GREEN: Carbon-efficient Resource Scheduling for Machine Learning Clusters

— a system researcher's perspective

Presenter

<u>Authors</u>

Kaiqiang Xu 徐凯强 Decang SunHan TianJunxue ZhangKai Chen孙德仓田晗张骏雪陈凯

Kaiqiang Xu 徐凯强

(ing Al

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

A rising challenge for AI Clusters at scale

growing environmental footprint of GPU Clusters

Power Demand

Resource Scarcity

Design Goal

Smarter, carbon-aware management without slowing down cluster

8% of global data center demand \rightarrow projected 15–20% by 2028

Power and resource limits hurt cluster-wide performance

Characteristics of ML Cluster Schedulers

1 Scale-Adaptive

Adjust GPU allocations dynamically

2 Model-Agnostic vs. Model-Aware

Tweaking job settings or hyper-parameters

③ Energy-Aware

Optimizing energy use with certain trade-offs

Prior Work	Scale- Adaptive	Energy- Aware	Model Agnosti
Gandiva			
Tiresias			
Pollux			
Zeus			
GREEN			

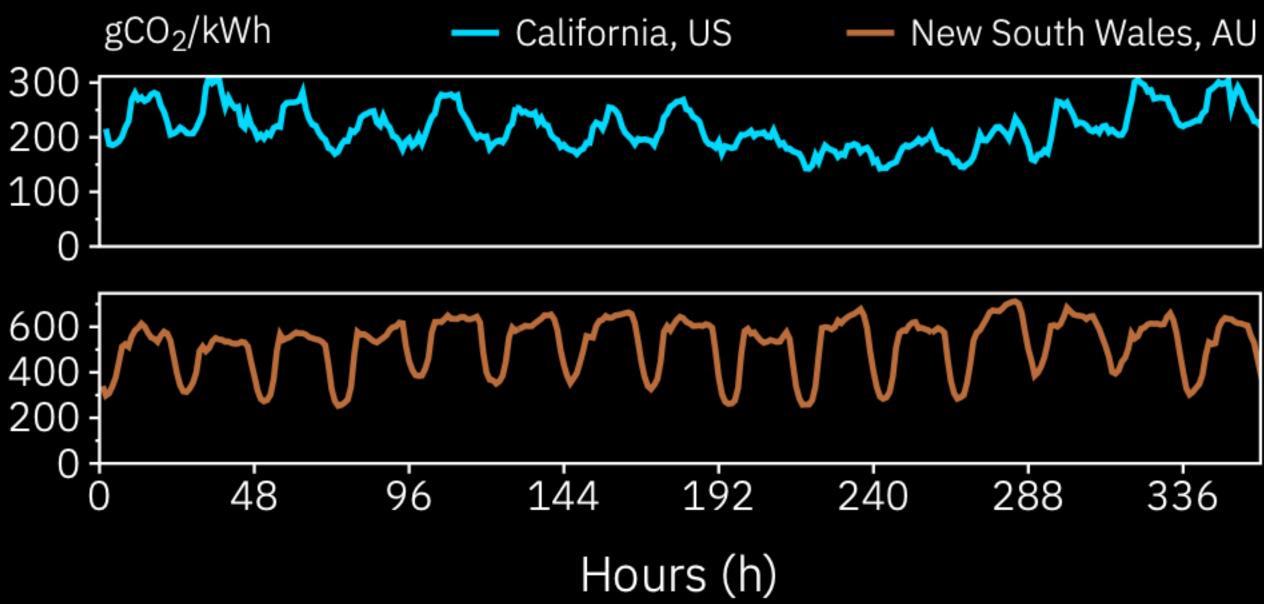
ers

Considerations in Energy Management for ML

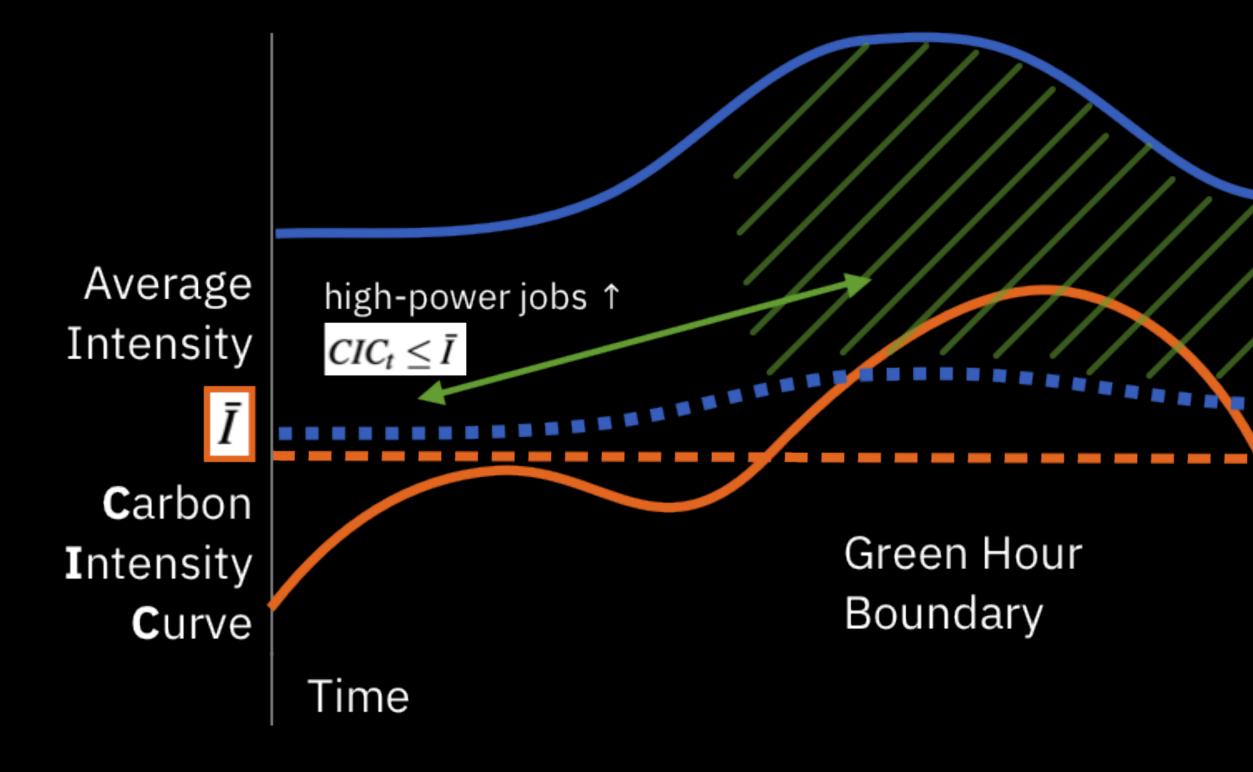
What's more:

- Energy use \neq Carbon footprint
- Carbon Intensity varies over time

- Dynamic Voltage and Frequency Scaling (DVFS) or other throttling strategy essentially scaling back the work performed (or capacity)
- \rightarrow GPU hours are expensive and scaling back resource use is suboptimal



Motivation and Idea of GREEN Scheduling



Different power usage among jobs \rightarrow Even when using same # of GPU Preexisting Job Preemption \rightarrow Exploit the (natural) temporal flexibility

