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Abstract 
We present a comprehensive study of 136 system 
failures attributed to network-partitioning faults from 
25 widely used distributed systems. We found that the 
majority of the failures led to catastrophic effects, such 
as data loss, reappearance of deleted data, broken locks, 
and system crashes. The majority of the failures can 
easily manifest once a network partition occurs: They 
require little to no client input, can be triggered by 
isolating a single node, and are deterministic. However, 
the number of test cases that one must consider is 
extremely large. Fortunately, we identify ordering, 
timing, and network fault characteristics that 
significantly simplify testing. Furthermore, we found 
that a significant number of the failures are due to 
design flaws in core system mechanisms. 

We found that the majority of the failures could 
have been avoided by design reviews, and could have 
been discovered by testing with network-partitioning 
fault injection. We built NEAT, a testing framework 
that simplifies the coordination of multiple clients and 
can inject different types of network-partitioning faults. 
We used NEAT to test seven popular systems and 
found and reported 32 failures. 

1 Introduction 
With the increased dependency on cloud             
systems [1, 2, 3, 4], users expect high—ideally, 24/7—
service availability and data durability [5, 6]. Hence, 
cloud systems are designed to be highly             
available [7, 8, 9] and to preserve data stored in them 
despite failures of devices, machines, networks, or even 
entire data centers [10, 11, 12]. 

Our goal is to better understand the impact of a 
specific type of infrastructure fault on modern 
distributed systems: network-partitioning faults. We 
aim to understand the specific sequence of events that 
lead to user-visible system failures and to characterize 
these system failures to identify opportunities for 
improving system fault tolerance.  

We focus on network partitioning for two reasons. 
The first is due to the complexity of tolerating these 
faults [13, 14, 15, 16]. Network-partitioning fault 
tolerance pervades the design of all system layers, from 
the communication middleware and data         
replication [13, 14, 16, 17] to user API definition and 
semantics [18, 19], and it dictates the availability and 
consistency levels a system can achieve [20]. Second, 
recent studies [21, 22, 23, 24] indicate that, in 

production networks, network-partitioning faults occur 
as frequently as once a week and take from tens of 
minutes to hours to repair. 

Given that network-partitioning fault tolerance is a 
well-studied problem [13, 14, 17, 20], this raises 
questions about how these faults sill lead to system 
failures. What is the impact of these failures? What are 
the characteristics of the sequence of events that lead to 
a system failure? What are the characteristics of the 
network-partitioning faults? And, foremost, how can we 
improve system resilience to these faults?  

To help answer these questions, we conducted a 
thorough study of 136 network-partitioning failures1 
from 25 widely used distributed systems. The systems 
we selected are popular and diverse, including key-
value systems and databases (MongoDB, VoltDB, 
Redis, Riak, RethinkDB, HBase, Aerospike, Cassandra, 
Geode, Infinispan, and Ignite), file systems (HDFS and 
MooseFS), an object store (Ceph), a coordination 
service (ZooKeeper), messaging systems (Kafka, 
ActiveMQ, and RabbitMQ), a data-processing 
framework (Hadoop MapReduce), a search engine 
(Elasticsearch), resource managers (Mesos, Chronos, 
and DKron), and in-memory data structures (Hazelcast, 
Ignite, and Terracotta). 

For each considered failure, we carefully studied the 
failure report, logs, discussions between users and 
developers, source code, code patch, and unit tests. We 
manually reproduced 24 of the failures to understand 
the specific manifestation sequence of the failure. 
Failure impact. Overall, we found that network-
partitioning faults lead to silent catastrophic failures 
(e.g., data loss, data corruption, data unavailability, and 
broken locks), with 21% of the failures leaving the 
system in a lasting erroneous state that persists even 
after the partition heals.  
Ease of manifestation. Oddly, it is easy for these 
failures to occur. A majority of the failures required 
three or fewer frequently used events (e.g., read, and 
write), 88% of them can be triggered by isolating a 
single node, and 62% of them were deterministic. It is 
surprising that catastrophic failures manifest easily, 
given that these systems are generally developed using 
good software-engineering practices and are subjected 
to multiple design and code reviews as well as thorough 
testing [5, 25].  
 

1 A fault is the initial root cause, including machine and network
problems and software bugs. If not properly handled a fault may lead
to a user-visible system failure.
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Partial Network Partitions. Another unexpected result 
is that a significant number of the failures (29%) were 
caused by an unanticipated type of fault: partial 
network partitions. Partial partitions isolate a set of 
nodes from some, but not all, nodes in the cluster, 
leading to a confusing system state in which the nodes 
disagree whether a server is up or down. The effects of 
this disagreement are poorly understood and tested. 
This is the first study to analyze the impact of this fault 
on modern systems. 
Testability. We studied the testability of these failures. 
In particular, we analyzed the manifestation sequence 
of each failure, ordering constraints, timing constraints, 
and network fault characteristics. While the number of 
event permutations that can lead to a failure is 
excessively large, we identified characteristics that 
significantly reduce the number of test cases       
(Section 5). We also found that the majority of the 
failures can be reproduced through tests and by using 
only three nodes. 

Our findings debunk two common presumptions. 
First, network practitioners presume that systems, with 
their software and data redundancy, are robust enough 
to tolerate network partitioning [22]. Consequently, 
practitioners assign low priority to the repair of top-of-
the-rack (ToR) switches [22], even though these 
failures isolate a rack of machines. Our findings show 
that this presumption is ill founded, as 88% of the 
failures can occur by isolating a single node. Second, 
system designers assume that limiting client access to 
one side of a network partition will eliminate the 
possibility of a failure [28, 29, 30, 31, 32, 33, 34]. Our 
findings indicate that 64% of the failures required no 
client access at all or client access to only one side of 
the network partition. 

We examined the unit tests that we could relate to 
the studied code patches and we found that developers 
lack the proper tools to test these failures. In most 
cases, developers used mocking [26, 27] to test the 
impact of network partitioning on only one component 
and on just one side of the partition. However, this 
approach is inadequate for end-to-end testing of 
complete distributed protocols. 

Our findings motivated us to build the network 
partitioning testing framework (NEAT). NEAT 
simplifies testing by allowing developers to specify a 
global order for client operations and by providing a 
simple API for creating and healing partitions as well as 
crashing nodes. NEAT uses OpenFlow [35] to 
manipulate switch-forwarding rules and create 
partitions. For deployments that do not have an 
OpenFlow switch, we built a basic version using 
iptables [36] to alter firewall rules at end hosts. 

We used NEAT to test seven systems: Ceph [37], 
ActiveMQ [38], Apache Ignite [39], Terracotta [40], 
DKron [41], Infinispan [42], and MooseFS [43]. We 

found and reported 32 failures that led to data loss, stale 
reads, reappearance of deleted data, unavailability, 
double locking, and broken locks. 

The rest of this paper is organized as follows: In 
Section 2, we present a categorization of network-
partitioning faults, discuss the theoretical limit on 
system design, and discuss the current testing 
techniques. In Section 3, we present our methodology 
and its limitations. Then, we present our findings in 
Sections 4 and 5 and discuss a number of related 
observations in Section 6. We present the NEAT 
framework in Section 7. We present additional related 
work in Section 8. We share our insights in Section 9 
and conclude our paper in Section 10. 

2 Background 
In this section, we present the three types of network-
partitioning faults (Section 2.1), discuss the theoretical 
limit for systems design (Section 2.2), and survey the 
current approaches for testing systems’ resilience to 
network-partitioning faults (Section 2.3). 

