
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

An Analysis of Network-Partitioning
Failures in Cloud Systems

Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany, University of Waterloo

https://www.usenix.org/conference/osdi18/presentation/alquraan

An Analysis of Network-Partitioning Failures in Cloud Systems

Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, Samer Al-Kiswany
University of Waterloo, Canada

Abstract
We present a comprehensive study of 136 system
failures attributed to network-partitioning faults from
25 widely used distributed systems. We found that the
majority of the failures led to catastrophic effects, such
as data loss, reappearance of deleted data, broken locks,
and system crashes. The majority of the failures can
easily manifest once a network partition occurs: They
require little to no client input, can be triggered by
isolating a single node, and are deterministic. However,
the number of test cases that one must consider is
extremely large. Fortunately, we identify ordering,
timing, and network fault characteristics that
significantly simplify testing. Furthermore, we found
that a significant number of the failures are due to
design flaws in core system mechanisms.

We found that the majority of the failures could
have been avoided by design reviews, and could have
been discovered by testing with network-partitioning
fault injection. We built NEAT, a testing framework
that simplifies the coordination of multiple clients and
can inject different types of network-partitioning faults.
We used NEAT to test seven popular systems and
found and reported 32 failures.

1 Introduction
With the increased dependency on cloud
systems [1, 2, 3, 4], users expect high—ideally, 24/7—
service availability and data durability [5, 6]. Hence,
cloud systems are designed to be highly
available [7, 8, 9] and to preserve data stored in them
despite failures of devices, machines, networks, or even
entire data centers [10, 11, 12].

Our goal is to better understand the impact of a
specific type of infrastructure fault on modern
distributed systems: network-partitioning faults. We
aim to understand the specific sequence of events that
lead to user-visible system failures and to characterize
these system failures to identify opportunities for
improving system fault tolerance.

We focus on network partitioning for two reasons.
The first is due to the complexity of tolerating these
faults [13, 14, 15, 16]. Network-partitioning fault
tolerance pervades the design of all system layers, from
the communication middleware and data
replication [13, 14, 16, 17] to user API definition and
semantics [18, 19], and it dictates the availability and
consistency levels a system can achieve [20]. Second,
recent studies [21, 22, 23, 24] indicate that, in

production networks, network-partitioning faults occur
as frequently as once a week and take from tens of
minutes to hours to repair.

Given that network-partitioning fault tolerance is a
well-studied problem [13, 14, 17, 20], this raises
questions about how these faults sill lead to system
failures. What is the impact of these failures? What are
the characteristics of the sequence of events that lead to
a system failure? What are the characteristics of the
network-partitioning faults? And, foremost, how can we
improve system resilience to these faults?

To help answer these questions, we conducted a
thorough study of 136 network-partitioning failures1
from 25 widely used distributed systems. The systems
we selected are popular and diverse, including key-
value systems and databases (MongoDB, VoltDB,
Redis, Riak, RethinkDB, HBase, Aerospike, Cassandra,
Geode, Infinispan, and Ignite), file systems (HDFS and
MooseFS), an object store (Ceph), a coordination
service (ZooKeeper), messaging systems (Kafka,
ActiveMQ, and RabbitMQ), a data-processing
framework (Hadoop MapReduce), a search engine
(Elasticsearch), resource managers (Mesos, Chronos,
and DKron), and in-memory data structures (Hazelcast,
Ignite, and Terracotta).

For each considered failure, we carefully studied the
failure report, logs, discussions between users and
developers, source code, code patch, and unit tests. We
manually reproduced 24 of the failures to understand
the specific manifestation sequence of the failure.
Failure impact. Overall, we found that network-
partitioning faults lead to silent catastrophic failures
(e.g., data loss, data corruption, data unavailability, and
broken locks), with 21% of the failures leaving the
system in a lasting erroneous state that persists even
after the partition heals.
Ease of manifestation. Oddly, it is easy for these
failures to occur. A majority of the failures required
three or fewer frequently used events (e.g., read, and
write), 88% of them can be triggered by isolating a
single node, and 62% of them were deterministic. It is
surprising that catastrophic failures manifest easily,
given that these systems are generally developed using
good software-engineering practices and are subjected
to multiple design and code reviews as well as thorough
testing [5, 25].

1 A fault is the initial root cause, including machine and network
problems and software bugs. If not properly handled a fault may lead
to a user-visible system failure.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 51

Partial Network Partitions. Another unexpected result
is that a significant number of the failures (29%) were
caused by an unanticipated type of fault: partial
network partitions. Partial partitions isolate a set of
nodes from some, but not all, nodes in the cluster,
leading to a confusing system state in which the nodes
disagree whether a server is up or down. The effects of
this disagreement are poorly understood and tested.
This is the first study to analyze the impact of this fault
on modern systems.
Testability. We studied the testability of these failures.
In particular, we analyzed the manifestation sequence
of each failure, ordering constraints, timing constraints,
and network fault characteristics. While the number of
event permutations that can lead to a failure is
excessively large, we identified characteristics that
significantly reduce the number of test cases
(Section 5). We also found that the majority of the
failures can be reproduced through tests and by using
only three nodes.

Our findings debunk two common presumptions.
First, network practitioners presume that systems, with
their software and data redundancy, are robust enough
to tolerate network partitioning [22]. Consequently,
practitioners assign low priority to the repair of top-of-
the-rack (ToR) switches [22], even though these
failures isolate a rack of machines. Our findings show
that this presumption is ill founded, as 88% of the
failures can occur by isolating a single node. Second,
system designers assume that limiting client access to
one side of a network partition will eliminate the
possibility of a failure [28, 29, 30, 31, 32, 33, 34]. Our
findings indicate that 64% of the failures required no
client access at all or client access to only one side of
the network partition.

We examined the unit tests that we could relate to
the studied code patches and we found that developers
lack the proper tools to test these failures. In most
cases, developers used mocking [26, 27] to test the
impact of network partitioning on only one component
and on just one side of the partition. However, this
approach is inadequate for end-to-end testing of
complete distributed protocols.

Our findings motivated us to build the network
partitioning testing framework (NEAT). NEAT
simplifies testing by allowing developers to specify a
global order for client operations and by providing a
simple API for creating and healing partitions as well as
crashing nodes. NEAT uses OpenFlow [35] to
manipulate switch-forwarding rules and create
partitions. For deployments that do not have an
OpenFlow switch, we built a basic version using
iptables [36] to alter firewall rules at end hosts.

We used NEAT to test seven systems: Ceph [37],
ActiveMQ [38], Apache Ignite [39], Terracotta [40],
DKron [41], Infinispan [42], and MooseFS [43]. We

found and reported 32 failures that led to data loss, stale
reads, reappearance of deleted data, unavailability,
double locking, and broken locks.

The rest of this paper is organized as follows: In
Section 2, we present a categorization of network-
partitioning faults, discuss the theoretical limit on
system design, and discuss the current testing
techniques. In Section 3, we present our methodology
and its limitations. Then, we present our findings in
Sections 4 and 5 and discuss a number of related
observations in Section 6. We present the NEAT
framework in Section 7. We present additional related
work in Section 8. We share our insights in Section 9
and conclude our paper in Section 10.

2 Background
In this section, we present the three types of network-
partitioning faults (Section 2.1), discuss the theoretical
limit for systems design (Section 2.2), and survey the
current approaches for testing systems’ resilience to
network-partitioning faults (Section 2.3).

2.1 Types of Network Partitions
Modern networks are complex. They span multiple data
centers [44, 45], use heterogeneous hardware and
software [23], and employ a wide range of middle
boxes (e.g., NAT, load balancers, route aggregators,
and firewalls) [21, 44, 45]. Despite the high redundancy
built into modern networks, catastrophic failures are
common [21, 22, 23, 24]. We surveyed network-
partitioning failures and identified three types:

Complete network partitioning leads to dividing the
network into two disconnected parts (Figure 1.a).
Complete partitions can happen at different scales; for
example, they can manifest in geo-replicated systems
due to the loss of connectivity between data centers. HP
reported that 11% of its enterprise network failures lead
to site connectivity problems [23]. Turner et al. found
that a network partition occurs almost once every 4

(a)

 (b)
(c)

Figure 1. Network partitioning types. (a) Complete partition:
The system is split into two disconnected groups (b) Partial
partition: The partition affects some, but not all, nodes in the
system. Group 3 in Figure (b) can communicate with the
other two groups. (c) Simplex partition, in which traffic
flows only in one direction.

52 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

days in the California-wide CENIC network [24]. In a
data center, a complete partition can manifest due to
failures in the core or aggregation switches [22] or
because of a ToR switch failure. Microsoft and Google
report that ToR failures are common and have led to 40
network partitions in two years at Google [21] and
caused 70% of the downtime at Microsoft [22]. Finally,
NIC failures [46] or bugs in the networking stack can
lead to the isolation of a single node that could be
hosting multiple VMs. Finally, network-partition faults
caused by correlated failures of multiple devices are not
uncommon [22, 24, 44]. Correlated switch failures are
frequently caused by system-wide upgrades and
maintenance tasks [21, 22].

Partial network partitioning is a fault that leads to the
division of nodes into three groups (Group1, Group2,
and Group3 in Figure 1.b) such that two groups (say,
Group1 and Group2) are disconnected while Group3
can communicate with both Group1 and Group2
(Figure 1.b). Partial partitions are caused by a loss of
connectivity between two data centers [23] while both
are reachable by a third center, or due to inconsistencies
in switch-forwarding rules [21].

Simplex network partitioning permits traffic to flow in
one direction, but not in the other (Figure 1.c). This is
the least common failure and can be caused by
inconsistent forwarding rules or hardware failures (e.g.,
the Broadcom BCM5709 chipset bug [46]). The impact
of this failure is mainly manifested in UDP-based
protocols. For instance, a simplex network partitioning
dropped all incoming packets to a primary server while
allowing the primary server heartbeats to reach the
failover server. The system hang as the failover server
neither detected the failure nor took over [46].

