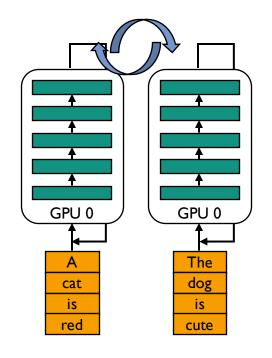
AutoCCL: Automated Collective Communication Tuning for Accelerating Distributed and Parallel DNN Training

<u>Guanbin Xu</u>¹, Zhihao Le¹, Yinhe Chen¹, Zhiqi Lin¹, Zewen Jin¹
Youshan Miao², Cheng Li^{1 3}

University of Science and Technology of China¹, Microsoft Research² Hefei Comprehensive National Science Center³

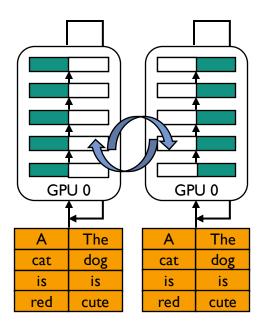


Distributed DNN Training



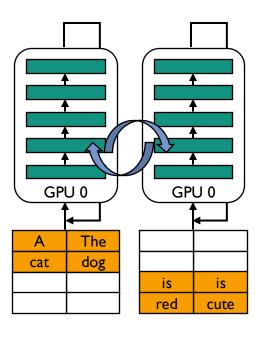
Data Parallelism (DP)

AllReduce



Tensor Parallelism (TP)

AllReduce



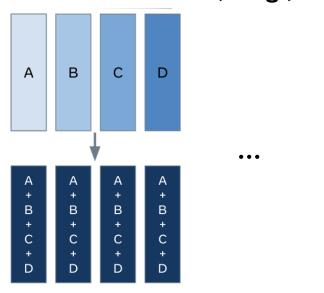
Sequence Parallelism (SP)

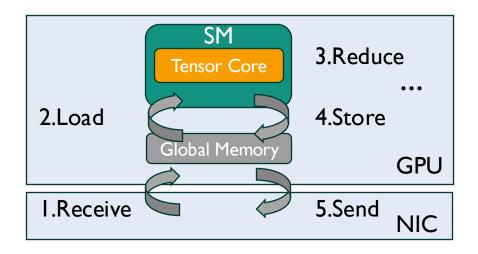
ReduceScatter, AllGather

Collective Communication widely adopted

What's Collective Communication

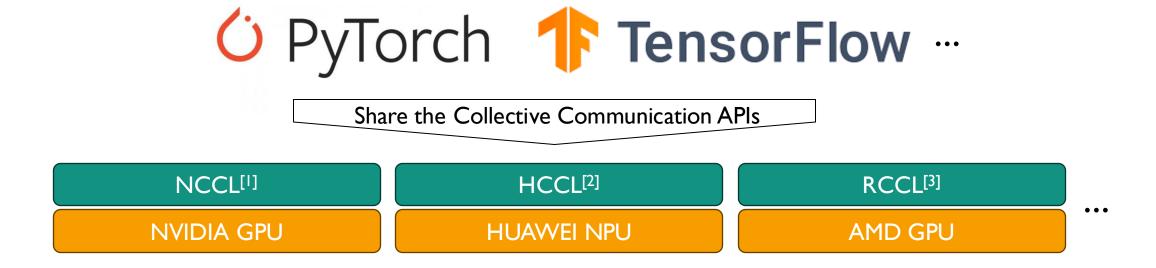
AllReduce: Tree-, Ring-, ...





Sync with all processes Receive-Load-Reduce-Store-Send on each process

Infrastructure for DNN Communication



- Foundational library: almost every distributed DNN job
- Active community: 3.7k star, 2015 now
- Highly optimized: 57 releases, 900 forks
- [1] NVIDIA Collective Communication Library, https://github.com/nvidia/nccl
- [2] Huawei Collective Communication Library, https://gitee.com/ascend/cann-hccl
- [3] ROCm Collectives Communication Library, https://github.com/ROCm/rccl
- [4] NCCL community data as of Apr. 23, 2025