2.1 Types of Network Partitions 
Modern networks are complex. They span multiple data 
centers [44, 45], use heterogeneous hardware and 
software [23], and employ a wide range of middle 
boxes (e.g., NAT, load balancers, route aggregators, 
and firewalls) [21, 44, 45]. Despite the high redundancy 
built into modern networks, catastrophic failures are 
common [21, 22, 23, 24]. We surveyed network-
partitioning failures and identified three types: 

Complete network partitioning leads to dividing the 
network into two disconnected parts (Figure 1.a). 
Complete partitions can happen at different scales; for 
example, they can manifest in geo-replicated systems 
due to the loss of connectivity between data centers. HP 
reported that 11% of its enterprise network failures lead 
to site connectivity problems [23]. Turner et al. found 
that a network partition occurs almost once every 4 

(a) 

 (b) 
(c) 

Figure 1. Network partitioning types. (a) Complete partition:
The system is split into two disconnected groups (b) Partial 
partition: The partition affects some, but not all, nodes in the 
system. Group 3 in Figure (b) can communicate with the 
other two groups. (c) Simplex partition, in which traffic 
flows only in one direction. 
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days in the California-wide CENIC network [24]. In a 
data center, a complete partition can manifest due to 
failures in the core or aggregation switches [22] or 
because of a ToR switch failure. Microsoft and Google 
report that ToR failures are common and have led to 40 
network partitions in two years at Google [21] and 
caused 70% of the downtime at Microsoft [22]. Finally, 
NIC failures [46] or bugs in the networking stack can 
lead to the isolation of a single node that could be 
hosting multiple VMs. Finally, network-partition faults 
caused by correlated failures of multiple devices are not 
uncommon [22, 24, 44]. Correlated switch failures are 
frequently caused by system-wide upgrades and 
maintenance tasks [21, 22]. 

Partial network partitioning is a fault that leads to the 
division of nodes into three groups (Group1, Group2, 
and Group3 in Figure 1.b) such that two groups (say, 
Group1 and Group2) are disconnected while Group3 
can communicate with both Group1 and Group2            
(Figure 1.b). Partial partitions are caused by a loss of 
connectivity between two data centers [23] while both 
are reachable by a third center, or due to inconsistencies 
in switch-forwarding rules [21]. 

Simplex network partitioning permits traffic to flow in 
one direction, but not in the other (Figure 1.c). This is 
the least common failure and can be caused by 
inconsistent forwarding rules or hardware failures (e.g., 
the Broadcom BCM5709 chipset bug [46]). The impact 
of this failure is mainly manifested in UDP-based 
protocols. For instance, a simplex network partitioning 
dropped all incoming packets to a primary server while 
allowing the primary server heartbeats to reach the 
failover server. The system hang as the failover server 
neither detected the failure nor took over [46]. 

2.2 Theoretical Limit 
The data consistency model defines which values a read 
operation may return. The strong consistency        
model [47] (a.k.a. sequential consistency) is the easiest 
to understand and use. Strong consistency promises that 
a read operation will return the most recent successfully 
written value. Unfortunately, providing strong 
consistency reduces system availability and requires 
complex consistency protocols [13, 14, 17]. Gilbert and 
Lynch [20] presented a theoretical limit on system 
design. Their theorem, famously known as the CAP 
theorem, states that in the presence of a network 
partition, designers need to choose between keeping the 
service available and maintaining data consistency.  

To maintain system availability, system designers 
choose a relaxed consistency model such as the read-
your-write [11, 18, 19, 48], timeline [19, 48, 49], and 
eventually consistent [16, 19, 50, 51] models.  

Modern systems often implement consensus 
protocols that have not been theoretically proven. 
Eventually consistent systems implement unproven 

protocols (Hazelcast [29] and Redis [32]), and systems 
that implement proven, strongly consistent protocols 
(e.g., Paxos [13] and Raft [14]) often tweak these 
protocols in unproven ways [15, 31, 52]. These 
practices make modern systems vulnerable to 
unforeseen failure scenarios, such as the ones caused by 
different types of network partitions. 

2.3 Testing with Network Partitioning  
A common testing technique for network-partitioning 
failures is mocking. Mocking frameworks (e.g., 
Mockito [26]) can be used to imitate communication 
problems. Mocking can be employed to test the impact 
of a failure on a single component, but it is not suitable 
for system-level testing or for testing distributed 
protocols. A few systems use hacks to emulate a 
network partition; for instance, Mesos’ unit tests 
emulate a network partition by ignoring test-specific 
messages received by the protobuf middleware [53].  

Another possible testing approach is to use the 
Jepsen testing framework [54]. Jepsen is written in 
Clojure [55] and is tuned toward random testing. Jepsen 
testing typically involves running an auto-generated 
testing workload while the tool injects network-
partitioning faults. Jepsen does not readily support unit 
testing or all types of network partitioning. 

We built NEAT, a Java-based, system-level testing 
framework. NEAT has a simple API for deploying 
systems, specifying clients’ workloads, creating and 
healing partitions, and crashing nodes. Unlike Jepsen, 
NEAT readily supports injecting the three types of 
network-partitioning faults.  

3 Methodology and Limitations 
We studied 136 real-world failures in 25 popular 
distributed systems. We selected a diverse set of 
distributed systems (Table 1), including 10 key-value 
storage systems and databases, a coordination service, 
two file systems, an object storage system, three 
message-queueing systems, a data-processing 
framework, a search engine, three resource managers, 
and three distributed in-memory caches and data 
structures. We selected this diverse set of systems to 
understand the wide impact of network-partitioning 
faults on distributed systems and because these systems 
are widely used and are considered production quality.  

The 136 failures2 we studied include 88 failures 
extracted from the publicly accessible issue-tracking 
systems, 16 Jepsen reports [54], and 32 failures 
detected by our NEAT framework (Section 7). The 
majority of the studied tickets contain enough details to 
 

2 We differentiate failures by their manifestation sequence of events.
In a few cases, the same faulty mechanism leads to two different
failures and impacts depending on workload. We count these as
separate failures, even if they were reported in a single ticket.
Similarly, although the exact failure is sometimes reported in
multiple tickets, we count it once in our study. 
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understand the failure. These tickets document failures 
that were confirmed by the developers and include 
discussions between the users and the developers, steps 
to reproduce the failure, outputs and logs, code patch, 
and sometimes unit tests.  

The 88 failures we included in our study were 
selected as follows: First, we used the search tool in the 
issue-tracking systems to identify tickets related to 
network partitioning. We searched using the following 
keywords: “network partition,” “network failure,” 
“switch failure,” “isolation,” “split-brain,” and 
“correlated failures.” Second, we considered tickets that 
were dated 2011 or later. Third, we excluded low-
priority tickets that were marked as “Minor” or 
“Trivial.” Fourth, we examined the set of tickets to 
verify that they were indeed related to network-
partitioning failures and excluded tickets that appeared 
to be part of the development cycle; for instance, they 
discuss a feature design. Finally, some failures that are 
triggered by a node crash can also be triggered by a 
network partition isolating that node. We excluded 
failures that can be triggered by a node crash and 
studied failures that can only be triggered by a network 

partition. Out of all Jepsen blog posts (there is 25 in 
total), we included 16 that are related to the systems we 
studied. Table 1 shows the number of failures and the 
consistency model of the systems we studied. 

