
When P4 Meets Run-to-completion
Architecture

Hao Zheng†, Xin Yan△, Wenbo Li†, Jiaqi Zheng†, Xiaoliang Wang†, Qingqing Zhao△,
Luyou He△, Xiaofei Lai△, Feng Gao△, Fuguang Huang△, Wanchun Dou†,

Guihai Chen†, Chen Tian†

2025/04/30

NJU

 Language and Programmable Data Plane

When P4 Meets Run-to-completion Architecture 1

include <core .p4 >
include < arch_specific .p4 >

control ingress_block {
 Counter () total_pkt ;

 table ipv4_lpm {...}
 apply {
 ipv4_lpm.apply();
 total_pkt.count();
 }
 }
 ...
Pipeline (parser, ingress, egress,
 deparser) main

Developer
Customized

Packet Processing
Logic

P4 Language
P4 Programmable Data Plane

(e.g., BMv2, Tofino)
Build a “new switch” in

"compilation" time

Without having to understand the underlying hardware
details of the chip, network developers/researchers can:

Ø offload tasks to hardware
Ø verify new protocols or algorithms
Ø ...

NJU When P4 Meets Run-to-completion Architecture 2

 Language and Programmable Data Plane

In the past 10 years, P4 has received widespread attention in network community.
P4 accelerates the evolution of networks.

• In-network computing: NetCache(SOSP’17),SwitchML(NSDI’21)...
• Congestion control: HPCC(SIGCOMM’19), BFC(NSDI’22), ...
• Load balancing: HULA(SOSR’16)..
• Network measurement: In-band Telemetry, Sketches....
• ...

P4 makes
Networks

Better!

1

Researchers
make P4
Better!

2
Many efforts have been made to strengthen or expand P4.

• P4 Code Verification: Vera(SIGCOMM’18), Aquila(SIGCOMM’21)...
• Salable P4 Programming: P4ALL(NSDI’22)...
• Formal foundation of P4: Petr4(PACMPL)...
• Debugging tools for P4: Tracking P4 Program (SOSR’20)...
• ...

NJU

Challenges of Current P4 Programmable Network

When P4 Meets Run-to-completion Architecture 3

Challenge 1 : The programmability of P4 language is limited.

In the P4 pipeline, each MAU stage has limited cycles to process packets,

y = x1 + x2 + x3;

y’ = x1 + x2 y = y’ + x3

Stage i Stage i+1

and dependencies take up additional MAU stages.

set_ipaddr()
ipv4_fwd.apply()

set_ipaddr()

Stage i Stage i+1

ipv4_fwd.apply()

The number of MAU stages is limited:

e.g., 12 in Tofino and 20 in Tofino2

The maximum logical length of P4 programs is limited.

NJU

Challenges of Current P4 Programmable Network

When P4 Meets Run-to-completion Architecture 4

Challenge 1 : The programmability of P4 language is limited.

Limited match-action unit (MAU) stages:

e.g., 12 in Tofino and 20 in Tofino2

The maximum logical length of P4 programs is limited.

NJU

Challenges of Current P4 Programmable Network

When P4 Meets Run-to-completion Architecture 4

Challenge 1 : The programmability of P4 language is limited.

Limited match-action unit (MAU) stages:

e.g., 12 in Tofino and 20 in Tofino2

The maximum logical length of P4 programs is limited.

The algorithms that can be implemented by P4 are limited.

Restricted stateful memory operations: isolated memory and limited size

int* minData = &a;
if (b < *minData)

minData = &b;
if (c < *minData)

minData = &c;
*minData += 1;

Conservative-update Count-Min sketch

min
a: 9 b: 2 c: 7

min
= &a

min
= &b

min
= &b

*min+= 1

Stage 2 Stage 3 Stage 4 Stage 5

NJU

Challenges of Current P4 Programmable Network

When P4 Meets Run-to-completion Architecture 5

Challenge 1 : The programmability of P4 language is limited.

Limited match-action unit (MAU) stages:

e.g., 12 in Tofino and 20 in Tofino2

The maximum logical length of P4 programs is limited.

The algorithms that can be implemented by P4 are limited.

Restricted stateful memory operations: isolated memory and limited size

NJU

Challenges of Current P4 Programmable Network

When P4 Meets Run-to-completion Architecture 5

Challenge 1 : The programmability of P4 language is limited.

Limited match-action unit (MAU) stages:

e.g., 12 in Tofino and 20 in Tofino2

The maximum logical length of P4 programs is limited.

The algorithms that can be implemented by P4 are limited.

Restricted stateful memory operations: isolated memory and limited size

Challenge 2: The cessation of the next-generation Tofino chip.

The P4 language community needs a new member
 with more flexible programmability and Tbps-level throughput!

