
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Capturing and Enhancing In Situ System
Observability for Failure Detection

Peng Huang, Johns Hopkins University; Chuanxiong Guo, ByteDance Inc.;
Jacob R. Lorch and Lidong Zhou, Microsoft Research; Yingnong Dang, Microsoft

https://www.usenix.org/conference/osdi18/presentation/huang

Capturing and Enhancing In Situ System Observability

for Failure Detection

Peng Huang

Johns Hopkins University

Chuanxiong Guo

ByteDance Inc.

Jacob R. Lorch Lidong Zhou

Microsoft Research

Yingnong Dang

Microsoft

Abstract
Real-world distributed systems suffer unavailability due

to various types of failure. But, despite enormous effort,

many failures, especially gray failures, still escape de-

tection. In this paper, we argue that the missing piece

in failure detection is detecting what the requesters of a

failing component see. This insight leads us to the design

and implementation of Panorama, a system designed to

enhance system observability by taking advantage of the

interactions between a system’s components. By pro-

viding a systematic channel and analysis tool, Panorama

turns a component into a logical observer so that it not

only handles errors, but also reports them. Furthermore,

Panorama incorporates techniques for making such ob-

servations even when indirection exists between compo-

nents. Panorama can easily integrate with popular dis-

tributed systems and detect all 15 real-world gray fail-

ures that we reproduced in less than 7 s, whereas existing

approaches detect only one of them in under 300 s.

1 Introduction

Modern cloud systems frequently involve numerous

components and massive complexity, so failures are

common in production environments [17, 18, 22]. De-

tecting failures reliably and rapidly is thus critical to

achieving high availability. While the problem of fail-

ure detection has been extensively studied [8, 13, 14, 20,

24, 29, 33, 34, 47], it remains challenging for practition-

ers. Indeed, system complexity often makes it hard to

answer the core question of what constitutes a failure.

A simple answer, as used by most existing detection

mechanisms, is to define failure as complete stoppage

(crash failure). But, failures in production systems can

be obscure and complex, in part because many sim-

ple failures can be eliminated through testing [49] or

gradual roll-out. A component in production may ex-

perience gray failure [30], a failure whose manifesta-

tion is subtle and difficult to detect. For example, a

critical thread of a process might get stuck while its

other threads including a failure detector keep running.

Or, a component might experience limplock [19], ran-

dom packet loss [26], fail-slow hardware [11, 25], silent

hanging, or state corruption. Such complex failures are

the culprits of many real-world production service out-

ages [1, 3, 4, 6, 10, 23, 30, 36, 38].

As an example, ZooKeeper [31] is a widely-used sys-

tem that provides highly reliable distributed coordina-

tion. The system is designed to tolerate leader or fol-

lower crashes. Nevertheless, in one production deploy-

ment [39], an entire cluster went into a near-freeze status

(i.e., clients were unable to write data) even though the

leader was still actively exchanging heartbeat messages

with its followers. That incident was triggered by a tran-

sient network issue in the leader and a software defect

that performs blocking I/Os in a critical section.

Therefore, practitioners suggest that failure detection

should evolve to monitor multi-dimensional signals of a

system, aka vital signs [30, 37, 44]. But, defining signals

that represent the health of a system can be tricky. They

can be incomplete or too excessive to reason about. Set-

ting accurate thresholds for these signals is also an art.

They may be too low to prevent overreacting to benign

faults, or too high to reliably detect failures. For exam-

ple, an impactful service outage in AWS was due to a la-

tent memory leak, which caused the system to get stuck

when serving requests and eventually led to a cascading

outage [10]. Interestingly, there was a monitor for system

memory consumption, but it triggered no alarm because

of “the difficulty in setting accurate alarms for a dynamic

system” [10]. These monitoring challenges are further

aggravated in a multi-tenant environment where both the

system and workloads are constantly changing [44].

In this paper, we advocate detecting complex produc-

tion failures by enhancing observability (a measure of

how well components’ internal states can be inferred

from their external interactions [32]). While defining the

absolute health or failure of a system in isolation is tricky,

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 1

void syncWithLeader(long newLeaderZxid) {

QuorumPacket qp = new QuorumPacket();

readPacket(qp);

try {

if (qp.getType() == Leader.SNAP) {

deserializeSnapshot(leaderIs);

String sig = leaderIs.read("signature");

if (!sig.equals("BenWasHere"))

throw new IOException("Bad signature");

} else {

LOG.error("Unexpected leader packet.");

System.exit(13);

}

} catch (IOException e) {

LOG.warn("Exception sync with leader", e);

sock.close();

}

}

Listing 1: A follower requesting a snapshot from the leader

tries to handle or log errors but it does not report errors.

modern distributed systems consist of many highly inter-

active components across layers. So, when a component

becomes unhealthy, the issue is likely observable through

its effects on the execution of some, if not all, other com-

ponents. For example, in the previous ZooKeeper inci-

dent, even though the simple heartbeat detectors did not

detect the partial failure, the Cassandra process experi-

enced many request time-outs that caused its own un-

served requests to rapidly accumulate. Followers that re-

quested snapshots from the leader also encountered ex-

ceptions and could not continue. Thus, errors encoun-

tered in the execution path of interactive components en-

hance the observability of complex failures.

Even though an interactive component (a requester)

is well-placed to observe issues of another component

(a provider) when it experiences errors, such a requester

is often designed to handle that error but not report it

(e.g., Listing 1). For example, the requester may re-

lease a resource, retry a few times, reset its state, use

a cached result (i.e., be fail-static), or exit. This tendency

to prioritize error handling over error reporting is possi-

bly due to the modularity principle of “separation of con-

cern” [41, 42], which suggests that components should

hide as much information as they can and that failure de-

tection and recovery should be each component’s own

job. Even if a component has incentive to report, it may

not have a convenient systematic mechanism to do so. It

can write errors in its own logs to be collected and aggre-

gated by a central service, as is done in current practice.

The correlation, however, usually happens in an offline

troubleshooting phase, which is too late.

We present Panorama, a generic failure detection

framework that leverages and enhances system observ-

ability to detect complex production failures. It does so

by breaking detection boundaries and systematically ex-

tracting critical observations from diverse components.

Panorama provides unified abstractions and APIs to re-

port observations, and a distributed service to selectively

exchange observations. Also, importantly, Panorama

keeps the burden on developers low by automatically

inserting report-generation code based on offline static

analysis. In this way, Panorama automatically converts

every component into an observer of the components it

interacts with. This construction of in-situ observers dif-

ferentiates Panorama from traditional distributed crash

failure detection services [34, 47], which only measure

superficial failure indicators.

In applying Panorama to real-world system software,

we find some common design patterns that, if not treated

appropriately, can reduce observability and lead to mis-

leading observations. For example, if a requester submits

requests to a provider, but an indirection layer temporar-

ily buffers the request, the request may appear successful

even though the provider has failed. This can cause the

requester to report positive evidence about the provider.

We study such common design patterns and character-

ize their impact on system observability (§4). Based on

this, we enhance Panorama to recognize these patterns

and avoid their effects on observability.

For failure detection, Panorama includes a decision

engine to reach a verdict on the status of each component

based on reported observations. Because these reports

come from errors and successes in the execution paths

of requester components instead of artificial, non-service

signals, our experience suggests that a simple decision

algorithm suffices to reliably detect complex failures.

We have implemented the Panorama system in Go and

the static analyzer on top of Soot [46] and AspectJ [2].

Our experiences show that Panorama is easy to integrate

with popular distributed systems including ZooKeeper,

Cassandra, HDFS, and HBase. Panorama significantly

outperforms existing failure detectors in that: (1) it de-

tects crash failures faster; (2) it detects 15 real-world

gray failures in less than 7 s each, whereas other detectors

only detect one in 86 s; (3) Panorama not only detects,

but also locates failures. Our experiments also show that

Panorama is resilient to transient failures and is stable

in normal operations. Finally, Panorama introduces only

minor overhead (less than 3%) to the systems we evalu-

ate it on.

2 Problem Statement

We consider failure detection in the context of a large dis-

tributed system S composed of several subsystems. Each

subsystem has multiple components. In total, S contains

n processes P1,P2, . . . ,Pn, each with one or more threads.

