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Collective Communication

o Collective Communication: a set of communication operations among parallel computing nodes.

e e.g., allgather, reduce-scatter, allreduce, all-to-all, etc.
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Collective Communication

o Collective Communication: a set of communication operations among parallel computing nodes.
e e.g., allgather, reduce-scatter, allreduce, all-to-all, etc.

e Al/ML Workloads: Originating in HPC, collective communication is now performance-critical for
distributed ML training and inferencing.
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Collective Communication

o Collective Communication: a set of communication operations among parallel computing nodes.
e e.g., allgather, reduce-scatter, allreduce, all-to-all, etc.
e Al/ML Workloads: Originating in HPC, collective communication is now performance-critical for
distributed ML training and inferencing.

@ Problem: As ML models grow larger, scaling Al infra networks in both size and speed is
technically challenging and expensive.

Aligather
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Optical Circuit Network

An emerging approach is to use optical circuit networks:
o Advantages: Higher {} bandwidth at lower |} capital expenditure and energy cost.
@ Reconfigurability: The network can be configured into any node-to-node direct-connect topology.

o Disadvantages: High reconfiguration latency, requiring relatively fixed topologies in tasks.
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Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?
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Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce | Large-Data Allreduce | All-to-All
Latency-Sensitive Throughput-Sensitive | Throughput

Traditional Topologies
(e.g., ring, multi-ring, torus)
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Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce | Large-Data Allreduce | All-to-All
Latency-Sensitive Throughput-Sensitive | Throughput

Traditional Topologies
polog X \/ X

(e.g., ring, multi-ring, torus)

o Traditional topologies rely on variants of ring allreduce. They offer high allreduce throughput, but
their high diameter makes low-latency allreduce and efficient all-to-all theoretically impossible.
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Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce | Large-Data Allreduce | All-to-All
Latency-Sensitive Throughput-Sensitive | Throughput

Traditional Topologies
polog X \/ X

(e.g., ring, multi-ring, torus)

o Traditional topologies rely on variants of ring allreduce. They offer high allreduce throughput, but
their high diameter makes low-latency allreduce and efficient all-to-all theoretically impossible.

o X: A single task may involve multiple types of workloads.
e e.g., MoE training requires both large-data allreduce and all-to-all.
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Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce | Large-Data Allreduce | All-to-All
Latency-Sensitive Throughput-Sensitive | Throughput
Traditional Topologies X \/ X

(e.g., ring, multi-ring, torus)
Low-Diameter Graphs
(e.g., expander graphs)
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@ Low-diameter graphs enable high all-to-all throughput and low-latency allreduce, but
high-throughput allreduce scheduling for them remains unknown.
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Topology Dilemma

Problem: What direct-connect topology should we choose for a given task?

Small-Data Allreduce | Large-Data Allreduce | All-to-All
Latency-Sensitive Throughput-Sensitive | Throughput
Traditional Topologies X \/ X

(e.g., ring, multi-ring, torus)
Low-Diameter Graphs
(e.g., expander graphs)

v

7?

v

@ Conclusion: Traditional topologies are theoretically limited. Low-diameter graphs are promising
but lack high-throughput allreduce.
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BFB Contribution: a suite of low-diameter topologies with high-
Scheduling throughput allreduce schedules.

o Expansion Techniques: Generate larger-scale topologies

larger-scale add schedule
and schedules from small-scale ones.

o BFB Scheduling: Generate high-throughput allreduce
schedules for existing topologies in polynomial time.

l The generated topologies & schedules form a Pareto-frontier
of low-diameter vs high-throughput allreduce.
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larger-scale add schedule
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Expansion Techniques

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.
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Expansion Techniques

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

Given a small-scale base topology,

Zhao et al. (UW, BBN, MIT) NSDI '25



Expansion Techniques

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

Given a small-scale base topology,
@ We apply graph transformations to map nodes and links into a larger topology.
e e.g., line graph expansion: N-node degree-d graph =—> dN-node degree-d graph.

Figure: Line Graph Expansion

Zhao et al. (UW, BBN, MIT) NSDI '25



Expansion Techniques

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

Given a small-scale base topology,
@ We apply graph transformations to map nodes and links into a larger topology.
e e.g., line graph expansion: N-node degree-d graph = dN-node degree-d graph.
@ The communication schedule on the base topology can also be mapped to the larger topology.

Figure: Line Graph Expansion
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Expansion Techniques

Expansion Techniques: Generate larger-scale topologies and schedules from small-scale ones.

Given a small-scale base topology,
@ We apply graph transformations to map nodes and links into a larger topology.
e e.g., line graph expansion: N-node degree-d graph = dN-node degree-d graph.
@ The communication schedule on the base topology can also be mapped to the larger topology.