NJU

P4 Programmable Hardware Architecture

When P4 Meets Run-to-completion Architecture 6

SRAM HBM
Di

sp
at

ch
er

Manycore

Parse HBM Op.

Parse Deparse

Parse SRAM Op. Hdr Op. Deparse

Hdr Op.

...

��

��

��

microcode instructions Re
or

de
r

Ø Traditional : Pipelined Architecture
The traditional P4 switch architecture is
pipelined. Although the throughput is high, the
flexibility and memory capacity are limited.

Run-to-completion processing flavor
• Each core handles a packet from start to finish
• Unlimited logical length
Manycore parallel processing
• Thousands of threads, 1.2 Tbps
Shared memory subsystem
• On-chip SRAM for low-latency forwarding.
• Off-chip HBM for large-size flow tables
 and deep buffers.

Ø Run-to-completion Architecture
Pipeline v.s. Run-to-completion

NJU

P4RTC: New Programmable Chip & P4 Extensions

When P4 Meets Run-to-completion Architecture 7

Challenge 1
How to extend P4 to fully leverage the flexibility of RTC
without altering P416 core
language?

Challenge 2

Challenge 3
How to verify the performance of
the chip before loading P4 codes in
the production environment?

P4RTC is a framework that supports P4 language on Huawei’s run-to-completion chips.

P4RTC design overview

How to efficiently map P4
code to the RTC
architecture and allocate
resources.

NJU

P4RTC Programming

When P4 Meets Run-to-completion Architecture 8

We introduce a new P4 architecture model:

1. Similar to previous P4 programming

Parser, Ingress, Egress (Optional), Deparser, ...

2. Parallel Execution Model
Each core performs a logical pipeline for each
packet.

3. Shared Memory
Cores can simultaneously access a shared
memory object (e.g., tables, counters)

rtc.p4 = New
Architecture Model + New P4

Extensions (externs)

NJU

P4RTC Programming

When P4 Meets Run-to-completion Architecture 9

Pipeline Extensions: there are two pipeline roles in the new architecture model.
1. Foreground pipelines: running common P4 packet processing logic:

parser ingress egress
(optional) deparserp p’

rtc.p4 = New
Architecture Model + New P4

Extensions (externs)

Traffic
Manager

NJU

P4RTC Programming

When P4 Meets Run-to-completion Architecture 10

Pipeline extensions: there are two pipeline roles in the new architecture model.
1. Foreground pipelines: work as common P4 packet processing logic:
2. Background pipelines: don’t accept packets, just run an infinite loop.

ingress deparser
Background pipelines can generate
customized packets by setValid() headers
in the ingress control block.

p’

Control flow extensions:
• Foreach
• continue(), break()
• sleep
• return()

loop

rtc.p4 = New
Architecture Model + New P4

Extensions (externs)

NJU

P4RTC Programming

When P4 Meets Run-to-completion Architecture 11

Table type extensions:
According to the deployment location:

• on-chip tables
• off-chip tables.

 < 100 ns latency, 10’s MB

100ns ~1 us latency, 1000’s MB
P4RTC uses annotations to define
different tables

content addressing tables (CAT)
(e.g., exact matching, LPM...)

linear addressing tables (LAT)
(e.g., Counters, Registers, ...)

According to the memory layout and indexing mechanism:

rtc.p4 = New
Architecture Model + New P4

Extensions (externs)

NJU

P4RTC Programming

When P4 Meets Run-to-completion Architecture 12

P4 Table Operations are performed in the control plane...

Pkt
Memory

Flow
Table

Control plane

Data plane

CPU program
entryAdd() entryGet()entryDel()

apply()

long control loop

rtc.p4 = New
Architecture Model + New P4

Extensions (externs)

Traditional Table Operation :

Network, PCIe

NJU

P4RTC Programming

When P4 Meets Run-to-completion Architecture 13

Pkt Memory

Data plane

apply()

Pkt

Pkt

Flow
Table

entryAdd()
entryGet()

entryDel()

entryAdd()
entryGet()
entryDel()

Table Operation Externsions:
Packets can operate table entries directly in the data plane, both for CAT and LAT tables.

Bypass PCIe and software stacks, and reduce
control loop latency to the range of 100
nanoseconds to a few microseconds.

rtc.p4 = New
Architecture Model + New P4

Extensions (externs)

background
pipeline

NJU

P4RTC Compilat ion

When P4 Meets Run-to-completion Architecture 14

Table deployments in Pipelined Architecture:
 The compiler needs to meet:

1. Resource constraints: place the tables on the data plane
according to their type, size and the memory capacity of MAU
stages.

2. Dependency constraints: satisfy the constraints of
dependency between different tables during the deployment.

�1

�2 �3

�4
Deploy

…
�1

�2

�3 �4

�2

Stage 0 Stage 1 Stage 2

Table Deployments

 The compiler needs to meet:
1. Resource constraints of memory banks: place the

tables on the data plane according to their type, size
and the capacity of memory banks.

