
Eden: Developer-friendly

Application-integrated Far Memory

Anil Yelam, Stewart Grant, Saarth Deshpande, Nadav Amit,

Radhika Niranjan Mysore, Amy Ousterhout, Marcos K. Aguilera, Alex C. Snoeren

Rising DRAM cost in data centers

Reaching 40–50% of the server cost!

DRAM cost in Meta’s data centers [Maruf et al. ASPLOS’ 23]

2

Cost saving efforts

3

Cheaper
substrates

Rack-scale
memory pool

CPU

DRAM

CPU

DRAM

CPU

DRAM

CPU

DRAM

Fastswap, LegoOS, AIFM, KonaGoogle’s Software-defined Far Memory
Meta’s Transparent Memory Offloading

Far memory

Compared to DRAM

● Slower

● Need guards

4

A cost-effective but slower memory extension.

~100 ns
5-50 µs,
s/w fetch

far
memory

Local
DRAM

CPU

Far memory systems

5

A cost-effective but slower memory extension.

Local
DRAM

far
memory

APP

SYSTEM

Guard interface
Compared to DRAM Goal is to avoid:

● Slower → Performance hit

● Need guards → Application changes

Hardware guards offer transparency

6

Local
DRAM

far
memory

APP

Use OS paging/hardware to support far memory.

OS

Virtual memory

Page
tables

✅ No application changes

❌ Performance

Software guards enable better performance

7

Use a custom API and annotate every access.

✅ Performance

❌ Significant porting effort

Local
DRAM

far
memory

APP

In-APP runtime

Memory API

Software guards enable better performance

8

Use a custom API and annotate every access.

✅ Performance

❌ Significant porting effort

❌ Overhead for local accesses
Local

DRAM
far

memory

APP

In-APP runtime

Memory API

Example: Hardware vs Software guards

9

Performance

Example: Hardware vs Software guards

10

Fastswap: 0

AIFM: >1000

Performance Code changes

Example: Hardware vs Software guards

11

Fastswap: 0

AIFM: >1000

Performance Code changes

Can we balance the performance
benefits of software guards with the
transparency of hardware guards?

Our answer is Eden

12

Fastswap: 0

AIFM: >1000

Eden: 10

Performance Code changes

Our answer is Eden

13

Fastswap: 0

AIFM: >1000

Eden: 10

Performance Code changes

Eden supports both guards

14

Local
DRAM

far
memory

OS
H/W
guard

Choice for each memory access.

● Hardware guards (default)

● Software guards (where beneficial)
APP S/W

guard

Beneficial → Only far memory accesses
But that could be everywhere in the code?

How do applications access far memory?

DataFrame example at 10% local memory.

Of 15000 total lines of code:

● Only 155 → at least one far memory access

● Top 11 → 95% of all accesses!

DataFrame
column
vectors

15

DataFrame library

DataFrame is not an outlier!

16

Max 32 code locations—12 at median—see 95% far memory accesses

155

Eden overview

● Software guards → Hints in code

Hardware guards → Default

17

Local
DRAM

far
memory

OS
Page

Tables

APP Hints

Eden overview

● Software guards → Hints in code

Hardware guards → Default

● User-level runtime

18

Local
DRAM

far
memory

OS
Page

Tables

APP

Eden runtime

Hints

Eden overview

● Software guards → Hints in code

Hardware guards → Default

● User-level runtime

● Userfaultfd to keep hardware guards

○ Slower but rare

19

Local
DRAM

far
memory

OS
Page

Tables

APP

Eden runtime

Hints

Userfaultfd

Eden overview

● Software guards → Hints in code

Hardware guards → Default

● User-level runtime

● Userfaultfd to keep hardware guards

○ Slower but rare

● Lightweight threads e.g., Shenango

20

Local
DRAM

far
memory

OS
Page

Tables

APP

Eden runtime

Hints

Userfaultfd

Step 1: Eden points out top locations

21

e.g., Top two locations for DataFrame on Line 690.

DataFrame
column
vectors

DataFrame library

Step 2: Add basic hints

22

Let Eden know what data to guard in software. Only for

performance, not correctness!
DataFrame

column
vectors

DataFrame library

Step 3: Pass additional info where helpful

23

DataFrame benefits from prefetching.

DataFrame
column
vectors

DataFrame library

Eden result for DataFrame

24

Fastswap: 0

AIFM: >1000

Eden: 10

Performance Code changes

More local accesses → Exploit hardware guards

25

Fastswap: 0

AIFM: >1000

Eden: 10

Performance Code changes

More far accesses → Exploit software guards

26

Fastswap: 0

AIFM: >1000

Eden: 10

Performance Code changes

Deliberate use of software guards

27

Fastswap: 0

AIFM: >1000

Eden: 10

Performance Code changes

Eden summary

● Applications only access far memory at

very few code locations.

● Eden exploits this insight to combine

software and hardware guards.

● Thus, Eden avoids hard bargain between

performance and programmer effort.

28

AUTHORS: Anil Yelam, Stewart Grant, Saarth
Deshpande, Nadav Amit, Radhika Niranjan Mysore,
Amy Ousterhout, Marcos K. Aguilera, Alex C. Snoeren