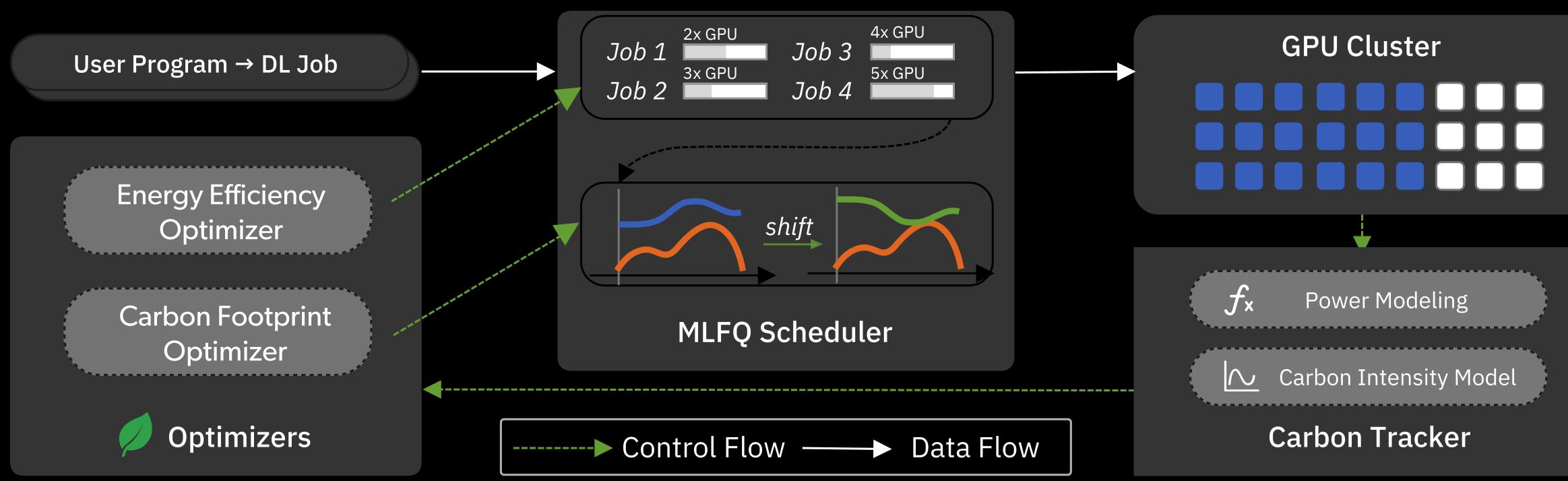
> Cluster Power Usage

Median **GPU** Power

 \widetilde{P}

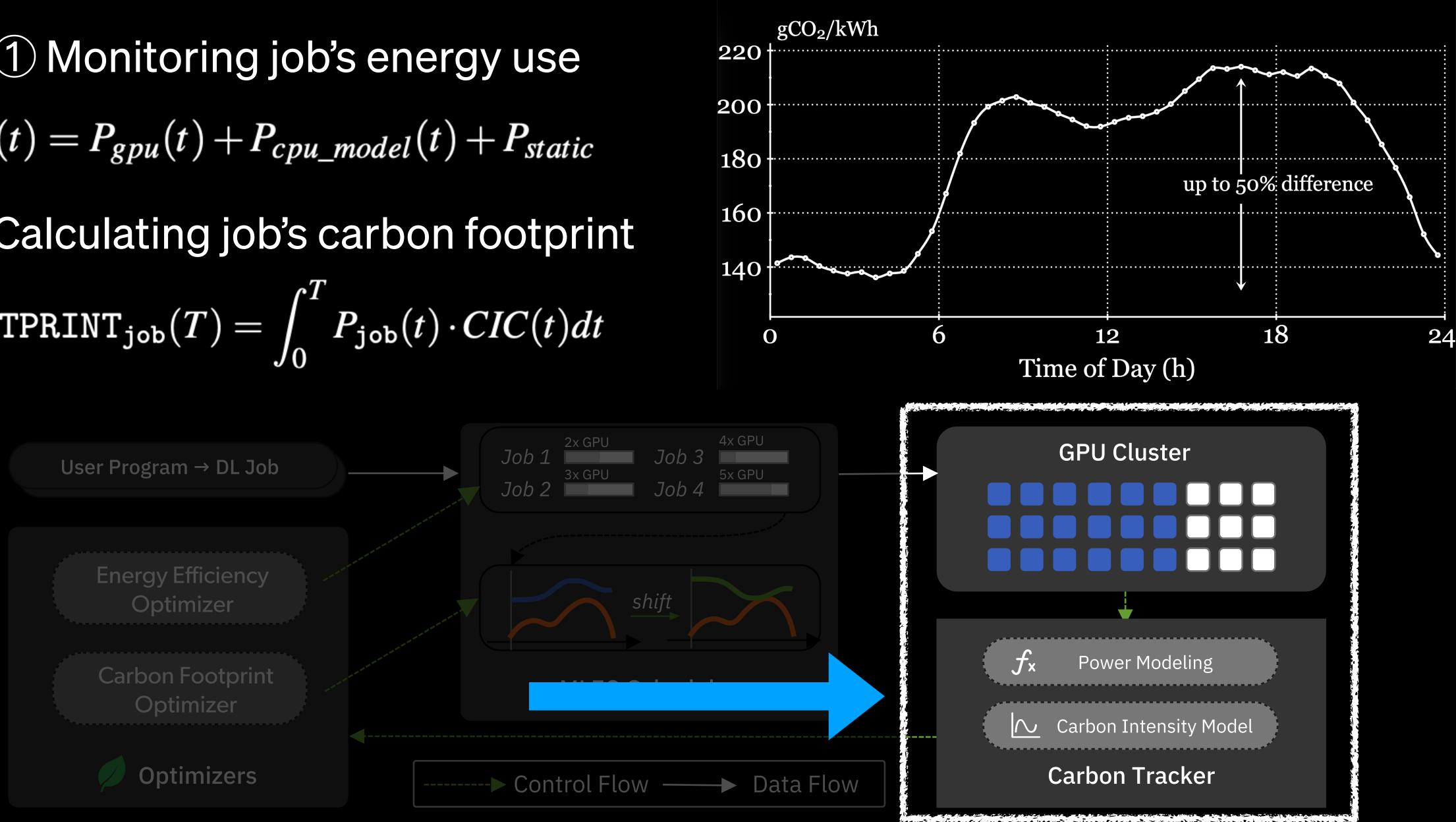
 Align energy use with low carbon-intensity periods

- Monitor per-job energy and carbon data 1.
- 2. Optimize via energy scaling and carbon shifting
- 3. Schedule using Multilevel Feedback Queue (MLFQ)



