas in these jobs consume entire data ob-
jects that they read and they do not require updating or
appending files. However, POSIX-like I/O semantics

for appending or accessing parts of objects could ben-
efit other applications. Pocket’s get/put API is imple-
mented on top of Apache Crail’s append-only stream ab-
straction which allows clients to read at file offsets and
append to files with single-writer semantics [3]. Thus,
Pocket’s API could easily be modified to expose Crail’s
I/O semantics. Other operators such as filters or multi-
gets could also help optimize the number of RPCs and
bytes transferred. The right choice of API for ephemeral
storage remains an open question.

Security: Pocket uses access control to secure appli-
cations in a multi-tenant environment. To prevent mali-
cious users from accessing other tenants’ data, metadata
servers issue single-use certificates to clients which are
verified at storage servers. An I/O request that is not
accompanied with a valid certificate is denied. Clients
communicate with metadata servers over SSL to protect
against man in the middle attacks. Users set cloud net-
work security rules to prevent TCP traffic snooping on
connections between lambdas and storage servers. Al-
ternatively, users can encrypt their data. Pocket does
not currently prevent jobs from issuing higher load than
specified in job registration hints. Request throttling can
be implemented at metadata servers to mitigate interfer-
ence when a job tries to exceed its allocation.

Learning job characteristics: Pocket currently re-
lies on user or application framework hints to cost-
effectively rightsize resource allocations for a job. Cur-
rently, Pocket does not autonomously learn application
properties. Since users may repeatedly run jobs on differ-
ent datasets, as many data analytics and modern machine
learning jobs are recurring [55], Pocket’s controller can
maintain statistics about previous invocations of a job
and use this information combined with machine learn-
ing techniques to rightsize resource allocations for future
runs [48, 10]. We plan to explore this in future work.

Applicability to other cloud platforms: While we
evaluate Pocket on the AWS cloud platform, the sys-
tem addresses a real problem applicable across all cloud
providers as no available platform provides an optimized
way for serverless tasks to exchange ephemeral data.
Pocket’s performance will vary with network and storage
capabilities of different infrastructure. For example, if a
low latency network is available, the DRAM storage tier
provides significantly lower latency than the NVMe tier.
Such variations emphasize the need for a control plane to
automate resource allocation and data placement.

Applicability to other cloud workloads: Though we
presented Pocket in the context of ephemeral data shar-
ing in serverless analytics, Pocket can also be used for
other applications that require distributed, scalable tem-
porary storage. For instance, Google’s Cloud Dataflow,
a fully-managed data processing service for streaming
and batch data analytics pipelines, implements the shuf-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 439

fle operator – used for transforms such as GroupByKey –
as part of its service backend [35]. Pocket can serve as
fast, elastic storage for the intermediate data generated
by shuffle operations in this kind of service.

Reducing cost with resource harvesting: Cloud jobs
are commonly over-provisioned in terms CPU, DRAM,
network, and storage resources due to the difficulty of
rigthsizing general jobs and the need to accommodate
diurnal load patterns and unexpected load spikes. The
result is significant capacity underutilization at the clus-
ter level [21, 74, 29]. Recent work has shown that the
plethora of allocated but temporarily unused resources
provide a stable substrate that can be used to run ana-
lytics job [22, 79]. We can similarly leverage harvested
resources to dramatically reduce the total cost of running
Pocket. Pocket’s storage servers are particularly well
suited to run on temporarily idle resource as ephemeral
data has short lifetime and low durability requirements.

8 Related Work

Elastic resource scaling: Various reactive [34], predic-
tive [25, 50, 65, 30, 62, 72, 75] and hybrid [24, 41, 33, 60]
approaches have been proposed to automatically scale re-
sources based on demand [64, 61]. Muse takes an eco-
nomic approach, allocating resources to their most effi-
cient use based on a utility function that estimates the
impact of resource allocations on job performance [23].
Pocket provisions resources upfront for a job based on
hints and conservative heuristics while using a reactive
approach to adjust cluster resources over time as jobs
enter and leave the system. Pocket’s reactive scaling
is similar to Horizontal Pod autoscaling in Kubernetes
which collects multidimensional metrics and adjusts re-
sources based on utilization ratios [5]. Petal [52] and the
controller by Lim et al. [54] propose data re-balancing
strategies in elastic storage clusters while Pocket avoids
redistributing short-lived data due to the high overhead.
CloudScale [68], Elastisizer [40], CherryPick [11], and
other systems [73, 77, 48] take an application-centric
view to rightsize a job at the coarse granularity of tra-
ditional VMs as opposed to determining fine-grain stor-
age requirements. Nevertheless, the proposed cost and
performance modeling approaches can also be applied to
Pocket to autonomously learn job resource preferences.

