Efficient Direct-Connect Topologies for Collective Communications

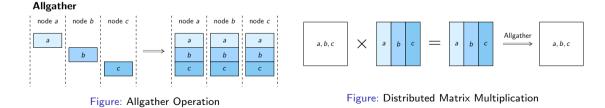
Liangyu Zhao¹ Siddharth Pal² Tapan Chugh¹ Weiyang Wang³ Jason Fantl² Prithwish Basu² Joud Khoury² Arvind Krishnamurthy¹

¹University of Washington ²RTX BBN Technologies ³MIT CSAIL

22nd USENIX Symposium on Networked Systems Design and Implementation

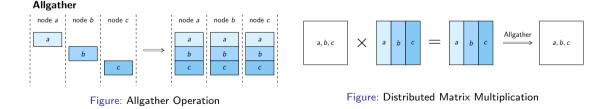
• Collective Communication: a set of communication operations among parallel computing nodes.

• e.g., allgather, reduce-scatter, allreduce, all-to-all, etc.



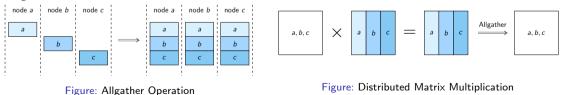
• Collective Communication: a set of communication operations among parallel computing nodes.

- e.g., allgather, reduce-scatter, allreduce, all-to-all, etc.
- AI/ML Workloads: Originating in HPC, collective communication is now performance-critical for distributed ML training and inferencing.



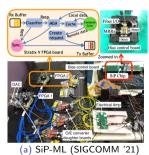
- Collective Communication: a set of communication operations among parallel computing nodes.
 - e.g., allgather, reduce-scatter, allreduce, all-to-all, etc.
- AI/ML Workloads: Originating in HPC, collective communication is now performance-critical for distributed ML training and inferencing.
- **Problem:** As ML models grow larger, scaling AI infra networks in both size and speed is technically challenging and expensive.

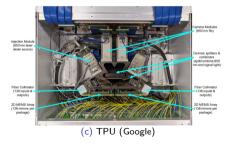
Allgather



An emerging approach is to use optical circuit networks:

- Advantages: Higher \uparrow bandwidth at lower \Downarrow capital expenditure and energy cost.
- Reconfigurability: The network can be configured into any node-to-node direct-connect topology.
- Disadvantages: High reconfiguration latency, requiring relatively fixed topologies in tasks.





	Small-Data Allreduce Latency-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput
Traditional Topologies (e.g., ring, multi-ring, torus)			

	Small-Data Allreduce Latency-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput
Traditional Topologies (e.g., ring, multi-ring, torus)	×	\checkmark	×

• Traditional topologies rely on variants of **ring allreduce**. They offer high allreduce throughput, but their **high diameter** makes low-latency allreduce and efficient all-to-all theoretically impossible.

	Small-Data Allreduce Latency-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput
Traditional Topologies (e.g., ring, multi-ring, torus)	×	\checkmark	×

- Traditional topologies rely on variants of **ring allreduce**. They offer high allreduce throughput, but their **high diameter** makes low-latency allreduce and efficient all-to-all theoretically impossible.
- X: A single task may involve multiple types of workloads.
 - e.g., MoE training requires both large-data allreduce and all-to-all.

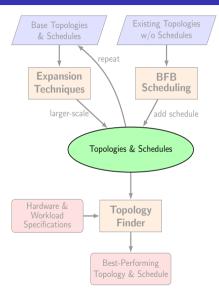
	Small-Data Allreduce Latency-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput
Traditional Topologies (e.g., ring, multi-ring, torus)	×	\checkmark	×
Low-Diameter Graphs (e.g., expander graphs)			

	Small-Data Allreduce Latency-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput
Traditional Topologies (e.g., ring, multi-ring, torus)	×	\checkmark	×
Low-Diameter Graphs (e.g., expander graphs)	\checkmark	???	\checkmark

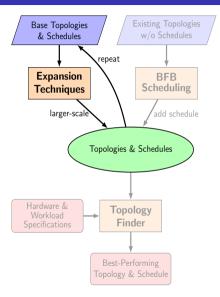
• Low-diameter graphs enable high all-to-all throughput and low-latency allreduce, but **high-throughput allreduce scheduling** for them remains unknown.