@ The expansion can be applied repeatedly to scale topologies and schedules indefinitely.
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Figure: Line Graph Expansion
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Expansion Techniques

o Line Graph Expansion: expanding topology size while maintaining the same degree.
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Expansion Techniques

We have a variety of expansion techniques offering different characteristics:

o Line Graph Expansion: expanding topology size while maintaining the same degree.
o Degree Expansion: expanding both topology size and degree.

o Cartesian Product Expansion: creating a new topology by combining existing ones.
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Expansion Techniques

We have a variety of expansion techniques offering different characteristics:
o Line Graph Expansion: expanding topology size while maintaining the same degree.
o Degree Expansion: expanding both topology size and degree.
o Cartesian Product Expansion: creating a new topology by combining existing ones.
Result: These techniques enrich the pool of available topologies and schedules.

S
Y
=3
ool <

N

Q

Figure: Degree Expansion Figure: Cartesian Product Expansion

Zhao et al. (UW, BBN, MIT)

NSDI '25



Expansion Techniques

Expansions offer performance guarantees for the expanded
topologies and schedules.

Zhao et al. (UW, BBN, MIT)
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o Observations:

e Expansion techniques may produce limited options for certain topology sizes.
o There exist plenty of off-the-shelf low-diameter expander graphs from graph theory.

o Problem: lack of efficient allreduce schedules.
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o Observations:

e Expansion techniques may produce limited options for certain topology sizes.
o There exist plenty of off-the-shelf low-diameter expander graphs from graph theory.

o Problem: lack of efficient allreduce schedules.

@ Question: Can we utilize these off-the-shelf expander graphs by generating allreduce
communication schedules for them?
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o Observations:

e Expansion techniques may produce limited options for certain topology sizes.
o There exist plenty of off-the-shelf low-diameter expander graphs from graph theory.

o Problem: lack of efficient allreduce schedules.

@ Question: Can we utilize these off-the-shelf expander graphs by generating allreduce
communication schedules for them?

o Challenge: Generating collective communication schedules can easily be an NP-hard problem.
o SCCL [PPoPP 21]: satisfiability modulo theories (SMT).
e TACCL [NsDI '23], TE-CCL [SIGCOMM '24]: mixed integer linear program (MILP).
e Existing approaches are unable to scale to large topologies.
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Breadth-First-Broadcast Schedule

For any given topology, we propose Breadth-First-Broadcast (BFB) allgather schedule.

@ Each node’s data is broadcast to other nodes in a breadth-first order along the shortest paths.

@ minimize Uyt
subject to ZX\/’(W’L,)J < Uy, YweN(u)

i i @ ixv,(w,u),t =1 Yve N (u)

@ 0 SXV,(W,U),Z‘ <1 Vw, v
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Breadth-First-Broadcast Schedule

For any given topology, we propose Breadth-First-Broadcast (BFB) allgather schedule.
@ Each node’s data is broadcast to other nodes in a breadth-first order along the shortest paths.

e Optimization: Choosing among multiple shortest paths from src to dst to minimize congestion.

? % @ minimize Uyt
subject to ZX\/’(W’L,)J < Uy, YweN(u)
@ ZXV,(W,U),I‘ = 17 Vve NLT(U)

0 SXV,(W,U),Z‘ <1 Vw, v
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Breadth-First-Broadcast Schedule

For any given topology, we propose Breadth-First-Broadcast (BFB) allgather schedule.
@ Each node’s data is broadcast to other nodes in a breadth-first order along the shortest paths.
e Optimization: Choosing among multiple shortest paths from src to dst to minimize congestion.
@ Scalability: Breadth-first ordering allows optimization via polynomial-time linear programs.
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Breadth-First-Broadcast Schedule

For any given topology, we propose Breadth-First-Broadcast (BFB) allgather schedule.
@ Each node’s data is broadcast to other nodes in a breadth-first order along the shortest paths.
e Optimization: Choosing among multiple shortest paths from src to dst to minimize congestion.
@ Scalability: Breadth-first ordering allows optimization via polynomial-time linear programs.
°

The resulting allgather schedule can be easily transformed into reduce-scatter and allreduce as well.