Intelligent data placement: Mirador is a dynamic
storage service that optimizes data placement for per-
formance, efficiency, and safety [76]. Mirador focuses
on long-running jobs (minutes to hours), while Pocket
targets short-term (seconds to minutes) ephemeral stor-
age. Tuba manages geo-replicated storage and, simi-
lar to Pocket, optimizes data placement based on per-
formance and cost constraints received from applica-
tions [20]. Extent-based Dynamic Tiering (EDT) uses

access pattern simulations and monitoring to find a cost-
efficient storage solution for a workload across multiple
storage tiers [38]. The access pattern of ephemeral data is
often simple (e.g., write-once-read-once) and the data is
short-lived, hence it is not worth migrating between tiers.
Multiple systems make storage configuration recommen-
dation based on workload traces [19, 70, 9, 59, 12].
Given I/O traces for a job, Pocket could apply similar
techniques to assign resources when a job registers.

Fully managed data warehousing: Cloud providers
offer fully managed infrastructure for querying large
amounts of structured data with high parallelism and
elasticity. Examples include Amazon Redshift [14],
Google BigQuery [37], Azure SQL Data Ware-
house [58], and Snowflake [26]. These systems are de-
signed to support relational queries and high data dura-
bility, while Pocket is designed for elastic, fast, and
fully managed storage of data with low durability re-
quirements. However, a cloud data warehouse like
Snowflake, which currently stores temporary data gener-
ated by query operators on local disk or S3, could lever-
age Pocket to improve elasticity and resource utilization.

9 Conclusion

General-purpose analytics on serverless infrastructure
presents unique opportunities and challenges for perfor-
mance, elasticity and resource efficiency. We analyzed
challenges associated with efficient data sharing and pre-
sented Pocket, an ephemeral data store for serverless an-
alytics. In a similar spirit to serverless computing, Pocket
aims to provide a highly elastic, cost-effective, and fine-
grained storage solution for analytics workloads. Pocket
achieves these goals using a strict separation of respon-
sibilities for control, metadata, and data management.
To the best of our knowledge, Pocket is the first sys-
tem designed specifically for ephemeral data sharing in
serverless analytics workloads. Our evaluation on AWS
demonstrates that Pocket offers high performance data
access for arbitrary size data sets, combined with auto-
matic fine-grain scaling, self management and cost ef-
fective data placement across multiple storage tiers.

Acknowledgements

We thank our shepherd, Hakim Weatherspoon, and
the anonymous OSDI reviewers for their helpful feed-
back. We thank Qian Li, Francisco Romero, and Sadjad
Fouladi for insightful technical discussions. This work is
supported by the Stanford Platform Lab, Samsung, and
Huawei. Ana Klimovic is supported by a Stanford Grad-
uate Fellowship. Yawen Wang is supported by a Stanford
Electrical Engineering Department Fellowship.

440 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Apache CouchDB. http://couchdb.apache.

org, 2018.

[2] Apache Crail (incubating). http://crail.

incubator.apache.org, 2018.

[3] Crail Storage Performance – Part I: DRAM.
http://crail.incubator.apache.org/

blog/2017/08/crail-memory.html, 2018.

[4] gg: The Stanford Builder. https://github.com/
stanfordsnr/gg, 2018.

[5] Horizontal Pod Autoscaler. https:

//kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale,
2018.

[6] Kubernetes operations (kops). https://github.

com/kubernetes/kops, 2018.

[7] Kubernetes: Production-Grade Container Orches-
tration. https://kubernetes.io, 2018.

[8] Memcached – a distributed memory object caching
system. https://memcached.org, 2018.

