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Collective Communication

Collective Communication: a set of communication operations among parallel computing nodes.

e.g., allgather, reduce-scatter, allreduce, all-to-all, etc.

AI/ML Workloads: Originating in HPC, collective communication is now performance-critical for
distributed ML training and inferencing.

Problem: As ML models grow larger, scaling AI infra networks in both size and speed is
technically challenging and expensive.
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Optical Circuit Network

An emerging approach is to use optical circuit networks:

Advantages: Higher ⇑ bandwidth at lower ⇓ capital expenditure and energy cost.

Reconfigurability: The network can be configured into any node-to-node direct-connect topology.

Disadvantages: High reconfiguration latency, requiring relatively fixed topologies in tasks.

(a) SiP-ML (SIGCOMM ’21) (b) TopoOpt (NSDI ’23) (c) TPU (Google)
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Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce
Latency-Sensitive

Large-Data Allreduce
Throughput-Sensitive

All-to-All
Throughput

Traditional Topologies
(e.g., ring, multi-ring, torus)

Low-Diameter Graphs
(e.g., expander graphs)

Zhao et al. (UW, BBN, MIT) NSDI ’25 4 / 21



Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce
Latency-Sensitive

Large-Data Allreduce
Throughput-Sensitive

All-to-All
Throughput

Traditional Topologies
(e.g., ring, multi-ring, torus)

Low-Diameter Graphs
(e.g., expander graphs)

Zhao et al. (UW, BBN, MIT) NSDI ’25 4 / 21



Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce
Latency-Sensitive

Large-Data Allreduce
Throughput-Sensitive

All-to-All
Throughput

Traditional Topologies
(e.g., ring, multi-ring, torus) × ✓ ×

Low-Diameter Graphs
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Traditional topologies rely on variants of ring allreduce. They offer high allreduce throughput, but
their high diameter makes low-latency allreduce and efficient all-to-all theoretically impossible.

✘: A single task may involve multiple types of workloads.

e.g., MoE training requires both large-data allreduce and all-to-all.
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Throughput-Sensitive

All-to-All
Throughput

Traditional Topologies
(e.g., ring, multi-ring, torus) × ✓ ×
Low-Diameter Graphs

(e.g., expander graphs) ✓ ??? ✓

Low-diameter graphs enable high all-to-all throughput and low-latency allreduce, but
high-throughput allreduce scheduling for them remains unknown.
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Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce
Latency-Sensitive

Large-Data Allreduce
Throughput-Sensitive

All-to-All
Throughput

Traditional Topologies
(e.g., ring, multi-ring, torus) × ✓ ×
Low-Diameter Graphs

(e.g., expander graphs) ✓ ??? ✓

Conclusion: Traditional topologies are theoretically limited. Low-diameter graphs are promising
but lack high-throughput allreduce.
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Overview

Topologies & Schedules

Base Topologies
& Schedules

Expansion
Techniques

larger-scale

repeat

Existing Topologies
w/o Schedules

BFB
Scheduling

add schedule

Hardware &
Workload

Specifications

Topology
Finder

Best-Performing
Topology & Schedule

Contribution: a suite of low-diameter topologies with high-
throughput allreduce schedules.

Expansion Techniques: Generate larger-scale topologies
and schedules from small-scale ones.

BFB Scheduling: Generate high-throughput allreduce
schedules for existing topologies in polynomial time.

The generated topologies & schedules form a Pareto-frontier
of low-diameter vs high-throughput allreduce.

Topology Finder: Select the best-suited topology and
schedule for given hardware and workload specifications.
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Expansion Techniques

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

Given a small-scale base topology,

We apply graph transformations to map nodes and links into a larger topology.

e.g., line graph expansion: N-node degree-d graph =⇒ dN-node degree-d graph.

The communication schedule on the base topology can also be mapped to the larger topology.

The expansion can be applied repeatedly to scale topologies and schedules indefinitely.
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Figure: Line Graph Expansion
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Expansion Techniques

We have a variety of expansion techniques offering different characteristics:

Line Graph Expansion: expanding topology size while maintaining the same degree.

Degree Expansion: expanding both topology size and degree.

Cartesian Product Expansion: creating a new topology by combining existing ones.

Result: These techniques enrich the pool of available topologies and schedules.
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Figure: Degree Expansion Figure: Cartesian Product Expansion
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Expansion Techniques

Expansions offer performance guarantees for the expanded
topologies and schedules.

For example, in line graph expansion:

If the base is throughput-optimal, then the expanded is
≤ 1

(d−1)N away from optimality asymptotically.

The topology maintains a low diameter, with diameter
growth following O(logdN) as N ↑.
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Breadth-First-Broadcast Schedule
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Motivation

Observations:

Expansion techniques may produce limited options for certain topology sizes.
There exist plenty of off-the-shelf low-diameter expander graphs from graph theory.

Problem: lack of efficient allreduce schedules.

Question: Can we utilize these off-the-shelf expander graphs by generating allreduce
communication schedules for them?

Challenge: Generating collective communication schedules can easily be an NP-hard problem.

SCCL [PPoPP ’21]: satisfiability modulo theories (SMT).
TACCL [NSDI ’23], TE-CCL [SIGCOMM ’24]: mixed integer linear program (MILP).
Existing approaches are unable to scale to large topologies.
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Breadth-First-Broadcast Schedule

For any given topology, we propose Breadth-First-Broadcast (BFB) allgather schedule.

Each node’s data is broadcast to other nodes in a breadth-first order along the shortest paths.