The whole system lies within a single administrative do-

main but the code for different system components may

be developed by different teams. For example, a stor-

2 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

age system may consist of a front-end tier, a distributed

lock service, a caching middleware, a messaging service,

and a persistence layer. The latter subsystem include

metadata servers, structured table servers, and extent data

nodes. An extent data node may be multi-threaded, with

threads such as a data receiver, a data block scanner, a

block pool manager, and an IPC-socket watcher. We as-

sume the components trust each other, collectively pro-

viding services to external untrusted applications.

The main goal of failure detection is to correctly re-

port the status of each component; in this work the only

components we consider are processes and threads. Tra-

ditional failure detectors focus on crash failure, i.e., us-

ing only statuses UP and DOWN. We aim to detect not only

crash failure but also gray failure, in which components

experience degraded modes “between” UP and DOWN. The

quality of a failure detector is commonly characterized

by two properties: completeness, which requires that if

a component fails, a detector eventually suspects it; and

accuracy, which requires that a component is not sus-

pected by a detector before it fails. Quality is further

characterized by timeliness, i.e., how fast true failures are

detected. Failure detectors for production systems should

also have good localization, i.e., ease of pinpointing each

failure in a way that enables expedient corrective action.

3 Panorama System

3.1 Overview

At a high level, Panorama takes a collaborative approach:

It gathers observations about each component from dif-

ferent sources in real time to detect complex production

failures. Collaborative failure detection is not a new idea.

Many existing crash-failure detectors such as member-

ship services exchange detection results among multi-

ple components using protocols like gossip [47]. But,

the scope of where the detection is done is usually lim-

ited to component instances with similar functionality or

roles in a particular layer. Panorama pushes the detec-

tion scope to an extreme by allowing any thread in any

process to report evidence, regardless of its role, layer,

or subsystem. The resulting diverse sources of evidence

enhance the observability of complex failures.

More importantly, instead of writing separate monitor-

ing code that measures superficial signals, Panorama’s

philosophy is to leverage existing code that lies near the

boundaries between different components. Examples of

such code include when one thread calls another, and

when one process makes an RPC call to another. This

captures first-hand observations, especially runtime er-

rors that are generated from the executions of these code

regions in production. When Panorama reports a failure,

there is concrete evidence and context to help localize

Panorama observer

Execution flow

Submit observation

LOS Local Observation Store

Observation exchange

LOS

TableA

LOS

FrontA

LOS

ManageA

{ }

observability

analysis

{ }
Source

Code

Offline

LOS

Thread
C

Thread
A

Thread
B

Production

Application

LOS

CacheA

Verdict
Server

(Section 3)(Section 5)

Figure 1: Overview of Panorama. Each Panorama instance runs

at the same endpoint with the monitored component.

where the failure happened.

Figure 1 shows an overview of Panorama. Panorama

is a generic detection service that can be plugged into

any component in a distributed system. It provides uni-

fied abstractions to represent observations about a com-

ponent’s status, and a library for reporting and query-

ing detection results. For scalability, we use a decentral-

ized architecture: for each Pi in a monitored system, a

co-located Panorama instance (a separate process) main-

tains a Local Observation Store (LOS) that stores all the

observations that are made either by or about Pi. A local

decision engine in the instance analyzes the observations

in that LOS and makes a judgment about the process’s

status. A central verdict server allows easy querying of,

and arbitration among, these decentralized LOSes.

The Panorama service depends on many logical ob-

servers within the running components in the monitored

system. Unlike traditional failure detectors, these logi-

cal observers are not dedicated threads running detection

checks. Rather, they are diverse hooks injected into the

code. These hooks use a thin library to collect and sub-

mit observations to the LOS via local RPC calls. They

are inserted offline by a tool that leverages static analy-

sis (§5). To achieve timeliness, the observations are re-

ported in real time as Pi executes. Panorama observers

collect evidence not only about the locally attached com-

ponent, but, more importantly, about other components

that the observer interacts with. However, if Pi never in-

teracts with Pj, Pi will not put observations about Pj into

its LOS. Panorama runs a dissemination protocol to ex-

change observations among a clique of LOSes that share

common interaction components.

3.2 Abstractions and APIs

To be usable by arbitrary distributed system components,

Panorama must provide a unified way to encapsulate ob-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 3

Component a process or thread

Subject a component to be monitored

Observer a component monitoring a subject

Status the health situation of a subject

Observation evidence an observer finds of a subject’s status

Context what an observer was doing when it made an

observation

Verdict a decision about a subject’s status, obtained by

summarizing a set of observations of it

Table 1: Abstractions and terms used in Panorama.

servations for reporting. We now describe our core ab-

stractions and terms, summarized in Table 1.

As discussed earlier, the only components we consider

are processes and threads. A component is an observer

if it makes observations and a subject if it is observed;

a component may be both an observer and a subject. A

status is a categorization of the health of a subject; it can

be only a small pre-determined set of values, including

HEALTHY, DEAD, and a few levels of UNHEALTHY. Another

possible value is PENDING, the meaning and use of which

we will discuss in §5.4.

When an observer sees evidence of a subject’s status,

that constitutes an observation. An observation contains

a timestamp of when the observation occurred, the iden-

tities of the observer and subject, and the inferred status

of the subject. It also contains a context describing what

the observer was doing when it made the observation, at a

sufficient granularity to allow Panorama to achieve fine-

grained localization of failures. For instance, the context

may include the method the observer was running, or the

method’s class; the API call the observer was making

to the subject; and/or the type of operation, e.g., short-

circuit read, snapshot, or row mutation. A verdict is a

summary, based on a decision algorithm, of a set of ob-

servations of the same subject.

Each Panorama instance provides an API based on the

above abstractions. It can be invoked by a local compo-

nent, by another Panorama instance, or by an administra-

tion tool. When a component decides to use Panorama,

it registers with the local Panorama instance and receives

a handle to use for reporting. It reports observations us-

ing a local RPC ReportObservation; when it is done re-

porting it unregisters. A Panorama instance can register

multiple local observers. If a component does not intend

to report observations but merely wants to query compo-

nent statuses, it need not register.

Each Panorama instance maintains a watch list: the set

of subjects for which it keeps track of observations. By

default, Panorama automatically updates this list to in-

clude the components that registered observers interact

with. But, each observer can explicitly select subjects

for this list using StartObserving and StopObserving. If

another observer in another Panorama instance makes an

observation about a subject in the watch list, that obser-

vation will be propagated to this instance with a remote

RPC LearnObservation. Panorama calls JudgeSubject

each time it collects a new observation, either locally or

via remote exchange.

3.3 Local Observation Store

Each Panorama instance maintains a Local Observation

Store (LOS) that stores all observation reports made by

colocated components. The subjects of these reports in-

clude both local and remote components.

The LOS consists of two main structures: the raw ob-

servation store and the verdict table. The LOS partitions

the raw observation store by subject into multiple tables

for efficient concurrent access. Each record in a subject’s

table corresponds to a single observer; it stores a list of

the n most recent observations of that subject made by

that observer. The LOS is kept in memory to enable effi-

cient access; asynchronously, its content is persisted to

local database to preserve the full observation history,

for facilitating troubleshooting later. The raw observa-

tion store is synchronized with that of other Panorama in-

stances that share common subjects. Therefore, an LOS

contains observations made both locally and remotely.

A local decision engine analyzes the raw observation

store to reach a verdict for each subject. This decision

result is stored in the verdict table, keyed by subject. The

verdict table is not synchronized among Panorama in-

stances because it does not have to be: the decision al-

gorithm is deterministic. In other words, given synchro-

nized raw observations, the verdict should be the same.

To enable convenient queries over the distributed ver-

dict tables to, e.g., arbitrate among inconsistent verdicts,

Panorama uses a central verdict server. Note, though,

that the central verdict server is not on any critical path.

Including old observations in decisions can cause mis-

leading verdicts. So, each observation has a Time-to-

Live parameter, and a background garbage collection

(GC) task runs periodically to retire old observations.

Whenever GC changes the observations of a subject, the

decision engine re-computes the subject’s verdict.

3.4 Observers

Panorama does not employ dedicated failure detectors.