For each ticket, we studied the failure description, 
system logs, developers’ and users’ comments, code 
patch, and unit tests. Using NEAT, we also reproduced 
13 failures reported in the issue-tracking systems, as 
well as 11 failures reported by Jepsen to understand 
their intricate details. 

Limitations: As with any characterization study, there 
is a risk that our findings may not be generalizable. 
Here we list three potential sources of bias and describe 
our best efforts to address them. 
1) Representativeness of the selected systems. Because 

we only studied 25 systems, the results may not be 
generalizable to the hundreds of systems we did not 
study. However, we selected a diverse set of 
systems (Table 1). These systems follow diverse 
designs, from persistent storage and reliable in-
memory storage to volatile caching systems. They 
use leader-follower or peer-to-peer architectures; are 
written in Java, C, Scala, or Erlang; adopt strong or 
eventual consistency; use synchronous or 
asynchronous replication; and use chain or parallel 
replication. The systems we selected are widely 
used: ZooKeeper is a popular coordination service; 
Kafka is the most popular message-queueing 
system; MapReduce, HDFS, and HBase are the core 
of the dominant Hadoop data analytics platform; 
MongoDB, Riak, Aerospike, Redis, and VoltDB are 
popular key-value-based databases; and Hazelcast, 
Ignite, and Terracotta are popular tools in a growing 
area of in-memory distributed data structures. 

2) Sampling bias. The way we choose the tickets may 
bias the results. We designed our methodology to 
include high impact tickets. Modern systems take 
node unreachability as an indicator of a node crash. 
Consequently, a network partition that isolates a 
single node can trigger the same failures that are 
caused by a single node crash. We excluded failures 
that can be caused by a node crash and considered 
those that are solely triggered by a network 
partitioning fault (i.e., the nodes on both sides of the 
partition must be running for a failure to manifest). 
Furthermore, we eliminated all low-priority tickets 
and focused on tickets the developers considered 
important. All presented findings should be 
interpreted with this sampling methodology in mind. 

3) Observer error. To minimize the possibility of 
observer errors, all failures were independently 
reviewed by two team members and discussed in a 
group meeting before agreement was reached, and 
all team members used the same detailed 
classification methodology. 

Table 1. List of studied system. The table shows systems’ 
consistency model, number of failures, and number of 
catastrophic failures. Highlighted rows indicate systems we 
tested using NEAT, and the number of failures we found. 

System Consistency Model 
Failures 

Total Catastrophic
MongoDB [31] Strong 19 11 

VoltDB [33] Strong 4 4 

RethinkDB [52] Strong 3 3 

HBase [56] Strong 5 3 

Riak [57] Strong/Eventual 1 1 

Cassandra [58] Strong 4 4 

Aerospike [59] Eventual 3 3 

Geode [60] Strong 2 2 

Redis [32] Eventual 3 2 

Hazelcast [29] Best Effort 7 5 

Elasticsearch [28] Eventual 22 21 

ZooKeeper [61] Strong 3 3 
HDFS [1] Custom 4 2 
Kafka [30] - 5 3 

RabbitMQ [62] - 7 4 

MapReduce [4] - 6 2 

Chronos [63] - 2 1 

Mesos [64] - 4 0 

Infinispan [42] Strong 1 1 

Ignite [39] Strong 15 13 

Terracotta [40] Strong 9 9 

Ceph [37] Strong 2 2 

MooseFS [43] Eventual 2 2 

ActiveMQ [38] - 2 2 

DKron [41] - 1 1 
Total - 136 104 
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4 General Findings 
This section presents the general findings from our 
study. Overall, our study indicates that network 
partitioning leads to catastrophic failures. However, it 
identifies failure characteristics that can improve 
testing. We show that most of the studied failures can 
be reproduced using only three nodes and are 
deterministic or have bounded timing constraints. We 
show that core distributed system mechanisms are the 
most vulnerable, including leader election, replication, 
and request routing. Finally, we show that a large 
number of the failures are caused by partial network-
partitioning faults.  

4.1 Failure Impact 
Overall, our findings indicate that network-partitioning 
faults cause silent catastrophic failures that can result in 
lasting damage to systems.  

Finding 1. A large percentage (80%) of the studied 
failures have a catastrophic impact, with data loss 
being the most common (27%) (Table 2). 

We classify a failure as catastrophic if it violates the 
system guarantees or leads to a system crash. Table 2 
lists the different types of catastrophic failures. Failures 
that degrade performance or crash a single node are not 
considered catastrophic. Stale reads are catastrophic 
only when the system promises strong consistency. 
However, they are not considered failures in eventually 
consistent systems. Dirty reads happen when the system 
returns the value of a preceding unsuccessful write 
operation. For instance, a client reading from the 
primary replica in MongoDB may get a value that is 
simultaneously being written by a concurrent write 
operation [65]. If the write fails due to network 
partitioning, the read operation has returned a value that 
was never successfully written (a.k.a. dirty read). 

Compared to other causes of failures, this finding 
indicates that network partitioning leads to a 
significantly higher percentage of catastrophic failures. 
Yuan et al. [66] present a study of 198 randomly 
selected, high-priority failures from five of the systems 

we include in our study: Cassandra, HBase, HDFS, 
MapReduce, and Redis. They report that only 24% of 
failures had catastrophic effects3, compared to 80% in 
the case of network-partitioning failures (Table 2). 
Consequently, developers should carefully consider this 
fault in all phases of system design, development, and 
testing.  

Finding 2. The majority (90%) of the failures are 
silent, whereas the rest produce warnings that are 
unatonable. 

We inspected the failure reports for returned error 
messages and warnings. The majority of the failures 
were silent (i.e., no error or warning was returned to the 
client), with some failures (10%) returning warning 
messages to the client. Unfortunately, all returned 
warnings were confusing, with no clear mechanism for 
resolution. For instance, in Riak [67] with a strict 
quorum configuration, when a write fails to fully 
replicate a new value, the client gets a warning 
indicating that the write operation has updated a subset 
of replicas, but not all of them. This warning is 
confusing because it does not indicate the necessary 
action to take next. Similarly, MongoDB returns a 
generic socket exception if a proxy node cannot reach 
the data nodes [68]. 

This is alarming because users and administrators 
are not notified when a failure occurs, which delays 
failure discovery, if the failure is discovered at all. 

Finding 3. Twenty one percent of the failures lead to 
permanent damage to the system. This damage persists 
even after the network partition heals. 

While 79% of the failures affect the system only while 
there is a network partition, 21% of the failures leave 
the system in an erroneous state that persists even after 
the network partition heals. For instance, if a new node 
is unable to reach the other nodes in RabbitMQ [69]  
and Ignite (section 7.4), the node will assume that the 
rest of the cluster has failed and will form a new 
independent cluster. These clusters will remain 
separated, even after the network partition heals.  

Overall, as recent studies [21, 22, 23, 24] indicate 
that network-partitioning faults occur as frequently as 
once a week and take from tens of minutes to hours to 
repair, it is alarming that these faults can lead to silent 
catastrophic failures. This is surprising, given that these 
systems are designed for deployments in which 
component failure is the norm. For instance, all of the 
systems we studied replicate their data. In MongoDB, 
Hazelcast, Kafka, Elasticsearch, Geode, Mesos, Redis, 

Table 2. The impacts of the failures. The percentage of the 
failures that cause each impact. Broken locks include double 
locking, lock corruption, and failure to unlock. 