? % @ minimize Uyt
subject to ZX\/’(W’L,)J < Uy, YweN(u)
@ ZXV,(W,U),I‘ = 17 Vve NLT(U)

0 SXV,(W,U),Z‘ <1l Vw, v
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BFB Efficient Topologies

o Significance: BFB enables efficient collective operations on complex topologies.
e Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).
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BFB Efficient Topologies

o Significance: BFB enables efficient collective operations on complex topologies.
e Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).

o Performance: BFB offers mathematically provable performance guarantees on many topologies.
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BFB Efficient Topologies

o Significance: BFB enables efficient collective operations on complex topologies.
e Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).

o Performance: BFB offers mathematically provable performance guarantees on many topologies.
e Throughput-optimal on Asymmetric Torus and TPU v4's Twisted Torus.
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BFB Efficient Topologies

o Significance: BFB enables efficient collective operations on complex topologies.
e Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).
o Performance: BFB offers mathematically provable performance guarantees on many topologies.

e Throughput-optimal on Asymmetric Torus and TPU v4's Twisted Torus.
o Throughput-optimal with O(v/N) diameter on Circulant Graph for any N and even-value d.
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BFB Efficient Topologies

o Significance: BFB enables efficient collective operations on complex topologies.
e Previously, collective operations are limited to simple variants of rings (e.g., multiring, torus).

o Performance: BFB offers mathematically provable performance guarantees on many topologies.
e Throughput-optimal on Asymmetric Torus and TPU v4's Twisted Torus.

o Throughput-optimal with O(v/N) diameter on Circulant Graph for any N and even-value d.
o Also others like distance-regular graphs, generalized-Kautz graphs, etc.
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BFB vs Existing Schedule Generations

BFB schedule generation excels in both speed and quality.
@ Scalability: BFB generation is orders of magnitude faster than previous methods.

@ Schedule Performance: BFB schedules are theoretically optimal on hypercube and torus.

I TACCLw/osym M SCCL  —--- Optimal
BN TACCL w/ sym —e— BFB
# of nodes 3 8 16 32 64 1024 Hypercube 2D Torus (n x n)

SCCL 0.59s 0.86s 21.4s | >10% | >10% | >10%
TACCL 0.50s 7.39s 1801s | 1802s n/a n/a
BFB <0.01s | <0.01s | <0.01s | 0.03s | 0.17s | 52.7s

Table: Generation Time on Hypercube

# of nodes 4 9 16 25 36 2500
SCCL 0.61s 1.00s 60s 3286s | >10% | >10% —A— c=1
TACCL 0.45s 67.8s 1801s | 1802s | n/a n/a ¥ c=2
BFB <0.01s | <0.01s | <0.01s | 0.01s | 0.03s | 61.1s —& c=3
—>— c=4
—— best

Table: Generation Time on 2D Torus (nxn)

8 16 32

Figure: Theoretical Performance of Schedules
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Topology Finder

Given a target topology size (N and d),
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Topology Finder

Given a target topology size (N and d),

@ The topology finder explores combinations of base topologies and expansion techniques to
generate topologies of the target size.

Topology

M4,1024

L3(C(16,{3,4}))
L2(Diamond™?)
L(DBJMod(2,4)72)
(UniRing(1,4)0UniRing(1, 8))™?

Table: Pareto-frontier for N=1024, d =4 with «=10us and M/B=1MB/100Gbps.
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Topology Finder

Given a target topology size (N and d),

@ The topology finder explores combinations of base topologies and expansion techniques to
generate topologies of the target size.

@ The resulting topologies and schedules form a Pareto-frontier.

low high
Diameter
Topology Diameter
M4,1024 5
L3(C(16,{3,4})) 6
Lz(DiamondDZ) 8
L(DBJMod(2,4)2) 9
(UniRing(1,4)0UniRing(1, 8))™? 20

Table: Pareto-frontier for N=1024, d =4 with «=10us and M/B=1MB/100Gbps.
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Topology Finder

Given a target topology size (N and d),

@ The topology finder explores combinations of base topologies and expansion techniques to
generate topologies of the target size.

@ The resulting topologies and schedules form a Pareto-frontier.

high-throughput all-to-all,  low high
low-latency allreduce .
Y Diameter
Topology Diameter || All-to-All MCF | Latency
M4,1024 5 8.0le—4 5a
L3(C(16,{3,4})) 6 8.12e—4 60
L2(Diamond™?) 8 7.34e—4 8a
L(DBJMod(2,4)2) 9 6.18e—4 11a
(UniRing(1,4)0UniRing(1, 8))™2 20 2.79e—4 20c

Table: Pareto-frontier for N=1024, d =4 with «=10us and M/B=1MB/100Gbps.
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Topology Finder

Given a target topology size (N and d),

@ The topology finder explores combinations of base topologies and expansion techniques to
generate topologies of the target size.