Instead, it leverages code logic in existing distributed-

system components to turn them into in-situ logical ob-

servers. Each logical observer’s main task is still to pro-

vide its original functionality. As it executes, if it en-

counters an error related to another component, in addi-

tion to handling the error it will also report it as an ob-

servation to Panorama. There are two approaches to turn

4 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a component into a Panorama observer. One is to insert

Panorama API hooks into the component’s source code.

Another is to integrate with the component’s logs by con-

tinuously parsing and monitoring log entries related to

other components. The latter approach is transparent to

components but captures less accurate information. We

initially adopted the latter approach by adding plug-in

support in Panorama to manage log-parsing scripts. But,

as we applied Panorama to more systems, maintaining

these scripts became painful because their logging prac-

tices differed significantly. Much information is also un-

available in logs [50]. Thus, even though we still sup-

port logging integration, we mainly use the instrumen-

tation approach. To relieve developers of the burden of

inserting Panorama hooks, Panorama provides an offline

analysis tool that does the source-code instrumentation

automatically. §4 describes this offline analysis.

3.5 Observation Exchange

Observations submitted to the LOS by a local observer

only reflect a partial view of the subject. To reduce bias

in observations, Panorama runs a dissemination proto-

col to propagate observations to, and learn observations

from, other LOSes. Consequently, for each monitored

subject, the LOS stores observations from multiple ob-

servers. The observation exchange in Panorama is only

among cliques of LOSes that share a subject. To achieve

selective exchange, each LOS keeps a watch list, which

initially contains only the local observer. When a local

observer reports an observation to the LOS, the LOS will

add the observation’s subject to the watch list to indicate

that it is now interested in others’ observations about this

subject. Each LOS also keeps an ignore list for each sub-

ject, which lists LOSes to which it should not propagate

new observations about that subject. When a local ob-

servation for a new subject appears for the first time, the

LOS does a one-time broadcast. LOSes that are not inter-

ested in the observation (based on their own watch lists)

will instruct the broadcasting LOS to include them in its

ignore list. If an LOS later becomes interested in this

subject, the protocol ensures that the clique members re-

move this LOS from their ignore lists.

3.6 Judging Failure from Observations

With numerous observations collected about a subject,

Panorama uses a decision engine to reach a verdict and

stores the result in the LOS’s verdict table. A simple

decision policy is to use the latest observation as the ver-

dict. But, this can be problematic since a subject experi-

encing intermittent errors may be treated as healthy. An

alternative is to reach an unhealthy verdict if there is any

recent negative observation. This could cause one biased

observer, whose negative observation is due to its own

issue, to mislead others.

We use a bounded-look-back majority algorithm, as

follows. For a set of observations about a subject, we first

group the observations by the unique observer, and ana-

lyze each group separately. The observations in a group

are inspected from latest to earliest and aggregated based

on their associated contexts. For an observation being

inspected, if its status is different than the previously

recorded status for that context, the look-back of obser-

vations for that context stops after a few steps to favor

newer statuses. Afterwards, for each recorded context,

if either the latest status is unhealthy or the healthy sta-

tus does not have the strict majority, the verdict for that

context is unhealthy with an aggregated severity level.

In this way, we obtain an analysis summary for each

context in each group. To reach a final verdict for each

context across all groups, the summaries from different

observers are aggregated and decided based on a sim-

ple majority. Using group-based summaries allows in-

cremental update of the verdict and avoids being biased

by one observer or context in the aggregation. The de-

cision engine could use more complex algorithms, but

we find that our simple algorithm works well in practice.

This is because most observations collected by Panorama

constitute strong evidence rather than superficial signals.

The PENDING status (Section 4.3) needs additional han-

dling: during the look-back for a context, if the current

status is HEALTHY and the older status is PENDING, that

older PENDING status will be skipped because it was only

temporary. In other words, that partial observation is now

complete. Afterwards, a PENDING status with occurrences

exceeding a threshold is downgraded to UNHEALTHY.

4 Design Pattern and Observability

The effectiveness of Panorama depends on the hooks

in observers. We initially designed a straightforward

method to insert these hooks. In testing it on real-world

distributed systems, however, we found that component

interactions in practice can be complex. Certain interac-

tions, if not treated appropriately, will cause the extracted

observations to be misleading. In this section, we first

show a gray failure that our original method failed to de-

tect, and then investigate the reason behind the challenge.

4.1 A Failed Case

In one incident of a production ZooKeeper service, ap-

plications were experiencing many lock timeouts [23].

An engineer investigated the issue by checking metrics

in the monitoring system and found that the number of

connections per client had significantly increased. It ini-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 5

tially looked like a resource leak in the client library, but

the root cause turned out to be complicated.

The production environment used IPSec to secure

inter-host traffic, and a Linux kernel module used Intel

AES instructions to provide AES encryption for IPSec.

But this kernel module could occasionally introduce data

corruption with Xen paravirtualization, for reasons still

not known today. Typically the kernel validated packet

checksums and dropped corrupt packets. But, in IPSec,

two checksums exist: one for the IP payload, the other

for the encrypted TCP payload. For IPSec NAT-T mode,

the Linux kernel did not validate the TCP payload check-

sum, thereby permitting corrupt packets. These were de-

livered to the ZooKeeper leader, including a corrupted

length field for a string. When ZooKeeper used the

length to allocate memory to deserialize the string, it

raised an out-of-memory (OOM) exception.

Surprisingly, when this OOM exception happened,

ZooKeeper continued to run. Heartbeats were normal

and no leader re-election was triggered. When eval-

uating this incident in Panorama, no failure was re-

ported either. We studied the ZooKeeper source code

to understand why this happened. In ZooKeeper, a re-

quest is first picked up by the listener thread, which

then calls the ZooKeeperServer thread that further in-

vokes a chain of XXXRequestProcessor threads to pro-

cess the request. The OOM exception happens in the

PrepRequestProcessor thread, the first request proces-

sor. The ZooKeeperServer thread invokes the interface

of the PrepRequestProcessor as follows:

1 try {

2 firstProcessor.processRequest(si);

3 } catch (RequestProcessorException e) {

4 LOG.error("Unable to process request: " + e);

5 }

If the execution passes line 2, it provides positive ev-

idence that the PrepRequestProcessor thread is healthy.

If, instead, the execution reaches line 4, it represents neg-

ative evidence about PrepRequestProcessor. But with

the Panorama hooks inserted at both places, no negative

observations are reported. This is because the implemen-

tation of the processRequest API involves an indirec-

tion: it simply puts a request in a queue and immedi-

ately returns. Asynchronously, the thread polls and pro-

cesses the queue. Because of this design, even though

the OOM exception causes the PrepRequestProcessor

thread to exit its main loop, the ZooKeeperServer thread

is still able to call processRequest and is unable to tell

that PrepRequestProcessor has an issue. The hooks are

only observing the status of the indirection layer, i.e.,

the queue, rather than the PrepRequestProcessor thread.

Thus, negative observations only appear when the re-

quest queue cannot insert new items; but, by default, its

capacity is Integer.MAX_VALUE!

reply

request

C1 C2

request

reply

C1 C2
reply

request

C1 C2

reply

request

C1
C2

(a) (b) (c) (d)

Figure 2: Design patterns of component interactions and their

impact on failure observability. means that failure is ob-

servable to the other component, and means that failure is

unobservable to it.

4.2 Observability Patterns

Although the above case is a unique incident, we extrap-

olate a deeper implication for failure detection: certain

design patterns can undermine failure observability in a

system and thereby pose challenges for failure detection.

To reveal this connection, consider two components C1

and C2 where C1 makes requests of C2. We expect that,

through this interaction, C1 and C2 should be able to

make observations about each other’s status. However,

their style of interaction can have a significant effect on

this observability.

We have identified the following four basic patterns of

interaction (Figure 2), each having a different effect on

this observability. Interestingly, we find examples of all

four patterns in real-world system software.

(a) No indirection. Pattern (a) is the most straightfor-

ward. C1 makes a request to C2, then C2 optionally

replies to C1. This pattern has the best degree of ob-

servability: C1 can observe C2 from errors in its request

path; C2 can also observe C1 to some extent in its re-

ply path. Listing 1 shows an example of this pattern. In

this case, C1 is the follower and C2 is the leader. C1 first

contacts C2, then C2 sends C1 a snapshot or other infor-

mation through an input stream. Failures are observed

via errors or timeouts in the connection, I/O through the

input stream, and/or reply contents.

