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Rising DRAM cost in data centers

Reaching 40–50% of the server cost!

DRAM cost in Meta’s data centers [Maruf et al. ASPLOS’ 23]

2



Cost saving efforts
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Fastswap, LegoOS, AIFM, KonaGoogle’s Software-defined Far Memory 
Meta’s Transparent Memory Offloading



Far memory 

Compared to DRAM

● Slower

● Need guards
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A cost-effective but slower memory extension.
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Far memory systems
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A cost-effective but slower memory extension.

Local
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Guard interface
Compared to DRAM      Goal is to avoid:

● Slower → Performance hit

● Need guards → Application changes



Hardware guards offer transparency
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Use OS paging/hardware to support far memory.
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✅  No application changes

❌  Performance



Software guards enable better performance 
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Use a custom API and annotate every access.

✅  Performance

❌  Significant porting effort
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Software guards enable better performance 

8

Use a custom API and annotate every access.

✅  Performance

❌  Significant porting effort

❌  Overhead for local accesses
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Example: Hardware vs Software guards
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Example: Hardware vs Software guards
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Fastswap:   0

AIFM:    >1000

Performance Code changes



Example: Hardware vs Software guards

11

Fastswap:   0

AIFM:    >1000

Performance Code changes

Can we balance the performance 
benefits of software guards with the 
transparency of hardware guards?



Our answer is Eden
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Our answer is Eden
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Eden supports both guards
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Local
DRAM

far  
memory

OS
H/W 
guard

Choice for each memory access.

● Hardware guards (default)

● Software guards (where beneficial)
APP S/W 

guard

Beneficial → Only far memory accesses
But that could be everywhere in the code?
 



How do applications access far memory?

DataFrame example at 10% local memory.

Of 15000 total lines of code:

● Only 155 → at least one far memory access

● Top 11    → 95% of all accesses!

DataFrame 
column 
vectors
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DataFrame library 



DataFrame is not an outlier!
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Max 32 code locations—12 at median—see 95% far memory accesses

155



Eden overview

● Software guards  → Hints in code

Hardware guards → Default
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Eden overview

● Software guards  → Hints in code

Hardware guards → Default

● User-level runtime
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Eden overview

● Software guards  → Hints in code

Hardware guards → Default

● User-level runtime

● Userfaultfd to keep hardware guards

○ Slower but rare
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Eden overview

● Software guards  → Hints in code

Hardware guards → Default

● User-level runtime

● Userfaultfd to keep hardware guards

○ Slower but rare

● Lightweight threads e.g., Shenango
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Step 1: Eden points out top locations
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e.g., Top two locations for DataFrame on Line 690.

DataFrame 
column 
vectors

DataFrame library 



Step 2: Add basic hints 
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Let Eden know what data to guard in software. Only for 

performance, not correctness!
DataFrame 

column 
vectors

DataFrame library 



Step 3: Pass additional info where helpful
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DataFrame benefits from prefetching.

DataFrame 
column 
vectors

DataFrame library 



Eden result for DataFrame
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Fastswap:   0

AIFM:    >1000

Eden:     10

Performance Code changes



More local accesses → Exploit hardware guards
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More far accesses → Exploit software guards
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Deliberate use of software guards
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Eden summary

● Applications only access far memory at   

very few code locations.

● Eden exploits this insight to combine 

software and hardware guards.

● Thus, Eden avoids hard bargain between 

performance and programmer effort.
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