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Deep Learning Recommendation Model (DLRM)

• DLRMs are widely used in e-commerce platform to provide accurate,
personalized recommendations to improve customer experience
• Applications: web search, recommendation, advertisements, etc.

Images credit to: https://alibabatech.medium.com 2



An Illustration for DLRM Serving
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Embedding operations are 
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embedding tables 
(typically 100GB-1TB), low
compute-intensity

Dense network component
is better executed on GPUs
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An Illustration for DLRM Serving

Feature Interaction (e.g., concatenation)

Embedding
Table 1Dense Layers

Dense Layers (e.g., MLP, Transformer)

Output (e.g., click-through rate, item score)

Dense Features
(e.g., age, price)

Embedding
Table N...

Sparse Features
(e.g., user ID, item ID)

Sparse Computation

Dense Computation

Embedding operations are 
characterized by large 
embedding tables 
(typically 100GB-1TB), low
compute-intensity

Dense network component
is better executed on GPUs

A typical DLRM task may
require <48 CPUs, 1 GPU>
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Daily and Seasonal Variations of DLRM Services
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Daily and Seasonal Variations of DLRM Services
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Daily and Seasonal Variations of DLRM Services
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Daily and Seasonal Variations of DLRM Services
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C1: Resource Fragmentation for Daily DLRM Serving

• Shared clusters have high allocation rates (e.g., > 90%)

• Hard to scale DLRM instances due to severe fragmentation
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C1: Resource Fragmentation for Daily DLRM Serving

• Shared clusters have high allocation rates (e.g., > 90%)

• Hard to scale DLRM instances due to severe fragmentation
• DLRM instances typically have high CPU-to-GPU ratio
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C1: Resource Fragmentation for Daily DLRM Serving

• Shared clusters have high allocation rates (e.g., > 90%)

• Hard to scale DLRM instances due to severe fragmentation
• DLRM instances typically have high CPU-to-GPU ratio
• Over 30k fragmented CPUs and more than 200 fragmented GPUs
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C2: Load Spikes in Seasonal Promotional Festivals

• Over-provisioning for the peak load
• Results in significant underutilization

• Capacity loaning during load spikes
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C2: Load Spikes in Seasonal Promotional Festivals

• Over-provisioning for the peak load
• Results in significant underutilization

• Capacity loaning during load spikes
• Existing datacenter include multiple purpose-specific infrastructures: some 

for training and the others for inference
• Can we temporarily loan GPU servers from training clusters to handle 

excessive recommendation queries?
• The mismatch between server configuration and resource demand renders 

capacity loaning ineffective!
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Resource Heterogeneity in GPU Clusters
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Resource Heterogeneity in GPU Clusters
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Over 90% of DLRMs have > 20 CPU-
to-GPU ratio, while all multi-GPU 
training nodes have a ratio below 20.
---------------------------------------------
Placing DLRMs in the training nodes
leaves many stranded GPUs!
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Resource Heterogeneity in GPU Clusters
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As cluster operators, we aim to build a unified infrastructure that integrate training and
inference workloads, optimizing resource multiplexing and minimizing fragmentation.
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Resource Heterogeneity in GPU Clusters
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In this work, we propose resource disaggregation for DLRM serving!
1. Allow decoupled independent scaling-out of CPUs and GPUs

2. Resource sharing with other GPU-intensive AI workloads (e.g., training)
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As cluster operators, we aim to build a unified infrastructure that integrate training and
inference workloads, optimizing resource multiplexing and minimizing fragmentation.



Approaches to GPU Disaggregation

• GPU disaggregation at different levels
• Graph-level disaggregation

• Partition the compute graph into a CPU sub-graph and a 
GPU sub-graph

• Schedule sub-graphs on selected CPU and GPU nodes for 
disaggregated execution

• API-level disaggregation
• Intercept program calls to CUDA APIs (rCUDA [HPCS’10])
• Redirect them to a remote GPU node for execution

• Hardware-level disaggregation
• Enabled with specialized hardware
• Examples: customized multi-hop PCIe switches (DxPU 

[TACO’23]) and CXL 3.0

Models
TensorFlow/PyTorch
Device SDK (CUDA)

CPU/GPU/NPU

PCIe Driver

Application
Framework

Driver

Hardware
PCIe

Device Driver
API

Server
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Approaches to GPU Disaggregation

• GPU disaggregation at different levels
• Graph-level disaggregation✅
• API-level disaggregation (rCUDA [HPCS’10])
• Hardware-level disaggregation (DxPU [TACO’23])

• Design considerations
• DLRM exhibits distinct resource consumption
• Easy to support heterogeneousAI accelerators
• Adapt to the existing infrastructure (i.e., no
specialized hardware, high-bandwidth RDMA)

21
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CPU
TensorFlow/PyTorch
Device SDK (CUDA)

GPU/NPU
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PCIe
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PrismOverview

• Prism is a large-scale DLRM system that enables GPU-disaggregated 
serving by means of graph partitioning

• Prism operates on a cluster where a fleet of heterogeneous GPU 
nodes (HNs) interconnects with a number of CPU nodes (CNs) via a 
high-speed RDMA network; automatically partitions 
recommendation models for distributed inference on CNs and HNs

• Prism has been deployed in production clusters for over two years
and now runs over 10k GPUs
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Rectified Execution Flow with Prism
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HN

...