Collective Communication is still Expensive

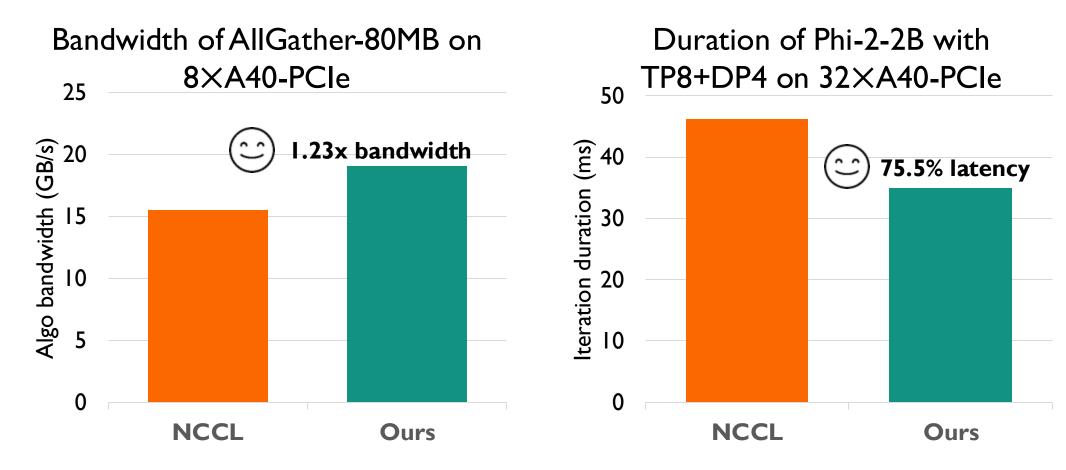
Communication is the bottleneck: up to 42% of time cost [1,2]

SOTA Models	Training Cost (USD)
GPT3	I.13 million
OPT-175B	1.65 million
Megatron-Turing NLG 530B	3.04 million

Cost of training DNN models[3]

- [1] Wang S, et al. Overlap communication with dependent computation via decomposition in large deep learning models ASPLOS22
- [2] Wang G, et al. Domino: Eliminating Communication in LLM Training via Generic Tensor Slicing and Overlapping arXiv, 2024
- [3] https://epoch.ai/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

Huge Tuning Opportunities



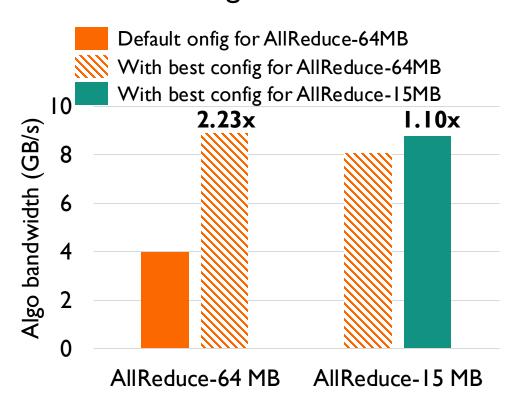
Huge Improvement after tuning NCCL

Goal

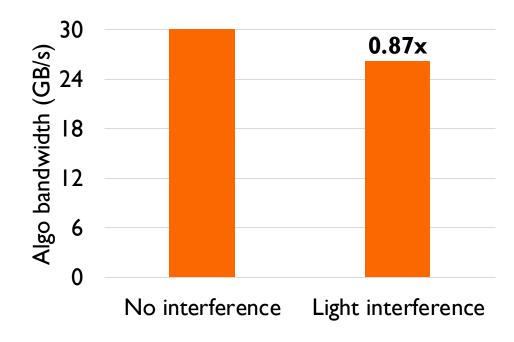
Huge Improvement after tuning NCCL

Tuning is Not Easy

Bandwidth of various tasks with different configs on 8×A40-PCle



Bandwidth of AllGather(80MB) under various interference on 8×A40-NVlink



No One-Config-Fits-All

Computational tension

Questions Before Tuning

- □What low-level parameters are most performance-sensitive? □What rules could guide the effective tuning?
- How to mitigate the dynamic tension of computation?
- ☐ How to support workloads transparently with minimal overhead?

QI: Build Tuning Space

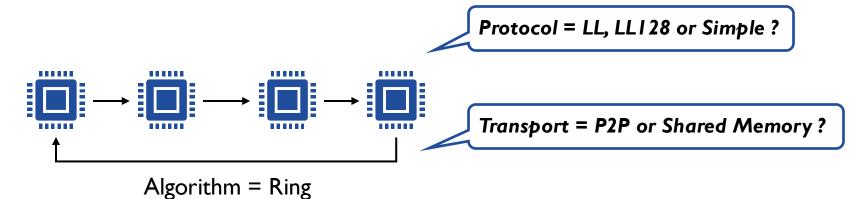
Original Parameters		Abstracted Parameters	
# of parameters	# of key parameters	Categories	# of Choices
158 28	I for Algorithm (A)	2	
	3 for Protocol (P)	3	
	3 for Transport (T)	2	
	II for Nchannel (NC)	128	
		3 for Nthread (NT)	20
		7 for Chunk size (C)	8192

 $2\times3\times2\times128\times20\times8192 > 1$ millions

Q2: Rule I - Divided into model-able subspaces

Parameter	Choices
Algorithm (A)	Tree, Ring
Protocol (P)	LL, LL I 28, Simple
Transport (T)	P2P, SHM
Nchannel (NC)	
Nthread (NT)	
Chunk size (C)	