[9] ALBRECHT, C., MERCHANT, A., STOKELY, M.,
WALIJI, M., LABELLE, F., COEHLO, N., SHI, X.,
AND SCHROCK, E. Janus: Optimal flash provi-
sioning for cloud storage workloads. In Proc. of
the USENIX Annual Technical Conference (2013),
ATC’13, pp. 91–102.

[10] ALIPOURFARD, O., LIU, H. H., CHEN, J.,
VENKATARAMAN, S., YU, M., AND ZHANG,
M. CherryPick: Adaptively unearthing the best
cloud configurations for big data analytics. In 14th
USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17) (Boston, MA,
2017), pp. 469–482.

[11] ALIPOURFARD, O., LIU, H. H., CHEN, J.,
VENKATARAMAN, S., YU, M., AND ZHANG, M.
Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics. In Proc. of the
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’17) (2017), pp. 469–
482.

[12] ALVAREZ, G. A., BOROWSKY, E., GO, S.,
ROMER, T. H., BECKER-SZENDY, R., GOLDING,
R., MERCHANT, A., SPASOJEVIC, M., VEITCH,
A., AND WILKES, J. Minerva: An automated re-
source provisioning tool for large-scale storage sys-
tems. ACM Trans. Comput. Syst. 19, 4 (Nov. 2001),
483–518.

[13] AMAZON. Amazon ElastiCache. https://aws.

amazon.com/elasticache, 2018.

[14] AMAZON. Amazon redshift. https://aws.

amazon.com/redshift, 2018.

[15] AMAZON. Amazon S3 reduced redundancy stor-
age. https://aws.amazon.com/s3/reduced-

redundancy, 2018.

[16] AMAZON. Amazon simple storage service. https:
//aws.amazon.com/s3, 2018.

[17] AMAZON. AWS lambda. https://aws.amazon.
com/lambda, 2018.

[18] AMAZON. AWS lambda limits. https:

//docs.aws.amazon.com/lambda/latest/

dg/limits.html, 2018.

[19] ANDERSON, E., HOBBS, M., KEETON, K.,
SPENCE, S., UYSAL, M., AND VEITCH, A. Hip-
podrome: Running circles around storage admin-
istration. In Proc. of the 1st USENIX Conference
on File and Storage Technologies (2002), FAST’02,
pp. 13–13.

[20] ARDEKANI, M. S., AND TERRY, D. B. A self-
configurable geo-replicated cloud storage system.
In Proc. of the 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (2014),
OSDI’14, pp. 367–381.

[21] BARROSO, L. A., CLIDARAS, J., AND HLZLE, U.
The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines, Second
Edition. 2013.

[22] CARVALHO, M., CIRNE, W., BRASILEIRO, F.,
AND WILKES, J. Long-term SLOs for reclaimed
cloud computing resources. In Proc. of the ACM
Symposium on Cloud Computing (2014), SOCC
’14, pp. 20:1–20:13.

[23] CHASE, J. S., ANDERSON, D. C., THAKAR,
P. N., VAHDAT, A. M., AND DOYLE, R. P. Man-
aging energy and server resources in hosting cen-
ters. In Proc. of the Eighteenth ACM Symposium
on Operating Systems Principles (2001), SOSP ’01,
pp. 103–116.

[24] CHEN, G., HE, W., LIU, J., NATH, S., RIGAS,
L., XIAO, L., AND ZHAO, F. Energy-aware server
provisioning and load dispatching for connection-
intensive internet services. In Proc. of the 5th
USENIX Symposium on Networked Systems Design
and Implementation (2008), NSDI’08, pp. 337–
350.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 441

http://couchdb.apache.org
http://couchdb.apache.org
http://crail.incubator.apache.org
http://crail.incubator.apache.org
http://crail.incubator.apache.org/blog/2017/08/crail-memory.html
http://crail.incubator.apache.org/blog/2017/08/crail-memory.html
https://github.com/stanfordsnr/gg
https://github.com/stanfordsnr/gg
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://kubernetes.io
https://memcached.org
https://aws.amazon.com/elasticache
https://aws.amazon.com/elasticache
https://aws.amazon.com/redshift
https://aws.amazon.com/redshift
https://aws.amazon.com/s3/reduced-redundancy
https://aws.amazon.com/s3/reduced-redundancy
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

[25] CORTEZ, E., BONDE, A., MUZIO, A., RUSSI-
NOVICH, M., FONTOURA, M., AND BIANCHINI,
R. Resource central: Understanding and predict-
ing workloads for improved resource management
in large cloud platforms. In Proc. of the 26th Sym-
posium on Operating Systems Principles (2017),
SOSP ’17, pp. 153–167.