2.2 Theoretical Limit
The data consistency model defines which values a read
operation may return. The strong consistency
model [47] (a.k.a. sequential consistency) is the easiest
to understand and use. Strong consistency promises that
a read operation will return the most recent successfully
written value. Unfortunately, providing strong
consistency reduces system availability and requires
complex consistency protocols [13, 14, 17]. Gilbert and
Lynch [20] presented a theoretical limit on system
design. Their theorem, famously known as the CAP
theorem, states that in the presence of a network
partition, designers need to choose between keeping the
service available and maintaining data consistency.

To maintain system availability, system designers
choose a relaxed consistency model such as the read-
your-write [11, 18, 19, 48], timeline [19, 48, 49], and
eventually consistent [16, 19, 50, 51] models.

Modern systems often implement consensus
protocols that have not been theoretically proven.
Eventually consistent systems implement unproven

protocols (Hazelcast [29] and Redis [32]), and systems
that implement proven, strongly consistent protocols
(e.g., Paxos [13] and Raft [14]) often tweak these
protocols in unproven ways [15, 31, 52]. These
practices make modern systems vulnerable to
unforeseen failure scenarios, such as the ones caused by
different types of network partitions.

2.3 Testing with Network Partitioning
A common testing technique for network-partitioning
failures is mocking. Mocking frameworks (e.g.,
Mockito [26]) can be used to imitate communication
problems. Mocking can be employed to test the impact
of a failure on a single component, but it is not suitable
for system-level testing or for testing distributed
protocols. A few systems use hacks to emulate a
network partition; for instance, Mesos’ unit tests
emulate a network partition by ignoring test-specific
messages received by the protobuf middleware [53].

Another possible testing approach is to use the
Jepsen testing framework [54]. Jepsen is written in
Clojure [55] and is tuned toward random testing. Jepsen
testing typically involves running an auto-generated
testing workload while the tool injects network-
partitioning faults. Jepsen does not readily support unit
testing or all types of network partitioning.

We built NEAT, a Java-based, system-level testing
framework. NEAT has a simple API for deploying
systems, specifying clients’ workloads, creating and
healing partitions, and crashing nodes. Unlike Jepsen,
NEAT readily supports injecting the three types of
network-partitioning faults.

3 Methodology and Limitations
We studied 136 real-world failures in 25 popular
distributed systems. We selected a diverse set of
distributed systems (Table 1), including 10 key-value
storage systems and databases, a coordination service,
two file systems, an object storage system, three
message-queueing systems, a data-processing
framework, a search engine, three resource managers,
and three distributed in-memory caches and data
structures. We selected this diverse set of systems to
understand the wide impact of network-partitioning
faults on distributed systems and because these systems
are widely used and are considered production quality.

The 136 failures2 we studied include 88 failures
extracted from the publicly accessible issue-tracking
systems, 16 Jepsen reports [54], and 32 failures
detected by our NEAT framework (Section 7). The
majority of the studied tickets contain enough details to

2 We differentiate failures by their manifestation sequence of events.
In a few cases, the same faulty mechanism leads to two different
failures and impacts depending on workload. We count these as
separate failures, even if they were reported in a single ticket.
Similarly, although the exact failure is sometimes reported in
multiple tickets, we count it once in our study.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 53

understand the failure. These tickets document failures
that were confirmed by the developers and include
discussions between the users and the developers, steps
to reproduce the failure, outputs and logs, code patch,
and sometimes unit tests.

The 88 failures we included in our study were
selected as follows: First, we used the search tool in the
issue-tracking systems to identify tickets related to
network partitioning. We searched using the following
keywords: “network partition,” “network failure,”
“switch failure,” “isolation,” “split-brain,” and
“correlated failures.” Second, we considered tickets that
were dated 2011 or later. Third, we excluded low-
priority tickets that were marked as “Minor” or
“Trivial.” Fourth, we examined the set of tickets to
verify that they were indeed related to network-
partitioning failures and excluded tickets that appeared
to be part of the development cycle; for instance, they
discuss a feature design. Finally, some failures that are
triggered by a node crash can also be triggered by a
network partition isolating that node. We excluded
failures that can be triggered by a node crash and
studied failures that can only be triggered by a network

partition. Out of all Jepsen blog posts (there is 25 in
total), we included 16 that are related to the systems we
studied. Table 1 shows the number of failures and the
consistency model of the systems we studied.

For each ticket, we studied the failure description,
system logs, developers’ and users’ comments, code
patch, and unit tests. Using NEAT, we also reproduced
13 failures reported in the issue-tracking systems, as
well as 11 failures reported by Jepsen to understand
their intricate details.

Limitations: As with any characterization study, there
is a risk that our findings may not be generalizable.
Here we list three potential sources of bias and describe
our best efforts to address them.
1) Representativeness of the selected systems. Because

we only studied 25 systems, the results may not be
generalizable to the hundreds of systems we did not
study. However, we selected a diverse set of
systems (Table 1). These systems follow diverse
designs, from persistent storage and reliable in-
memory storage to volatile caching systems. They
use leader-follower or peer-to-peer architectures; are
written in Java, C, Scala, or Erlang; adopt strong or
eventual consistency; use synchronous or
asynchronous replication; and use chain or parallel
replication. The systems we selected are widely
used: ZooKeeper is a popular coordination service;
Kafka is the most popular message-queueing
system; MapReduce, HDFS, and HBase are the core
of the dominant Hadoop data analytics platform;
MongoDB, Riak, Aerospike, Redis, and VoltDB are
popular key-value-based databases; and Hazelcast,
Ignite, and Terracotta are popular tools in a growing
area of in-memory distributed data structures.

2) Sampling bias. The way we choose the tickets may
bias the results. We designed our methodology to
include high impact tickets. Modern systems take
node unreachability as an indicator of a node crash.
Consequently, a network partition that isolates a
single node can trigger the same failures that are
caused by a single node crash. We excluded failures
that can be caused by a node crash and considered
those that are solely triggered by a network
partitioning fault (i.e., the nodes on both sides of the
partition must be running for a failure to manifest).
Furthermore, we eliminated all low-priority tickets
and focused on tickets the developers considered
important. All presented findings should be
interpreted with this sampling methodology in mind.

3) Observer error. To minimize the possibility of
observer errors, all failures were independently
reviewed by two team members and discussed in a
group meeting before agreement was reached, and
all team members used the same detailed
classification methodology.

Table 1. List of studied system. The table shows systems’
consistency model, number of failures, and number of
catastrophic failures. Highlighted rows indicate systems we
tested using NEAT, and the number of failures we found.

System Consistency Model
Failures

Total Catastrophic
MongoDB [31] Strong 19 11

VoltDB [33] Strong 4 4

RethinkDB [52] Strong 3 3

HBase [56] Strong 5 3

Riak [57] Strong/Eventual 1 1

Cassandra [58] Strong 4 4

Aerospike [59] Eventual 3 3

Geode [60] Strong 2 2

Redis [32] Eventual 3 2

Hazelcast [29] Best Effort 7 5

Elasticsearch [28] Eventual 22 21

ZooKeeper [61] Strong 3 3
HDFS [1] Custom 4 2
Kafka [30] - 5 3

RabbitMQ [62] - 7 4

MapReduce [4] - 6 2

Chronos [63] - 2 1

Mesos [64] - 4 0

Infinispan [42] Strong 1 1

Ignite [39] Strong 15 13

Terracotta [40] Strong 9 9

Ceph [37] Strong 2 2

MooseFS [43] Eventual 2 2

ActiveMQ [38] - 2 2

DKron [41] - 1 1
Total - 136 104

54 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 General Findings
This section presents the general findings from our
study. Overall, our study indicates that network
partitioning leads to catastrophic failures. However, it
identifies failure characteristics that can improve
testing. We show that most of the studied failures can
be reproduced using only three nodes and are
deterministic or have bounded timing constraints. We
show that core distributed system mechanisms are the
most vulnerable, including leader election, replication,
and request routing. Finally, we show that a large
number of the failures are caused by partial network-
partitioning faults.

4.1 Failure Impact
Overall, our findings indicate that network-partitioning
faults cause silent catastrophic failures that can result in
lasting damage to systems.

Finding 1. A large percentage (80%) of the studied
failures have a catastrophic impact, with data loss
being the most common (27%) (Table 2).

We classify a failure as catastrophic if it violates the
system guarantees or leads to a system crash. Table 2
lists the different types of catastrophic failures. Failures
that degrade performance or crash a single node are not
considered catastrophic. Stale reads are catastrophic
only when the system promises strong consistency.
However, they are not considered failures in eventually
consistent systems. Dirty reads happen when the system
returns the value of a preceding unsuccessful write
operation. For instance, a client reading from the
primary replica in MongoDB may get a value that is
simultaneously being written by a concurrent write
operation [65]. If the write fails due to network
partitioning, the read operation has returned a value that
was never successfully written (a.k.a. dirty read).

Compared to other causes of failures, this finding
indicates that network partitioning leads to a
significantly higher percentage of catastrophic failures.
Yuan et al. [66] present a study of 198 randomly
selected, high-priority failures from five of the systems

we include in our study: Cassandra, HBase, HDFS,
MapReduce, and Redis. They report that only 24% of
failures had catastrophic effects3, compared to 80% in
the case of network-partitioning failures (Table 2).
Consequently, developers should carefully consider this
fault in all phases of system design, development, and
testing.

Finding 2. The majority (90%) of the failures are
silent, whereas the rest produce warnings that are
unatonable.

We inspected the failure reports for returned error
messages and warnings. The majority of the failures
were silent (i.e., no error or warning was returned to the
client), with some failures (10%) returning warning
messages to the client. Unfortunately, all returned
warnings were confusing, with no clear mechanism for
resolution. For instance, in Riak [67] with a strict
quorum configuration, when a write fails to fully
replicate a new value, the client gets a warning
indicating that the write operation has updated a subset
of replicas, but not all of them. This warning is
confusing because it does not indicate the necessary
action to take next. Similarly, MongoDB returns a
generic socket exception if a proxy node cannot reach
the data nodes [68].