	Small-Data Allreduce Latency-Sensitive	Large-Data Allreduce Throughput-Sensitive	All-to-All Throughput
Traditional Topologies (e.g., ring, multi-ring, torus)	×	\checkmark	×
Low-Diameter Graphs (e.g., expander graphs)	\checkmark	???	\checkmark

• **Conclusion:** Traditional topologies are theoretically limited. Low-diameter graphs are promising but lack high-throughput allreduce.

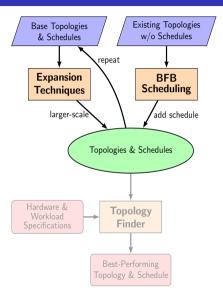


Contribution: a suite of low-diameter topologies with high-throughput allreduce schedules.



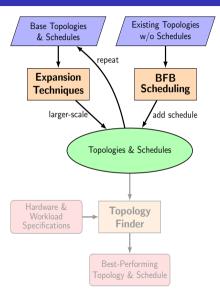
Contribution: a suite of low-diameter topologies with high-throughput allreduce schedules.

• Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.



Contribution: a suite of low-diameter topologies with high-throughput allreduce schedules.

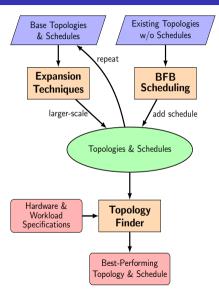
- Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.
- **BFB Scheduling:** Generate high-throughput allreduce schedules for existing topologies in polynomial time.



Contribution: a suite of low-diameter topologies with high-throughput allreduce schedules.

- Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.
- **BFB Scheduling:** Generate high-throughput allreduce schedules for existing topologies in polynomial time.

The generated topologies & schedules form a **Pareto-frontier** of low-diameter vs high-throughput allreduce.

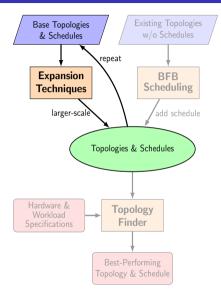


Contribution: a suite of low-diameter topologies with high-throughput allreduce schedules.

- Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.
- **BFB Scheduling:** Generate high-throughput allreduce schedules for existing topologies in polynomial time.

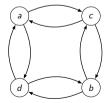
The generated topologies & schedules form a **Pareto-frontier** of low-diameter vs high-throughput allreduce.

• **Topology Finder:** Select the best-suited topology and schedule for given hardware and workload specifications.



Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.



Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

- We apply graph transformations to map nodes and links into a larger topology.
 - e.g., line graph expansion: N-node degree-d graph $\implies dN$ -node degree-d graph.

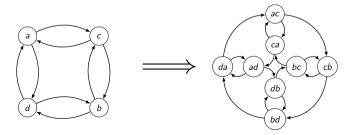


Figure: Line Graph Expansion

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

- We apply graph transformations to map nodes and links into a larger topology.
 - e.g., line graph expansion: N-node degree-d graph \implies dN-node degree-d graph.
- The communication schedule on the base topology can also be mapped to the larger topology.

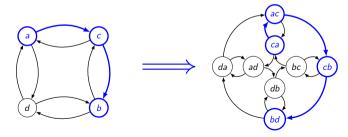


Figure: Line Graph Expansion

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

- We apply graph transformations to map nodes and links into a larger topology.
 - e.g., line graph expansion: N-node degree-d graph \implies dN-node degree-d graph.
- The communication schedule on the base topology can also be mapped to the larger topology.
- The expansion can be applied repeatedly to scale topologies and schedules indefinitely.

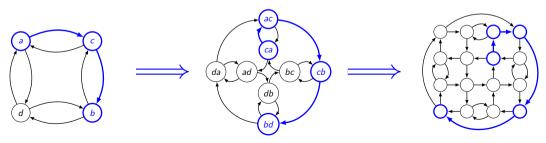


Figure: Line Graph Expansion

• Line Graph Expansion: expanding topology size while maintaining the same degree.

We have a variety of expansion techniques offering different characteristics:

- Line Graph Expansion: expanding topology size while maintaining the same degree.
- Degree Expansion: expanding both topology size and degree.
- Cartesian Product Expansion: creating a new topology by combining existing ones.