(b) Request indirection. A level of indirection exists in

the request path: when C1 makes a request to C2, an inter-

mediate layer (e.g., a proxy or a queue) takes the request

and replies to C1. C2 will later take the request from the

intermediate layer, process it, and optionally reply to C1

directly. This design pattern has a performance benefit

for both C1 and C2. It also provides decoupling between

their two threads. But, because of the indirection, C1 no

longer directly interacts with C2 so C2’s observability is

reduced. The immediate observation C1 makes when re-

questing from C2 does not reveal whether C2 is having

problems, since usually the request path succeeds as in

the case in §4.1.

(c) Reply indirection. Pattern (c) is not intuitive. C1

makes a request, which is directly handled by C2, but the

reply goes through a layer of indirection (e.g., a queue or

a proxy). Thus, C1 can observe issues in C2 but C1’s ob-

6 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

servability to C2 is reduced. One scenario leading to this

pattern is when a component makes requests to multiple

components and needs to collect more than one of their

replies to proceed. In this case, replies are queued so that

they can be processed en masse when a sufficient number

are available. For example, in Cassandra, when a process

sends digest requests to multiple replicas, it must wait for

responses from R replicas. So, whenever it gets a reply

from a replica, it queues the reply for later processing.

(d) Full indirection. In pattern (d), neither component

directly interacts with the other so they get the least ob-

servability. This pattern has a performance benefit since

all operations are asynchronous. But, the code logic can

be complex. ZooKeeper contains an example: When a

follower forwards a request to a leader, the request is pro-

cessed asynchronously, and when the leader later notifies

the follower to commit the request, that notification gets

queued.

4.3 Implications

Pattern (a) has the best failure observability and is eas-

iest for Panorama to leverage. The other three patterns

are more challenging; placing observation hooks with-

out considering the effects of indirection can cause in-

completeness (though not inaccuracy) in failure detec-

tion (§2). That is, a positive observation will not nec-

essarily mean the monitored component is healthy but a

negative observation means the component is unhealthy.

Pragmatically, this would be an acceptable limitation if

the three indirection patterns were uncommon. However,

we checked the cross-thread interaction code in several

distributed systems and found, empirically, that patterns

(a) and (b) are both pervasive. We also found that differ-

ent software has different preferences, e.g., ZooKeeper

uses pattern (a) frequently, but Cassandra uses pattern

(b) more often.

This suggests Panorama should accommodate indirec-

tion in extracting observations. One solution is to instru-

ment hooks in the indirection layer. But, we find that in-

direction layers in practice are implemented with various

data structures and are often used for multiple purposes,

making tracking difficult. We use a simple but robust

solution and describe it in §5.4.

5 Observability Analysis

To systematically identify and extract useful observa-

tions from a component, Panorama provides an offline

tool that statically analyzes a program’s source code,

finds critical points, and injects hooks for reporting ob-

servations.

5.1 Locate Observation Boundary

Runtime errors are useful evidence of failure. Even if

an error is tolerated by a requester, it may still indi-

cate a critical issue in the provider. But, not all errors

should be reported. Panorama only extracts errors gen-

erated when crossing component boundaries, because

these constitute observations from the requester side. We

call such domain-crossing function invocations observa-

tion boundaries.

The first step of observability analysis is to locate

observation boundaries. There are two types of such

boundaries: inter-process and inter-thread. An inter-

process boundary typically manifests as a library API in-

vocation, a socket I/O call, or a remote procedure call

(RPC). Sometimes, it involves calling into custom code

that encapsulates one of those three to provide a higher-

level messaging service. In any case, with some domain

knowledge about the communication mechanisms used,

the analyzer can locate inter-process observation bound-

aries in source code. An inter-thread boundary is a call

crossing two threads within a process. The analyzer iden-

tifies such boundaries by finding custom public methods

in classes that extend the thread class.

5.2 Identify Observer and Observed

At each observation boundary, we must identify the ob-

server and subject. Both identities are specific to the dis-

tributed system being monitored. For thread-level obser-

vation boundaries, the thread identities are statically ana-

lyzable, e.g., the name of the thread or class that provides

the public interfaces. For process-level boundaries, the

observer identity is the process’s own identity in the dis-

tributed system, which is known when the process starts;

it only requires one-time registration with Panorama. We

can also usually identify the subject identity, if the re-

mote invocations use well-known methods, via either an

argument of the function invocation or a field in the class.

A challenge is that sometimes, due to nested polymor-

phism, the subject identity may be located deep down in

the type hierarchy. For example, it is not easy to deter-

mine if OutputStream.write() performs network I/O or

local disk I/O. We address this challenge by changing the

constructors of remote types (e.g., socket get I/O stream)

to return a compatible wrapper that extends the return

type with a subject field and can be differentiated from

other types at runtime by checking if that field is set.

5.3 Extract Observation

Once we have observation boundaries, the next step is to

search near them for observation points: program points

that can supply critical evidence about observed compo-

nents. A typical example of such an observation point is

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 7

void deserialize(DataTree dt, InputArchive ia)

{

 DataNode node = ia.readRecord("node");

 if (node.parent == null) {

 LOG.error("Missing parent.");

 throw new IOException("Invalid Datatree");

 }

 dt.add(node);

}

void snapshot() {

 ia = BinaryInputArchive.getArchive(

 sock.getInputStream());

 try {

 deserialize(getDataTree(), ia);

 } catch (IOException e) {

 sock.close();

 }

}

Ob-Point

Ob-Point

Ob-Boundary

data flow

control flow

Figure 3: Observation points in direct interaction (§4.2).

an exception handler invoked when an exception occurs

at an observation boundary.

To locate observation points that are exception han-

dlers, a straightforward approach is to first identify the

type of exceptions an observation boundary can generate,

then locate the catch clauses for these types in code re-

gions after the boundary. There are two challenges with

this approach. First, as shown in Figure 3, an exception

could be caught at the caller or caller’s caller. Recur-

sively walking up the call chain to locate the clause is

cumbersome and could be inaccurate. Second, the type

of exception thrown by the boundary could be a generic

exception such as IOException that could be generated

by other non-boundary code in the same try clause.

These two challenges can be addressed by inserting a try

just before the boundary and a catch right after it. This

works but, if the observation boundaries are frequent, the

excessive wrapping can cause non-trivial overhead.

The ideal place to instrument is the shared exception

handler for adjacent invocations. Our solution is to add

a special field in the base Throwable class to indicate the

subject identity and the context, and to ensure boundary-

generated exceptions set this field. Then, when an ex-

ception handler is triggered at runtime, we can check if

this field is set, and if so treat it as an observation point.

We achieve the field setting by wrapping the outermost

function body of each boundary method with a try and

catch, and by rethrowing the exception after the hook.

Note that this preserves the original program semantics.

Another type of observation point we look for is one

where the program handles a response received from

across a boundary. For example, the program may

raise an exception for a missing field or wrong signa-

ture in the returned DataNode in Figure 3, indicating

potential partial failure or corrupt state in the remote

process. To locate these observation points, our ana-

lyzer performs intra-procedural analysis to follow the

data flow of responses from a boundary. If an excep-

tion thrown is control-dependent on the response, we

consider it an observation point, and we insert code to

set the subject/context field before throwing the excep-

tion just as described earlier. This data-flow analysis is

conservative: e.g., the code if (a + b > 100) {throw

Exception("unexpected");}, where a comes from a

boundary but b does not, is not considered an observation

point because the exception could be due to b. In other

words, our analysis may miss some observation points

but will not locate wrong observation points.

So far, we have described negative observation points,

but we also need mechanisms to make positive obser-

vations. Ideally, each successful interaction across a

boundary is an observation point that can report positive

evidence. But, if these boundaries appear frequently, the

positive observation points can be excessive. So, we co-

alesce similar positive observation points that are located

close together.