This is alarming because users and administrators
are not notified when a failure occurs, which delays
failure discovery, if the failure is discovered at all.

Finding 3. Twenty one percent of the failures lead to
permanent damage to the system. This damage persists
even after the network partition heals.

While 79% of the failures affect the system only while
there is a network partition, 21% of the failures leave
the system in an erroneous state that persists even after
the network partition heals. For instance, if a new node
is unable to reach the other nodes in RabbitMQ [69]
and Ignite (section 7.4), the node will assume that the
rest of the cluster has failed and will form a new
independent cluster. These clusters will remain
separated, even after the network partition heals.

Overall, as recent studies [21, 22, 23, 24] indicate
that network-partitioning faults occur as frequently as
once a week and take from tens of minutes to hours to
repair, it is alarming that these faults can lead to silent
catastrophic failures. This is surprising, given that these
systems are designed for deployments in which
component failure is the norm. For instance, all of the
systems we studied replicate their data. In MongoDB,
Hazelcast, Kafka, Elasticsearch, Geode, Mesos, Redis,

Table 2. The impacts of the failures. The percentage of the
failures that cause each impact. Broken locks include double
locking, lock corruption, and failure to unlock.

Impact %

Catastrophic
(79.5%)

Data loss 26.6%
Stale read 13.2%
Broken locks 8.2%
System crash/hang 8.1%
Data unavailability 6.6%
Reappearance of deleted data 6.6%
Data corruption 5.1%
Dirty read 5.1%
Performance degradation 19.1%
Other 1.4%

3 We note that these percentages are not directly comparable as our
definition of catastrophic failure is more conservative. For instance,
while Yuan et al. [66] count a loss of a single replica or a crash of a
single node as catastrophic, we do not.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 55

VoltDB, and RethinkDB, if a leader node is partitioned
apart from the majority, then the rest of the nodes will
quickly elect a new leader. Hazelcast and VoltDB
employ “split-brain protection,” a technique that
continuously monitors the network and pauses nodes in
the minority partition if a network partition is detected.
Furthermore, ZooKeeper and MongoDB include a
mechanism for data consolidation. How, then, do these
failures still occur?

4.2 Vulnerability of System Mechanisms
Finding 4. Leader election, configuration change,
request routing, and data consolidation are the most
vulnerable mechanisms to network partitioning
(Table 3).

Leader election is the most vulnerable to network
partitioning (was affected by 40% of the failures). We
further analyzed leader election failures (Table 4) and
found that the most common leader election flaw is the
simultaneous presence of two leaders. This failure
typically manifests as follows: A network partition
isolates the current leader from the majority of replicas.
The majority partition elects a new leader. The old
leader may eventually detect that it no longer has a
majority of replicas at its side and step down. However,
there is a period of time in which each network partition
has a leader. The overlap between the two leaders may
last until the network partition heals (which may take
hours [21]). In MongoDB [70], VoltDB [71], and Raft-
based RethinkDB [72], if a network partition isolates a
leader, the isolated leader will not be able to update the
data, but it will still respond to read requests from its
local copy, leading to stale and dirty reads.

In all of the systems we studied, the leader trusts
that its data set or log is complete and all replicas
should update/trim their data sets to match the leader
copy. Consequently, it is critical to elect the leader with
a complete and consistent data set. Table 4 shows that
20% of leader election failures are caused by electing a
bad leader. This is caused by using simple criteria for
leader election, such as the node with the longest log
wins (e.g., VoltDB), the node that has the latest
operation timestamp wins (e.g., MongoDB), or the node
with the lowest id wins (e.g., Elasticsearch). These
criteria can cause data loss when a node from the
minority partition becomes a leader and erases all
updates performed by the majority partition.

Conflicting election criteria lead to 3.7% of the
leader election failures and are only reported in
MongoDB. MongoDB leader election has multiple
criteria for electing a leader. One can assign a priority
for a replica to become a leader. The priority node will
reject any leader proposal; similarly, the node with the
latest operation timestamp will reject all leader
proposals, leaving the cluster without a leader [73].

The second most affected mechanism is
configuration change, including node join or leave and
role changes (e.g., changing the primary replica). We
discuss two examples of these failures in Section 4.4.

The third most affected mechanism is data
consolidation. Failures in this mechanism typically lead
to data loss in both eventually and strongly consistent
systems. For instance, Redis, MongoDB, Aerospike,
Elasticsearch, and Hazelcast employ simple policies to
automate data consolidation, such as the write with the
latest timestamp wins and the log with the most entries
wins. However, because these policies do not check the
replication or operation status, they can lose data that is
replicated on the majority of nodes and that was
acknowledged to the client.

The three ZooKeeper failures that we studied are
related to data consolidation. For instance, ZooKeeper
has two mechanisms for synchronizing data between
nodes: storage synchronization that is used for syncing
a large amount of data, and in-memory log
synchronization that is used for a small amount of data.
If node A misses many updates during a network
partition, then ZooKeeper will use storage
synchronization to bring node A up to date.
Unfortunately, storage synchronization does not update
the in-memory log. If A becomes a leader, and other
nodes use in-memory log synchronization, then A will
replicate its incomplete in-memory log [74].

Request routing represents the mechanism for
routing requests or responses between clients and the
specific nodes that can serve the request. Failures in
request routing represent 13.2% of the failures. The

Table 3. The percentage of the failures involving each system
mechanism. Some failures involve multiple mechanisms.

Mechanism %
Leader election 39.7%
Configuration change

 Adding a node
 Removing a node
 Membership management
 Other

10.3%
3.7%
3.7%
2.2%

19.9%

Data consolidation 14.0%
Request routing 13.2%
Replication protocol 12.5%
Reconfiguration due to a network partition 11.8%
Scheduling 2.9%
Data migration 3.7%
System integration 1.5%

Table 4. Leader election flaws.
Leader election failure %
Overlapping between successive leaders 57.4%
Electing bad leaders 20.4%
Voting for two candidates 18.5%
Conflicting election criteria 3.7%

56 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

majority of those failures are caused by failing to return
a response. For instance, in Elasticsearch, if a replica
(other than the primary) receives write requests, it acts
as a coordinator and forwards the requests to the
primary replica. If a primary completes the write
operation but fails to send an acknowledgment back to
the coordinator, then the coordinator will assume the
operation has failed and will return an error code to the
client. The next client read will return the value written
by a write operation that was reported to have failed.
Moreover, if the client repeats the operation, then it will
be executed twice [75].

The rest of the failures were caused by flaws in the
replication protocol, scheduling, data migration
mechanism, system integration with ZooKeeper, and
system reconfiguration in response to network
partitioning failures, in which the nodes remove the
unreachable nodes from their replica set.

These findings are surprising because 15 of the
systems use majority voting for leader election to
tolerate exactly this kind of failure. Similarly, the
primary purpose of a data consolidation mechanism is
to correctly resolve conflicting versions of data. To
improve resilience, this finding indicates that
developers should enforce tests and design reviews
focusing on network-partitioning fault tolerance,
especially on these mechanisms.

4.3 Network Faults Analysis
Finding 5. The majority (64%) of the failures either do
not require any client access or require client access to
only one side of the network partition (Table 5).

This finding debunks a common presumption that
network partitioning mainly leads to data conflicts, due
to concurrent writes at both sides of the partition.
Consequently, developers ensure that clients can only
access one side of the partition to eliminate the
possibility of a failure [28, 29, 30, 31, 32, 33, 34]. As
an example of a failure that requires client access to one
side of the partition, in HBase, region servers process
client requests and store them in a log in HDFS. When
the log reaches a certain size, a new log is created. If a
partial partition separates a region server from the
HMaster but not from HDFS, then the HMaster will
assume that the region server has crashed and will
assign the region logs to other servers. At this time, if
the old region server creates a new log, HMaster will
not be aware of the new log and will not assign it to any
region server. All client operations stored in the new
log will be lost [76]. We discuss a MapReduce failure
that does not require any client access in section 4.4.

This finding indicates that system designers must
consider the impact of a network partition fault on all
system operations, including asynchronous client
operations and offline internal operations.

Finding 6. While the majority (69%) of the failures
require a complete partition, a significant percentage of
them (29%) are caused by partial partitions (Table 6).

Partial network partitioning failures are poorly
understood and tested, even by expert developers. For
instance, most of the network-partitioning failures in
Hadoop MapReduce and HDFS are caused by partial
network-partitioning faults. In the following section, we
discuss these failures in detail.

Simplex network partitioning caused 2% of the
failures. This type of fault only confuses UDP-based
protocols and leads to performance degradation. For
instance, in HDFS [77], a data node that can send a
periodic heartbeat message but is unable to receive
requests is still considered a healthy node.

The overwhelming majority (99%) of the failures
were caused by a single network partition. Only 1% of
the failures required two network partitions to manifest.

4.4 Partial Network-Partitioning Failures
To the best of our knowledge, this the first study to
analyze and highlight the impact of partial network
partitions on systems. Consequently, we dedicate this
section to discussing our insights and presenting
detailed examples of how these failures manifest.

We found that the majority of partial network-
partitioning failures are due to design flaws. This
indicates that developers do not anticipate networks to
fail in this way. Other than that, partial partitions
failures had impact, ordering, and timing characteristics
that are similar to complete partition failures.

Tolerating partial network partitions is complicated
because these faults lead to inconsistent views of a
system state; for instance, nodes disagree on whether a
server is up or down. This confusion leads part of the
system to carry on normal operations, while another
part executes fault tolerance routines. Apparently, the
mix of these two modes is poorly tested. The following
are four examples:
 Scheduling in MapReduce and Elasticsearch. In

MapReduce, if a partial network partition isolates an
AppMaster from the resource manager while both

Table 5. Percentage of the failures that require client access
during the network partition
Client Access %

No client access necessary 28%
Client access to one side only 36%
Client access to both sides 36%

Table 6. Percentage of the failures caused by each type of
network-partitioning fault.
Partition type %
Complete partition 69.1%
Partial partition 28.7%
Simplex partition 2.2%

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 57

can still communicate with the cluster nodes, the
AppMaster will finish executing the current task and
return the result to the client. The resource manager
will assume that the AppMaster has failed and will
rerun the task using a new AppMaster. The new
AppMaster will execute the task again and send a
second result to the client. This failure will confuse
the client and will lead to data corruption and double
execution [78]. Note that in this failure, there is no
client access after the network partition.