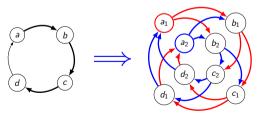


Figure: Degree Expansion

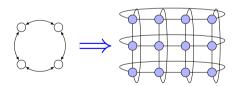
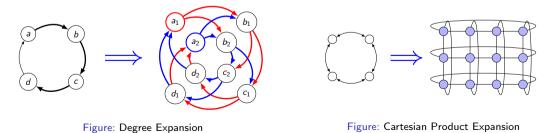


Figure: Cartesian Product Expansion

We have a variety of expansion techniques offering different characteristics:

- Line Graph Expansion: expanding topology size while maintaining the same degree.
- Degree Expansion: expanding both topology size and degree.
- Cartesian Product Expansion: creating a new topology by combining existing ones.

Result: These techniques enrich the pool of available topologies and schedules.



Expansions offer **performance guarantees** for the expanded topologies and schedules.

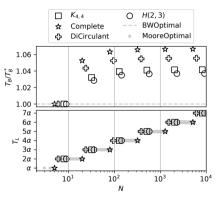


Figure: Line Graph Exp Performance Scaling

Expansions offer **performance guarantees** for the expanded topologies and schedules.

For example, in line graph expansion:

• If the base is throughput-optimal, then the expanded is $\leq \frac{1}{(d-1)N}$ away from optimality asymptotically.

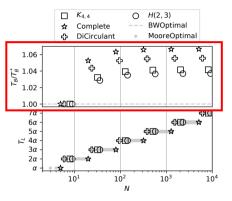


Figure: Line Graph Exp Performance Scaling

Expansions offer **performance guarantees** for the expanded topologies and schedules.

For example, in line graph expansion:

- If the base is throughput-optimal, then the expanded is $\leq \frac{1}{(d-1)N}$ away from optimality asymptotically.
- The topology maintains a low diameter, with diameter growth following $\mathcal{O}(\log_d N)$ as $N\uparrow$.

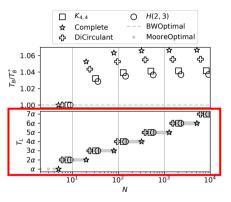
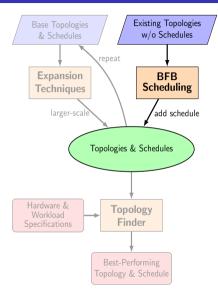


Figure: Line Graph Exp Performance Scaling

Breadth-First-Broadcast Schedule



• Observations:

- Expansion techniques may produce limited options for certain topology sizes.
- There exist plenty of off-the-shelf low-diameter expander graphs from graph theory.
 - Problem: lack of efficient allreduce schedules.

Motivation

• Observations:

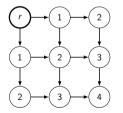
- Expansion techniques may produce limited options for certain topology sizes.
- There exist plenty of off-the-shelf low-diameter expander graphs from graph theory.
 - Problem: lack of efficient allreduce schedules.
- **Question:** Can we utilize these off-the-shelf expander graphs by generating allreduce communication schedules for them?

• Observations:

- Expansion techniques may produce limited options for certain topology sizes.
- There exist plenty of off-the-shelf low-diameter expander graphs from graph theory.
 - Problem: lack of efficient allreduce schedules.
- **Question:** Can we utilize these off-the-shelf expander graphs by generating allreduce communication schedules for them?
- Challenge: Generating collective communication schedules can easily be an NP-hard problem.
 - SCCL [PPoPP '21]: *satisfiability modulo theories* (SMT).
 - TACCL [NSDI '23], TE-CCL [SIGCOMM '24]: mixed integer linear program (MILP).
 - Existing approaches are unable to scale to large topologies.

For any given topology, we propose Breadth-First-Broadcast (BFB) allgather schedule.