For each observation point, the analyzer inserts hooks

to discover evidence and report it. At each negative

observation point, we get the subject identity and con-

text from the modified exception instance. We statically

choose the status; if the status is to be some level of

UNHEALTHY then we set this level based on the severity

of the exception handling. For example, if the exception

handler calls System.exit(), we set the status to a high

level of UNHEALTHY. At each positive observation point,

we get the context from the nearby boundary and also

statically choose the status. We immediately report each

observation to the Panorama library, but the library will

typically not report it synchronously. The library will

buffer excessive observations and send them in one ag-

gregate message later.

5.4 Handling Indirection

As we discussed in §4, observability can be reduced

when indirection exists at an observation boundary. For

instance, extracted observations may report the subject

as healthy while it is in fact unhealthy. The core issue is

that indirection splits a single interaction between com-

ponents among multiple observation boundaries. A suc-

cessful result at the first observation boundary may only

indicate partial success of the overall interaction; the in-

teraction may only truly complete later, when, e.g., a

callback is invoked, or a condition variable unblocks, or

a timeout occurs. We must ideally wait for an interaction

to complete before making an observation.

We call the two locations of a split interaction the ob-

origin and ob-sink, reflecting the order they’re encoun-

tered. Observations at the ob-origin represent positive

but temporary and weak evidence. For example, in Fig-

ure 4, the return from sendRR is an ob-origin. Where the

8 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

public List<Row> fetchRows() {

 ReadCommand command = ...;

 sendRR(command.newMessage(), endPoint, handler);

 ...

 try {

 Row row = handler.get();

 }

 catch (ReadTimeoutException ex) {

 throw ex;

 }

 catch (DigestMismatchException ex) {

 logger.error("Digest mismatch: {}", ex);

 }

}

public void response(MessageIn message) {

 resolver.preprocess(message);

 condition.signal();

}

data flow control flow

Ob-Origin

Ob-Point

Ob-Sink

Ob-Point

Ob-Sink

Figure 4: Observation points when indirection exists (§4.2).

callback of handler, response, is invoked, it is an ob-

sink. In addition, when the program later blocks waiting

for the callback, e.g., handler.get, the successful return

is also an ob-sink. If an ob-origin is properly matched

with an ob-sink, the positive observation becomes com-

plete and strong. Otherwise, an outstanding ob-origin is

only a weak observation and may degrade to a negative

observation, e.g., when handler.get times out.

Tracking an interaction split across multiple program

locations is challenging given the variety of indirection

implementations. To properly place hooks when indirec-

tion exists, the Panorama analyzer needs to know what

methods are asynchronous and the mechanisms for no-

tification. For instance, a commonly used one is Java

FutureTask [40]. For custom methods, this knowledge

comes from specifications of the boundary-crossing in-

terfaces, which only requires moderate annotation. With

this knowledge, the analyzer considers an ob-origin to be

immediately after any call site of an asynchronous inter-

face. We next discuss how to locate ob-sinks.

We surveyed the source code of popular distributed

systems and found the majority of ob-sinks fall into four

patterns: (1) invoking a callback-setting method; (2) per-

forming a blocking wait on a callback method; (3) check-

ing a completion flag; and (4) reaching another obser-

vation boundary with a third component, in cases when

a request must be passed on further. For the first two

patterns, the analyzer considers the ob-sink to be before

and after the method invocation, respectively. For the

third pattern, the analyzer locates the spin-loop body and

considers the ob-sink to be immediately after the loop.

The last pattern resembles SEDA [48]: after A asyn-

chronously sends a request to B, B does not notify A of

the status after it finishes but rather passes on the request

to C. Therefore, for that observation boundary in B, the

analyzer needs to not only insert a hook for C but also

treat it as an ob-sink for the A-to-B interaction.

When our analyzer finds an ob-origin, it inserts a

hook that submits an observation with the special sta-

tus PENDING. This means that the observer currently only

sees weak positive evidence about the subject’s status,

but expects to receive stronger evidence shortly. At any

ob-sink indicating positive evidence, our analyzer inserts

a hook to report a HEALTHY observation. At any ob-sink

indicating negative evidence, the analyzer inserts a hook

to report a negative observation.

To link an ob-sink observation with its corresponding

ob-origin observation, these observations must share the

same subject and context. To ensure this, the analyzer

uses a similar technique as in exception tracking. It adds

a special field containing the subject identity and context

to the callback handler, and inserts code to set this field

at the ob-origin. If the callback is not instrumentable,

e.g., because it is an integer resource handle, then the an-

alyzer inserts a call to the Panorama library to associate

the handle with an identity and context.

Sometimes, the analyzer finds an ob-origin but cannot

find the corresponding ob-sink or cannot extract the sub-

ject identity or context. This can happen due to either

lack of knowledge or the developers having forgotten to

check for completion in the code. In such a case, the an-

alyzer will not instrument the ob-origin, to avoid making

misleading PENDING observations.

We find that ob-origin and ob-sink separation is useful

in detecting not only issues involving indirection but also

liveness issues. To see why, consider what happens when

A invokes a boundary-crossing blocking function of B,

and B gets stuck so the function never returns. When

this happens, even though A witnesses B’s problem, it

does not get a chance to report the issue because it never

reaches the observation point following the blocking call.

Inserting an ob-origin before the function call provides

evidence of the liveness issue: LOSes will see an old

PENDING observation with no subsequent corresponding

ob-sink observation. Thus, besides asynchronous inter-

faces, call sites of synchronous interfaces that may block

for long should also be included in the ob-origin set.

6 Implementation

We implemented the Panorama service in ∼ 6,000 lines

of Go code, and implemented the observability analyzer

(§5) using the Soot analysis framework [46] and the As-

pectJ instrumentation framework [2].

We defined Panorama’s interfaces using protocol

buffers [7]. We then used the gRPC framework [5] to

build the RPC service and to generate clients in different

languages. So, the system can be easily used by various

components written in different languages. Panorama

provides a thin library that wraps the gRPC client for

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 9

20:10 20:15 20:20 20:25 20:30 20:35
0

20

40

C
o
u
n
t

(a) number of raw observations in a leader

20:10 20:15 20:20 20:25 20:30 20:35

Time

22

25

C
o
u
n
t

(b) number of raw observations in a follower

Figure 5: Number of raw observations in two Panorama ob-

servers. Each data point represents one second.

efficient observation reporting; each process participat-

ing in observation reporting is linked with this library.

The thin library provides features such as asynchronous

reporting, buffering and aggregation of frequent obser-

vations, identity resolution, rate limiting, quick cancella-

tion of PENDING statuses, and mapping of ob-sink handles

(§5.4). So, most operations related to observation report-

ing do not directly trigger local RPC calls to Panorama;

this keeps performance impact low.

7 Evaluation

In this section, we evaluate our Panorama prototype to

answer several key questions: (1) Can observations be

systematically captured? (2) Can observation capturing

detect regular failures? (3) Can Panorama detect produc-

tion gray failures? (4) How do transient failures affect

Panorama? (5) How much overhead does an observer

incur by participating in the Panorama service?

7.1 Experiment Setup

We run our experiments in a cluster of 20 physical nodes.

Each machine has a 2.4 GHz 10-core Intel Xeon E5-

2640v4 CPU, 64 GB of RAM, and a 480 GB SATA SSD;

they all connect to a single 10 Gbps Ethernet switch.

They run Ubuntu 16.04 with Linux kernel version 4.4.0.

We evaluate Panorama with four widely-used distributed

systems: ZooKeeper, Hadoop, HBase, and Cassandra.

HBase uses HDFS for storing data and ZooKeeper for

coordination, so an HBase setup resembles a service with

multiple subsystems. We continuously exercise these

services with various benchmark workloads to represent

an active production environment.

7.2 Integration with Several Systems

Panorama provides a generic observation and failure de-

tection service. To evaluate its generality, we apply it to

ZooKeeper, HDFS, Hadoop, HBase, and Cassandra, at

ZooKeeper Cassandra HDFS HBase

Annotations 24 34 65 16

Analysis Time 4.2 6.8 9.9 7.5

Table 2: Annotations and analysis time (in seconds).

both process and thread level. The integration is success-

ful without significant effort or changes to the system de-

sign. Our simple abstractions and APIs (§3.2) naturally

support various types of failure evidence in each sys-

tem. For instance, we support semantic errors, such as

responses with missing signatures; generic errors, such

as remote I/O exceptions; and liveness issues, such as in-

definite blocking or custom time-outs. The integration is

enabled by the observability analyzer (§5). In applying

the analyzer to a system, we need annotations about what

boundary-crossing methods to start with, what methods

involve indirection, and what patterns it uses (§5.4). The

annotation effort to support this is moderate (Table 2).