2. Performance constraints:
When dealing with "hot" tables, off-chip memory often
acts as a bottleneck.

Table deployments in RTC Architecture:

�1

�2 �3

�4
Deploy

100%

50% 50%

50%

NJU When P4 Meets Run-to-completion Architecture 15

When deploying tables, table fragmentation and table replication are employed to facilitate the
placement of tables and optimize performance.

P4RTC Compilat ion Table Deployments

Table replication:

…
Bank 1

�1

Bank 2

�1 �1

…
Bank 1

�1

Bank 2

�1 �1

�1

1. Balancing the load of tables with heavy
R E A D l o a d s h e l p s t o o p t i m i z e t h e
performance.

2. But imposes additional overhead on WRITE
requests.

…
Bank 1
�1�1

Bank 2
�1�2

�1 �2 1. Accommodate tables that are too large
for a bank.

2. Balance the load of the tables that are
too heavy for a bank.

Table fragmentation:

…
Bank 1 Bank 2

�1 �2

�1

NJU When P4 Meets Run-to-completion Architecture 16

When deploying tables, table fragmentation and table replication are employed to facilitate the
placement of tables and optimize performance.

P4RTC Compilat ion Table Deployments

Minimize the maximum memory bank load

Automatic optimizations in the compilation:
• We build an Integer Linear Programming

model to find a feasible and performance-
optimized solution).

NJU When P4 Meets Run-to-completion Architecture 17

When deploying tables, table fragmentation and table replication are employed to facilitate the
placement of tables and optimize performance.

P4RTC Compilat ion Table Deployments

Automatic optimizations in the compilation:
• We build an Integer Linear Programming

model to find a feasible and performance-
optimized solution.

• We adopt Profile-guided optimization to adapt
to significant workload changes.

Microcode Gen+
Please see our paper for

detail

Significant changes in traffic patterns may impact chip performance.

NJU

Performance Model

When P4 Meets Run-to-completion Architecture 18

We build a performance model that uses the Electronic
System Level (ESL) methodology.
The simulation process includes 4 parts:
1. Obtain a codepath based on P4 programs and a

specific workload.
2. Generate traffic according to the codepath.
3. The chipsim (a cycle-approximate chip simulator)

processes packets according to the microcode
embedded in the packets.

4. The performance monitor measures and output the
performance metrics (e.g., latency, throughput).

The RTC architecture does not have deterministic performance like pipeline ASICs. Therefore,
performance verification are required before deployment.

NJU

Case Study: Accurate Per-f low Monitoring

When P4 Meets Run-to-completion Architecture 19

Accurate Per-flow Traffic Measurement System with P4RTC

We prototype P4RTC on Huawei NetEngine 8000 F1A-C (NE8000F1AC) routers, with a 1.2 Tbps
RTC chip with 8 GB high-bandwidth memory (HBM).

Memory
Flow
Table

...
if (! tbl.apply().hit)
 tbl.entryAdd(fk, 1, flag)

@foreach
action __act(fk, fd){
 ...
 if (fd.flag && fin)
 // read and report
 tbl.entryDel(fk)
}
...

1. It supports measuring 50M concurrent flows.

Foreground
Pipeline Background

Pipeline

Mirred
Traffic

Complete
Flow Records

NJU

Case Study: Accurate Per-f low Monitoring

When P4 Meets Run-to-completion Architecture 19

Accurate Per-flow Traffic Measurement System with P4RTC

We prototype P4RTC on Huawei NetEngine 8000 F1A-C (NE8000F1AC) routers, with a 1.2 Tbps
RTC chip with 8 GB high-bandwidth memory (HBM).

Memory
Flow
Table

...
if (! tbl.apply().hit)
 tbl.entryAdd(fk, 1, flag)

@foreach
action __act(fk, fd){
 ...
 if (fd.flag && fin)
 // read and report
 tbl.entryDel(fk)
}
...

1. It supports measuring 50M concurrent flows.
2. It outputs highly aggregated measurement results in less
than 0.5% of input:
• Complete flow records (no hash collision triggered eviction)
• Minimal failed packets due to lock acquisition during

insertion of flow entries.

Foreground
Pipeline Background

Pipeline

Mirred
Traffic

Complete
Flow Records

Conclusion

Thanks!

We proposed P4RTC, a comprehensive summary of our experiences in applying the P4
language to the RTC architecture (specifically, Huawei NetEngine 8000 F1A-C).

• P4RTC benefits P4 programmability. It incorporates RTC architectures into the P4
community, enabling functions that were previously unsupported in P4.

• P4RTC benefits RTC-based devices. It provides users with a simplified and general
approach to developing functions.

• The performance model benefits P4 program profiling. It details the impact of different
P4 codes on the chip under specific traffic inputs.