Carbon Tracking and Factor Model

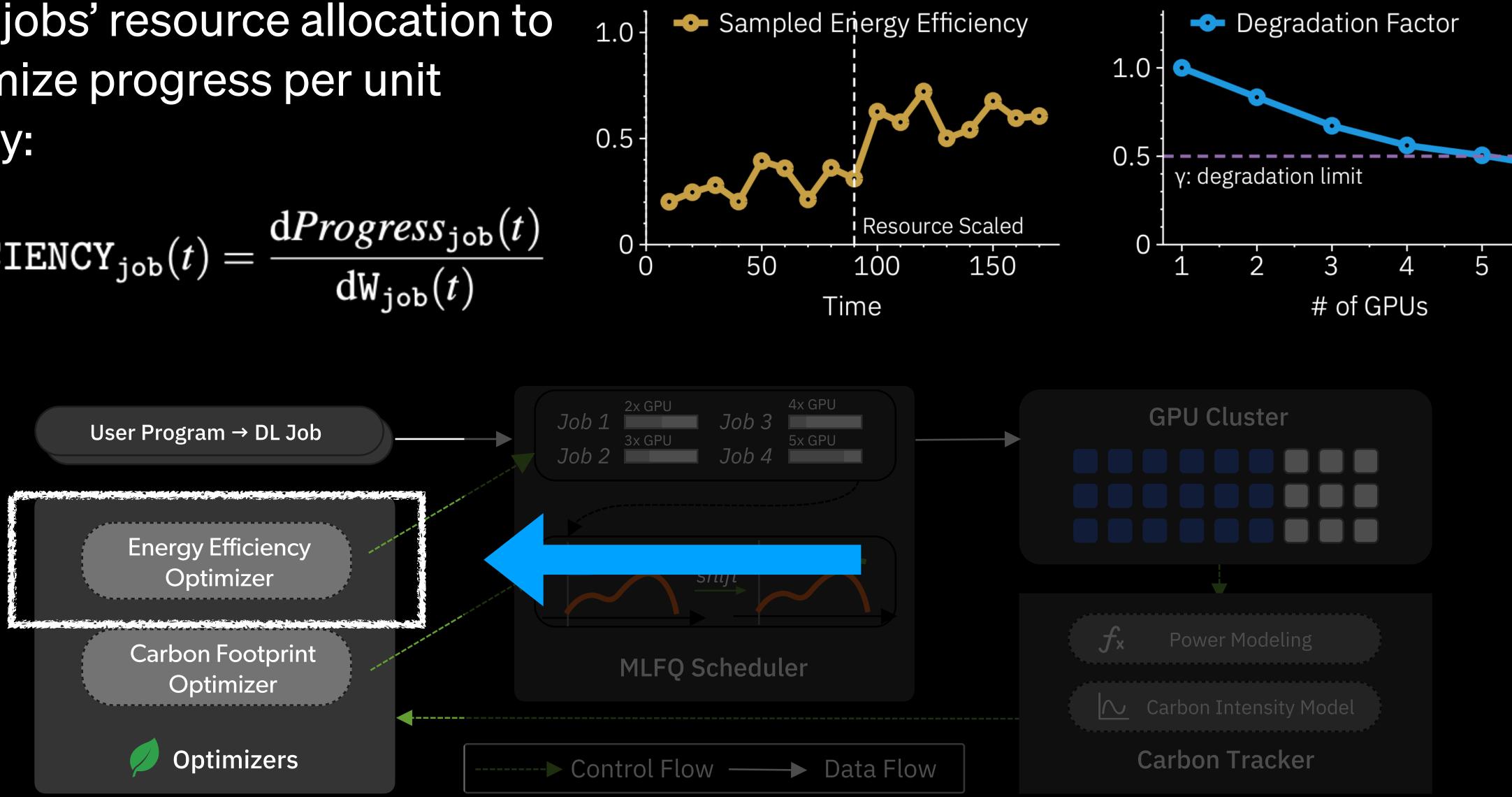
1 Monitoring job's energy use $P_{job}(t) = P_{gpu}(t) + P_{cpu_model}(t) + P_{static}$ 2 Calculating job's carbon footprint $FOOTPRINT_{job}(T) = \int_{0}^{T} P_{job}(t) \cdot CIC(t) dt$

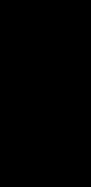


Energy Efficiency Optimizer

Scale jobs' resource allocation to 1.0+ maximize progress per unit 0.5energy:

$$\text{EFFICIENCY}_{job}(t) = \frac{\mathrm{d}Progress_{job}(t)}{\mathrm{d}W_{job}(t)}$$

