
High-level Programming of
Application Networks

1

Xiangfeng Zhu, Yuyao Wang, Banruo Liu, Yongtong Wu, Nikola Bojanic,
Jingrong Chen, Gilbert Bernstein, Arvind Krishnamurthy, Sam Kumar,

Ratul Mahajan, Danyang Zhuo

The Rise of Application Networks

2

Traffic

Management

Policy

Enforcement Security Observability

Application Network Functions (ANFs)

RPCs

RPCs

Service A

Service B.1

Service B.2

Application
Networks

Service B.2

Service B.1

Service A

RPC Lib

Current Approach: Service Meshes

3

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

Challenge 1: High Developer Burden

4

Service A Logging Firewall
Rate

Limiting
Service B

Service B.2

Service B.1

Service A

RPC Lib

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

FirewallLogging

Rate

Limiting

Rate

Limiting

Challenge 2: High Performance Overhead

4

Service B.2

Service B.1

Service A

RPC Lib

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

Firewall

Rate

Limiting

Rate

Limiting

Service A Logging Firewall
Rate

Limiting
Service B

Logging

Token

Bucket

Challenge 2: High Performance Overhead

4

Service B.2

Service B.1

Service A

RPC Lib

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

Firewall

Rate

Limiting

Rate

Limiting

Logging

Service mesh can increase latency and CPU usage by 2-7X

Token

Bucket

Challenge 2: High Performance Overhead

4

Service B.2

Service B.1

Service A

RPC Lib

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

FirewallLogging
Rate

Limiting

Service A Logging Firewall
Rate

Limiting
Service B

Goal

Make application networks easy to build and
highly performant

5

AppNet: Decouples Specification from Implementation

6

AppNet Program
Compiler Controller

AppNet Control Plane

Service B.2

Service B.1

Service A

RPC Lib

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

RPC Schema

log()——>firewall()——>rate_limiting()

AppNet Abstractions

7

● RPC Processing as a chain of elements

Logging Firewall
Rate

Limiting

AppNet Abstractions

7

● RPC Processing as a chain of elements

Logging Firewall
Rate

Limiting

● Generalized match-action rules over RPC field and state
req(rpc):

username = get(rpc, 'username')

match get(firewall_rules, username):

'allowed' =>

send(rpc)

'denied' =>

send(err('firewall'))

None =>

send(err('firewall'))

// Get username from RPC

// Get the permission from firewall_rules table

AppNet Abstractions

7

● RPC Processing as a chain of elements

Logging Firewall
Rate

Limiting

● Generalized match-action rules over RPC field and state

● Shared state with configurable consistency level

See Paper for AppNet Grammar

8

AppNet Compiler

● Goal: Find a high-performance configuration while preserving

semantics

○ Platform (gRPC, Envoy, …)

○ Location (caller, callee, middlebox)

○ Execution Order

9

AppNet Compiler

● Goal: Find a high-performance configuration while preserving

semantics

10

Challenges

● Preserve semantic equivalence

○ Some ANFs are stateful

○ Reordering or relocating ANFs may change behavior

● Huge search space

○ Many platform + location + order permutations

Example: Semantic Inequivalence

11

Logging Firewall

Firewall Logging

Log
RPC1 RPC2

Log

RPC2

RPC2 RPC1

RPC2 RPC1

RPC2

RPC2

FW(RPCin)

RPCin

Equivalence Checking: Symbolic Execution

12

Logging Firewall

Firewall Logging

RPCin

RPCin

RPCout ← RPCin \ FW(RPCin)

Implementation

13

Control Plane

Service B.2

Service B.1

Service A

RPC Lib

Sidecar

Sidecar

Sidecar Middlebox

RPC Lib

RPC Lib

Evaluation Questions

14

● Expressiveness

○ Can AppNet easily express common ANFs?

● Performance

○ Can AppNet reduce overhead and improve application

performance?

AppNet Simplifies ANF Development

● 12 common ANFs can be implemented in 7-28 LoC

15

● Meta’s ServiceRouter and Google’s Prequal in < 100 LoC

Reduce LoC by 5–60× compared to manual implementation

AppNet Reduces RPC Processing Overhead

16

47%
42%

Better

47%
42%

25%
22%

47%
42%

25%
22%

74% 76%

AppNet Improves Application Performance

17

35%

26%

35%

26%

14%
11%

35%

26%

14%
11%

49%

42%

Better

● Application networks today are hard to use and have poor

performance

● AppNet decouples specification from implementation

○ Auto-generates efficient implementations across platforms

○ Optimizes performance based on platform and user policy

18

https://github.com/appnet-org/appnet

https://appnet.wiki/

https://github.com/appnet-org/appnet
https://appnet.wiki/

	Slide 1: High-level Programming of Application Networks
	Slide 2: The Rise of Application Networks
	Slide 3: Current Approach: Service Meshes
	Slide 4: Challenge 1: High Developer Burden
	Slide 5: Challenge 2: High Performance Overhead
	Slide 6: Challenge 2: High Performance Overhead
	Slide 7: Challenge 2: High Performance Overhead
	Slide 8: Goal
	Slide 9: AppNet: Decouples Specification from Implementation
	Slide 10: AppNet Abstractions
	Slide 11: AppNet Abstractions
	Slide 12: AppNet Abstractions
	Slide 13: See Paper for AppNet Grammar
	Slide 14: AppNet Compiler
	Slide 15: AppNet Compiler
	Slide 16: Example: Semantic Inequivalence
	Slide 17: Equivalence Checking: Symbolic Execution
	Slide 18: Implementation
	Slide 19: Evaluation Questions
	Slide 20: AppNet Simplifies ANF Development
	Slide 21: AppNet Reduces RPC Processing Overhead
	Slide 22: AppNet Improves Application Performance
	Slide 23