Optimization: Choosing among multiple shortest paths from src to dst to minimize congestion.

Scalability: Breadth-first ordering allows optimization via polynomial-time linear programs.

The resulting allgather schedule can be easily transformed into reduce-scatter and allreduce as well.
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subject to
∑
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xv ,(w ,u),t ≤ Uu,t , ∀w ∈N−(u)∑
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xv ,(w ,u),t = 1, ∀v ∈N−
t (u)

0 ≤xv ,(w ,u),t ≤ 1. ∀w , v
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BFB Efficient Topologies

Significance: BFB enables efficient collective operations on complex topologies.

Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).

Performance: BFB offers mathematically provable performance guarantees on many topologies.

Throughput-optimal on Asymmetric Torus and TPU v4’s Twisted Torus.
Throughput-optimal with O(

√
N) diameter on Circulant Graph for any N and even-value d .

Also others like distance-regular graphs, generalized-Kautz graphs, etc.

(a) Twisted Torus (b) Circulant Graph
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BFB vs Existing Schedule Generations

BFB schedule generation excels in both speed and quality.

Scalability: BFB generation is orders of magnitude faster than previous methods.

Schedule Performance: BFB schedules are theoretically optimal on hypercube and torus.

# of nodes 4 8 16 32 64 1024
SCCL 0.59s 0.86s 21.4s >104s >104s >104s
TACCL 0.50s 7.39s 1801s 1802s n/a n/a
BFB <0.01s <0.01s <0.01s 0.03s 0.17s 52.7s

Table: Generation Time on Hypercube

# of nodes 4 9 16 25 36 2500
SCCL 0.61s 1.00s 60s 3286s >104s >104s
TACCL 0.45s 67.8s 1801s 1802s n/a n/a
BFB <0.01s <0.01s <0.01s 0.01s 0.03s 61.1s

Table: Generation Time on 2D Torus (n×n)
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Topology Finder

Given a target topology size (N and d),

The topology finder explores combinations of base topologies and expansion techniques to
generate topologies of the target size.

The resulting topologies and schedules form a Pareto-frontier.

low high

Diameter

high-throughput all-to-all,
low-latency allreduce

high-throughput allreduce

The best-suited topology and schedule are selected based on the hardware (e.g., latency,
bandwidth) and workload (e.g., allreduce and all-to-all sizes) specifications.

Topology Diameter All-to-All MCF Latency Throughput All-to-All Allreduce
Π4,1024 5 8.01e−4 5α 0.751B 409.1us 323.5us
L3(C (16, {3, 4})) 6 8.12e−4 6α 0.981B 403.5us 291.0us

L2(Diamond□2) 8 7.34e−4 8α 0.996B 446.6us 328.4us
L(DBJMod(2, 4)□2) 9 6.18e−4 11α 1.000B 529.9us 387.8us
(UniRing(1, 4)□UniRing(1, 8))□2 20 2.79e−4 20α 1.001B 1174.4us 567.6us
Baseline: 32x32 Torus 32 2.44e−4 62α 1.001B 1342.2us 1407.6us
Theoretical Bound 5 8.57e−4 5α 1.001B 382.3us 267.6us

Table: Pareto-frontier for N=1024, d=4 with α=10µs and M/B=1MB/100Gbps.
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Evaluation

Experiments on small-scale optical network testbed

Experiments on Frontera Supercomputer

Simulated large-scale MoE training
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Optical Testbed Experiments

Optical Testbed: 12x A100 nodes with reconfigurable optical interconnects (d=4).

Allreduce Experiments: our generated topologies outperform shifted ring and double binary tree
across topology sizes and allreduce data sizes.

GPT-2 Training: our generated topologies consistently surpass baselines in data-parallel training
across varying model sizes.
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Supercomputing Evaluation

Frontera Supercomputer at the Texas Advanced Computing Center (TACC)

Topology: various configurations of multi-dimensional torus.

Asymmetric Torus: BFB torus schedules significantly outperform traditional torus scheduling.

Scalability: BFB scales to topology sizes beyond the reach of other schedule generation methods.
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Simulated Expert-Parallel Training

Expert-parallel training involves both allreduce and all-to-all communications.

Performance: Efficient in both allreduce and all-to-all, our topology outperforms torus and shifted
ring by 40%+ in MoE model training.

Theoretical Bound: Our topologies remain within 5% of the theoretical lower bound at all times.

64 128 256
0.0

0.5

1.0

1.5

Ite
ra

tio
n 

Ti
m

e 
(s

)

LB

LB
LB

our

our
our

SR
SR SR

tor

tor

switch-base-256 (14.7B)

512 1024
0

2

4

6

8

LB LBour our

SR SR

tor

switch-c-2048 (1.6T)

Number of Nodes (N)

All-to-All Non-Overlapped Allreduce Compute

(a) Simulated Training of Switch Transformers.

t t+ 20 t+ 40 t+ 60 t+ 80
Time (ms)

comm
comp

Non-Expert Expert All-to-All Allreduce

(b) Training Timeline.

Zhao et al. (UW, BBN, MIT) NSDI ’25 20 / 21



Conclusion

In this work, we introduce

Expansion techniques to expand small-scale optimized
topologies and schedules into large-scale ones.

Breadth-First-Broadcast method to generate efficient
communication schedules for large-scale topologies in
polynomial time.

Topology Finder to explore and identify the best-suited
topology for the given hardware and workload.

Together, we enable efficient collective communications with
direct-connect topologies.
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