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A rising challenge for AI Clusters at scale

growing environmental footprint of GPU Clusters

Power Demand 8% of global data center demand → projected 15–20% by 2028

Resource Scarcity Power and resource limits hurt cluster-wide performance

Smarter, carbon-aware management without slowing down cluster Design Goal 
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Work

Scale-
Adaptive

Energy-
Aware

Model-
Agnostics

Gandiva ❌ ❌ ❌

Tiresias ❌ ❌ ✅

Pollux ✅ ❌ ❌

Zeus ❌ ✅ ❌

GREEN ✅ ✅ ✅

Characteristics of  
ML Cluster Schedulers 

Adjust GPU allocations dynamically 

Tweaking job settings or hyper-parameters 

Energy-Aware 

Optimizing energy use with certain trade-offs

① Scale-Adaptive 

② Model-Agnostic vs. Model-Aware

③ Energy-Aware



What’s more: 

• Energy use ≠ Carbon footprint 

• Carbon Intensity varies over time

Dynamic Voltage and Frequency Scaling (DVFS) or other throttling 
strategy essentially scaling back the work performed (or capacity) 

→ GPU hours are expensive and scaling back resource use is suboptimal

Considerations in Energy Management for ML 



Motivation and Idea of GREEN Scheduling

• Different power usage among jobs → Even when using same # of GPU 

• Preexisting Job Preemption → Exploit the (natural) temporal flexibility

← Align energy use with low 

carbon-intensity periods



GREEN Workflow — High-Level View

1. Monitor per-job energy and carbon data  

2. Optimize via energy scaling and carbon shifting 

3. Schedule using Multilevel Feedback Queue (MLFQ)

User Program → DL Job 

shift
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Carbon Tracking and Factor Model

User Program → DL Job 
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① Monitoring job’s energy use

② Calculating job’s carbon footprint



Energy Efficiency Optimizer
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Scale jobs’ resource allocation to 
maximize progress per unit 
energy:



Carbon Footprint Optimizer

User Program → DL Job 

shift
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Prioritization coefficient by rescaling the 
job’s power consumption to [1,µ]



Carbon Footprint Optimizer

Workload temporal shifting — based on  

carbon intensity and jobs’ power consumption 



Multilevel Feedback Queue (MLFQ) Scheduling

User Program → DL Job 

shift
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Evaluation Setup

Workload: We collected 791 jobs from real users over a 24-hour period 

on a university-managed production cluster (see SING, ASPLOS ’25)

Metrics: JCT, Makespan, Carbon footprint, Cluste-wide Power Draw

Baselines: ML cluster schedulers and carbon-aware workload schedulers



Carbon Reductions with Small Speed Tradeoffs



Carbon Reductions with Small Speed Tradeoffs

Number of running high- and lower-
power jobs (left axis) responding to 
carbon intensity changes. 

Cluster-wide carbon 
emission accumulation 
and power draw.
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