Implementation-related parameters hard to model but small space

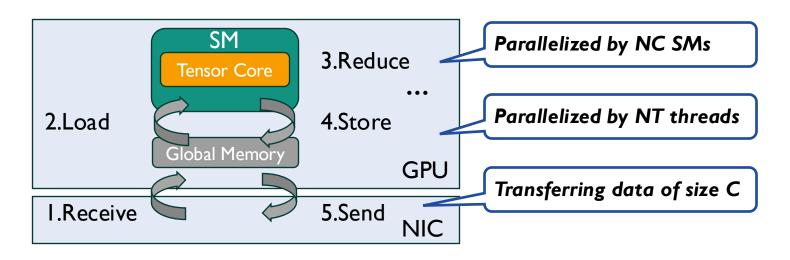


Q2: Rule I - Divided into model-able subspaces

Parameter	Choices	
Algorithm (A)	Tree, Ring	
Protocol (P)	LL, LL I 28, Simple	
Transport (T)	P2P, SHM	
Nchannel (NC)	$1 \le n \le 128, n \in \mathbb{N}$	
Nthread (NT)	$n = 32 \times i, i \in \{1, 2, \dots, 20\}$	
Chunk size (C)	$n = 256 \times i, i \in \{1, 2, 3 \dots, 8K\}$	

Resource allocation parameters

huge space but model-able



Q2: Rule I - Divided into model-able subspaces

Parameter	Choices	
Algorithm (A)	Tree, Ring	
Protocol (P)	LL, LL I 28, Simple	
Transport (T)	P2P, SHM	
Nchannel (NC)	$1 \le n \le 128, n \in \mathbb{N}$	
Nthread (NT)	$n = 32 \times i, i \in \{1, 2, \dots, 20\}$	
Chunk size (C)	$n = 256 \times i, \qquad i \in \{1, 2, 3 \dots, 8K\}$	

Implementation-related parameters

hard to model but small space

Resource allocation parameters

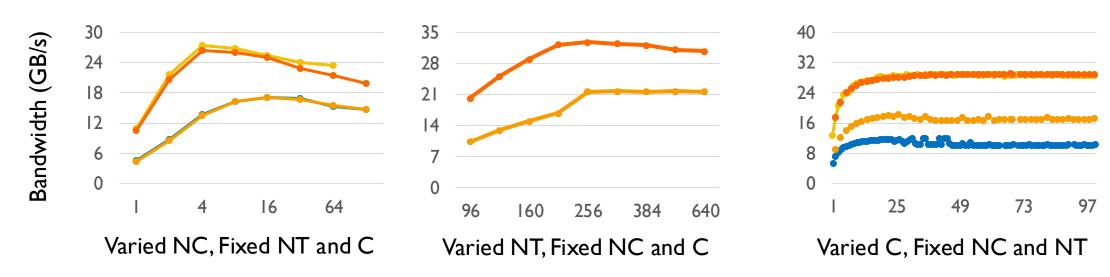
• huge space but model-able

Each subspace contains large various combinations of resource-allocation parameters

A small number of subspaces composed of implementation-related parameters

Q2: Rule2 - Coordinate Descent Search in subspaces

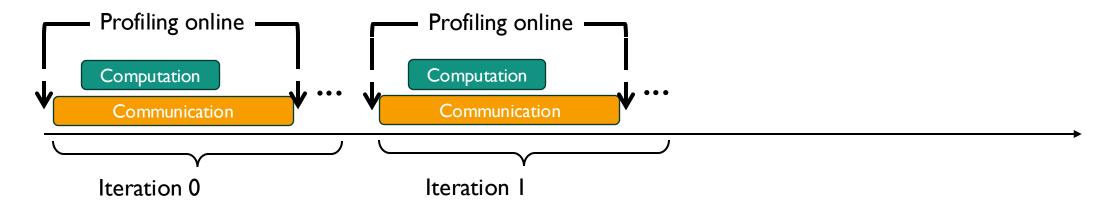
The trends of AllGather (80MB) with config <A, P,T, *, *, * on $8\times$ A40-NVLink



Unimodal functions in every resource-parameter

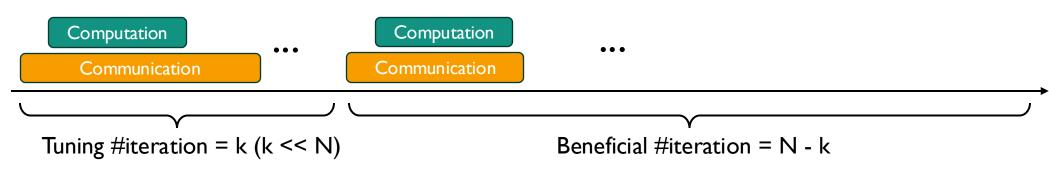
Q3: Tension-aware Tuning in Repetends

Model	Training Time
Megatron-355M _[1]	300 K iteraions
DeepSeek-V3 _[2]	2 months
MegaScale _[3]	70 days