...
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Rectified Execution Flow with Prism

CN Instance

Service A

Service B

CPU Node (CN)

HN Instance

CPU Pool

CN Instance

CN Instance

CN Instance

CN

Service C

GPU Pool

HN Instance

HN Instance

HN Instance

GPU Node (HN)

HN

...

...

24



Rectified Execution Flow with Prism

CN Instance

Service A

Service B

CPU Node (CN)

HN Instance

CPU Pool

CN Instance

CN Instance

CN Instance

CN

Service C

GPU Pool

HN Instance

HN Instance

HN Instance

RPC via
RDMA

GPU Node (HN)

HN

...User Request

...

25



Rectified Execution Flow with Prism
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Requirements of Disaggregated DLRM Serving
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Requirements of Disaggregated DLRM Serving

• Transparency to model development and optimization
• Automated graph partitioning to support disaggregated inference for 

various recommendation models
• Don’t affect users or invalidate original graph optimization strategies
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Requirements of Disaggregated DLRM Serving

• Transparency to model development and optimization
• Automated graph partitioning to support disaggregated inference for 

various recommendation models
• Don’t affect users or invalidate original graph optimization strategies

• Compliance to SLOs (e.g., 20ms latency)
• Require a joint optimization approach across various system components to 

minimize the impact on service performance

• Good scalability
• Ensure service performance remains unaffected, even under conditions of

high traffic loads in production environments
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System Components in Prism

Computational Graph

Cluster Orchestration

Embedding Tables Configs

Graph Optimizer(s)

Topology-Aware Resource Manager

Intra-Node Allocation

Incast Flow Control SLO-Aware Comm. Scheduling

TCP/IP RDMA
RPC & Networking

CN Instance HN Instance CPU GPU RNIC

Resource-Aware Graph Partitioner

Inter-Node Scheduling

RTP Framework
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① Resource-Aware Graph Partitioner

• Retrofit for the existing workflow
• Existing optimizers are typically applied in a sequential manner→ Rewrite

the original computation graph and generate an optimized computation 
graph tailored for deployment
• Graph partitioning and disaggregation optimization serve as the final stages
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① Resource-Aware Graph Partitioner

• Retrofit for the existing workflow
• Existing optimizers are typically applied in a sequential manner→ Rewrite

the original computation graph and generate an optimized computation 
graph tailored for deployment
• Graph partitioning and disaggregation optimization serve as the final stages

• Employ a heuristic approach to split the GPU subgraph
• Offline profiling and operator categorization→CPU-intensive ops (e.g., 

embedding table lookup) and GPU-efficient ops (e.g., MatMul, Attention)
• Perform a DFS coloring process to encompass the maximum number of 

operators feasible for GPU computation

• In 80% of DLRM services, RDMA transfer size per request < 10 MiB
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① Resource-Aware Graph Partitioner
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CPU

Shared GPU 
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Pre-process CPU Ops

Shared CPU 
Memory Pool

Output Tensors

FusedGraphOp
            feed    ==>

Post-process CPU Ops

Outputs

Query

Request
{
  1) MetaData -> serialization
  2) Tensor pointers
}
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                                             fetch      <==

Shared CPU 
Memory Pool

MetaData Buffer

Placeholder Placeholder ... Placeholder

Matmul Sub Mul
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{
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② Topology-Aware Resource Manager

• Place a group of CN and HN instances into a shared cluster

• Different role of instances can be scaled independently

• Principle: topology-aware node scheduling and resource allocation
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② Resource Manager: Inter-node scheduling

• Two policies
• Confine all instances within

the same PoD
• Schedule new instance(s) to 

the ASW with the most 
existing instances

• Deployment constraints at
different levels
• Node
• NIC switch

PSW

ASW ASW

PSW PSW

ASW ASW ASW ASW

…

…

…

…

topology-aware management

Spine
Switches

Leaf
Switches

CN HN

For more details of data center network, please refer to:
”Alibaba HPN: A Data Center Network for Large Language Model Training”, SIGCOMM’24
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② Resource Manager: Intra-node allocation

• HN instance
• Arbitrary bindings of GPUs and RNICs can induce 21–36% performance loss
• Assign RNIC and GPU on the same PCIe switch; enable GPUDirect RDMA