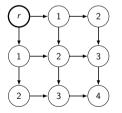
• Each node's data is broadcast to other nodes in a *breadth-first* order along the shortest paths.



minimize	$U_{u,t}$	
subject to	$\sum x_{\mathbf{v},(\mathbf{w},u),t} \leq U_{u,t},$	$\forall w \in N^{-}(u)$
	$\sum_{v=1}^{v} x_{v,(w,u),t} = 1,$	$\forall v \in N_t^-(u)$
	$0 \stackrel{\scriptscriptstyle{W}}{\leq} x_{v,(w,u),t} \leq 1.$	$\forall w, v$

For any given topology, we propose Breadth-First-Broadcast (BFB) allgather schedule.

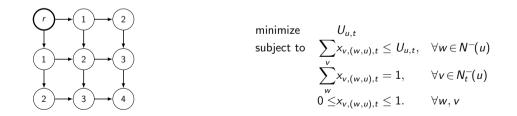
- Each node's data is broadcast to other nodes in a *breadth-first* order along the shortest paths.
- **Optimization:** Choosing among multiple shortest paths from src to dst to minimize congestion.



minimize	$U_{u,t}$	
subject to	$\sum x_{\mathbf{v},(\mathbf{w},u),t} \leq U_{u,t},$	$\forall w \in N^{-}(u)$
	$\sum_{\nu}^{\nu} x_{\nu,(w,u),t} = 1,$	$\forall v \in N_t^-(u)$
	$0 \stackrel{w}{\leq} x_{v,(w,u),t} \leq 1.$	$\forall w, v$

For any given topology, we propose **Breadth-First-Broadcast** (BFB) allgather schedule.

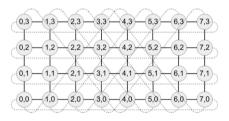
- Each node's data is broadcast to other nodes in a *breadth-first* order along the shortest paths.
- **Optimization:** Choosing among multiple shortest paths from src to dst to minimize congestion.
- Scalability: Breadth-first ordering allows optimization via polynomial-time linear programs.



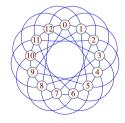
For any given topology, we propose **Breadth-First-Broadcast** (BFB) allgather schedule.

- Each node's data is broadcast to other nodes in a *breadth-first* order along the shortest paths.
- **Optimization:** Choosing among multiple shortest paths from src to dst to minimize congestion.
- Scalability: Breadth-first ordering allows optimization via polynomial-time linear programs.
- The resulting allgather schedule can be easily transformed into reduce-scatter and allreduce as well.

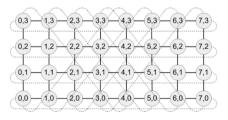
- Significance: BFB enables efficient collective operations on complex topologies.
 - Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).



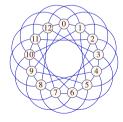
(a) Twisted Torus



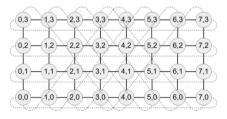
- Significance: BFB enables efficient collective operations on complex topologies.
 - Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).
- Performance: BFB offers mathematically provable performance guarantees on many topologies.



(a) Twisted Torus



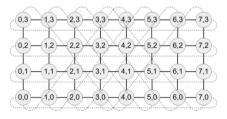
- Significance: BFB enables efficient collective operations on complex topologies.
 - Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).
- Performance: BFB offers mathematically provable performance guarantees on many topologies.
 - Throughput-optimal on Asymmetric Torus and TPU v4's Twisted Torus.



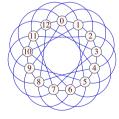
(a) Twisted Torus



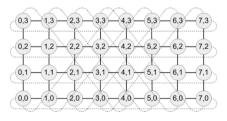
- Significance: BFB enables efficient collective operations on complex topologies.
 - Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).
- Performance: BFB offers mathematically provable performance guarantees on many topologies.
 - Throughput-optimal on Asymmetric Torus and TPU v4's Twisted Torus.
 - Throughput-optimal with $\mathcal{O}(\sqrt{N})$ diameter on **Circulant Graph** for any N and even-value d.



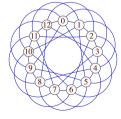
(a) Twisted Torus



- Significance: BFB enables efficient collective operations on complex topologies.
 - Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).
- Performance: BFB offers mathematically provable performance guarantees on many topologies.
 - Throughput-optimal on Asymmetric Torus and TPU v4's Twisted Torus.
 - Throughput-optimal with $\mathcal{O}(\sqrt{N})$ diameter on **Circulant Graph** for any N and even-value d.
 - Also others like distance-regular graphs, generalized-Kautz graphs, etc.