HDFS requires the most annotation effort, which took

one author about 1.5 days to understand the HDFS source

code, identify the interfaces and write annotation speci-

fication. Fortunately, most of these boundary-crossing

methods remain stable over releases. When running the

observability analysis, Cassandra is more challenging to

analyze compared to the others since it frequently uses

indirection. On the other hand, its mechanisms are also

well-organized, which makes the analysis systematic.

The observability analysis is mainly intra-procedural and

can finish instrumentation within 10 seconds for each

of the four systems (Table 2). Figure 5 shows the ob-

servations collected from two instrumented processes in

ZooKeeper. The figure also shows that the observations

made change as the observer executes, and depend on the

process’s interaction patterns.

7.3 Detection of Crash Failures

Panorama aims to detect complex failures not limited to

fail-stop. As a sanity check on the effectiveness of its de-

tection capability, we first evaluate how well Panorama

detects fail-stop failures. To measure this, we inject vari-

ous fail-stop faults including process crashes, node shut-

downs, and network disconnections. Table 3 shows the

detection time for ten representative crash-failure cases:

failures injected into the ZooKeeper leader, ZooKeeper

follower, Cassandra data node, Cassandra seed node,

HDFS name node, HDFS data node, HBase master and

HBase regionserver. We see that with Panorama the ob-

servers take less than 10 s to detect all ten cases, and

indeed take less than 10 ms to detect all ZooKeeper

failures. The observers make the observations lead-

ing to these detections when, while interacting with the

10 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 11

0

10

(a) failure reporting from different detectors

Panorama observer

Built-in detector

FALCON

Accrual detector

0

0

02:36:58
02:37:28

02:37:58
02:38:28

02:38:58
02:39:28

02:39:58
02:40:28

02:40:58

Time

0
Fault occurs Fault clears

0

50

E
rr

o
r

ra
te

(b) status of a client running mixed workloads

timeout success

02:37:12
02:37:42

02:38:12
02:38:42

02:39:12
02:39:42

02:40:12
02:40:42

Time

101

104

L
a
te

n
c
y

(m
s
)

R
a
te

 o
f

fa
il
u
re

 r
e
p
o
rt

s

Figure 7: Timeline in detecting gray failure f1 from Table 4.

dence that clears the failure observation. During the fail-

ure period, no other baseline reports failure. Figure 7

also shows the view from a ZooKeeper client that we

run continuously throughout the experiment as a refer-

ence. We can see Panorama’s reporting closely matches

the experience of this client. Interestingly, since the gray

failure mainly impacts write requests but the client exe-

cutes a mixture of read and write requests, its view is not

very stable; nevertheless, Panorama consistently reports

a verdict of UNHEALTHY during the failure period.

7.5 Fault Localization

In addition to detecting the 15 production fail-

ures quickly, Panorama also pinpoints each failure

with detailed context and observer (§3.2) informa-

tion. This localization capability allows adminis-

trators to interpret the detection results with confi-

dence and take concrete actions. For example, in de-

tecting the crash failure in the ZooKeeper follower,

the verdict for the leader is based on observations

such as |peer@3,peer@5,peer@8| 2018-03-23T02:28:58.873

{Learner: U,RecvWorker: U,QuorumCnxManager: U}, which

identify the observer as well as the contexts Learner,

RecvWorker, and QuorumCnxManager. In detecting

gray failure f1, the negative observations of the

unhealthy leader are associated with three contexts

SerializeUtils, DataTree, and StatPersisted; this lo-

calizes the failure to the serialization thread in leader.

7.6 Transient Failure, Normal Operations

Because Panorama can gather observations from any

component in a system, there is a potential concern that

23:44 23:45 23:46 23:47 23:48 23:49 23:50 23:51 23:52

Time

Healthy

Unhealthy
context1

context2

context3

context4

context5

context6

context7

Figure 8: Verdict during transient failures.

10 20 30 40 50

Cluster size

2000

4000

6000

8000

P
ro

p
a
g
a
ti

o
n

d
e
la

y
 (

u
s
)

unicast multicast

Figure 9: Scalability of observation propagation latency. “uni-

cast”: propagate an observation to a single Panorama in-

stance; “multicast”: propagate an observation to all interested

Panorama instances.

noisy observations will lead to many false alarms. But,

empirically, we find that this does not happen. The

Panorama analyzer assigns the context of an observation

properly to avoid falsely aggregating observations made

in interacting with different functionalities of a complex

process. The simple decision algorithm in §3.6 is robust

enough to prevent a few biased observers or transient

failures from dominating the verdict. Figure 8 shows the

verdict for the ZooKeeper leader in an experiment. A

few followers report transient faults about the leader in

one context, so Panorama decides on a negative verdict.

But, within a few seconds, the verdict changes due to

positive observations and expiration of negative observa-

tions. Panorama then judges the leader as healthy for the

remainder of the experiment, which matches the truth.

We deploy Panorama with ZooKeeper and run for 25

hours, during which multiple ZooKeeper clients contin-

uously run various workloads non-stop to emulate nor-

mal operations in a production environment. In total,

Panorama generates 797,219 verdicts, with all but 705

(0.08%) of them being HEALTHY; this is a low false alarm

rate. In fact, all of the negative observations are made

in the first 22 seconds, during which the system is boot-

strapping and unstable. After the 22 seconds, no negative

observations are reported for the remaining 25 hours.

We also inject minor faults including overloaded com-

ponent, load spike and transient network partition that

are modeled after two production ZooKeeper and HDFS

traces. These minor faults do not affect the regular ser-

vice. We find Panorama overall is resilient to these

noises in reaching a verdict. For example, an overloaded

ZooKeeper follower made a series of misleading obser-

12 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) ZooKeeper Leader

0
30
60
90

120
150
180

zk_leader_recv zk_leader_sent

0 50 100 150 200 250 300

time

0

5

10

15
pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

(b) ZooKeeper Follower

0

30

60

90

120

150

180 zk_follower_recv zk_follower_sent

0 50 100 150 200 250 300

time

0

5

10

15
pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

(c) HBase Master

0
10
20
30
40
50
60
70 hbase_master_recv hbase_master_sent

50 100 150 200 250 300

time

0.0

0.5

1.0

1.5

2.0
pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

(d) HBase RegionServer

0
40
80

120
160
200
240 hbase_rs_recv hbase_rs_sent

50 100 150 200 250 300

time

0.0

0.5

1.0

1.5

2.0

2.5
pano_recv pano_sent

N
e
t

B
a
n
d
w

id
th

 U
s
a
g
e
 (

K
B

/s
)

Figure 10: Network bandwidth usage of the Panorama instance and its monitored component.

Report ReportAsync Judge Propagate

114.6 µs 0.36 µs 109.0 µs 776.3 µs

Table 5: Average latency of major operations in Panorama.

vations that the leader is UNHEALTHY. But these biased ob-

servations from a single observer did not result in a ver-

dict of UNHEALTHY status for the leader. When there were

many such overloaded followers, however, the leader

was falsely convicted as UNHEALTHY even though the ac-

tual issues were within the observers.

7.7 Performance

Table 5 shows microbenchmark results: how long four

major operations in Panorama take on average. Report-

ing an observation to Panorama only requires a local

RPC, so the average latency of reporting is fast (around

100 µs). And, the asynchronous API for reporting takes

even less time: on average less than 1 µs. Propagation

of an observation to another Panorama instance takes

around 800 µs. Figure 9 shows how the propagation la-

tency changes as the cluster size increases.

When a Panorama instance is active, the CPU utiliza-

tion attributable to it is on average 0.7%. For each mon-

itored subject, the number of observations kept in LOS

is bounded so the memory usage is close to a constant.

Thus, the total memory usage depends on the number of

monitored subjects. When we measure the ZooKeeper

deployment with Panorama, and find that the heap mem-

ory allocation stabilizes at ∼7 MB for a moderately ac-

tive instance, and at ∼46 MB for a highly active instance.