Elasticsearch has a similar failure [75]—if a
coordinator does not get the result from a primary
node, the coordinator will run the task again, leading
to double execution.

 Data placement in HDFS. If a partial network
partition separates a client from, say, rack 0, while
the NameNode can reach that rack. If the NameNode
allocates replicas on rack 0, then a client write
operation will fail, and the client will ask for a
different replica. The NameNode, following its rack-
aware data placement, will likely suggest another
node from the same rack. The process repeats five
times before the client gives up [79].

 Leader election in MongoDB and Elasticsearch.
MongoDB design includes an arbiter process that
participates in a leader election to break ties. Assume
a MongoDB cluster with two replicas (say A and B)
and an arbiter, with A being the current leader.
Assume a partial network partition separates A and
B, while the arbiter can reach both nodes. B will
detect that A is unreachable and will start a leader
election process; being the only contestant, it will win
the leadership. The arbiter will inform A to step
down. After missing three heartbeats from the current
leader (i.e., B), A will assume that B has crashed,
start the leader election process, and become a leader.
The arbiter will inform B to step down. This
thrashing will continue until the network partition
heals [80]. MongoDB does not serve client requests
during leader election; consequently, this failure
significantly reduces availability.

Elasticsearch has a similar failure [81], in which a
partial partition leads to having two simultaneous
leaders because nodes that can reach the two
partitions become followers of the two leaders. Note
that these failures do not require any client access.

 Configuration change in RethinkDB and Hazelcast.
RethinkDB is a strongly consistent database based on
Raft [52]. Unlike Raft, when an admin removes a
replica from RethinkDB cluster, the removed replica
will delete its Raft log. This apparently minor tweak
of the Raft protocol leads to a catastrophic failure.
For instance, if a partial network partition breaks a
replica set of five servers (A, B, C, D, and E) such
that the (A, B) partition cannot reach (D, E) while C
can reach all nodes, then if D receives a request to

change the replication to two, D will remove A, B,
and C from the set of replicas. C will delete its log. A
and B will be unaware of the configuration change
and still think that C is an active replica. C, having
lost its Raft log that contains the configuration
change request, will respond to A and B requests.
This scenario creates two replica sets for the same
keys. D and E are a majority in the new
configuration, and A, B, and C are a majority in the
old configuration [72].

Hazelcast has a similar failure [82]. In Hazelcast,
nodes delete their local data on configuration change.
If a partial partition separates the new primary
replica, then one replica will promote itself to
become the primary. If the central master can reach
both partitions, it will see that the old primary is still
alive and inform the self-promoted replica to step
down. That replica will step down, delete its data,
and try to download the data from the primary. If the
primary permanently fails before the partition heals,
the data will be lost [82].

5 Failure Complexity
To understand the complexity of these failures, we
studied their manifestation sequence, importance of
input events order, network fault characteristics, timing
constraints, and system scale. The majority of the
failures are deterministic, require three or fewer input
events, and can be reproduced using only three nodes.
These characteristics indicate that it is feasible to test
for these failures using limited resource.

5.1 Manifestation Sequence Analysis
Finding 7. A majority (83%) of the failures triggered
by a network partition require an additional three or
fewer input events to manifest (Table 7).

Table 8 lists the events that led to failures. All of the
listed operations are frequently used. Read and write
operations are part of over 50% of the failures, and
12.6% of the failures do not require any events other
than a single network-partitioning fault. As an example
of a failure without any client access, in Redis [83], if a
network partition separates two nodes during a sync
operation, the data log on the receiving node will be
permanently corrupted. Similarly, in RabbitMQ [84], if
a partial partition isolates one node from the leader, but
not from the rest of the replicas, that node will assume
the leader has crashed. The isolated node will become
the new leader. When the old leader receives a
notification to become a follower, it will start a follower
thread but will not stop the leader thread. The
contention between the follower and leader threads
results in a complete system hang.

This is perilous, as a small number of frequently
used events can lead to catastrophic failures.

58 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 7. The minimum number of events required to cause a
failure. The table counts a network-partitioning fault as an
event. Note that 12.5% of the failures require no client access,
neither during a network partition nor after it heals. Note that
28% of the failures reported in Table 5 do not require client
access during the partition, but around 15.5% require client
access before or after the network partition occurs.

Number of events %
1 (just a network partition) 12.6%

2 13.9%
3 42.6%
4 14.0%

> 4 16.9%

Table 8. Percentage of faults each event is involved in.

Event type %
Only a network-partitioning fault 12.6%
Write request 48.5%
Read request 34.6%
Acquire lock 8.1%
Admin adding/removing a node 8.0%
Delete request 4.4%
Release lock 3.7%
Whole cluster reboot 1.5%

Finding 8. All of the failures that involve multiple
events only manifest if the events happen in a specific
order.

All of the 87% of failures that require multiple events
(2 events or more in Table 7) need the events to occur
in a specific order. This implies that to expose these
failures we not only need to explore the combination of
these events, but also the different permutations of
events, which makes the event space extremely large.

Fortunately, we identified characteristics that
significantly prune this large event space and make
testing tractable (Table 9). First, 84% of the
manifestation sequences start with a network-
partitioning fault. For 27.7% of the sequences, the order
of the rest of events is not important, and in 27% of the
sequences the events follow a natural order; that is,
lock() comes before unlock(), and write() before read().

While this finding indicates that reproducing a
failure can be complex, the probability of a failure in
production is still high. The majority of multi-event
failures require three or fewer events (Table 7);
consequently, it is highly likely for a system that
experiences a network partitioning for hours to receive
all possible permutations of these common events.

Finding 9. The majority (88%) of the failures manifest
by isolating a single node, with 45% of the failures
manifest by isolating any replica.

It is alarming that the majority of the failures can occur
by isolating a single node. Conceivably, isolating a
single node is more likely than other network-
partitioning cases; it can happen because of an NIC
failure, a single link failure, or a ToR switch failure.
ToR switch failures are common in production
networks leading to 40 network partitions in two years
at Google [21] and 70% of the downtime at
Microsoft [22]. This finding invalidates the common
practice of assigning a low priority to ToR switch
failures based on the presumption that data redundancy
can effectively mask them [22]. Our results show that
this practice aggravates the problem by prolonging the
partition.

We further studied the connectivity between
replicas (Table 10) of the same object and found that
45% of failures manifest by isolating any replica, and
the rest requires isolating a specific node or service
(e.g., ZooKeeper cluster). Among the failures that
isolate a specific node, isolating a leader replica (36%)
and central services (8.8%) are the most common. This
does not reduce the possibility of a failure because, as
in many systems, every node is a leader for some data
and is a secondary replica for other data. Consequently,
isolating any replica in the cluster will most likely
isolate a leader.

This finding highlights the importance of testing
these specific faults that isolate a leader, a central
service, and nodes with special roles (e.g., scheduler,
and MapReduce App Master).

5.2 Timing Constraints
Finding 10. The majority (80%) of the failures are
either deterministic or have known timing constraints.

The majority of the failures (Table 11) are either
deterministic (62%), meaning they will manifest given
the input events, or have known timing constraints
(18%). These known constraints are configurable or
hard coded, such as the number of heartbeat periods to
wait before declaring that a node has failed.

Table 9. Ordering charactrisitcs.
Ordering Charactrisitcs %
Network partition does not come first 16.0%
Network partition comes first

 Order is not important
 Natural order
 Other

27.7%
26.9%
29.4%

84.0%

Table 10. System connectivity during the network partition.
Examples of a central service include a ZooKeeper cluster
and HBase master. Examples of nodes with a special role
include MongoDB arbiter and MapReduce AppMaster.
Network Partition Characteristics %

Partition any replica 44.9%
Partition a specific node
 Partition the leader
 Partition a central service
 Partition a node with a special role
 Other (e.g., new node, source of

data migration)

36.0%
8.8%
3.7%
6.6%

55.1%

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 59

Furthermore, we found that the timing constraints
immediately follow network-partitioning faults. For
instance, if a partition isolates a leader, for a failure to
happen, events at the old leader side should be invoked
right after the partition, so they are processed before the
old leader steps down; while on the majority side, the
test should sleep for a known period until a new leader
is elected. For instance, in RabbitMQ, Redis, Hazelcast,
and VoltDB, a failure will happen only if a write is
issued before the old leader steps down (e.g., within
three heartbeats) after a partitioning fault.

The 13% of the failures that have unknown timing
constraints manifest when the sequence of events
overlaps with a system internal operation. For instance,
in Cassandra, a failure [85] will only occur if a network
partition takes place during a data sync operation
between the handoff node and a replica. However, these
failures can still be tested by well-designed unit tests.
For instance, to test the aforementioned Cassandra
failure, a test should (1) isolate a replica to make the
system add a handoff node. (2) Write a large amount of
data. (3) Heal the partition. Now, the handoff node will
start syncing the data with the replica. Finally, (4)
create a network partition that isolates the replica
during the sync operation and triggers the failure.

Only 7% of the failures are nondeterministic; these
failures are caused by multithreaded interleavings and
by overlapping the manifestation sequence with hard-
to-predict internal system operations.

This finding implies that testers should pay close
attention to timing. However, we identified that timing
constraints usually follow the partitioning fault, which
significantly simplifies testing.

5.3 Resolution Analysis
Finding 11. The resolution of 47% of the failures
required redesigning a system mechanism (Table 12).

We consider a code patch to be fixing a design flaw if it
involves significant changes to the affected mechanism
logic, design, or protocol, such as implementing a new
leader election protocol in MongoDB and changing
configuration change protocols in Elasticsearch.