Impact %   
 
 
 

Catastrophic
(79.5%) 

Data loss 26.6% 
Stale read 13.2% 
Broken locks 8.2% 
System crash/hang 8.1% 
Data unavailability 6.6% 
Reappearance of deleted data 6.6% 
Data corruption 5.1% 
Dirty read 5.1% 
Performance degradation 19.1% 
Other 1.4% 

 

3 We note that these percentages are not directly comparable as our
definition of catastrophic failure is more conservative. For instance,
while Yuan et al. [66] count a loss of a single replica or a crash of a
single node as catastrophic, we do not. 
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VoltDB, and RethinkDB, if a leader node is partitioned 
apart from the majority, then the rest of the nodes will 
quickly elect a new leader. Hazelcast and VoltDB 
employ “split-brain protection,” a technique that 
continuously monitors the network and pauses nodes in 
the minority partition if a network partition is detected. 
Furthermore, ZooKeeper and MongoDB include a 
mechanism for data consolidation. How, then, do these 
failures still occur? 

4.2 Vulnerability of System Mechanisms 
Finding 4. Leader election, configuration change, 
request routing, and data consolidation are the most 
vulnerable mechanisms to network partitioning       
(Table 3). 

Leader election is the most vulnerable to network 
partitioning (was affected by 40% of the failures). We 
further analyzed leader election failures (Table 4) and 
found that the most common leader election flaw is the 
simultaneous presence of two leaders. This failure 
typically manifests as follows: A network partition 
isolates the current leader from the majority of replicas. 
The majority partition elects a new leader. The old 
leader may eventually detect that it no longer has a 
majority of replicas at its side and step down. However, 
there is a period of time in which each network partition 
has a leader. The overlap between the two leaders may 
last until the network partition heals (which may take      
hours [21]). In MongoDB [70], VoltDB [71], and Raft-
based RethinkDB [72], if a network partition isolates a 
leader, the isolated leader will not be able to update the 
data, but it will still respond to read requests from its 
local copy, leading to stale and dirty reads. 

In all of the systems we studied, the leader trusts 
that its data set or log is complete and all replicas 
should update/trim their data sets to match the leader 
copy. Consequently, it is critical to elect the leader with 
a complete and consistent data set. Table 4 shows that 
20% of leader election failures are caused by electing a 
bad leader. This is caused by using simple criteria for 
leader election, such as the node with the longest log 
wins (e.g., VoltDB), the node that has the latest 
operation timestamp wins (e.g., MongoDB), or the node 
with the lowest id wins (e.g., Elasticsearch). These 
criteria can cause data loss when a node from the 
minority partition becomes a leader and erases all 
updates performed by the majority partition.  

Conflicting election criteria lead to 3.7% of the 
leader election failures and are only reported in 
MongoDB. MongoDB leader election has multiple 
criteria for electing a leader. One can assign a priority 
for a replica to become a leader. The priority node will 
reject any leader proposal; similarly, the node with the 
latest operation timestamp will reject all leader 
proposals, leaving the cluster without a leader [73]. 

The second most affected mechanism is 
configuration change, including node join or leave and 
role changes (e.g., changing the primary replica). We 
discuss two examples of these failures in Section 4.4. 

The third most affected mechanism is data 
consolidation. Failures in this mechanism typically lead 
to data loss in both eventually and strongly consistent 
systems. For instance, Redis, MongoDB, Aerospike, 
Elasticsearch, and Hazelcast employ simple policies to 
automate data consolidation, such as the write with the 
latest timestamp wins and the log with the most entries 
wins. However, because these policies do not check the 
replication or operation status, they can lose data that is 
replicated on the majority of nodes and that was 
acknowledged to the client. 

The three ZooKeeper failures that we studied are 
related to data consolidation. For instance, ZooKeeper 
has two mechanisms for synchronizing data between 
nodes: storage synchronization that is used for syncing 
a large amount of data, and in-memory log 
synchronization that is used for a small amount of data. 
If node A misses many updates during a network 
partition, then ZooKeeper will use storage 
synchronization to bring node A up to date. 
Unfortunately, storage synchronization does not update 
the in-memory log. If A becomes a leader, and other 
nodes use in-memory log synchronization, then A will 
replicate its incomplete in-memory log [74]. 

Request routing represents the mechanism for 
routing requests or responses between clients and the 
specific nodes that can serve the request. Failures in 
request routing represent 13.2% of the failures. The 

Table 3. The percentage of the failures involving each system 
mechanism. Some failures involve multiple mechanisms. 

Mechanism % 
Leader election 39.7%
Configuration change 

 Adding a node  
 Removing a node 
 Membership management 
 Other 

 
10.3%
3.7% 
3.7% 
2.2% 

19.9%

Data consolidation 14.0%
Request routing 13.2%
Replication protocol 12.5%
Reconfiguration due to a network partition  11.8%
Scheduling 2.9% 
Data migration 3.7% 
System integration 1.5% 

 

Table 4. Leader election flaws. 
Leader election failure %
Overlapping between successive leaders 57.4% 
Electing bad leaders 20.4% 
Voting for two candidates 18.5% 
Conflicting election criteria 3.7% 
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majority of those failures are caused by failing to return 
a response. For instance, in Elasticsearch, if a replica 
(other than the primary) receives write requests, it acts 
as a coordinator and forwards the requests to the 
primary replica. If a primary completes the write 
operation but fails to send an acknowledgment back to 
the coordinator, then the coordinator will assume the 
operation has failed and will return an error code to the 
client. The next client read will return the value written 
by a write operation that was reported to have failed. 
Moreover, if the client repeats the operation, then it will 
be executed twice [75]. 

The rest of the failures were caused by flaws in the 
replication protocol, scheduling, data migration 
mechanism, system integration with ZooKeeper, and 
system reconfiguration in response to network 
partitioning failures, in which the nodes remove the 
unreachable nodes from their replica set. 

These findings are surprising because 15 of the 
systems use majority voting for leader election to 
tolerate exactly this kind of failure. Similarly, the 
primary purpose of a data consolidation mechanism is 
to correctly resolve conflicting versions of data. To 
improve resilience, this finding indicates that 
developers should enforce tests and design reviews 
focusing on network-partitioning fault tolerance, 
especially on these mechanisms. 

4.3 Network Faults Analysis 
Finding 5. The majority (64%) of the failures either do 
not require any client access or require client access to 
only one side of the network partition (Table 5). 

This finding debunks a common presumption that 
network partitioning mainly leads to data conflicts, due 
to concurrent writes at both sides of the partition. 
Consequently, developers ensure that clients can only 
access one side of the partition to eliminate the 
possibility of a failure [28, 29, 30, 31, 32, 33, 34]. As 
an example of a failure that requires client access to one 
side of the partition, in HBase, region servers process 
client requests and store them in a log in HDFS. When 
the log reaches a certain size, a new log is created. If a 
partial partition separates a region server from the 
HMaster but not from HDFS, then the HMaster will 
assume that the region server has crashed and will 
assign the region logs to other servers. At this time, if 
the old region server creates a new log, HMaster will 
not be aware of the new log and will not assign it to any 
region server. All client operations stored in the new 
log will be lost [76]. We discuss a MapReduce failure 
that does not require any client access in section 4.4. 

This finding indicates that system designers must 
consider the impact of a network partition fault on all 
system operations, including asynchronous client 
operations and offline internal operations. 

Finding 6. While the majority (69%) of the failures 
require a complete partition, a significant percentage of 
them (29%) are caused by partial partitions (Table 6). 

Partial network partitioning failures are poorly 
understood and tested, even by expert developers. For 
instance, most of the network-partitioning failures in 
Hadoop MapReduce and HDFS are caused by partial 
network-partitioning faults. In the following section, we 
discuss these failures in detail.  