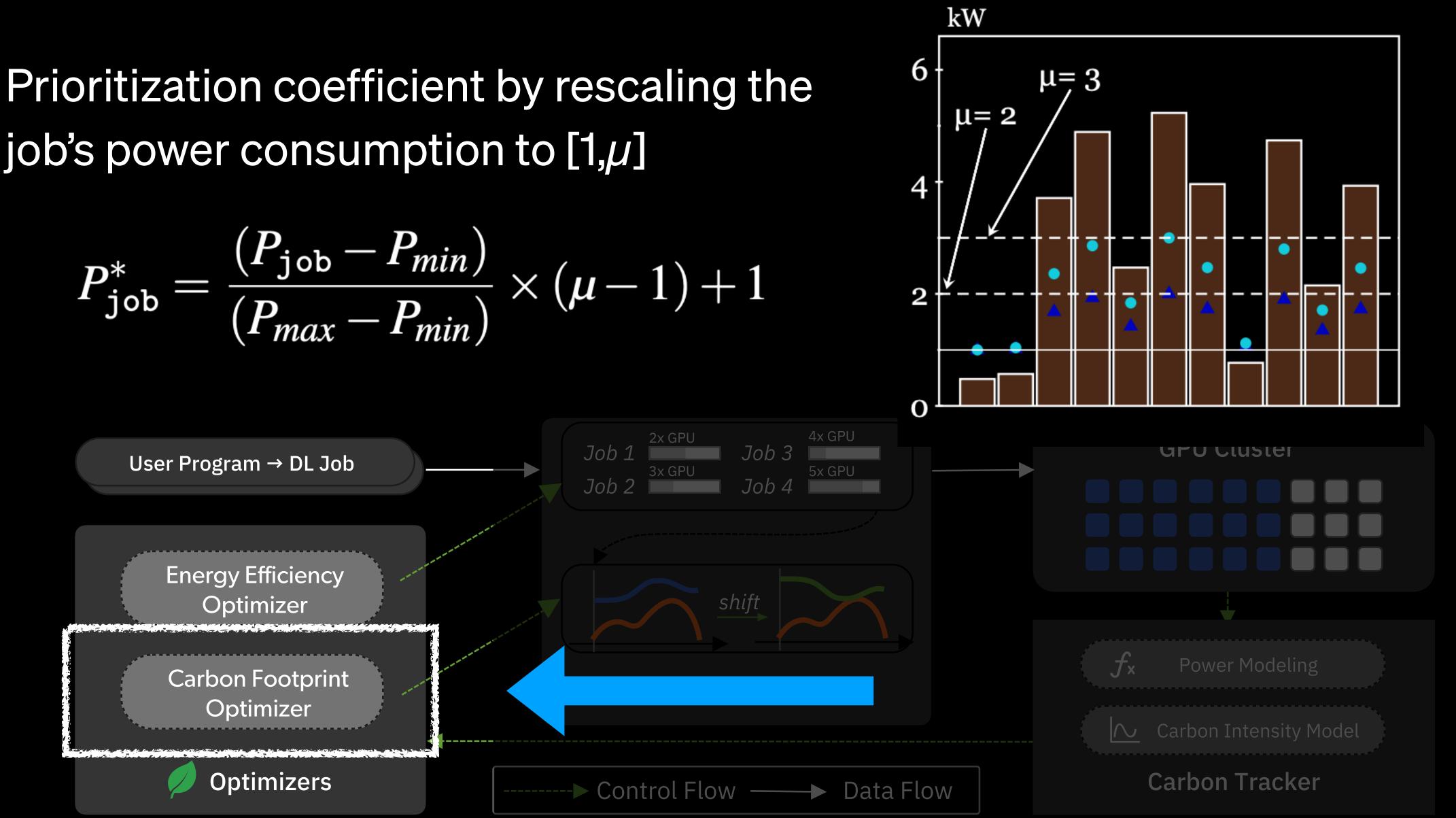




Carbon Footprint Optimizer

job's power consumption to $[1,\mu]$

$$P^*_{\text{job}} = \frac{(P_{\text{job}} - P_{min})}{(P_{max} - P_{min})} \times (\mu - 1)$$