The network bandwidth usage of Panorama instance for

System
Latency Throughput

Read Write Read Write

ZK 69.5 µs 1435 µs 14402 op/s 697 op/s

ZK+ 70.6 µs 1475 µs 14181 op/s 678 op/s

C∗ 677 µs 680 µs 812 op/s 810 op/s

C∗+ 695 µs 689 µs 802 op/s 804 op/s

HDFS 51.0 s 61.0 s 423 MB/s 88 MB/s

HDFS+ 52.5 s 62.2 s 415 MB/s 86 MB/s

HBase 746 µs 1682 µs 1172 op/s 549 op/s

HBase+ 748 µs 1699 µs 1167 op/s 542 op/s

Table 6: Performance of the original system versus the perfor-

mance of the system instrumented with Panorama hooks (Sys-

tem+). ZK stands for ZooKeeper and C∗ stands for Cassandra.

The latency results for HDFS are total execution times.

exchanging observations is small compared to the band-

width usage of the monitored components (Figure 10).

We test the end-to-end request latency and through-

put impact of integrating with Panorama for HDFS,

ZooKeeper, HBase, and Cassandra, using YCSB [16],

DFSIO and a custom benchmark tool. Table 6 shows the

results. The latency increase and throughout decrease for

each system is below 3%. We achieve this low overhead

because the reporting API is fast and because most hooks

are in error-handling code, which is not triggered in nor-

mal operation. The positive-observation hooks lie in the

normal execution path, but their cost is reduced by coa-

lescing the hooks with the analyzer (§5.3) and batching

the reporting with the thin client library. Without this op-

timization, the performance overhead can be up to 18%.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 13

8 Discussion and Limitations

Panorama proposes a new way of building failure de-

tection service by constructing in-situ observers. The

evaluation results demonstrate the effectiveness of lever-

aging observability for detecting complex production

failures. The process of integrating Panorama with

real-world distributed systems also makes us realize

how the diverse programming paradigms affect sys-

tems observability. For example, HDFS has a method

createBlockOutputStream that takes a list of data nodes

as argument and creates a pipeline among them; if this

method fails, it indicates one of the data nodes in the pi-

pleline is problematic. From observability point of view,

if a negative evidence is observed through this method,

it is associated with multiple possible subjects. Fortu-

nately, an errorIndex variable is maintained internally

to indicate which data node causes the error, which can

be used to determine the exact subject. It is valuable to

investigate how to modularize a system and design its in-

terfaces to make it easier to capture failure observability.

There are several limitations of Panorama that we plan

to address in future work. First, Panorama currently fo-

cuses on failure detection. To improve end-to-end avail-

ability, we plan to integrate the detection results with fail-

ure recovery actions. Second, Panorama currently does

not track causality. Enhancing observations with causal-

ity information will be useful for correctly detecting and

pinpointing failing components in large-scale cascading

failures. Third, we plan to add support for languages

other than Java to the Panorama analyzer, and evaluate

it with a broader set of distributed systems.

9 Related Work

Failure Detection. There is an extensive body of work

on studying and improving failure detection for dis-

tributed systems [8, 13, 14, 20, 29, 47]. A recent promi-

nent work in this space is Falcon [34], in which the au-

thors argue that a perfect failure detector (PFD) can be

built [9] by replacing end-to-end timeouts with layers of

spies that can kill slow processes. Panorama is compli-

mentary to these efforts, which mainly focus on detect-

ing crash failures. Panorama’s goal is to detect complex

production failures [11, 25, 30]. In terms of approach,

Panorama is unique in enhancing system observability

by constructing in-situ observers in place of any com-

ponent’s code, instead of using dedicated detectors such

as spies or sensors that are outside components’ normal

execution paths.

Monitoring and Tracing. Improving monitoring and

tracing of production systems is also an active research

area. Examples include Magpie [12], X-Trace [21],

Dapper [45] and Pivot Tracing [35]. The pervasive

metrics collected by these systems enhance system ob-

servability, and their powerful tracing capabilities may

help Panorama better deal with the indirection chal-

lenge (§4). But they are massive and difficult to reason

about [15, 37, 44]. Panorama, in contrast, leverages er-

rors and exceptions generated from an observer’s normal

execution to report complex but serious failures.

Accountability. Accountability is useful for detect-

ing Byzantine component behavior in a distributed sys-

tem [28, 51]. PeerReview [27] provides accountabil-

ity by having other nodes collecting evidence about the

correctness of a node through their message exchanges.

Panorama’s approach is inspired by PeerReview in that

it also leverages evidence about other components in a

system. But Panorama mainly targets production gray

failures instead of Byzantine faults. Unlike PeerReview,

Panorama places observability hooks in the existing code

of a component and does not require a reference imple-

mentation or a special protocol.

10 Conclusion

We present Panorama, a system for detecting produc-

tion failures in distributed systems. The key insight en-

abling Panorama is that system observability can be en-

hanced by automatically turning each component into

an observer of the other components with which it in-

teracts. By leveraging these first-hand observations, a

simple detection algorithm can achieve high detection

accuracy. In building Panorama, we further discover

observability patterns and address the challenge of re-

duced observability due to indirection. We implement

Panorama and evaluate it, showing that it introduces min-

imal overhead to existing systems. Panorama can detect

and localize 15 real-world gray failures in less than 7 s,

whereas existing detectors only detect one of them in un-

der 300 s. The source code of Panorama system is avail-

able at https://github.com/ryanphuang/panorama.

Acknowledgments

We thank the OSDI reviewers and our shepherd, Ding

Yuan, for their valuable comments that improved the

paper. We appreciate the support from CloudLab [43]

for providing a great research experiment platform. We

also thank Yezhuo Zhu for sharing ZooKeeper produc-

tion traces and Jinfeng Yang for sharing HDFS produc-

tion traces. This work was supported in part by a Mi-

crosoft Azure Research Award.

14 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ryanphuang/panorama

References

[1] Asana service outage on September 8th, 2016.

https://blog.asana.com/2016/09/yesterdays-outage/.

[2] AspectJ, aspect-oriented extension to the Java programming lan-

guage. https://www.eclipse.org/aspectj.

[3] GoCardless service outage on October 10th, 2017.

https://gocardless.com/blog/incident-review-api-and-dashboard-

outage-on-10th-october.

[4] Google Compute Engine incident 16007.

https://status.cloud.google.com/incident/compute/16007.

[5] gRPC, a high performance, open-source universal RPC frame-

work. https://grpc.io.

[6] Microsoft Azure status history. https://azure.microsoft.com/en-

us/status/history.

[7] Protocol buffers. https://developers.google.com/

protocol-buffers/.

[8] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and

consensus in the crash-recovery model. Distributed Computing,

13(2):99–125, Apr. 2000.

[9] M. K. Aguilera and M. Walfish. No time for asynchrony. In Pro-

ceedings of the 12th Conference on Hot Topics in Operating Sys-

tems, HotOS’09, Monte Verità, Switzerland, May 2009. USENIX

Association.

[10] Amazon. AWS service outage on October 22nd, 2012. https:

//aws.amazon.com/message/680342.

[11] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter

fault tolerance. In Proceedings of the Eighth Workshop on Hot

Topics in Operating Systems, HotOS ’01. IEEE Computer Soci-

ety, 2001.

[12] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie

for request extraction and workload modelling. In Proceedings of

the 6th Conference on Symposium on Opearting Systems Design

& Implementation - Volume 6, OSDI ’04, San Francisco, CA,

2004. USENIX Association.

[13] T. D. Chandra and S. Toueg. Unreliable failure detectors for re-

liable distributed systems. Journal of the ACM, 43(2):225–267,

Mar. 1996.

[14] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of

service of failure detectors. IEEE Transactions on Computing,

51(5):561–580, May 2002.

[15] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The

Mystery Machine: End-to-end performance analysis of large-

scale Internet services. In Proceedings of the 11th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI

’14, pages 217–231, Broomfield, CO, 2014. USENIX Associa-

tion.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with ycsb. In Pro-

ceedings of the 1st ACM Symposium on Cloud Computing, SoCC

’10, pages 143–154, Indianapolis, Indiana, USA, 2010. ACM.

