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The Rise of Application Networks
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Current Approach: Service Meshes
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Challenge 1: High Developer Burden
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Challenge 2: High Performance Overhead
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Challenge 2: High Performance Overhead

4

Service B.2

Service B.1

Service A

RPC Lib

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

Firewall

Rate 

Limiting

Rate 

Limiting

Logging

Service mesh can increase latency and CPU usage by 2-7X

Token 

Bucket



Challenge 2: High Performance Overhead
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Goal

Make application networks easy to build and 
highly performant
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AppNet: Decouples Specification from Implementation
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log()——>firewall()——>rate_limiting()

AppNet Abstractions 
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● RPC Processing as a chain of elements
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AppNet Abstractions 
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● RPC Processing as a chain of elements

Logging Firewall
Rate 
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● Generalized match-action rules over RPC field and state
req(rpc):

username = get(rpc, 'username')

match get(firewall_rules, username):

'allowed' =>

send(rpc)

'denied' =>

send(err('firewall'))

None =>

send(err('firewall'))

// Get username from RPC

// Get the permission from firewall_rules table 



AppNet Abstractions 
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● RPC Processing as a chain of elements

Logging Firewall
Rate 
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● Generalized match-action rules over RPC field and state

● Shared state with configurable consistency level



See Paper for AppNet Grammar
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AppNet Compiler 

● Goal: Find a high-performance configuration while preserving 

semantics

○ Platform (gRPC, Envoy, …)

○ Location (caller, callee, middlebox)

○ Execution Order
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AppNet Compiler 

● Goal: Find a high-performance configuration while preserving 

semantics
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Challenges

● Preserve semantic equivalence

○ Some ANFs are stateful

○ Reordering or relocating ANFs may change behavior

● Huge search space

○ Many platform + location + order permutations



Example: Semantic Inequivalence
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FW(RPCin)

RPCin

Equivalence Checking: Symbolic Execution 
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Implementation
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Evaluation Questions
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● Expressiveness

○ Can AppNet easily express common ANFs? 

● Performance

○ Can AppNet reduce overhead and improve application 

performance?



AppNet Simplifies ANF Development

● 12 common ANFs can be implemented in 7-28 LoC
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● Meta’s ServiceRouter and Google’s Prequal in < 100 LoC

Reduce LoC by 5–60× compared to manual implementation



AppNet Reduces RPC Processing Overhead 
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AppNet Improves Application Performance
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● Application networks today are hard to use and have poor 

performance

● AppNet decouples specification from implementation

○ Auto-generates efficient implementations across platforms

○ Optimizes performance based on platform and user policy
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https://github.com/appnet-org/appnet

https://appnet.wiki/

https://github.com/appnet-org/appnet
https://appnet.wiki/
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