ing Al

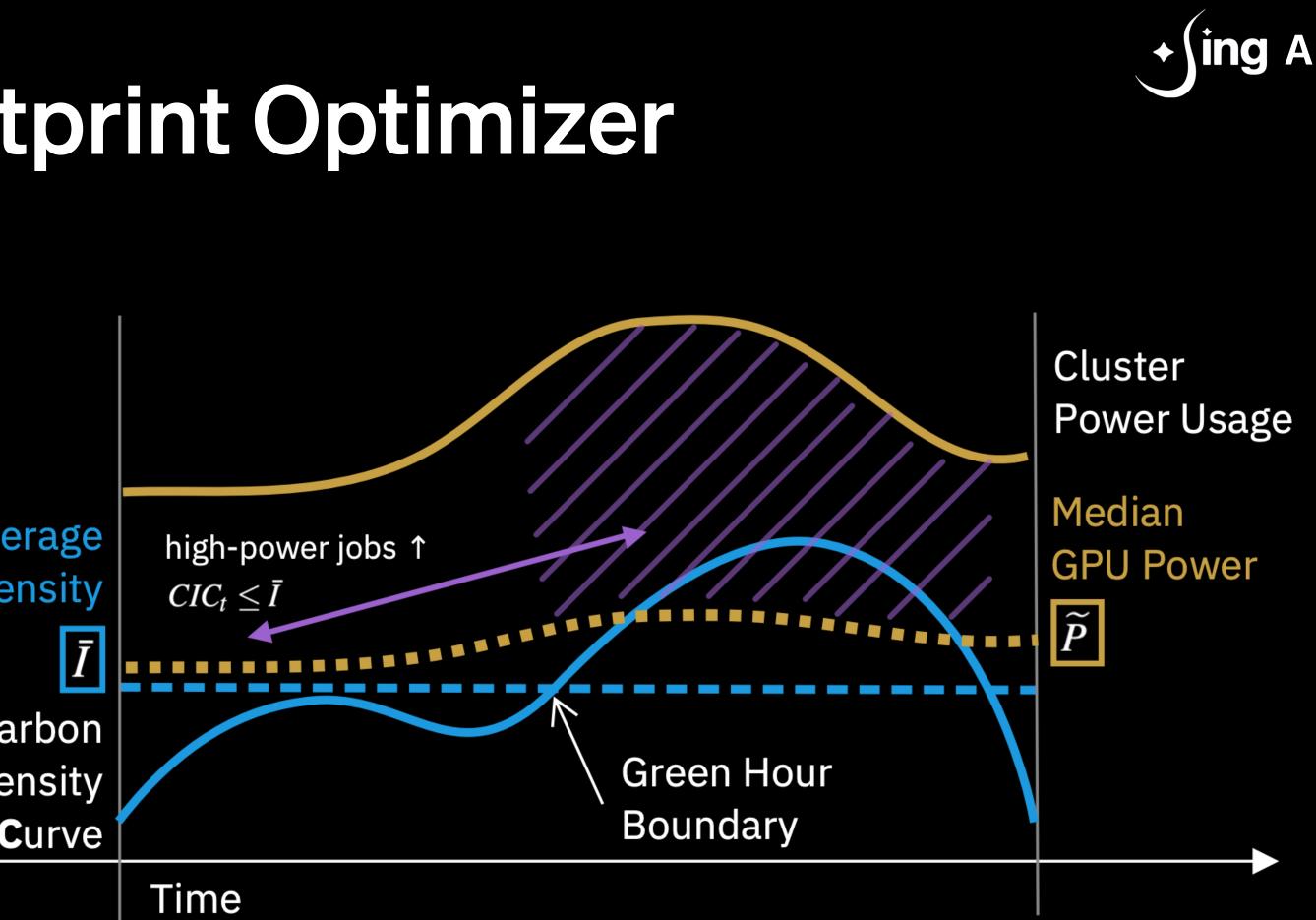
Carbon Footprint Optimizer

$$P_{job}^* = \frac{(P_{job} - P_{min})}{(P_{max} - P_{min})} \times (\mu - 1) + 1$$

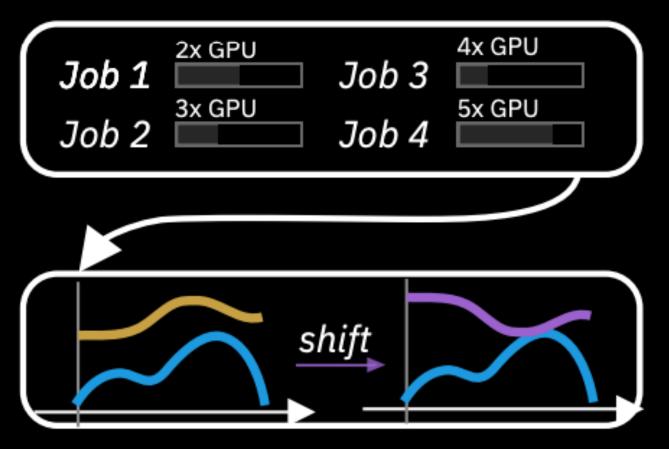
$\texttt{SHIFTING}_{\texttt{job}}$	$\text{if } P_{job} \leq \widetilde{P}$	if $P_{job} > \widetilde{P}$	Ave Inte
if $CIC_t \leq \overline{I}$	$P^*_{ t job}$	$1/P_{ m job}^*$	
if $CIC_t > \overline{I}$	$1/P_{\rm job}^*$	$P^*_{ t job}$	Ca Inte C

$$PRIORITY_{job} = \left(\frac{FO}{DEG}\right)$$

Workload temporal shifting — based on carbon intensity and jobs' power consumption