The large percentage of the failures that led to
changes in the mechanism design indicates that
network-partitioning faults were not considered in the
initial design phase. We expect that a design review
focusing on network partitioning fault tolerance would
have discovered systems vulnerability to these faults.

Table 12 also reports the resolution time, which is
the period from the time a developer acknowledges a
failure to the time the issue is fixed. Obtaining an
accurate resolution time is tricky. We removed outliers
that take minutes to commit a complex patch or take
over two years to add a simple patch. In addition, it is
not necessary for the time reported to be spent actively
solving the issue. Nevertheless, because these are high-
priority tickets, we think that the reported times give
some indication of the resolution effort. Table 12 shows
that design flaws take 2.5 times longer to resolve than
implementation bugs.

We noticed that some systems opted to change the
system specification instead of fixing the issue. For
instance, Redis documentation states that “there is
always a window of time when it is possible to lose
writes during partitions” [86]. RabbitMQ’s
documentation was updated to indicate that locking
does not tolerate network partitioning [87], and
Hazelcast’s documentation [88] states that it provides
“best effort consistency,” in which data updated
through atomic operations may be lost. This could
imply that some of the systems unnecessarily selected a
strong consistency model where an eventual model was
sufficient or the developers do not believe that these are
high priority issues.

5.4 Opportunity for Improved Testing
Finding 12. All failures can be reproduced on a cluster
of five nodes, with the majority (83%) of the failures
being reproducible with three nodes only (Table 13).

This finding implies that it is not necessary to have a
large cluster to test these systems. In fact, it is enough
to test them using a single physical machine that runs
five virtual machines.

Finding 13. The majority of the failures (93%) can be
reproduced through tests by using a fault injection
framework such as NEAT.

Considering our findings, perhaps it is not surprising
that the majority of the failures can be reproduced using
unit and system-level tests with a framework that can
inject network-partitioning faults. The majority of the
failures result from a single network-partitioning fault,
need fewer than three common input events, and are

Table 11. Timing constraints.
Timing constraints %
No timing constraints 61.8%
Has timing constraints

 Known
 Unknown – but still can be tested

18.4%
12.8%

31.2%

Nondeterministic 7%

Table 12. Percentage of design and implementation flaws for
failures reported in issue-tracking systems.
Category % Average Resolution Time
Design 46.6% 205 days
Implementation 32.2% 81 days
Unresolved 21.2% -

Table 13: Number of nodes needed to reproduce a failure.

Number of Nodes %
3 nodes 83.1%
5 nodes 16.9%

60 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

deterministic or have bounded timing constraints. The
7% that cannot be easily tested are nondeterministic
failures or have short vulnerability intervals.

6 Discussion
In this section, we address two additional observations:
 Overlooking network-partitioning faults. We found in

many cases that the system designer did not consider
the possibility of network partitioning. For example,
Redis promises data reliability even though it uses
asynchronous replication, leading to data loss [89].
Similarly, the Hazelcast locking service relies on
asynchronous replication, leading to double
locking [90]. Earlier versions of Aerospike assumed
that the network is reliable [91].

We found implicit assumptions made in the
studied systems that are untrue. For instance, tickets
from MapReduce, RabbitMQ, Ignite, and HBase
indicate that the developer assumed an unreachable
node to have halted, which is not true with network
partitioning. Finally, all partial network-partitioning
failures are caused by an implicit assumption that if a
node can reach a service, then all nodes can reach
that service, which is not always true.

 Lack of adequate testing tools. In general, we found
that systems lack rigorous testing for network-
partitioning. For unit tests related to the code patches
we studied, the developers typically used mocking
techniques to test the impact of network partitioning
on one component on one side of the partition. This
makes us believe that the community lacks a
network-partitioning fault injection tool that can be
integrated with the current testing frameworks.

7 NEAT Framework
We built the network partitioning testing framework
(NEAT), a testing framework with network-partitioning
fault injection. NEAT supports the three types of
partitions, has a simple API for creating and healing
partitions, and simplifies the coordination of events
across clients. NEAT is implemented in 1553 lines of
Java and uses OpenFlow and the iptables tool to
inject network-partitioning faults.

7.1 API
NEAT is a generic testing framework. It does not have
any constraints on the target system. To test a system,
the developer should implement three classes. First is
the ISystem interface, which provides methods to
install, start, obtain the status of, and shut down the
target system. Second, is a Client class that provides
wrappers around the client API (e.g., put or get calls).
Third is the test workload and verification code.

Listing 1 presents a test for an Elasticsearch data
loss failure [92] with partial network partitioning. The
network partition (line 7) isolates s1 (the primary

replica) and client 1 from s2 and client 2. However, all
nodes can reach s3. s2 will detect that the primary
replica (s1) is unreachable and start a leader election
process. s3 will vote for s2, although it can reach s1,
resulting in two leaders. Consequently, writes on both
sides of the partition will succeed (line 11 and 12).
After healing the partition (line 13), s2 will detect that
s1 is reachable. As in Elasticsearch, the replica with a
smaller ID wins the election, so s2 will step down and
become a follower of s1. s2 will replicate s1’s data and,
consequently, all writes served by s2 during the
partition will be lost and the check on line 16 will fail.

Listing 2 presents an ActiveMQ test for double
dequeueing with complete network partitioning. The
network partition (line 8) isolates the master and client1
from the rest of the cluster. The test then pops the queue
at both sides of the partition (lines 11-13). If the two
sides obtain the same value, then the value was
dequeued twice and the test fails.

7.2 Creating and Healing Network Partitions
To create or heal a network partition, the developer
calls one of the following methods.
 Partition complete(List<Node> groupA,
List<Node> groupB): creates a complete partition
between groupA and groupB.

Listing 1. An Elasticsearch test for data loss. The system has
three servers: s1 (primary node), s2, and s3, and two clients.
1 public static void testDataLoss(){
2 List<Node> side1 = asList(s1, client1);
3 // other servers and clients in one group
4 List<Node> side2 = asList(s2, client2);
5 // create a partial partition. s3 can reach
6 // all nodes
7 Partition netPart = Partitioner.partial(
8 side1, side2);
9 sleep(SLEEP_LEADER_ELECTION_PERIOD);
10 // write to both sides of the partition
11 assertTrue(client1.write(obj1, v1));
12 assertTrue(client2.write(obj2, v2));
13 Partitioner.heal(netPart);
14 // verify the two objects
15 assertEquals(client2.read(obj1), v1);
16 assertEquals(client2.read(obj2), v2); }

Listing 2. An ActiveMQ test for a double dequeue failure.
The system has three servers and two clients.
1 public static void testDoubleDequeueu(){
2 assertTrue(client1.send(q1, msg1));
3 assertTrue(client1.send(q1, msg2));
4 // get the master node
5 Node master = AMQSys.getMaster(q1);
6 List<Node> minority= asList(master, client1);
7 List<Node>majority=Partitioner.rest(minority);
8 Partition netPart = Partitioner.complete(
9 minority, majority);
10 // dequeue at both sides of the partition
11 Msg minMsg = client1.receive(q1);
12 sleep(SLEEP_PERIOD);
13 Msg majMsg = client2.receive(q1);
 assertNotEqual(minMsg, majMsg); }

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 61

 Partition partial(List<Node> groupA,
List<Node> groupB): creates a partition between
groupA and groupB without effecting their
communication with the rest of the cluster.

 Partition simplex(List<Node> groupSrc,
List<Node> groupDst): creates a simplex
partition such that packets can only flow from
groupSrc to groupDst, but not in the other direction.

 void heal(Partition p): heals partition p.

7.3 NEAT Design
NEAT has three components (Figure 2): server nodes,
which run the target system; client nodes, which issue
client requests; and a test engine. The test engine is a
central node that runs the test workload (e.g., Listing 1).

The test engine simplifies testing by providing a
global order for all client operations. The test engine
invokes all client operations using Java RMI. The
current NEAT prototype has two implementations of
the network partitioner module: using OpenFlow and
using the iptables tool. Furthermore, the test engine
provides an API for crashing any group of nodes.

The OpenFlow-based partitioner is a network
controller [35] that first installs the rules for a basic
learning switch [93]. Then it installs partitioning rules
to drop packets from a specific set of source IP
addresses to a specific set of destination addresses. The
partitioning rules are installed at a higher priority than
the learning switch rules. The partitioner is
implemented in 152 lines of code using Floodlight [94].

Our choice to use SDN to build a testing framework
for distributed systems is research based. Connecting
the nodes to a single switch and having the ability to
monitor and control every packet in the system is a
powerful capability for distributed systems testing. Our
first attempt to explore this capability is to build a
network partitioner for NEAT. Our current research
effort explores techniques to collect detailed system
traces under different failure scenarios and build tools
to verify and visualize system protocols. This will help
developers test, debug, and inspect protocols under
different failure scenarios.

For deployments that do not have an OpenFlow
switch, we implemented a partitioner by using the
iptables tool to modify the firewall configuration on
every node to create the specified partitions.

7.4 Testing Systems with NEAT
We used NEAT to test seven systems: Ceph [37]
(v12.2.5), an object storage system; Apache Ignite [39]
(v2.4.0), a key-value store and distributed data
structures; Terracotta [40] (v4.3.4), a suite of distributed
data structures; DKron [41] (v0.9.8), a job scheduling
system; ActiveMQ [38] (v5.15.3), a message-queueing
system; Infinispan [42] (v9.2.1), a key-value store; and
MooseFS [43] (v3), a file system. All systems were

configured with the most reliable configuration. For
instance, when possible we persist data on disk, use
synchronous replication, and set the minimum
replication per operation to equal the majority or the
number of all replicas.

Testing setup. We used two testbeds to run our
experiments: CloudLab [95] and our own cluster. We
used six nodes in our tests. The nodes were connected
by a single switch. One node ran the test engine, three
nodes ran the system, and two nodes acted as clients.