(a) Twisted Torus



BFB vs Existing Schedule Generations

BFB schedule generation excels in both speed and quality.

- Scalability: BFB generation is orders of magnitude faster than previous methods.
- Schedule Performance: BFB schedules are theoretically optimal on hypercube and torus.

# of nodes	4	8	16	32	64	1024
SCCL	0.59s	0.86s	21.4s	$> 10^{4} s$	$> 10^{4} s$	$> 10^{4} s$
TACCL	0.50s	7.39s	1801s	1802s	n/a	n/a
BFB	<0.01s	<0.01s	<0.01s	0.03s	0.17s	52.7s

Table: Generation Time on Hypercube

# of nodes	4	9	16	25	36	2500
SCCL	0.61s	1.00s	60s	3286s	$> 10^4 s$	$> 10^4 s$
TACCL	0.45s	67.8s	1801s	1802s	n/a	n/a
BFB	< 0.01s	<0.01s	< 0.01 s	0.01s	0.03s	61.1s

Table: Generation Time on 2D Torus $(n \times n)$

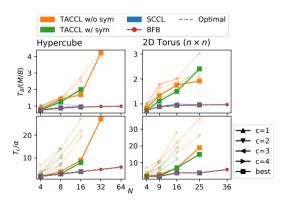
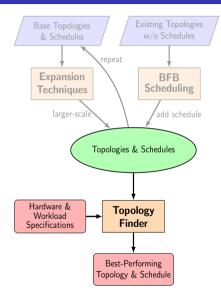


Figure: Theoretical Performance of Schedules



Given a target topology size (N and d),

Given a target topology size (N and d),

• The topology finder explores **combinations of base topologies and expansion techniques** to generate topologies of the target size.

Topology			
Π _{4,1024}			
$L^{3}(C(16, \{3, 4\}))$			
$L^2(\text{Diamond}^{\square 2})$			
$L(DBJMod(2, 4)^{\square 2})$			
$(UniRing(1, 4) \square UniRing(1, 8))^{\square 2}$			

Given a target topology size (N and d),

- The topology finder explores combinations of base topologies and expansion techniques to generate topologies of the target size.
- The resulting topologies and schedules form a Pareto-frontier.

Topology	Diameter			
Π _{4,1024}	5			
$L^{3}(C(16, \{3, 4\}))$	6			
$L^2(Diamond^{\square 2})$	8			
$L(DBJMod(2,4)^{\square 2})$	9			
$(\text{UniRing}(1, 4) \Box \text{UniRing}(1, 8))^{\Box 2}$	20			

Given a target topology size (N and d),

- The topology finder explores combinations of base topologies and expansion techniques to generate topologies of the target size.
- The resulting topologies and schedules form a Pareto-frontier.

high-throughput all-to-all, low high low-latency allreduce Diameter

Topology	Diameter	All-to-All MCF	Latency		
Π _{4,1024}	5	8.01e-4	5α		
$L^{3}(C(16, \{3, 4\}))$	6	8.12e-4	6α		
$L^2(Diamond^{\square 2})$	8	7.34e-4	8α		
$L(DBJMod(2, 4)^{\square 2})$	9	6.18e-4	11α		
$(\text{UniRing}(1, 4) \Box \text{UniRing}(1, 8))^{\Box 2}$	20	2.79e-4	20α		

Given a target topology size (N and d),

- The topology finder explores **combinations of base topologies and expansion techniques** to generate topologies of the target size.
- The resulting topologies and schedules form a Pareto-frontier.

Topology	Diameter	All-to-All MCF	Latency	Throughput	
Π _{4,1024}	5	8.01e-4	5α	0.751 <i>B</i>	
$L^{3}(C(16, \{3, 4\}))$	6	8.12e-4	6α	0.981 <i>B</i>	
$L^2(Diamond^{\square 2})$	8	7.34e-4	8α	0.996 <i>B</i>	
$L(DBJMod(2, 4)^{\square 2})$	9	6.18e-4	11α	1.000 <i>B</i>	
$(\text{UniRing}(1, 4) \Box \text{UniRing}(1, 8))^{\Box 2}$	20	2.79e-4	20α	1.001B	

Given a target topology size (N and d),

- The topology finder explores combinations of base topologies and expansion techniques to generate topologies of the target size.
- The resulting topologies and schedules form a Pareto-frontier.