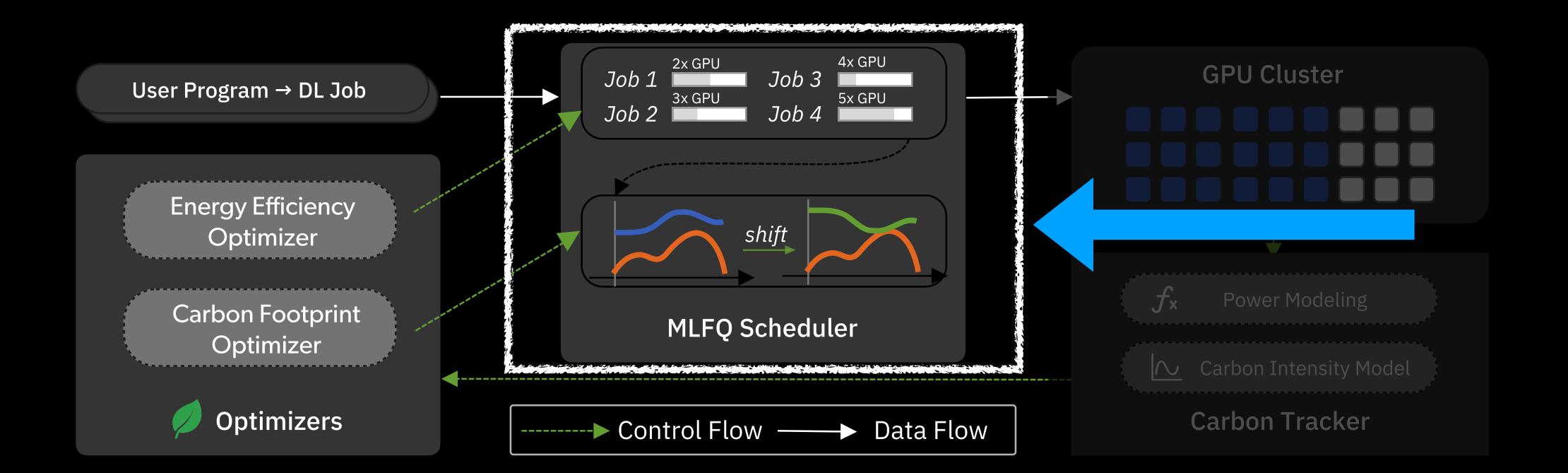


 $OTPRINT_{job}$ · SHIFTING job RADATION



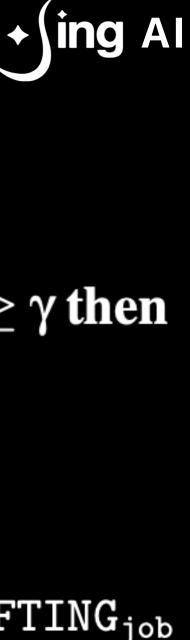
Upper Queue Profiling and scale resource allocation Goal: Optimize energy effiency

Lower Queue Shift high-power jobs to greener time Goal: Optimize cluster carbon footprint



if DEGRADATION_J = Δ EFFICIENCY_J $\geq \gamma$ then Scale out J with one more GPU

$$\texttt{PRIORITY}_{\texttt{job}} = (\frac{\texttt{FOOTPRINT}_{\texttt{job}}}{\texttt{DEGRADATION}_{\texttt{job}}}) \cdot \texttt{SHIFT}$$



Evaluation Setup

Workload: We collected 791 jobs from real users over a 24-hour period on a university-managed production cluster (see SING, ASPLOS '25)

Design and Operation of Shared Machine Learning Clusters on Campus

<u>Kaiqiang Xu</u>, <u>Decang Sun</u>, <u>Hao Wang</u>, Authors:

<u>Junxue Zhang, 🔔 Kai Chen</u> <u>Authors Info & Claims</u>

ASPLOS '25: Proceedings of the 30th ACM International Conference on Architectural Support for Programming Languages and Operating <u>Systems, Volume 1</u> Pages 295 - 310 • <u>https://doi.org/10.1145/3669940.3707266</u>

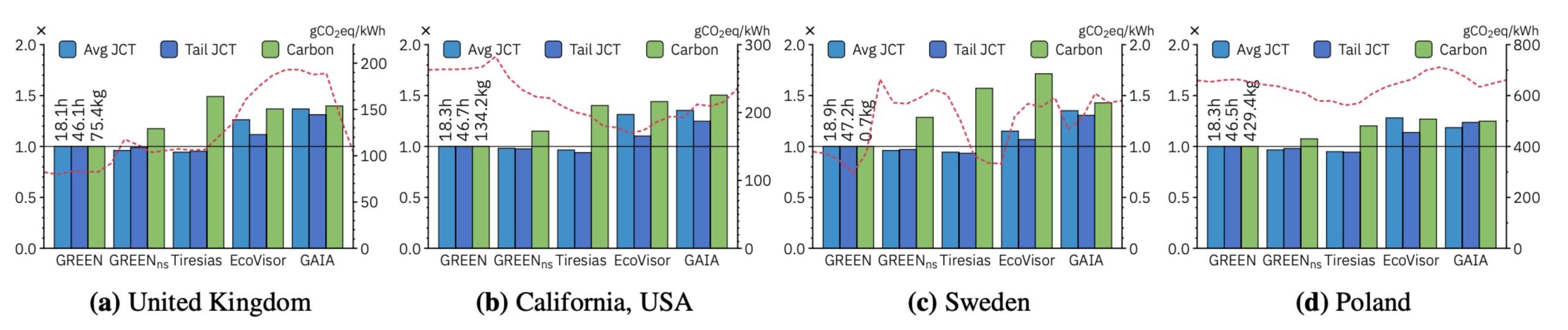
Metrics: JCT, Makespan, Carbon footprint, Cluste-wide Power Draw