Our tests involved creating complete and partial
partitions, then issuing simple client requests to the two
sides of the partition, followed by performing a
verification step. On average, tests are implemented in
30 lines of Java code.

The highlighted entries in Table 1 summarize our
testing results. Our testing revealed 32 network-
partitioning failures, out of which 30 are catastrophic.
The failures we found lead to data loss, stale reads, data
unavailability, double locking, and lock corruption. It is
plausible that a single design flaw or implementation
bug (e.g., flawed replication protocol) may cause
failures in different operations (e.g., adding to a list and
pushing to a queue). We count these as separate
failures.

To demonstrate the versatility of NEAT, the
following discusses failures that NEAT discovered.

Examples of complete network partition failures: We
found that all Ignite atomic synchronization primitives,
including semaphores, compare_and_set,
increment_and_get, and decrement_and_get, are
violated or corrupted when a complete network
partition isolates one of the replicas. The main culprit of
such failures is the assumption that an unreachable node
has crashed; consequently, nodes on both sides of a
partition remove the nodes they cannot reach (i.e., the
nodes on the other side of the partition) from their
replica set and continue to use the semaphore, which
may lead to over counting the semaphore. Furthermore,
an unreachable client that is holding a semaphore is
assumed to have crashed. In this case, the system will
reclaim the client’s semaphore. If the partition heals

Figure 2. NEAT architecture.

62 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and the client signals the semaphore, the semaphore
will be corrupted. These failures lead to lasting damage
that persists after the partition heals.
Examples of partial network partition failures:
ActiveMQ uses ZooKeeper to keep track of the current
leader. If a partial network partition isolates the leader
from the replicas, but not from ZooKeeper, the system
will hang. The leader will not be able to forward
messages to replicas and the replicas will not elect a
new leader as ZooKeeper does not see the failure.

In DKron, if a partial partition separates the leader
from the rest of DKron’s nodes—but not from the
central data store service—then the client requests
processed by the leader will be successfully executed at
the local level. However, DKron will indicate that the
task has failed.

8 Additional Related Work
To the best of our knowledge, this is the first in-depth
study of the manifestation sequence of network-
partitioning failures. The manual analysis allowed us to
examine the sequence of events in detail, identify
common vulnerabilities, and find failure characteristics
that can improve testing.

A large body of previous work analyzed failures in
distributed systems. A subset of these efforts focused
on specific component failures such as physical [96]
and virtual machines [97], network devices [22, 24],
storage systems [98, 99], software bugs [100], and job
failures [101, 102, 103]. Another set characterized a
broader set of failures, but only for specific domain of
systems and services, such as HPC [104, 105, 106],
IaaS clouds [107], data-mining services [108], hosting
services [6, 109], and data-intensive
systems [101, 100, 110]. Our work complements these
efforts by focusing on failures triggered by network
partitioning.

Yuan et al. [66] studied 198 randomly selected
failures from six data analytics systems. Comparing our
results, we find that a higher percentage of network-
partitioning failures (80%) lead to catastrophic effects,
compared to 24% reported by Yuan et al. [66]; and
while 26% of general failures are nondeterministic,
only 7% of network-partitioning failures are non-
deterministic. These findings indicate that network-
partitioning failures are more critical than general
system failures, and testers need to pay close attention
to timing.

Jepsen’s blog posts report network-partitioning
failures that were found using the Jepsen tool [54].
However, they do not detail the manifestation
sequences, correlate failures across systems, study the
impact of different types of network-partitioning faults,
study client access requirements, characterize network
faults, or analyze timing constraints.

Majumdar et al. [111] theoretically analyzed the
space for faulty executions in the presence of complete
network partitioning faults. They discussed the extreme
size of the test space and the effectiveness of random
testing if tests isolate a specific node, place a leader in a
minority, and test with a random order of short
sequences of operations.

While we identify characteristics to improve testing,
our findings can inform other fault tolerance
techniques. Previous efforts explored model
checking [112, 113, 114, 115, 116], systematic fault
injection [117, 118], and runtime verification
techniques [119, 120] for improving systems’ fault
tolerance. Our findings inform these techniques to
consider all types of network partitions and discovered
characteristics that can improve these techniques’ time
and efficiency.

9 Insights
We conducted a comprehensive study of network-
partitioning failures in modern cloud systems. It is
surprising that these production systems experience
silent catastrophic failures due to a frequently occurring
infrastructure fault, when a single node is isolated, and
under simple and common workloads. Our analysis
identified that improvements to the software
development process and testing can significantly
improve systems’ resilience to network partitions.
These findings indicate that this is a high-impact
research area that needs further effort to improve
system design, engineering, testing, and fault tolerance.
Our initial results with NEAT are encouraging; even
our preliminary testing tool found bugs in production
systems, indicating that there is a significant room for
improvement.

Another interesting area of research that our
analysis identified is partial network partitions fault
tolerance. It is surprising that a large number of failures
in production systems are triggered by this network
fault, yet we could not find any discussion, failure
model, or fault tolerance techniques that address this
type of infrastructure fault.

Modern systems use unreachability as an indicator
for node failure. Our analysis shows the dangers of this
approach, as complete network partitions can isolate
healthy nodes that lead to both sides assuming that the
other side has crashed. Worse yet, partial partitions lead
to a confusing state in which some nodes declare part of
the system down while the rest of the nodes do not.
Further, research is needed for building more accurate
node-failure detectors and fault tolerance techniques.

While we identify better testing as one approach for
improving system fault tolerance, we highlighted that
the number of test cases one needs to consider is
excessive. Luckily, our analysis found operations,

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 63

timing, ordering, and network failure characteristics
that limit the testing space.

Our analysis highlights that the current network
maintenance practice of assigning a low priority to ToR
switch failure is ill founded and aggravates the
problem. Finally, we highlight that system designers
need to pay careful attention to internal and offline
operations, need be wary of tweaking established
protocols, and need to consider network partitioning
failures early in their design process.

10 Conclusion and Future Work
We conducted an in-depth study of 136 failure reports
from 25 widely used systems for failures triggered by
network-partitioning faults. We present 13 main
findings that can inform system designers, developers,
testers, and administrators; and highlight the need for
further research in network partitioning fault tolerance
in general and with partial partitions in particular.

We built NEAT, a testing framework that can inject
different types of network-partitioning faults. Our
testing of seven systems revealed 32 failures.

In our current work, we are focusing on two
directions: Extending NEAT to automate testing
through workload and network fault generators and
exploring fault tolerance techniques for partial network
partitioning faults. Our data set and the source code are
available at: https://dsl.uwaterloo.ca/projects/neat/

Acknowledgment
We thank the anonymous reviewers and our shepherd,
Marcos Aguilera, for their insightful feedback. We
thank Matei Ripeanu, Remzi Arpaci-Dusseau, Abdullah
Gharaibeh, Ken Salem, Tim Brecht, and Bernard Wong
for their insightful feedback on early versions of this
paper. We thank Nicholas Lee, Alex Liu, Dian Tang,
Anusan Sivakumaran, and Charles Wu for their help in
reproducing some of the failures. This research was
supported by an NSERC Discovery grant, NSERC
Engage grant, Canada Foundation for Innovation (CFI)
grant, and in-kind support from Google Canada.

References
[1] K. Shvachko, H. Kuang, S. Radia and R.

Chansler, "The Hadoop Distributed File System,"
in IEEE Symposium on Mass Storage Systems and
Technologies (MSST), 2010.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S.
Shenker and I. Stoica, "Spark: cluster computing
with working sets," in USENIX conference on Hot
topics in cloud computing (HotCloud), 2010.

[3] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long and C. Maltzahn, "Ceph: a scalable, high-
performance distributed file system," in
Symposium on operating systems design and
implementation (OSDI), 2006.

[4] "Apache Hadoop," [Online]. Available:
https://hadoop.apache.org/. [Accessed May 2018].

[5] E. A. Brewer, "Lessons from giant-scale
services," IEEE Internet Computing, vol. 5, no. 4,
pp. 46-55, 2001 .

[6] D. Oppenheimer, A. Ganapathi and D. A.
Patterson, "Why do internet services fail, and
what can be done about it?," in Conference on
USENIX Symposium on Internet Technologies and
Systems (USITS), Seattle, WA, 2003.

[7] "Apache Hadoop 2.9.0 – HDFS High
Availability," [Online]. Available:
https://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html.
[Accessed 20 April 2018].

[8] "Linux-HA: Open Source High-Availability
Software for Linux," [Online]. Available:
http://www.linux-ha.org/wiki/Main_Page.
[Accessed 27 April 2018].

[9] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N.
Hutchinson and A. Warfield, "Remus: High
Availability via Asynchronous Virtual Machine
Replication," in USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), San Francisco, CA, 2008.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C.
Frost and J. Furman, "Spanner: Google’s
Globally-Distributed Database," in USENIX
symposium on operating systems design and
implementation (OSDI), Hollywood, CA, 2012.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding and J. Ferris, "TAO:
Facebook’s Distributed Data Store for the Social
Graph," in USENIX Annual Technical Conference
(USENIX ATC), San Jose, CA, 2013.

[12] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-
Bassett and H. V, "SPANStore: cost-effective
geo-replicated storage spanning multiple cloud
services," in ACM symposium on operating
systems principles (SOSP), Farminton,
Pennsylvania, 2013.

[13] L. Lamport, "Paxos Made Simple," ACM SIGACT
News, vol. 32, no. 4, pp. 18-25, 2001.

[14] D. Ongaro and J. Ousterhout, "In Search of an
Understandable Consensus Algorithm," in
USENIX Annual Technical Conference,
Philadelphia, PA, 2014.

[15] T. D. Chandra, R. Griesemer and J. Redstone,
"Paxos made live: an engineering perspective," in
ACM symposium on principles of distributed
computing, Portland, Oregon, USA, 2007.

[16] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall and W. Vogels,
"Dynamo: amazon's highly available key-value

64 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

store," in Symposium on Operating systems
principles (SOSP), Washington, USA, 2007.