[26] DAGEVILLE, B., CRUANES, T., ZUKOWSKI, M.,
ANTONOV, V., AVANES, A., BOCK, J., CLAY-
BAUGH, J., ENGOVATOV, D., HENTSCHEL, M.,
HUANG, J., LEE, A. W., MOTIVALA, A., MUNIR,
A. Q., PELLEY, S., POVINEC, P., RAHN, G., TRI-
ANTAFYLLIS, S., AND UNTERBRUNNER, P. The
snowflake elastic data warehouse. In Proc. of the
International Conference on Management of Data
(2016), SIGMOD ’16, pp. 215–226.

[27] DATABRICKS. Databricks serverless: Next
generation resource management for Apache
Spark. https://databricks.com/blog/

2017/06/07/databricks-serverless-next-

generation-resource-management-for-

apache-spark.html, 2017.

[28] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND
VOGELS, W. Dynamo: Amazon’s highly avail-
able key-value store. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Sys-
tems Principles (2007), SOSP ’07, pp. 205–220.

[29] DELIMITROU, C., AND KOZYRAKIS, C. Quasar:
Resource-efficient and QoS-aware cluster manage-
ment. In Proc. of the 19th International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems (2014), ASPLOS
’14, pp. 127–144.

[30] DOYLE, R. P., CHASE, J. S., ASAD, O. M., JIN,
W., AND VAHDAT, A. M. Model-based resource
provisioning in a web service utility. In Proc. of the
4th USENIX Symposium on Internet Technologies
and Systems (2003), USITS’03, pp. 5–5.

[31] FOULADI, S., ITER, D., CHATTERJEE, S.,
KOZYRAKIS, C., ZAHARIA, M., AND WINSTEIN,
K. A thunk to remember: make -j1000 (and
other jobs) on functions-as-a-service infrastructure
(preprint). http://stanford.edu/~sadjad/

gg-paper.pdf.

[32] FOULADI, S., WAHBY, R. S., SHACKLETT,
B., BALASUBRAMANIAM, K. V., ZENG, W.,
BHALERAO, R., SIVARAMAN, A., PORTER, G.,

AND WINSTEIN, K. Encoding, fast and slow:
Low-latency video processing using thousands of
tiny threads. In Proc. of the 14th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (2017), NSDI’17, pp. 363–376.

[33] GANDHI, A., CHEN, Y., GMACH, D., ARLITT,
M., AND MARWAH, M. Minimizing data center
sla violations and power consumption via hybrid
resource provisioning. In Proc. of the 2011 Inter-
national Green Computing Conference and Work-
shops (2011), IGCC ’11, pp. 1–8.

[34] GANDHI, A., HARCHOL-BALTER, M., RAGHU-
NATHAN, R., AND KOZUCH, M. A. Autoscale:
Dynamic, robust capacity management for multi-
tier data centers. ACM Trans. Comput. Syst. 30, 4
(Nov. 2012), 14:1–14:26.

[35] GOOGLE. Introducing Cloud Dataflow Shuffle:
For up to 5x performance improvement in data
analytic pipelines. https://cloud.google.

com/blog/products/gcp/introducing-

cloud-dataflow-shuffle-for-up-to-

5x-performance-improvement-in-data-

analytic-pipelines, 2017.

[36] GOOGLE. Cloud functions. https://cloud.

google.com/functions, 2018.

[37] GOOGLE. Google bigquery. https://cloud.

google.com/bigquery, 2018.

[38] GUERRA, J., PUCHA, H., GLIDER, J., BELLUO-
MINI, W., AND RANGASWAMI, R. Cost effective
storage using extent based dynamic tiering. In Proc.
of the 9th USENIX Conference on File and Stroage
Technologies (2011), FAST’11, pp. 20–20.