Zhenghang Ren, 🔔 Xinchen Wan, 🔔 Xudong Liao, 🔔

Zilong Wang,

Baselines: ML cluster schedulers and carbon-aware workload schedulers

Carbon Reductions with Small Speed Tradeoffs [ing Al

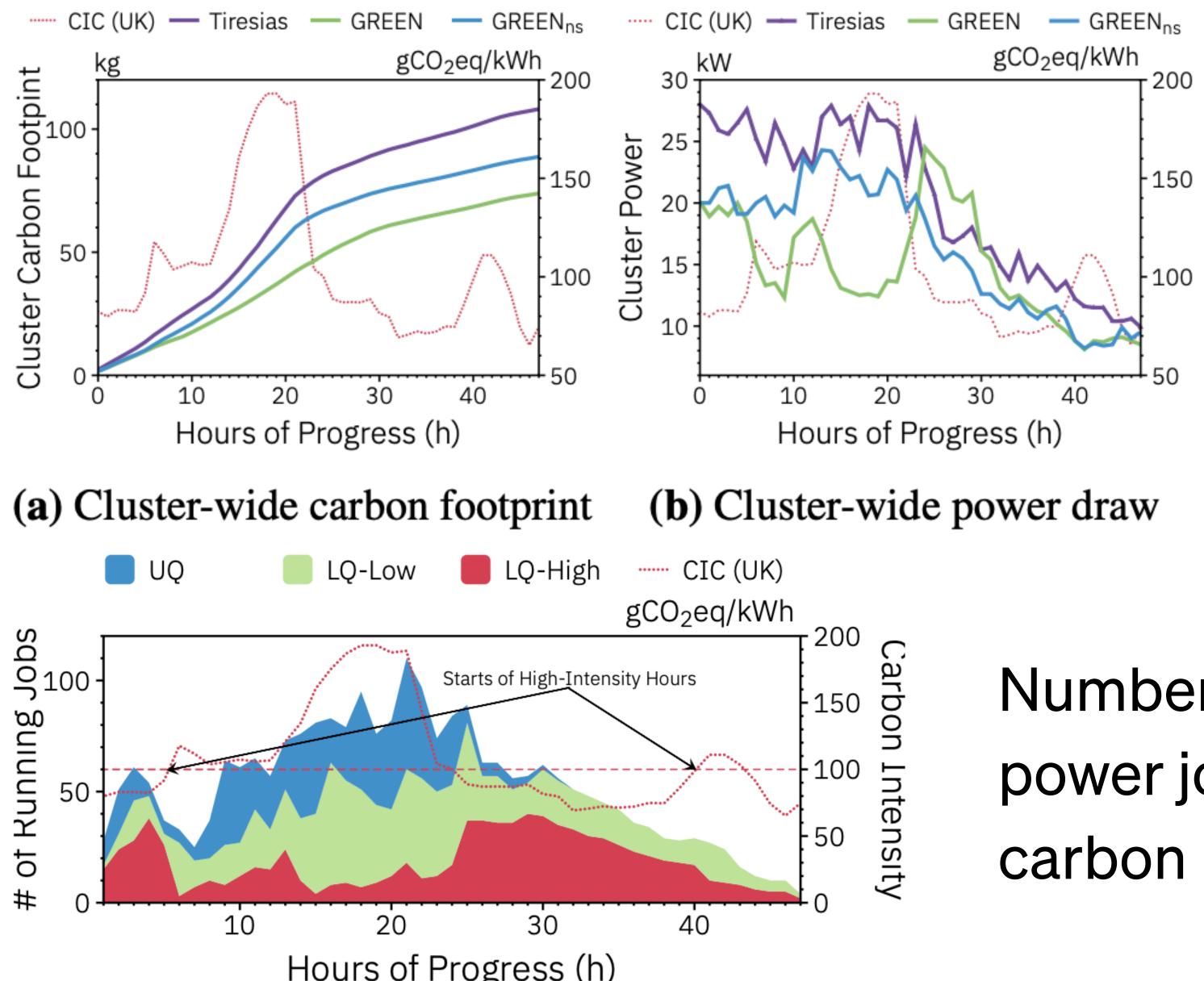


Job Size (% of Total

Extra Small Jobs (0-9 minu Small Jobs (10-59 minutes, Medium Jobs (1 - 10 hours, Large Jobs (≥ 10 hours, 189

l Jobs)	JCT Increase		
I JUDS <i>)</i>	Average	Tail	
ites, 22%)	-0.5%	-0.4%	
, 30%)	1.7%	1.2%	
, 30%)	4.4%	4.8%	
3%)	6.9%	5.8%	

Carbon Reductions with Small Speed Tradeoffs (ing Al



Cluster-wide carbon emission accumulation and power draw.

Number of running high- and lowerpower jobs (left axis) responding to carbon intensity changes.

About the Presenter

Kaiqiang Xu | https://kqxu.com Final-year PhD @ HKUST | Visiting Researcher @ Google

published in NSDI, OSDI, ASPLOS, and SIGMOD.

- **Research Focus.** Developing new abstractions, parallelization strategies, and scheduling algorithms for machine learning computing. My work has been
 - **Next Step: Building Al Clusters for** Usability, Efficiency, and Cost Savings.

Co-op welcome!