[17] F. P. Junqueira, B. C. Reed and M. Serafini, "Zab:
High-performance broadcast for primary-backup
systems," in IEEE/IFIP International Conference
on Dependable Systems & Networks (DSN), Hong
Kong, 2011.

[18] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer and C. H. Hauser,
"Managing update conflicts in Bayou, a weakly
connected replicated storage system," ACM
SIGOPS Operating Systems Review, vol. 29, no.
5, pp. 172-182, 1995.

[19] D. B. Terry , V. Prabhakaran, R. Kotla, M.
Balakrishnan, M. K. Aguilera and H. Abu-Libdeh,
"Consistency-based service level agreements for
cloud storage," in ACM Symposium on Operating
Systems Principles (SOSP), 2013.

[20] S. Gilbert and N. Lynch, "Brewer's conjecture and
the feasibility of consistent, available, partition-
tolerant web services," ACM SIGACT News, vol.
33, no. 2, pp. 51-59, 2002.

[21] R. Govindan, I. Minei, M. Kallahalla , B. Koley
and A. Vahdat, "Evolve or Die: High-Availability
Design Principles Drawn from Googles Network
Infrastructure," in ACM SIGCOMM,
Florianopolis, Brazil, 2016.

[22] G. Phillipa , N. Jain and N. Nagappan,
"Understanding network failures in data centers:
measurement, analysis, and implications," in ACM
SIGCOMM, Toronto, 2011.

[23] D. Turner, K. Levchenko, J. C. Mogul, S. Savage,
A. C. Snoeren, D. Turner, K. Levchenko, J. C.
Mogul, S. Savage and A. C. Snoeren, "On failure
in managed enterprise networks," Technical
report HPL-2012-101, HP Labs, 2012.

[24] D. Turner, K. Levchenko, A. C. Snoeren and S.
Savage, "California fault lines: understanding the
causes and impact of network failures," in ACM
SIGCOMM, New York, NY, USA, 2010.

[25] "Apache Hadoop 2.6.0 - Fault Injection
Framework and Development Guide," [Online].
Available:
https://hadoop.apache.org/docs/r2.6.0/hadoop-
project-dist/hadoop-
hdfs/FaultInjectFramework.html. [Accessed April
2018].

[26] "Mockito framework," [Online]. Available:
http://site.mockito.org/. [Accessed 27 April 2018].

[27] K. Beck, Test Driven Development: By Example.,
Addison-Wesley Professional, 2003.

[28] "Elasticsearch: RESTful, Distributed Search &
Analytics," [Online]. Available:
https://www.elastic.co/products/elasticsearch.
[Accessed October 2018].

[29] Hazelcast, "Hazelcast: the Leading In-Memory
Data Grid," [Online]. Available:
https://hazelcast.com/. [Accessed October 2018].

[30] J. Kreps, N. Narkhede and J. Rao, "Kafka: a
Distributed Messaging System for Log
Processing," in NetDB, 2011.

[31] "MongoDB," [Online]. Available:
https://www.mongodb.com/. [Accessed October
2018].

[32] "Redis: in-memory data structure store," [Online].
https://redis.io/. [Accessed October 2018].

[33] "VoltDB: In-Memory Database," [Online].
Available: https://www.voltdb.com/. [Accessed
October 2018].

[34] A. Herr, "Veritas Cluster Server 6.2 I/O Fencing
Deployment Considerations," Techincal report,
Veritas Technologies, 2016.

[35] "OpenFlow Switch Specification, Version 1.5.1
(ONF TS-025)," Open Networking Foundation,
2015.

[36] "iptables: administration tool for IPv4 packet
filtering and NAT," [Online]. Available:
https://linux.die.net/man/8/iptables. [Accessed
October 2018].

[37] "Ceph: distributed storage system," [Online].
Available: https://ceph.com/. [Accessed October
2018].

[38] "Apache ActiveMQ," [Online]. Available:
http://activemq.apache.org/. [Accessed October
2018].

[39] "Ignite: Database and Caching Platform,"
[Online]. Available: https://ignite.apache.org/.
[Accessed October 2018].

[40] "Terracotta data management platform," [Online].
Available: http://www.terracotta.org/. [Accessed
October 2018].

[41] "Dkron: Distributed job scheduling system,"
[Online]. Available: https://dkron.io. [Accessed
October 2018].

[42] "Infinispan: distributed in-memory key/value data
store," [Online]. Available: http://infinispan.org/.
[Accessed October 2018].

[43] "MooseFS: Moose file system," [Online].
Available: https://moosefs.com/. [Accessed
October 2018].

[44] S. Jain, A. Kumar, M, S. al, J. Ong, L. Poutievski,
A. Singh, S. Venkata, W, J. erer, J. Zhou and M.
Zhu, "B4: Experience with a globally-deployed
software defined WAN," ACM SIGCOMM
Computer Communication Review, 2013.

[45] "Data Center: Load Balancing Data Center,
Solutions Reference Nework Design," Technical
report, Cisco Systems, Inc., 2004.

[46] "bnx2 cards intermittantly going offline,"
[Online]. https://www.spinics.net/lists/netdev/
msg210485.html. [Accessed October 2018].

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 65

[47] A. S. Tanenbaum and Maarten van Steen,
Distributed Systems: Principles and Paradigms,
2nd ed., Pearson, 2006.

[48] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A.
Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver and R. Yerneni, "PNUTS: Yahoo!'s
hosted data serving platform," VLDB Endowment,
vol. 1, no. 2, pp. 1277-1288, 2008.

[49] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A.
Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J.
Wu, H. Simitci, J. Haridas, C. Uddaraju, H.
Khatri, A. Edwards and V. Bedekar, "Windows
Azure Storage: a highly available cloud storage
service with strong consistency," in ACM
Symposium on Operating Systems Principles
(SOSP), New York, NY, USA, 2011.

[50] V. Ramasubramanian and E. G. Sirer, "Beehive:
O(1)lookup performance for power-law query
distributions in peer-to-peer overlays," in
Symposium on Networked Systems Design and
Implementation (NSDI), San Francisco,
California, 2004.

[51] "OpenStack Swift object storage," [Online].
Available:
https://www.swiftstack.com/product/openstack-
swift. [Accessed October 2018].

[52] "RethinkDB: the open-source database for the
realtime web," [Online]. Available:
https://www.rethinkdb.com/. [Accessed October
2018].

[53] "Protocol Buffers," [Online]. Available:
https://developers.google.com/protocol-buffers/.
[Accessed Octrober 2018].

[54] jepsen-io, "Jepsen: A framework for distributed
systems verification, with fault injection,"
[Online]. Available: https://github.com/jepsen-
io/jepsen. [Accessed October 2018].

[55] "Clojure programming language," [Online].
Available: https://clojure.org/. [Accessed October
2018].

[56] "Apache HBase," [Online]. Available:
https://hbase.apache.org/. [Accessed October
2018].

[57] "Riak KV: distributed NoSQL key-value
database," [Online]. Available:
http://basho.com/riak/. [Accessed October 2018].

[58] "Apache Cassandra," [Online]. Available:
http://cassandra.apache.org/. [Accessed October
2018].

[59] "Aerospike database 4," [Online]. Available:
https://www.aerospike.com/. [Accessed October
2018].

[60] "Apache Geode data management solution,"
[Online]. Available: http://geode.apache.org/.
[Accessed October 2018].

[61] "Apache ZooKeeper," [Online]. Available:
https://zookeeper.apache.org/. [Accessed October
2018].

[62] "RabbitMQ message broker," [Online]. Available:
https://www.rabbitmq.com/. [Accessed October
2018].

[63] "Chronos: Fault tolerant job scheduler for Mesos,"
[Online]. Available:
https://mesos.github.io/chronos/. [Accessed
October 2018].

[64] B. Hindman, A. Konwinski, M. Zaharia, A.
Ghodsi, A. D. Joseph, R. Katz, S. Shenker and I.
Stoica, "Mesos: a platform for fine-grained
resource sharing in the data center," in USENIX
conference on Networked systems design and
implementation (NSDI), Boston, MA, 2011.

[65] "Jepsen: MongoDB stale reads," [Online].
Available: https://aphyr.com/posts/322-jepsen-
mongodb-stale-reads. [Accessed 17 March 2018].

[66] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X.
Zhao, Y. Zhang, P. U. Jain and M. Stumm,
"Simple testing can prevent most critical failures:
an analysis of production failures in distributed
data-intensive systems," in USENIX conference
on Operating Systems Design and Implementation
(OSDI), Broomfield, CO, 2014.

[67] "Jepsen: Riak," [Online]. Available:
https://aphyr.com/posts/285-call-me-maybe-riak.
[Accessed 17 March 2018].

[68] "[SERVER-7008] socket exception
[SEND_ERROR] on Mongo Sharding -
MongoDB," [Online]. Available:
https://jira.mongodb.org/browse/SERVER-7008.
[Accessed 17 March 2018].

[69] "Network partition during peer discovery in auto
clustering causes two clusters to form ꞏ Issue
#1455 ꞏ rabbitmq/rabbitmq-server," [Online].
Available: https://github.com/rabbitmq/rabbitmq-
server/issues/1455. [Accessed 17 March 2018].

[70] "[SERVER-17975] Stale reads with
WriteConcern Majority and ReadPreference
Primary - MongoDB," [Online]. Available:
https://jira.mongodb.org/browse/SERVER-17975.
[Accessed 17 March 2018].

[71] "[ENG-10389] Possible dirty read with RO
transactions in certain partition scenarios -
VoltDB JIRA," [Online]. Available:
https://issues.voltdb.com/browse/ENG-10389.
[Accessed 17 March 2018].

[72] "Possible write loss during cluster reconfiguration
ꞏ Issue #5289 ꞏ rethinkdb/rethinkdb," [Online].
Available:
https://github.com/rethinkdb/rethinkdb/issues/528
9. [Accessed 17 March 2018].

[73] "[SERVER-14885] replica sets that disable
chaining may have trouble electing a primary if

66 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

members have different priorities - MongoDB,"
[Online]. Available:
https://jira.mongodb.org/browse/SERVER-14885.
[Accessed 11 April 2018].

