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What is RLHF?

RLHF = Reinforcement Learning with Human Feedback
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What is RLHF?

RLHF = Reinforcement Learning with Human Feedback
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Source: Yuntao Bai,  et al. "Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback." .



● Human preference
● Safety and robustness
● Hallucination alleviation
● Reasoning ability
● Complex tasks
● … … … … … … 

Why use RLHF?

GPT-4 ChatGPT
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How to do RLHF?
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How to do RLHF?
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● Four unique models 
○ each can have billions of parameters
○ huge computation and memory requirement

Summary
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● Three distinct stages
○ generation => inference => training
○ different computation pattern

● Six individual tasks
○ complex workflow
○ data, weights, and communication orchestration



Optimizations in existing systems
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Problems in existing systems
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The fundamental problem

Existing RLHF training systems view each task as the 
smallest execution unit, failing to delve into the 
inherent characteristics and structure inside the tasks.
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The fundamental problem

Opportunities

● Generation Stage: each sample can be viewed as a subtask

● Training Stage: each micro-batch can be viewed as a subtask
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Existing RLHF training systems view each task as the 
smallest execution unit, failing to delve into the 
inherent characteristics and structure inside the tasks.



Intra-Stage Fusion (§5)
Training Microbatch-level 

subtask

RLHFuse Overview
RLHFuse breaks the traditional view of RLHF workflow as a composition 
of individual tasks, splitting each task into finer-grained subtasks, and 
performs stage fusion to improve GPU utilization.
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Input Parallel Strategy 
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Core observation 1: Sample-level Dependency
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Data-aware Inter-stage Fusion

Migrate long-tailed samples together and start inference 
stage early to overlap with long-tailed generation.

27

Generation

Inference

Actor 
Gen.

Reward 
Infer.

Data
Comm.

Resouce
Waste

Critic 
Infer.

Ref.
Infer.



Data-aware Inter-stage Fusion

● Migration timing
○ determine migration ratio 

Algorithm Sketch:
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● Migration destination
○ latency/memory constraint
○ minimize #migration

● Migration mechanism
○ migrate key-value cache
○ migrate token
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Core observation 2: Independent Training Tasks
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Model-aware Intra-stage Fusion

Algorithm Sketch:

● Problem transformation
○ tackle different tp
○ fusion factor (K1, K2)

● Simulated Annealing
○ swap adjacent subtasks
○ first optimize latency
○ then optimize memory

Fuse any two different pipeline schedules to achieve 
optimal latency and memory usage.
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● Cluster: 32 nodes with 256 H800-80GB GPUs
● Models: LLaMA-13B, LLaMA-33B, LLaMA-65B
● Dataset: HH-RLHF
● Settings: 

○ Critic/Actor: 13B/33B, 33B/13B, 33B/65B, 65B/33B
○ Maximum generation length: 512, 1024, 2048

● Baselines:
○ DeepSpeed-Chat
○ ReaLHF
○ RLHFuse-Base

Evaluation – Setup
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Evaluation – End-to-end

RLHFuse achieves 2.5×–3.7× higher end-to-end throughput.

34



Evaluation – Case Study
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● RLHFuse
○ breaks the RLHF workflow as a composition of individual tasks
○ splits generation task into sample-level subtasks
○ splits training task in microbatch-level substasks 
○ uses inter- and intra-stage fusion to achieve higher GPU utilization
○ achieves up to 3.7x higher throughput compared with SOTA systems

Takeaway

https://github.com/FlexFusion/FlexFusion

zhongyinmin@pku.edu.cn
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