@ The resulting topologies and schedules form a Pareto-frontier.

high-throughput all-to-all,  low high
glow Iateﬁcp allreduce high-throughput allreduce
Y Diameter
Topology Diameter || All-to-All MCF | Latency | Throughput
M 1024 5 8.0le—4 5o 0.751B
L3(C(16,{3,4})) 6 8.12e—4 60 0.9818
[2(Diamond~?) 8 7.34e—4 8o 0.9968
L(DBJMod(2, 4)22) 9 6.18e—4 1la 1.000B
(UniRing(1,4)0UniRing(1,8))™2 20 2.79e—4 200 1.001B

Table: Pareto-frontier for N=1024, d =4 with «=10us and M/B=1MB/100Gbps.
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Topology Finder

Given a target topology size (N and d),

@ The topology finder explores combinations of base topologies and expansion techniques to
generate topologies of the target size.

@ The resulting topologies and schedules form a Pareto-frontier.

high-throughput all-to-all, low high
low-latency allreduce

high-throughput allreduce
Diameter

@ The best-suited topology and schedule are selected based on the hardware (e.g., latency,
bandwidth) and workload (e.g., allreduce and all-to-all sizes) specifications.

Topology Diameter || All-to-All MCF | Latency | Throughput | All-to-All | Allreduce
M4,1024 5 8.0le—4 5a 0.751B 409.1us | 323.5us
L3(C(16,{3,4})) 6 8.12e—4 6cv 0.981B 403.5us | 291.0us
LZ(Diamondm) 8 7.34e—4 8a 0.9968B 446.6us | 328.4us
L(DBJMod(2,4)2) 9 6.18e—4 1la 1.000B 529.9us | 387.8us
(UniRing(1,4)0UniRing(1, 8))™2 20 2.79e—4 20c 1.001B 1174.4us | 567.6us
Baseline: 32x32 Torus 32 2.44e—4 62c 1.001B 1342.2us | 1407.6us
Theoretical Bound 5 8.57e—4 5a 1.001B 382.3us | 267.6us

Table: Pareto-frontier for N=1024, d =4 with «=10us and M/B=1MB/100Gbps.
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Evaluation

@ Experiments on small-scale optical network testbed
@ Experiments on Frontera Supercomputer

@ Simulated large-scale MoE training

Zhao et al. (UW, BBN, MIT) NSDI '25



Optical Testbed Experiments

Optical Testbed: 12x A100 nodes with reconfigurable optical interconnects (d =4).

o Allreduce Experiments: our generated topologies outperform shifted ring and double binary tree
across topology sizes and allreduce data sizes.

@ GPT-2 Training: our generated topologies consistently surpass baselines in data-parallel training

across varying model sizes.

M =1KB

—<— ShiftedRing
—&— ShiftedBFBRing
- DBT

~»— OurBestTopo

(a) Optical Testbed
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Supercomputing Evaluation

Frontera Supercomputer at the Texas Advanced Computing Center (TACC)
@ Topology: various configurations of multi-dimensional torus.
o Asymmetric Torus: BFB torus schedules significantly outperform traditional torus scheduling.

@ Scalability: BFB scales to topology sizes beyond the reach of other schedule generation methods.

3x3x2 Torus 3x3x3 Torus 3x3x3x2 Torus
—e— BFB
4 i | —=— trad
o —+— SCCL
e TACCL
©
0 . . Y i . N 3 . .
10° 107 10° 10° 107 10° 10° 107 10°
M (byte)
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Simulated Expert-Parallel Training

Expert-parallel training involves both allreduce and all-to-all communications.
o Performance: Efficient in both allreduce and all-to-all, our topology outperforms torus and shifted

ring by 40%-+ in MoE model training.
@ Theoretical Bound: Our topologies remain within 5% of the theoretical lower bound at all times.

B All-to-All I Non-Overlapped Allreduce B Compute

switch-base-256 (14.7B) switch-c-2048 (1.6T)
0 15 8
£
E 1.0 6
s 4
‘ré 05 BN Non-Expert MWW Expert WS All-to-All W Allreduce
5 0.
= 2 comp || || || |
0.0 0 comm
. 64 128 t t+20 t+40 t+60 t+80
Time (ms)

256
Number of Nodes (N)

(a) Simulated Training of Switch Transformers. (b) Training Timeline.
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Conclusion

Base Topologies / Existing Topologies /

In this work, we introduce & Schedules w/o Schedules
o Expansion techniques to expand small-scale optimized 1 1
topologies and schedules into large-scale ones. Bas i BEB
o Breadth-First-Broadcast method to generate efficient Techniques Scheduling

communication schedules for large-scale topologies in
polynomial time.

larger-scale add schedule

@ Topology Finder to explore and identify the best-suited

. Topologies & Schedules
topology for the given hardware and workload.

Together, we enable efficient collective communications with
direct-connect topologies.

Hardware &
Workload TOPOIOgy
Specifications Finder

Efficient Direct-Connect Topologies for Collective Communications

K 1 ﬁc;rglac’:z:sI|angyu@cs.washlngton.edu Best Performing
‘m Topology & Schedule
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