[74] "[ZOOKEEPER-2099] Using txnlog to sync a
learner can corrupt the learner's datatree - ASF
JIRA," [Online]. Available:
https://issues.apache.org/jira/browse/ZOOKEEPE
R-2099. [Accessed 30 April 2018].

[75] "Disconnect between coordinating node and
shards can cause duplicate updates or wrong
status code ꞏ Issue #9967 ꞏ elastic/elasticsearch,"
[Online]. Available:
https://github.com/elastic/elasticsearch/issues/996
7. [Accessed 22 March 2018].

[76] "[HBASE-2312] Possible data loss when RS goes
into GC pause while rolling HLog - ASF JIRA,"
[Online]. Available:
https://issues.apache.org/jira/browse/HBASE-
2312. [Accessed 1 May 2018].

[77] "[HDFS-577] Name node doesn't always properly
recognize health of data node - ASF JIRA,"
[Online]. [Accessed 22 March 2018].

[78] "[MAPREDUCE-4819] AM can rerun job after
reporting final job status to the client - ASF
JIRA," [Online]. Available:
https://issues.apache.org/jira/browse/MAPREDU
CE-4819. [Accessed 18 March 2018].

[79] "[HDFS-1384] NameNode should give client the
first node in the pipeline from different rack other
than that of excludedNodes list in the same rack. -
ASF JIRA," [Online]. Available:
https://issues.apache.org/jira/browse/HDFS-1384.
[Accessed 17 March 2018].

[80] "[SERVER-27125] Arbiters in pv1 should vote no
in elections if they can see a healthy primary of
equal or greater priority to the candidate -
MongoDB," [Online]. Available:
https://jira.mongodb.org/browse/SERVER-27125.
[Accessed 17 March 2018].

[81] "minimum_master_nodes does not prevent split-
brain if splits are intersecting ꞏ Issue #2488 ꞏ
elastic/elasticsearch," [Online]. Available:
https://github.com/elastic/elasticsearch/issues/248
8. [Accessed 17 March 2018].

[82] "Avoid Data Loss on Migration - Solution
Design," [Online]. Available:
https://hazelcast.atlassian.net/wiki/spaces/COM/p
ages/66519050/Avoid+Data+Loss+on+Migration
+-+Solution+Design. [Accessed 28 March 2018].

[83] "PSYNC2 partial command backlog corruption ꞏ
Issue #3899 ꞏ antirez/redis," [Online]. Available:
https://github.com/antirez/redis/issues/3899.
[Accessed 1 May 2018].

[84] "Deadlock while syncing mirrored queues ꞏ Issue
#714 ꞏ rabbitmq/rabbitmq-server," [Online].

Available: https://github.com/rabbitmq/rabbitmq-
server/issues/714. [Accessed 1 May 2018].

[85] "Cassandra removenode makes Gossiper Thread
hang forever," [Online]. Available:
https://issues.apache.org/jira/browse/CASSANDR
A-13562. [Accessed January 2018].

[86] "Redis Cluster Specification," [Online].
Available: https://redis.io/topics/cluster-spec.
[Accessed 2018].

[87] "Distributed Semaphores with RabbitMQ,"
[Online]. Available:
https://www.rabbitmq.com/blog/2014/02/19/distri
buted-semaphores-with-rabbitmq/. [Accessed 22
March 2018].

[88] "Consistency and Replication Model - Hazelcast
Reference Manual," [Online]. Available:
http://docs.hazelcast.org/docs/latest-
development/manual/html/Consistency_and_Repl
ication_Model.html. [Accessed 22 March 2018].

[89] "Jepsen: Redis," [Online]. Available:
https://aphyr.com/posts/283-jepsen-redis.
[Accessed 22 March 2018].

[90] "Jepsen: Hazelcast 3.8.3," [Online]. Available:
https://jepsen.io/analyses/hazelcast-3-8-3.
[Accessed 22 March 2018].

[91] "Jepsen: Aerospike," [Online]. Available:
https://aphyr.com/posts/324-jepsen-aerospike.
[Accessed 22 March 2018].

[92] "minimum_master_nodes does not prevent split-
brain if splits are intersecting ꞏ Issue #2488 ꞏ
elastic/elasticsearch," [Online]. Available:
https://github.com/elastic/elasticsearch/issues/248
8. [Accessed 17 May 2018].

[93] J. Kurose and K. Ross, Computer Networking: A
Top-Down Approach, 7th ed., Pearson, 2016.

[94] "Floodlight OpenFlow Controller," [Online].
Available: http://www.projectfloodlight.org/
floodlight/. [Accessed 19 March 2018].

[95] "CloudLab," [Online]. Available:
https://www.cloudlab.us/. [Accessed May 2018].

[96] K. V. Vishwanath and N. Nagappan,
"Characterizing cloud computing hardware
reliability," in ACM symposium on Cloud
computing (SoCC), New York, NY, USA, 2010.

[97] R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann
and T. Engbersen, "Failure Analysis of Virtual
and Physical Machines: Patterns, Causes and
Characteristics," in Annual IEEE/IFIP
International Conference on Dependable Systems
and Networks (DSN), Atlanta, GA, USA, 2014.

[98] D. Ford, F. Labelle, F. I. Popovici, M. Stokely,
V.-A. Truong, L. Barroso, C. Grimes and S.
Quinlna, "Availability in Globally Distributed
Storage Systems," in USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), Vancouver, BC, 2010.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 67

[99] W. Jiang, C. Hu, Y. Zhou and A. Kanevsky, "Are
Disks the Dominant Contributor for Storage
Failures? A Comprehensive Study of Storage
Subsystem Failure Characteristics," ACM
Transactions on Storage , vol. 4, no. 3, p. Article
7, 2008.

[100] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T.
Patana-anake, T. Do, J. Adityatama, K. J. Eliazar,
A. Laksono, J. F. Lukman, V. Martin and A. D.
Satria, "What Bugs Live in the Cloud? A Study of
3000+ Issues in Cloud Systems," in ACM
Symposium on Cloud Computing (SOCC), New
York, NY, USA, 2014.

[101] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin
and T. Xie, "A Characteristic Study on Failures of
Production Distributed Data-Parallel Programs,"
in International Conference on Software
Engineering (ICSE), 2013.

[102] X. Chen, C. D. Lu and K. Pattabiraman, "Failure
Analysis of Jobs in Compute Clouds: A Google
Cluster Case Study," in IEEE International
Symposium on Software Reliability Engineering,
Naples, Italy, 2014.

[103] P. Garraghan, P. Townend and J. Xu, "An
Empirical Failure-Analysis of a Large-Scale
Cloud Computing Environment," in IEEE
International Symposium on High-Assurance
Systems Engineering, 2014.

[104] N. El-Sayed and B. Schroeder, "Reading between
the lines of failure logs: Understanding how HPC
systems fail," in Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN), Budapest, Hungary, 2013.

[105] Y. Liang, Y. Zhang, A. Sivasubramaniam, M.
Jette and R. Sahoo, "BlueGene/L Failure Analysis
and Prediction Models," in International
Conference on Dependable Systems and Networks
(DSN), Philadelphia, PA, USA, 2006.

[106] B. Schroeder and G. Gibson, "A Large-Scale
Study of Failures in High-Performance
Computing Systems," IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4,
pp. 337 - 350, 2010.

[107] T. Benson, S. Sahu, A. Akella and A. Shaikh, "A
first look at problems in the cloud," in USENIX
conference on Hot topics in cloud computing
(HotCloud), Boston, MA, 2010.

[108] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin and
T. Qin, "An empirical study on quality issues of
production big data platform," in International
Conference on Software Engineering (ICSE),
Florence, Italy, 2015.

[109] H. S. Gunawi, M. Hao, R. O. Suminto, A.
Laksono, A. D. Satria, J. Adityatama and K. J.
Eliazar, "Why Does the Cloud Stop Computing?:
Lessons from Hundreds of Service Outages," in

ACM Symposium on Cloud Computing (SoCC),
Santa Clara, CA, USA, 2016.

[110] A. Rabkin and R. H. Katz, "How Hadoop Clusters
Break," IEEE Software, vol. 30, no. 4, pp. 88 - 94,
2012.

[111] R. Majumdar and F. Niksic, "Why is random
testing effective for partition tolerance bugs?," in
ACM Journal on Programming Languages, 2017.

[112] P. Godefroid, "Model checking for programming
languages using verisoft.," in ACM symposium on
principles of programming languages (POPL),
Paris, 1997.

[113] S. Qadeer and D. Wu, "Kiss: keep it simple and
sequential," in Conf. on Programming Language
Design and Implementation (PLDI), 2004.

[114] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F.
Lukman and H. S. Gunawi, "SAMC: Semantic-
Aware Model Checking for Fast Discovery of
Deep Bugs in Cloud Systems," in USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[115] C. Baier and J.-P. Katoen, Principles of model
checking, MIT press, 2008.

[116] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang and L. Zhou,
"MODIST: Transparent model checking of
unmodified distributed systems," in USENIX
Symposium on Networked Systems Design and
Implementation, NSDI 2009, 2009.

[117] P. Alvaro, J. Rosen and J. M. Hellerstein,
"Lineage-driven Fault Injection," in Proceedings
of the 2015 ACM SIGMOD International
Conference on Management of Data, 2015.

[118] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M.
Hellerstein, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, K. Sen and D. Borthakur, "FATE and
DESTINI: A framework for cloud recovery
testing," in Proceedings of NSDI’11: 8th USENIX
Symposium on Networked Systems Design and
Implementation, 2011.

[119] M. Pradel and T. R. Gross, "Automatic testing of
sequential and concurrent substitutability," in
International Conference on Software
Engineering (ICSE), 2013.

[120] T. Elmas, S. Tasiran and S. Qadeer, "VYRD:
Verifying concurrent programs by runtime
refinement-violation detection.," in ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2005.

68 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