[39] GUNDA, P. K., RAVINDRANATH, L., THEKKATH,
C. A., YU, Y., AND ZHUANG, L. Nectar: Auto-
matic management of data and computation in dat-
acenters. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (2010), OSDI’10, pp. 75–88.

[40] HERODOTOU, H., DONG, F., AND BABU, S. No
one (cluster) size fits all: Automatic cluster sizing
for data-intensive analytics. In Proceedings of the
2Nd ACM Symposium on Cloud Computing (2011),
SOCC ’11, pp. 18:1–18:14.

[41] HORVATH, T., AND SKADRON, K. Multi-mode
energy management for multi-tier server clusters.
In Proc. of the 17th International Conference on
Parallel Architectures and Compilation Techniques
(2008), PACT ’08, pp. 270–279.

442 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
http://stanford.edu/~sadjad/gg-paper.pdf
http://stanford.edu/~sadjad/gg-paper.pdf
https://cloud.google.com/blog/products/gcp/introducing-cloud-dataflow-shuffle-for-up-to-5x-performance-improvement-in-data-analytic-pipelines
https://cloud.google.com/blog/products/gcp/introducing-cloud-dataflow-shuffle-for-up-to-5x-performance-improvement-in-data-analytic-pipelines
https://cloud.google.com/blog/products/gcp/introducing-cloud-dataflow-shuffle-for-up-to-5x-performance-improvement-in-data-analytic-pipelines
https://cloud.google.com/blog/products/gcp/introducing-cloud-dataflow-shuffle-for-up-to-5x-performance-improvement-in-data-analytic-pipelines
https://cloud.google.com/blog/products/gcp/introducing-cloud-dataflow-shuffle-for-up-to-5x-performance-improvement-in-data-analytic-pipelines
https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery

[42] HUANG, C., SIMITCI, H., XU, Y., OGUS,
A., CALDER, B., GOPALAN, P., LI, J., AND
YEKHANIN, S. Erasure coding in windows azure
storage. In Proc. of the USENIX Conference on An-
nual Technical Conference (2012), ATC’12, pp. 2–
2.

[43] INTEL CORP. Dataplane Performance Develop-
ment Kit. https://dpdk.org, 2018.

[44] INTEL CORP. Storage Performance Development
Kit. https://01.org/spdk, 2018.

[45] JONAS, E., PU, Q., VENKATARAMAN, S., STO-
ICA, I., AND RECHT, B. Occupy the cloud: dis-
tributed computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing (2017),
SOCC’17, pp. 445–451.

[46] KHAN, O., BURNS, R., PLANK, J., PIERCE, W.,
AND HUANG, C. Rethinking erasure codes for
cloud file systems: Minimizing i/o for recovery and
degraded reads. In Proc. of the 10th USENIX Con-
ference on File and Storage Technologies (2012),
FAST’12, pp. 20–20.

[47] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C.
Reflex: Remote flash == local flash. In Proc. of
the 22nd International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (2017), ASPLOS ’17, pp. 345–359.

[48] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C.
Selecta: Heterogeneous cloud storage configura-
tion for data analytics. In Proc. of the USENIX
Annual Technical Conference (ATC’18) (2018),
pp. 759–773.

[49] KLIMOVIC, A., WANG, Y., KOZYRAKIS, C.,
STUEDI, P., PFEFFERLE, J., AND TRIVEDI, A.
Understanding ephemeral storage for serverless an-
alytics. In Proc. of the USENIX Annual Technical
Conference (ATC’18) (2018), pp. 789–794.

[50] KRIOUKOV, A., MOHAN, P., ALSPAUGH, S.,
KEYS, L., CULLER, D., AND KATZ, R. H.
Napsac: Design and implementation of a power-
proportional web cluster. In Proc. of the First
ACM SIGCOMM Workshop on Green Networking
(2010), Green Networking ’10, pp. 15–22.

[51] LABS, R. Redis. https://redis.io, 2018.

[52] LEE, E. K., AND THEKKATH, C. A. Petal: Dis-
tributed virtual disks. In Proc. of the International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (1996),
ASPLOS VII, pp. 84–92.