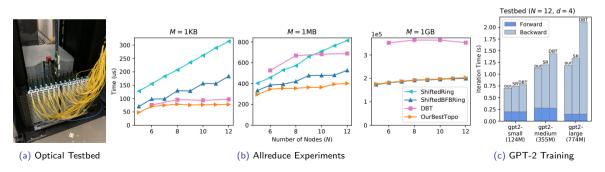
• The best-suited topology and schedule are selected based on the hardware (e.g., latency, bandwidth) and workload (e.g., allreduce and all-to-all sizes) specifications.

Topology	Diameter	All-to-All MCF	Latency	Throughput	All-to-All	Allreduce
Π _{4,1024}	5	8.01e-4	5α	0.751 <i>B</i>	409.1us	323.5us
$L^{3}(C(16, \{3, 4\}))$	6	8.12e-4	6α	0.981 <i>B</i>	403.5us	291.0us
$L^2(\text{Diamond}^{\square 2})$	8	7.34e-4	8α	0.996 <i>B</i>	446.6us	328.4us
$L(DBJMod(2,4)^{\square 2})$	9	6.18e-4	11α	1.000 <i>B</i>	529.9us	387.8us
$(\text{UniRing}(1, 4) \Box \text{UniRing}(1, 8))^{\Box 2}$	20	2.79e-4	20α	1.001 <i>B</i>	1174.4us	567.6us
Baseline: 32x32 Torus	32	2.44e-4	62α	1.001 <i>B</i>	1342.2us	1407.6us
Theoretical Bound	5	8.57e-4	5 α	1.001 <i>B</i>	382.3us	267.6us

- Experiments on small-scale optical network testbed
- Experiments on Frontera Supercomputer
- Simulated large-scale MoE training

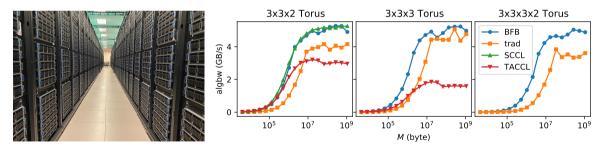
Optical Testbed: 12x A100 nodes with reconfigurable optical interconnects (d=4).

- Allreduce Experiments: our generated topologies outperform shifted ring and double binary tree across topology sizes and allreduce data sizes.
- GPT-2 Training: our generated topologies consistently surpass baselines in data-parallel training across varying model sizes.



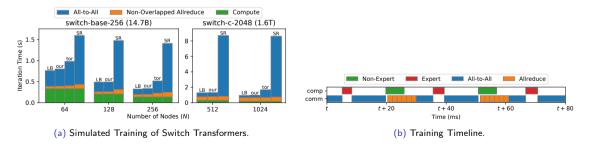
Frontera Supercomputer at the Texas Advanced Computing Center (TACC)

- **Topology:** various configurations of multi-dimensional torus.
- Asymmetric Torus: BFB torus schedules significantly outperform traditional torus scheduling.
- Scalability: BFB scales to topology sizes beyond the reach of other schedule generation methods.



Expert-parallel training involves both **allreduce** and **all-to-all** communications.

- **Performance:** Efficient in both allreduce and all-to-all, our topology outperforms torus and shifted ring by 40%+ in MoE model training.
- Theoretical Bound: Our topologies remain within 5% of the theoretical lower bound at all times.



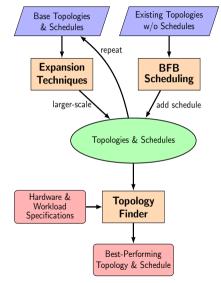
Conclusion

In this work, we introduce

- Expansion techniques to expand small-scale optimized topologies and schedules into large-scale ones.
- Breadth-First-Broadcast method to generate efficient communication schedules for large-scale topologies in polynomial time.
- **Topology Finder** to explore and identify the best-suited topology for the given hardware and workload.

Together, we enable efficient collective communications with direct-connect topologies.

Efficient Direct-Connect Topologies for Collective Communications Contact: liangyu@cs.washington.edu NSDI '25



NSDI '25