Simplex network partitioning caused 2% of the 
failures. This type of fault only confuses UDP-based 
protocols and leads to performance degradation. For 
instance, in HDFS [77], a data node that can send a 
periodic heartbeat message but is unable to receive 
requests is still considered a healthy node.  

The overwhelming majority (99%) of the failures 
were caused by a single network partition. Only 1% of 
the failures required two network partitions to manifest.  

4.4 Partial Network-Partitioning Failures 
To the best of our knowledge, this the first study to 
analyze and highlight the impact of partial network 
partitions on systems. Consequently, we dedicate this 
section to discussing our insights and presenting 
detailed examples of how these failures manifest. 

We found that the majority of partial network-
partitioning failures are due to design flaws. This 
indicates that developers do not anticipate networks to 
fail in this way. Other than that, partial partitions 
failures had impact, ordering, and timing characteristics 
that are similar to complete partition failures. 

Tolerating partial network partitions is complicated 
because these faults lead to inconsistent views of a 
system state; for instance, nodes disagree on whether a 
server is up or down. This confusion leads part of the 
system to carry on normal operations, while another 
part executes fault tolerance routines. Apparently, the 
mix of these two modes is poorly tested. The following 
are four examples: 
 Scheduling in MapReduce and Elasticsearch. In 

MapReduce, if a partial network partition isolates an 
AppMaster from the resource manager while both 

Table 5. Percentage of the failures that require client access 
during the network partition 
Client Access % 

No client access necessary 28% 
Client access to one side only 36% 
Client access to both sides 36% 

Table 6. Percentage of the failures caused by each type of 
network-partitioning fault. 
Partition type % 
Complete partition 69.1% 
Partial partition 28.7% 
Simplex partition 2.2% 
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can still communicate with the cluster nodes, the 
AppMaster will finish executing the current task and 
return the result to the client. The resource manager 
will assume that the AppMaster has failed and will 
rerun the task using a new AppMaster. The new 
AppMaster will execute the task again and send a 
second result to the client. This failure will confuse 
the client and will lead to data corruption and double 
execution [78]. Note that in this failure, there is no 
client access after the network partition.  

Elasticsearch has a similar failure [75]—if a 
coordinator does not get the result from a primary 
node, the coordinator will run the task again, leading 
to double execution.  

 Data placement in HDFS. If a partial network 
partition separates a client from, say, rack 0, while 
the NameNode can reach that rack. If the NameNode 
allocates replicas on rack 0, then a client write 
operation will fail, and the client will ask for a 
different replica. The NameNode, following its rack-
aware data placement, will likely suggest another 
node from the same rack. The process repeats five 
times before the client gives up [79]. 

 Leader election in MongoDB and Elasticsearch. 
MongoDB design includes an arbiter process that 
participates in a leader election to break ties. Assume 
a MongoDB cluster with two replicas (say A and B) 
and an arbiter, with A being the current leader. 
Assume a partial network partition separates A and 
B, while the arbiter can reach both nodes. B will 
detect that A is unreachable and will start a leader 
election process; being the only contestant, it will win 
the leadership. The arbiter will inform A to step 
down. After missing three heartbeats from the current 
leader (i.e., B), A will assume that B has crashed, 
start the leader election process, and become a leader. 
The arbiter will inform B to step down. This 
thrashing will continue until the network partition 
heals [80]. MongoDB does not serve client requests 
during leader election; consequently, this failure 
significantly reduces availability.  

Elasticsearch has a similar failure [81], in which a 
partial partition leads to having two simultaneous 
leaders because nodes that can reach the two 
partitions become followers of the two leaders. Note 
that these failures do not require any client access. 

 Configuration change in RethinkDB and Hazelcast. 
RethinkDB is a strongly consistent database based on 
Raft [52]. Unlike Raft, when an admin removes a 
replica from RethinkDB cluster, the removed replica 
will delete its Raft log. This apparently minor tweak 
of the Raft protocol leads to a catastrophic failure. 
For instance, if a partial network partition breaks a 
replica set of five servers (A, B, C, D, and E) such 
that the (A, B) partition cannot reach (D, E) while C 
can reach all nodes, then if D receives a request to 

change the replication to two, D will remove A, B, 
and C from the set of replicas. C will delete its log. A 
and B will be unaware of the configuration change 
and still think that C is an active replica. C, having 
lost its Raft log that contains the configuration 
change request, will respond to A and B requests. 
This scenario creates two replica sets for the same 
keys. D and E are a majority in the new 
configuration, and A, B, and C are a majority in the 
old configuration [72].  

Hazelcast has a similar failure [82]. In Hazelcast, 
nodes delete their local data on configuration change. 
If a partial partition separates the new primary 
replica, then one replica will promote itself to 
become the primary. If the central master can reach 
both partitions, it will see that the old primary is still 
alive and inform the self-promoted replica to step 
down. That replica will step down, delete its data, 
and try to download the data from the primary. If the 
primary permanently fails before the partition heals, 
the data will be lost [82]. 

5 Failure Complexity 
To understand the complexity of these failures, we 
studied their manifestation sequence, importance of 
input events order, network fault characteristics, timing 
constraints, and system scale. The majority of the 
failures are deterministic, require three or fewer input 
events, and can be reproduced using only three nodes. 
These characteristics indicate that it is feasible to test 
for these failures using limited resource. 

5.1 Manifestation Sequence Analysis 
Finding 7. A majority (83%) of the failures triggered 
by a network partition require an additional three or 
fewer input events to manifest (Table 7). 

Table 8 lists the events that led to failures. All of the 
listed operations are frequently used. Read and write 
operations are part of over 50% of the failures, and 
12.6% of the failures do not require any events other 
than a single network-partitioning fault. As an example 
of a failure without any client access, in Redis [83], if a 
network partition separates two nodes during a sync 
operation, the data log on the receiving node will be 
permanently corrupted. Similarly, in RabbitMQ [84], if 
a partial partition isolates one node from the leader, but 
not from the rest of the replicas, that node will assume 
the leader has crashed. The isolated node will become 
the new leader. When the old leader receives a 
notification to become a follower, it will start a follower 
thread but will not stop the leader thread. The 
contention between the follower and leader threads 
results in a complete system hang. 

This is perilous, as a small number of frequently 
used events can lead to catastrophic failures. 
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Table 7. The minimum number of events required to cause a 
failure. The table counts a network-partitioning fault as an 
event. Note that 12.5% of the failures require no client access, 
neither during a network partition nor after it heals. Note that 
28% of the failures reported in Table 5 do not require client 
access during the partition, but around 15.5% require client 
access before or after the network partition occurs. 

Number of events % 
1 (just a network partition) 12.6% 

2 13.9% 
3 42.6% 
4 14.0% 

> 4 16.9% 
 

Table 8. Percentage of faults each event is involved in.  

Event type % 
Only a network-partitioning fault 12.6% 
Write request 48.5% 
Read request 34.6% 
Acquire lock 8.1% 
Admin adding/removing a node 8.0% 
Delete request 4.4% 
Release lock 3.7% 
Whole cluster reboot 1.5% 

Finding 8. All of the failures that involve multiple 
events only manifest if the events happen in a specific 
order.  

All of the 87% of failures that require multiple events 
(2 events or more in Table 7) need the events to occur 
in a specific order. This implies that to expose these 
failures we not only need to explore the combination of 
these events, but also the different permutations of 
events, which makes the event space extremely large.  