[53] LI, H., GHODSI, A., ZAHARIA, M., SHENKER,
S., AND STOICA, I. Tachyon: Reliable, memory
speed storage for cluster computing frameworks. In
Proc. of the ACM Symposium on Cloud Computing
(2014), SOCC ’14, pp. 6:1–6:15.

[54] LIM, H. C., BABU, S., AND CHASE, J. S. Au-
tomated control for elastic storage. In Proceedings
of the 7th International Conference on Autonomic
Computing (2010), ICAC ’10, pp. 1–10.

[55] MASHAYEKHI, O., QU, H., SHAH, C., AND
LEVIS, P. Execution templates: Caching control
plane decisions for strong scaling of data analytics.
In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference (Berkeley,
CA, USA, 2017), USENIX ATC ’17, USENIX As-
sociation, pp. 513–526.

[56] MICROSOFT. Azure functions. https://azure.

microsoft.com/en-us/services/functions,
2018.

[57] MICROSOFT AZURE. Azure redis cache.
https://azure.microsoft.com/en-

us/services/cache, 2018.

[58] MICROSOFT AZURE. SQL data ware-
house. https://azure.microsoft.com/en-

us/services/sql-data-warehouse, 2018.

[59] NARAYANAN, D., THERESKA, E., DONNELLY,
A., ELNIKETY, S., AND ROWSTRON, A. Migrat-
ing server storage to ssds: Analysis of tradeoffs.
In Proc. of the 4th ACM European Conference on
Computer Systems (2009), EuroSys ’09, pp. 145–
158.

[60] NETFLIX. Scryer: Netflixs predictive auto scal-
ing engine. https://medium.com/netflix-

techblog/scryer-netflixs-predictive-

auto-scaling-engine-a3f8fc922270, 2013.

[61] NETTO, M. A. S., CARDONHA, C., CUNHA,
R. L. F., AND ASSUNCAO, M. D. Evaluating
auto-scaling strategies for cloud computing envi-
ronments. In Proceedings of the 2014 IEEE 22Nd
International Symposium on Modelling, Analysis
& Simulation of Computer and Telecommunication
Systems (2014), MASCOTS ’14, pp. 187–196.

[62] NGUYEN, H., SHEN, Z., GU, X., SUBBIAH, S.,
AND WILKES, J. AGILE: Elastic distributed re-
source scaling for infrastructure-as-a-service. In
Proc. of the 10th International Conference on Au-
tonomic Computing (2013), ICAC’13, pp. 69–82.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 443

https://dpdk.org
https://01.org/spdk
https://redis.io
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/cache
https://azure.microsoft.com/en-us/services/cache
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270
https://medium.com/netflix-techblog/scryer-netflixs-predictive-auto-scaling-engine-a3f8fc922270

[63] QIAN LI, JAMES HONG, D. D. Thousand island
scanner (THIS): Scaling video analysis on AWS
lambda. https://github.com/qianl15/this,
2018.

[64] QU, C., CALHEIROS, R. N., AND BUYYA, R.
Auto-scaling web applications in clouds: A taxon-
omy and survey. ACM Computing Surveys 51, 4
(July 2018), 73:1–73:33.

[65] ROY, N., DUBEY, A., AND GOKHALE, A. Effi-
cient autoscaling in the cloud using predictive mod-
els for workload forecasting. In Proc. of the 2011
IEEE 4th International Conference on Cloud Com-
puting (2011), CLOUD ’11, pp. 500–507.

[66] SATHIAMOORTHY, M., ASTERIS, M., PAPAIL-
IOPOULOS, D., DIMAKIS, A. G., VADALI, R.,
CHEN, S., AND BORTHAKUR, D. Xoring ele-
phants: novel erasure codes for big data. In Proc.
of the 39th international conference on Very Large
Data Bases (2013), PVLDB’13, pp. 325–336.

[67] SEIDEN, S. S. On the online bin packing problem.
J. ACM 49, 5 (Sept. 2002), 640–671.

[68] SHEN, Z., SUBBIAH, S., GU, X., AND WILKES,
J. Cloudscale: Elastic resource scaling for multi-
tenant cloud systems. In Proceedings of the 2Nd
ACM Symposium on Cloud Computing (2011),
SOCC ’11, pp. 5:1–5:14.