[17] J. Dean. Designs, lessons and advice from building large dis-

tributed systems, 2009. Keynote at The 3rd ACM SIGOPS Inter-

national Workshop on Large Scale Distributed Systems and Mid-

dleware (LADIS).

[18] J. Dean and L. A. Barroso. The tail at scale. Communications of

the ACM, 56(2):74–80, Feb. 2013.

[19] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S.

Gunawi. Limplock: Understanding the impact of limpware on

scale-out cloud systems. In Proceedings of the 4th Annual Sym-

posium on Cloud Computing, SOCC ’13, Santa Clara, California,

2013. ACM.

[20] C. Fetzer. Perfect failure detection in timed asynchronous sys-

tems. IEEE Transactions on Computing, 52(2):99–112, Feb.

2003.

[21] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-

Trace: A pervasive network tracing framework. In Proceedings

of the 4th USENIX Conference on Networked Systems Design &

Implementation, NSDI ’07, Cambridge, MA, 2007. USENIX As-

sociation.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File

System. In Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles, SOSP ’03, pages 29–43, Bolton

Landing, NY, USA, 2003. ACM.

[23] E. Gilman. PagerDuty production ZooKeeper service incident in

2014. https://www.pagerduty.com/blog/the-discovery-of-apache-

zookeepers-poison-packet/.

[24] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant

mechanism for distributed file cache consistency. In Proceedings

of the Twelfth ACM Symposium on Operating Systems Principles,

SOSP ’89, pages 202–210. ACM, 1989.

[25] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundarara-

man, X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey,

G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson,

R. Ricci, K. Webb, P. Alvaro, H. B. Runesha, M. Hao, and H. Li.

Fail-slow at scale: Evidence of hardware performance faults in

large production systems. In Proceedings of the 16th USENIX

Conference on File and Storage Technologies, FAST ’18, pages

1–14, Oakland, CA, USA, 2018. USENIX Association.

[26] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,

V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh:

A large-scale system for data center network latency measure-

ment and analysis. In Proceedings of the 2015 ACM SIGCOMM

Conference, SIGCOMM ’15, pages 139–152, London, United

Kingdom, 2015. ACM.

[27] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Prac-

tical accountability for distributed systems. In Proceedings of

the Twenty-first ACM SIGOPS Symposium on Operating Systems

Principles, SOSP ’07, pages 175–188, Stevenson, Washington,

USA, 2007. ACM.

[28] A. Haeberlen and P. Kuznetsov. The fault detection problem.

In Proceedings of the 13th International Conference on Princi-

ples of Distributed Systems, OPODIS ’09, pages 99–114, Nîmes,

France, 2009. Springer-Verlag.

[29] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The ϕ

accrual failure detector. In Proceedings of the 23rd IEEE Inter-

national Symposium on Reliable Distributed Systems, SRDS ’04,

pages 66–78. IEEE Computer Society, 2004.

[30] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalap-

ati, and R. Yao. Gray failure: The Achilles’ heel of cloud-scale

systems. In Proceedings of the 16th Workshop on Hot Topics in

Operating Systems, HotOS ’17, pages 150–155, Whistler, BC,

Canada, 2017. ACM.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 15

https://www.eclipse.org/aspectj
https://grpc.io
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://aws.amazon.com/message/680342
https://aws.amazon.com/message/680342

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:

Wait-free coordination for Internet-scale systems. In Proceed-

ings of the 2010 USENIX Conference on USENIX Annual Techni-

cal Conference, USENIX ATC ’10, Boston, MA, 2010. USENIX

Association.

[32] R. E. Kalman. On the general theory of control systems. IRE

Transactions on Automatic Control, 4(3):110–110, December

1959.

[33] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Im-

proving availability in distributed systems with failure informers.

In Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, NSDI ’13, pages 427–442,

Lombard, IL, 2013. USENIX Association.

[34] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Wal-

fish. Detecting failures in distributed systems with the Falcon spy

network. In Proceedings of the Twenty-third ACM Symposium on

Operating Systems Principles, SOSP ’11, pages 279–294, Cas-

cais, Portugal, 2011. ACM.

[35] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dynamic

causal monitoring for distributed systems. In Proceedings of the

25th Symposium on Operating Systems Principles, SOSP ’15,

pages 378–393, Monterey, California, 2015. ACM.

[36] Microsoft. Office 365 service incident on November

13th, 2013. https://blogs.office.com/2012/11/13/

update-on-recent-customer-issues/.

[37] J. C. Mogul, R. Isaacs, and B. Welch. Thinking about availabil-

ity in large service infrastructures. In Proceedings of the 16th

Workshop on Hot Topics in Operating Systems, HotOS ’17, pages

12–17, Whistler, BC, Canada, 2017. ACM.

[38] D. Nadolny. Network issues can cause cluster to hang due to near-

deadlock. https://issues.apache.org/jira/browse/ZOOKEEPER-

2201.

[39] D. Nadolny. Debugging distributed systems. In SREcon 2016,

Santa Clara, CA, Apr. 2016.

[40] Oracle. Java Future and FutureTask. https://docs.oracle.com/

javase/7/docs/api/java/util/concurrent/Future.html.

[41] D. L. Parnas. On the criteria to be used in decomposing systems

into modules. Communications of the ACM, 15(12):1053–1058,

Dec. 1972.

[42] J. Postel. DoD Standard Transmission Control Protocol, January

1980. RFC 761.

[43] R. Ricci, E. Eide, and the CloudLab Team. Introducing Cloud-

Lab: Scientific infrastructure for advancing cloud architectures

and applications. USENIX ;login:, 39(6), December 2014.

[44] T. Schlossnagle. Monitoring in a DevOps world. Communica-

tions of the ACM, 61(3):58–61, Feb. 2018.

[45] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,

M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a

large-scale distributed systems tracing infrastructure. Technical

report, Google, Inc., 2010.

[46] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-

daresan. Soot - a Java bytecode optimization framework. In

Proceedings of the 1999 Conference of the Centre for Advanced

Studies on Collaborative Research, CASCON ’99, Mississauga,

Ontario, Canada, 1999. IBM Press.

[47] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure

detection service. In Proceedings of the IFIP International Con-

ference on Distributed Systems Platforms and Open Distributed

Processing, Middleware ’98, pages 55–70, The Lake District,

United Kingdom, 1998. Springer-Verlag.

[48] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for

well-conditioned, scalable Internet services. In Proceedings of

the Eighteenth ACM Symposium on Operating Systems Princi-

ples, SOSP ’01, pages 230–243, Banff, Alberta, Canada, 2001.

ACM.

[49] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,

P. U. Jain, and M. Stumm. Simple testing can prevent most crit-

ical failures: An analysis of production failures in distributed

data-intensive systems. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation,

OSDI’14, pages 249–265, Broomfield, CO, 2014. USENIX As-

sociation.

[50] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou,

and S. Savage. Be conservative: Enhancing failure diagnosis with

proactive logging. In Proceedings of the 10th USENIX Confer-

ence on Operating Systems Design and Implementation, OSDI

’12, pages 293–306, Hollywood, CA, USA, 2012. USENIX As-

sociation.

[51] A. R. Yumerefendi and J. S. Chase. The role of accountability

in dependable distributed systems. In Proceedings of the First

Conference on Hot Topics in System Dependability, HotDep ’05,

Yokohama, Japan, 2005. USENIX Association.

16 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://blogs.office.com/2012/11/13/update-on-recent-customer-issues/
https://blogs.office.com/2012/11/13/update-on-recent-customer-issues/
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

	Introduction
	Problem Statement
	Panorama System
	Overview
	Abstractions and APIs
	Local Observation Store
	Observers
	Observation Exchange
	Judging Failure from Observations

	Design Pattern and Observability
	A Failed Case
	Observability Patterns
	Implications

	Observability Analysis
	Locate Observation Boundary
	Identify Observer and Observed
	Extract Observation
	Handling Indirection

	Implementation
	Evaluation
	Experiment Setup
	Integration with Several Systems
	Detection of Crash Failures
	Detection of Gray Failures
	Fault Localization
	Transient Failure, Normal Operations
	Performance

	Discussion and Limitations
	Related Work
	Conclusion