Fortunately, we identified characteristics that 
significantly prune this large event space and make 
testing tractable (Table 9). First, 84% of the 
manifestation sequences start with a network-
partitioning fault. For 27.7% of the sequences, the order 
of the rest of events is not important, and in 27% of the 
sequences the events follow a natural order; that is, 
lock() comes before unlock(), and write() before read().  

While this finding indicates that reproducing a 
failure can be complex, the probability of a failure in 
production is still high. The majority of multi-event 
failures require three or fewer events (Table 7); 
consequently, it is highly likely for a system that 
experiences a network partitioning for hours to receive 
all possible permutations of these common events. 

Finding 9. The majority (88%) of the failures manifest 
by isolating a single node, with 45% of the failures 
manifest by isolating any replica. 

It is alarming that the majority of the failures can occur 
by isolating a single node. Conceivably, isolating a 
single node is more likely than other network-
partitioning cases; it can happen because of an NIC 
failure, a single link failure, or a ToR switch failure. 
ToR switch failures are common in production 
networks leading to 40 network partitions in two years 
at Google [21] and 70% of the downtime at     
Microsoft [22]. This finding invalidates the common 
practice of assigning a low priority to ToR switch 
failures based on the presumption that data redundancy 
can effectively mask them [22]. Our results show that 
this practice aggravates the problem by prolonging the 
partition. 

We further studied the connectivity between 
replicas (Table 10) of the same object and found that 
45% of failures manifest by isolating any replica, and 
the rest requires isolating a specific node or service 
(e.g., ZooKeeper cluster). Among the failures that 
isolate a specific node, isolating a leader replica (36%) 
and central services (8.8%) are the most common. This 
does not reduce the possibility of a failure because, as 
in many systems, every node is a leader for some data 
and is a secondary replica for other data. Consequently, 
isolating any replica in the cluster will most likely 
isolate a leader. 

This finding highlights the importance of testing 
these specific faults that isolate a leader, a central 
service, and nodes with special roles (e.g., scheduler, 
and MapReduce App Master).  

5.2 Timing Constraints 
Finding 10. The majority (80%) of the failures are 
either deterministic or have known timing constraints. 

The majority of the failures (Table 11) are either 
deterministic (62%), meaning they will manifest given 
the input events, or have known timing constraints 
(18%). These known constraints are configurable or 
hard coded, such as the number of heartbeat periods to 
wait before declaring that a node has failed. 

Table 9. Ordering charactrisitcs. 
Ordering Charactrisitcs % 
Network partition does not come first  16.0%
Network partition comes first  

 Order is not important  
 Natural order 
 Other  

 
27.7%
26.9%
29.4%

84.0%

Table 10. System connectivity during the network partition. 
Examples of a central service include a ZooKeeper cluster 
and HBase master. Examples of nodes with a special role 
include MongoDB arbiter and MapReduce AppMaster. 
Network Partition Characteristics % 

Partition any replica 44.9%
Partition a specific node 
 Partition the leader 
 Partition a central service 
 Partition a node with a special role 
 Other (e.g., new node, source of 

data migration) 

 
36.0%
8.8% 
3.7% 
6.6% 

55.1%
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Furthermore, we found that the timing constraints 
immediately follow network-partitioning faults. For 
instance, if a partition isolates a leader, for a failure to 
happen, events at the old leader side should be invoked 
right after the partition, so they are processed before the 
old leader steps down; while on the majority side, the 
test should sleep for a known period until a new leader 
is elected. For instance, in RabbitMQ, Redis, Hazelcast, 
and VoltDB, a failure will happen only if a write is 
issued before the old leader steps down (e.g., within 
three heartbeats) after a partitioning fault. 

The 13% of the failures that have unknown timing 
constraints manifest when the sequence of events 
overlaps with a system internal operation. For instance, 
in Cassandra, a failure [85] will only occur if a network 
partition takes place during a data sync operation 
between the handoff node and a replica. However, these 
failures can still be tested by well-designed unit tests. 
For instance, to test the aforementioned Cassandra 
failure, a test should (1) isolate a replica to make the 
system add a handoff node. (2) Write a large amount of 
data. (3) Heal the partition. Now, the handoff node will 
start syncing the data with the replica. Finally, (4) 
create a network partition that isolates the replica 
during the sync operation and triggers the failure. 

Only 7% of the failures are nondeterministic; these 
failures are caused by multithreaded interleavings and 
by overlapping the manifestation sequence with hard-
to-predict internal system operations. 

This finding implies that testers should pay close 
attention to timing. However, we identified that timing 
constraints usually follow the partitioning fault, which 
significantly simplifies testing. 

5.3 Resolution Analysis 
Finding 11. The resolution of 47% of the failures 
required redesigning a system mechanism (Table 12). 

We consider a code patch to be fixing a design flaw if it 
involves significant changes to the affected mechanism 
logic, design, or protocol, such as implementing a new 
leader election protocol in MongoDB and changing 
configuration change protocols in Elasticsearch. 

The large percentage of the failures that led to 
changes in the mechanism design indicates that 
network-partitioning faults were not considered in the 
initial design phase. We expect that a design review 
focusing on network partitioning fault tolerance would 
have discovered systems vulnerability to these faults. 

Table 12 also reports the resolution time, which is 
the period from the time a developer acknowledges a 
failure to the time the issue is fixed. Obtaining an 
accurate resolution time is tricky. We removed outliers 
that take minutes to commit a complex patch or take 
over two years to add a simple patch. In addition, it is 
not necessary for the time reported to be spent actively 
solving the issue. Nevertheless, because these are high-
priority tickets, we think that the reported times give 
some indication of the resolution effort. Table 12 shows 
that design flaws take 2.5 times longer to resolve than 
implementation bugs. 

We noticed that some systems opted to change the 
system specification instead of fixing the issue. For 
instance, Redis documentation states that “there is 
always a window of time when it is possible to lose 
writes during partitions” [86]. RabbitMQ’s 
documentation was updated to indicate that locking 
does not tolerate network partitioning [87], and 
Hazelcast’s documentation [88] states that it provides 
“best effort consistency,” in which data updated 
through atomic operations may be lost. This could 
imply that some of the systems unnecessarily selected a 
strong consistency model where an eventual model was 
sufficient or the developers do not believe that these are 
high priority issues.  

5.4 Opportunity for Improved Testing 
Finding 12. All failures can be reproduced on a cluster 
of five nodes, with the majority (83%) of the failures 
being reproducible with three nodes only (Table 13). 

This finding implies that it is not necessary to have a 
large cluster to test these systems. In fact, it is enough 
to test them using a single physical machine that runs 
five virtual machines. 

Finding 13. The majority of the failures (93%) can be 
reproduced through tests by using a fault injection 
framework such as NEAT. 

Considering our findings, perhaps it is not surprising 
that the majority of the failures can be reproduced using 
unit and system-level tests with a framework that can 
inject network-partitioning faults. The majority of the 
failures result from a single network-partitioning fault, 
need fewer than three common input events, and are 

Table 11. Timing constraints. 
Timing constraints % 
No timing constraints 61.8%
Has timing constraints 

 Known 
 Unknown – but still can be tested 

 
18.4%
12.8%

31.2%

Nondeterministic  7% 

Table 12. Percentage of design and implementation flaws for 
failures reported in issue-tracking systems. 
Category % Average Resolution Time
Design 46.6% 205 days 
Implementation  32.2% 81 days 
Unresolved 21.2% - 

Table 13: Number of nodes needed to reproduce a failure.