[69] SRINIVASAN, V., BULKOWSKI, B., CHU, W.-
L., SAYYAPARAJU, S., GOODING, A., IYER, R.,
SHINDE, A., AND LOPATIC, T. Aerospike: Ar-
chitecture of a real-time operational DBMS. Proc.
VLDB Endow. 9, 13 (Sept. 2016), 1389–1400.

[70] STRUNK, J. D., THERESKA, E., FALOUTSOS, C.,
AND GANGER, G. R. Using utility to provision
storage systems. In 6th USENIX Conference on File
and Storage Technologies, FAST 2008, February
26-29, 2008, San Jose, CA, USA (2008), pp. 313–
328.

[71] STUEDI, P., TRIVEDI, A., PFEFFERLE, J., STO-
ICA, R., METZLER, B., IOANNOU, N., AND
KOLTSIDAS, I. Crail: A high-performance i/o ar-
chitecture for distributed data processing. IEEE
Data Engineering Bulletin 40, 1 (2017), 38–49.

[72] URGAONKAR, B., PACIFICI, G., SHENOY, P.,
SPREITZER, M., AND TANTAWI, A. An ana-
lytical model for multi-tier internet services and

its applications. In Proc. of the 2005 ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Systems (2005),
SIGMETRICS ’05, pp. 291–302.

[73] VENKATARAMAN, S., YANG, Z., FRANKLIN,
M., RECHT, B., AND STOICA, I. Ernest: Ef-
ficient performance prediction for large-scale ad-
vanced analytics. In 13th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 16) (Santa Clara, CA, 2016), pp. 363–378.

[74] VERMA, A., PEDROSA, L., KORUPOLU, M. R.,
OPPENHEIMER, D., TUNE, E., AND WILKES,
J. Large-scale cluster management at Google with
Borg. In Proc. of the European Conference on
Computer Systems (Bordeaux, France, 2015), Eu-
roSys’15.

[75] WAJAHAT, M., GANDHI, A., KARVE, A., AND
KOCHUT, A. Using machine learning for black-
box autoscaling. In 2016 Seventh International
Green and Sustainable Computing Conference
(IGSC) (Nov 2016), pp. 1–8.

[76] WIRES, J., AND WARFIELD, A. Mirador: An ac-
tive control plane for datacenter storage. In Proc. of
the 15th USENIX Conference on File and Storage
Technologies (2017), FAST’17, pp. 213–228.

[77] YADWADKAR, N. J., HARIHARAN, B., GONZA-
LEZ, J. E., SMITH, B., AND KATZ, R. H. Se-
lecting the best VM across multiple public clouds:
a data-driven performance modeling approach. In
Proceedings of the 2017 Symposium on Cloud
Computing (2017), SOCC’17, pp. 452–465.

[78] ZAHARIA, M., CHOWDHURY, M., DAS, T.,
DAVE, A., MA, J., MCCAULY, M., FRANKLIN,
M. J., SHENKER, S., AND STOICA, I. Resilient
distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proc. of the
USENIX Symposium on Networked Systems Design
and Implementation (2012), NSDI’12, pp. 15–28.

[79] ZHANG, Y., PREKAS, G., FUMAROLA, G. M.,
FONTOURA, M., GOIRI, I., AND BIANCHINI, R.
History-based harvesting of spare cycles and stor-
age in large-scale datacenters. In Proc. of the 12th
USENIX Symposium on Operating Systems Design
and Implementation (2016), OSDI’16, pp. 755–
770.

444 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/qianl15/this

	Introduction
	Storage for Serverless Analytics
	Ephemeral Storage Requirements
	Existing Systems

	Pocket Design
	System Architecture
	Application Interface
	Life of a Pocket Application
	Handling Node Failures

	Rightsizing Resource Allocations
	Rightsizing Application Allocation
	Rightsizing the Storage Cluster

	Implementation
	Evaluation
	Methodology
	Microbenchmarks
	Rightsizing Resource Allocations
	Comparison to S3 and Redis

	Discussion
	Related Work
	Conclusion