• CN instance
• Prioritize CPU allocation under the same PCIe switch connected to the RNIC

CPU0 CPU1UPI

RNIC0

G0 G1 G2 G3 G4 G5 G6 G7

RNIC1 RNIC2 RNIC3

CPU0 CPU1UPI

RNIC0

Heterogeneous GPU Node (HN) CPU Node (CN)

Gi ith GPUPCIe Switch
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③ SLO-Aware Communication Scheduler

• Extend the native RoCEv2 stack and implement a middleware to 
leverage RDMA capabilities in a virtualized environment

• Incast: A substantial number of CN instances concurrently transmit 
data to a limited number of HN instances
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③ SLO-Aware Communication Scheduler

• Adaptive incast window
• Adapt to the congestion level of 

network links and PCIe links
• The number of CNPs serves as an 

estimator of the congestion level
HN Instance

CN Instance CN Instance CN Instance

RDMA Network

Request Request Request
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Incast Window

Done Transmitting Delayed

Incast Queue

Incast Traffic
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metadata

metadata
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③ SLO-Aware Communication Scheduler

• Adaptive incast window
• Adapt to the congestion level of 

network links and PCIe links
• The number of CNPs serves as an 

estimator of the congestion level

• Deadline-aware request scheduling
• The deadline of a comm request: the 

latest time to initiate parameter 
transmission to meet the SLO
• Reorder the requests in the incast 

queue to maximize the number of 
requests meeting their SLOs

HN Instance

CN Instance CN Instance CN Instance

RDMA Network

Request Request Request

RNIC
Incast Window

Done Transmitting Delayed

Incast Queue

Incast Traffic
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Evaluation

• Production workloads
• Machine specifications
• CPU node (CN)

• 128 vCPU cores 
• 1 200 Gbps RNIC

• GPU node (HN)
• 128 vCPU cores
• 8A100 GPUs with 80 GiB GPU memory each
• 4 200 Gbps RNICs

• All nodes use Intel(R) Xeon(R) Platinum 8369B CPUs, with 1024 GiB memory
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Performance under varying traffic loads
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Performance under varying traffic loads
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Prism can maintain service performance under high traffic scenarios!



Mitigated Resource Fragmentation
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• HN instances that require GPU allocation, their CPU 
requests are < 12 cores, and memory requests < 24 GiB

• CN instances have CPU requests > 48 cores and memory 
requests > 240 GiB
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Mitigated Resource Fragmentation
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Prism can separates resource 
requirements of DLRM inference services.

• HN instances that require GPU allocation, their CPU 
requests are < 12 cores, and memory requests < 24 GiB

• CN instances have CPU requests > 48 cores and memory 
requests > 240 GiB



Mitigated Resource Fragmentation
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Prism reduces the cluster’s CPU fragments by 53% (18k cores) 
and GPU fragments by 27% (60 GPUs).
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• HN instances that require GPU allocation, their CPU 
requests are < 12 cores, and memory requests < 24 GiB

• CN instances have CPU requests > 48 cores and memory 
requests > 240 GiB



Mitigated Resource Fragmentation
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Prism reduces the cluster’s CPU fragments by 53% (18k cores) 
and GPU fragments by 27% (60 GPUs).
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Prism can effectively reduce the cluster’s
fragmented resources.

• HN instances that require GPU allocation, their CPU 
requests are < 12 cores, and memory requests < 24 GiB

• CN instances have CPU requests > 48 cores and memory 
requests > 240 GiB



Efficient Resource Loans for Peak Demand

• During e-commerce promotional events, Prism can borrow a portion 
of training nodes to scale out DLRM inference services
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Discussion and Future Explorations

• Disaggregated serving for different workloads
• LLM PD disaggregation: decouple the GPU computation and I/O bandwidth
• DLRM disaggregation: decouple the use of CPU and GPU computation
• Transform the workload from the perspective of resource provisioning
• Decouple diverse resource requirements to accommodate the infrastructure
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Discussion and Future Explorations

• Disaggregated serving for different workloads
• LLM PD disaggregation: decouple the GPU computation and I/O bandwidth
• DLRM disaggregation: decouple the use of CPU and GPU computation
• Transform the workload from the perspective of resource provisioning
• Decouple diverse resource requirements to accommodate the infrastructure

• Fault tolerance
• Performance isolation between networking resources
• Dense instance deployment on a single node→High blast radius!
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• Prism enables DLRMs to harvest resources from CPU nodes and
heterogeneous GPU nodes by means of disaggregated serving

• Prism effectively mitigates resource fragmentation in daily high-
allocation GPU clusters; and enables efficient capacity loaning from
training clusters during seasonal promotion events

• Prism has been deployed in production clusters for over two years
and now runs over 10k GPUs

Takeaways

A production DLRM serving trace is released at: https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2025

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2025