Number of Nodes % 
3 nodes 83.1% 
5 nodes 16.9% 
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deterministic or have bounded timing constraints. The 
7% that cannot be easily tested are nondeterministic 
failures or have short vulnerability intervals.  

6 Discussion 
In this section, we address two additional observations: 
 Overlooking network-partitioning faults. We found in 

many cases that the system designer did not consider 
the possibility of network partitioning. For example, 
Redis promises data reliability even though it uses 
asynchronous replication, leading to data loss [89]. 
Similarly, the Hazelcast locking service relies on 
asynchronous replication, leading to double         
locking [90]. Earlier versions of Aerospike assumed 
that the network is reliable [91].  

We found implicit assumptions made in the 
studied systems that are untrue. For instance, tickets 
from MapReduce, RabbitMQ, Ignite, and HBase 
indicate that the developer assumed an unreachable 
node to have halted, which is not true with network 
partitioning. Finally, all partial network-partitioning 
failures are caused by an implicit assumption that if a 
node can reach a service, then all nodes can reach 
that service, which is not always true. 

 Lack of adequate testing tools. In general, we found 
that systems lack rigorous testing for network-
partitioning. For unit tests related to the code patches 
we studied, the developers typically used mocking 
techniques to test the impact of network partitioning 
on one component on one side of the partition. This 
makes us believe that the community lacks a 
network-partitioning fault injection tool that can be 
integrated with the current testing frameworks. 

7 NEAT Framework 
We built the network partitioning testing framework 
(NEAT), a testing framework with network-partitioning 
fault injection. NEAT supports the three types of 
partitions, has a simple API for creating and healing 
partitions, and simplifies the coordination of events 
across clients. NEAT is implemented in 1553 lines of 
Java and uses OpenFlow and the iptables tool to 
inject network-partitioning faults. 

7.1 API 
NEAT is a generic testing framework. It does not have 
any constraints on the target system. To test a system, 
the developer should implement three classes. First is 
the ISystem interface, which provides methods to 
install, start, obtain the status of, and shut down the 
target system. Second, is a Client class that provides 
wrappers around the client API (e.g., put or get calls). 
Third is the test workload and verification code.  

Listing 1 presents a test for an Elasticsearch data 
loss failure [92] with partial network partitioning. The 
network partition (line 7) isolates s1 (the primary 

replica) and client 1 from s2 and client 2. However, all 
nodes can reach s3. s2 will detect that the primary 
replica (s1) is unreachable and start a leader election 
process. s3 will vote for s2, although it can reach s1, 
resulting in two leaders. Consequently, writes on both 
sides of the partition will succeed (line 11 and 12). 
After healing the partition (line 13), s2 will detect that 
s1 is reachable. As in Elasticsearch, the replica with a 
smaller ID wins the election, so s2 will step down and 
become a follower of s1. s2 will replicate s1’s data and, 
consequently, all writes served by s2 during the 
partition will be lost and the check on line 16 will fail. 

Listing 2 presents an ActiveMQ test for double 
dequeueing with complete network partitioning. The 
network partition (line 8) isolates the master and client1 
from the rest of the cluster. The test then pops the queue 
at both sides of the partition (lines 11-13). If the two 
sides obtain the same value, then the value was 
dequeued twice and the test fails.  

7.2 Creating and Healing Network Partitions 
To create or heal a network partition, the developer 
calls one of the following methods.  
 Partition complete(List<Node> groupA, 
List<Node> groupB): creates a complete partition 
between groupA and groupB.  

Listing 1. An Elasticsearch test for data loss. The system has 
three servers: s1 (primary node), s2, and s3, and two clients. 
1 public static void testDataLoss(){ 
2  List<Node> side1 = asList(s1, client1); 
3  // other servers and clients in one group 
4  List<Node> side2 = asList(s2, client2); 
5  // create a partial partition. s3 can reach 
6  // all nodes 
7  Partition netPart = Partitioner.partial( 
8                         side1, side2); 
9  sleep(SLEEP_LEADER_ELECTION_PERIOD); 
10  // write to both sides of the partition 
11  assertTrue(client1.write(obj1, v1)); 
12  assertTrue(client2.write(obj2, v2)); 
13  Partitioner.heal(netPart); 
14  // verify the two objects 
15  assertEquals(client2.read(obj1), v1); 
16  assertEquals(client2.read(obj2), v2);    } 

Listing 2. An ActiveMQ test for a double dequeue failure. 
The system has three servers and two clients. 
1 public static void testDoubleDequeueu(){ 
2  assertTrue(client1.send(q1, msg1)); 
3  assertTrue(client1.send(q1, msg2)); 
4  // get the master node 
5  Node master = AMQSys.getMaster(q1); 
6  List<Node> minority= asList(master, client1); 
7  List<Node>majority=Partitioner.rest(minority);
8  Partition netPart = Partitioner.complete( 
9                         minority, majority);
10  // dequeue at both sides of the partition  
11  Msg minMsg = client1.receive(q1); 
12  sleep(SLEEP_PERIOD); 
13  Msg majMsg = client2.receive(q1); 
 assertNotEqual(minMsg, majMsg);     } 
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 Partition partial(List<Node> groupA, 
List<Node> groupB): creates a partition between 
groupA and groupB without effecting their 
communication with the rest of the cluster. 

 Partition simplex(List<Node> groupSrc, 
List<Node> groupDst): creates a simplex 
partition such that packets can only flow from 
groupSrc to groupDst, but not in the other direction.  

 void heal(Partition p): heals partition p. 

7.3 NEAT Design 
NEAT has three components (Figure 2): server nodes, 
which run the target system; client nodes, which issue 
client requests; and a test engine. The test engine is a 
central node that runs the test workload (e.g., Listing 1). 

The test engine simplifies testing by providing a 
global order for all client operations. The test engine 
invokes all client operations using Java RMI. The 
current NEAT prototype has two implementations of 
the network partitioner module: using OpenFlow and 
using the iptables tool. Furthermore, the test engine 
provides an API for crashing any group of nodes. 

The OpenFlow-based partitioner is a network 
controller [35] that first installs the rules for a basic 
learning switch [93]. Then it installs partitioning rules 
to drop packets from a specific set of source IP 
addresses to a specific set of destination addresses. The 
partitioning rules are installed at a higher priority than 
the learning switch rules. The partitioner is 
implemented in 152 lines of code using Floodlight [94]. 

Our choice to use SDN to build a testing framework 
for distributed systems is research based. Connecting 
the nodes to a single switch and having the ability to 
monitor and control every packet in the system is a 
powerful capability for distributed systems testing. Our 
first attempt to explore this capability is to build a 
network partitioner for NEAT. Our current research 
effort explores techniques to collect detailed system 
traces under different failure scenarios and build tools 
to verify and visualize system protocols. This will help 
developers test, debug, and inspect protocols under 
different failure scenarios.  

For deployments that do not have an OpenFlow 
switch, we implemented a partitioner by using the 
iptables tool to modify the firewall configuration on 
every node to create the specified partitions.  

7.4 Testing Systems with NEAT 
We used NEAT to test seven systems: Ceph [37] 
(v12.2.5), an object storage system; Apache Ignite [39] 
(v2.4.0), a key-value store and distributed data 
structures; Terracotta [40] (v4.3.4), a suite of distributed 
data structures; DKron [41] (v0.9.8), a job scheduling 
system; ActiveMQ [38] (v5.15.3), a message-queueing 
system; Infinispan [42] (v9.2.1), a key-value store; and 
MooseFS [43] (v3), a file system. All systems were 

configured with the most reliable configuration. For 
instance, when possible we persist data on disk, use 
synchronous replication, and set the minimum 
replication per operation to equal the majority or the 
number of all replicas.  

Testing setup. We used two testbeds to run our 
experiments: CloudLab [95] and our own cluster. We 
used six nodes in our tests. The nodes were connected 
by a single switch. One node ran the test engine, three 
nodes ran the system, and two nodes acted as clients.  

Our tests involved creating complete and partial 
partitions, then issuing simple client requests to the two 
sides of the partition, followed by performing a 
verification step. On average, tests are implemented in 
30 lines of Java code. 

The highlighted entries in Table 1 summarize our 
testing results. Our testing revealed 32 network-
partitioning failures, out of which 30 are catastrophic. 
The failures we found lead to data loss, stale reads, data 
unavailability, double locking, and lock corruption. It is 
plausible that a single design flaw or implementation 
bug (e.g., flawed replication protocol) may cause 
failures in different operations (e.g., adding to a list and 
pushing to a queue). We count these as separate 
failures. 

To demonstrate the versatility of NEAT, the 
following discusses failures that NEAT discovered. 

Examples of complete network partition failures: We 
found that all Ignite atomic synchronization primitives, 
including semaphores, compare_and_set, 
increment_and_get, and decrement_and_get, are 
violated or corrupted when a complete network 
partition isolates one of the replicas. The main culprit of 
such failures is the assumption that an unreachable node 
has crashed; consequently, nodes on both sides of a 
partition remove the nodes they cannot reach (i.e., the 
nodes on the other side of the partition) from their 
replica set and continue to use the semaphore, which 
may lead to over counting the semaphore. Furthermore, 
an unreachable client that is holding a semaphore is 
assumed to have crashed. In this case, the system will 
reclaim the client’s semaphore. If the partition heals 

 
Figure 2. NEAT architecture. 
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and the client signals the semaphore, the semaphore 
will be corrupted. These failures lead to lasting damage 
that persists after the partition heals. 
Examples of partial network partition failures: 
ActiveMQ uses ZooKeeper to keep track of the current 
leader. If a partial network partition isolates the leader 
from the replicas, but not from ZooKeeper, the system 
will hang. The leader will not be able to forward 
messages to replicas and the replicas will not elect a 
new leader as ZooKeeper does not see the failure. 

In DKron, if a partial partition separates the leader 
from the rest of DKron’s nodes—but not from the 
central data store service—then the client requests 
processed by the leader will be successfully executed at 
the local level. However, DKron will indicate that the 
task has failed.  

8 Additional Related Work 
To the best of our knowledge, this is the first in-depth 
study of the manifestation sequence of network-
partitioning failures. The manual analysis allowed us to 
examine the sequence of events in detail, identify 
common vulnerabilities, and find failure characteristics 
that can improve testing. 

A large body of previous work analyzed failures in 
distributed systems. A subset of these efforts focused 
on specific component failures such as physical [96] 
and virtual machines [97], network devices [22, 24], 
storage systems [98, 99], software bugs [100], and job 
failures [101, 102, 103]. Another set characterized a 
broader set of failures, but only for specific domain of 
systems and services, such as HPC [104, 105, 106], 
IaaS clouds [107], data-mining services [108], hosting 
services [6, 109], and data-intensive                    
systems [101, 100, 110]. Our work complements these 
efforts by focusing on failures triggered by network 
partitioning. 

Yuan et al. [66] studied 198 randomly selected 
failures from six data analytics systems. Comparing our 
results, we find that a higher percentage of network-
partitioning failures (80%) lead to catastrophic effects, 
compared to 24% reported by Yuan et al. [66]; and 
while 26% of general failures are nondeterministic, 
only 7% of network-partitioning failures are non-
deterministic. These findings indicate that network-
partitioning failures are more critical than general 
system failures, and testers need to pay close attention 
to timing.  

Jepsen’s blog posts report network-partitioning 
failures that were found using the Jepsen tool [54]. 
However, they do not detail the manifestation 
sequences, correlate failures across systems, study the 
impact of different types of network-partitioning faults, 
study client access requirements, characterize network 
faults, or analyze timing constraints. 

Majumdar et al. [111] theoretically analyzed the 
space for faulty executions in the presence of complete 
network partitioning faults. They discussed the extreme 
size of the test space and the effectiveness of random 
testing if tests isolate a specific node, place a leader in a 
minority, and test with a random order of short 
sequences of operations. 

While we identify characteristics to improve testing, 
our findings can inform other fault tolerance 
techniques. Previous efforts explored model       
checking [112, 113, 114, 115, 116], systematic fault 
injection [117, 118], and runtime verification 
techniques [119, 120] for improving systems’ fault 
tolerance. Our findings inform these techniques to 
consider all types of network partitions and discovered 
characteristics that can improve these techniques’ time 
and efficiency. 

9 Insights 
We conducted a comprehensive study of network-
partitioning failures in modern cloud systems. It is 
surprising that these production systems experience 
silent catastrophic failures due to a frequently occurring 
infrastructure fault, when a single node is isolated, and 
under simple and common workloads. Our analysis 
identified that improvements to the software 
development process and testing can significantly 
improve systems’ resilience to network partitions. 
These findings indicate that this is a high-impact 
research area that needs further effort to improve 
system design, engineering, testing, and fault tolerance. 
Our initial results with NEAT are encouraging; even 
our preliminary testing tool found bugs in production 
systems, indicating that there is a significant room for 
improvement. 

Another interesting area of research that our 
analysis identified is partial network partitions fault 
tolerance. It is surprising that a large number of failures 
in production systems are triggered by this network 
fault, yet we could not find any discussion, failure 
model, or fault tolerance techniques that address this 
type of infrastructure fault. 

Modern systems use unreachability as an indicator 
for node failure. Our analysis shows the dangers of this 
approach, as complete network partitions can isolate 
healthy nodes that lead to both sides assuming that the 
other side has crashed. Worse yet, partial partitions lead 
to a confusing state in which some nodes declare part of 
the system down while the rest of the nodes do not. 
Further, research is needed for building more accurate 
node-failure detectors and fault tolerance techniques. 

While we identify better testing as one approach for 
improving system fault tolerance, we highlighted that 
the number of test cases one needs to consider is 
excessive. Luckily, our analysis found operations, 
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timing, ordering, and network failure characteristics 
that limit the testing space. 

Our analysis highlights that the current network 
maintenance practice of assigning a low priority to ToR 
switch failure is ill founded and aggravates the 
problem. Finally, we highlight that system designers 
need to pay careful attention to internal and offline 
operations, need be wary of tweaking established 
protocols, and need to consider network partitioning 
failures early in their design process. 

10 Conclusion and Future Work 
We conducted an in-depth study of 136 failure reports 
from 25 widely used systems for failures triggered by 
network-partitioning faults. We present 13 main 
findings that can inform system designers, developers, 
testers, and administrators; and highlight the need for 
further research in network partitioning fault tolerance 
in general and with partial partitions in particular.  

We built NEAT, a testing framework that can inject 
different types of network-partitioning faults. Our 
testing of seven systems revealed 32 failures. 

In our current work, we are focusing on two 
directions: Extending NEAT to automate testing 
through workload and network fault generators and 
exploring fault tolerance techniques for partial network 
partitioning faults. Our data set and the source code are 
available at: https://dsl.uwaterloo.ca/projects/neat/  
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