- [1]: Shoeybi, Mohammad, et al. "Megatron-Im: Training multi-billion parameter language models using model parallelism." arXiv preprint arXiv:1909.08053
- [2]: Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437
- [3]: Jiang Z, et al. MegaScale: Scaling large language model training to more than 10,000 GPUs. NSDI 24

Q4: Embed Tuning into early DNN training



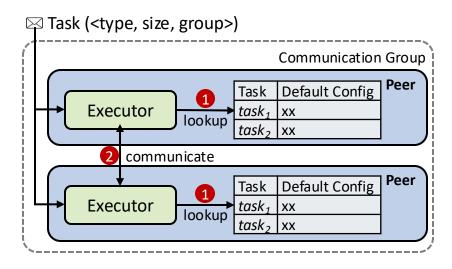
Hide overhead within early iterations

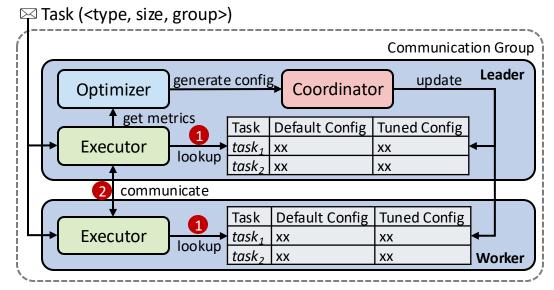
Q4: Embed Tuning into early DNN training

Tuning #iteration = $k (k \le N)$

Beneficial #iteration = N - k

Hide overhead within early iterations





The architecture of NCCL

The architecture of AutoCCL

Share the same APIs

Takeaways

Huge Space for each task

Unimodal function

Computation interference

Iterative task

Divide-Conquer

Coordinate Descent Search

Online Tuner

Challenges

Study

Design

Tuner	Method	Dynamic	Tension-aware	Accuracy	Overhead
NCCL-tuner	Empirical heuristics	Yes	No	No	Small
AFNFA[I]	Offline Profiling + Fitting	No	No	Depends	Large
Ours	Online Profiling + Search	Yes	Yes	Yes	Small

Experimental Setup

□Clusters:

- 2 nodes. Each one has 8×A40-NVLink and 2×400Gbps IB;
- 4 nodes. Each one has 8×A40-PCle and 100 Gbps IB.

	Туре	Size
w/o interference	AllGather, ReduceScatter, AllReduce	IMB – IGB
w/ interference	AllGather, ReduceScatter, AllReduce	IMB – IGB

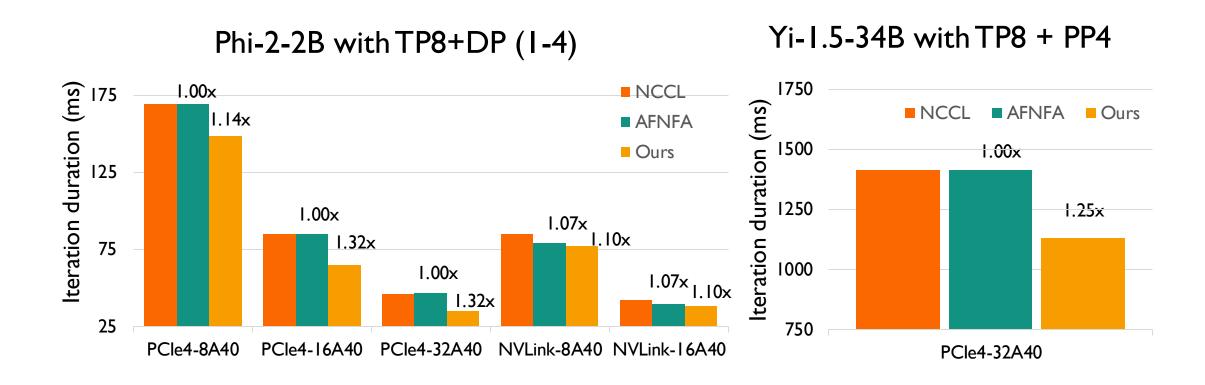
Model	TP	PP	DP
Phi-2-2B	8	I	1-4
Llama-3.1-8B	8	ı	1-4
Yi-1.5-34B	8	4	I
VGG-19-0.14B	I	ı	8-32

NCCL, AFNFA and AutoCCL

MegatronLM with NCCL, AFNFA and AutoCCL

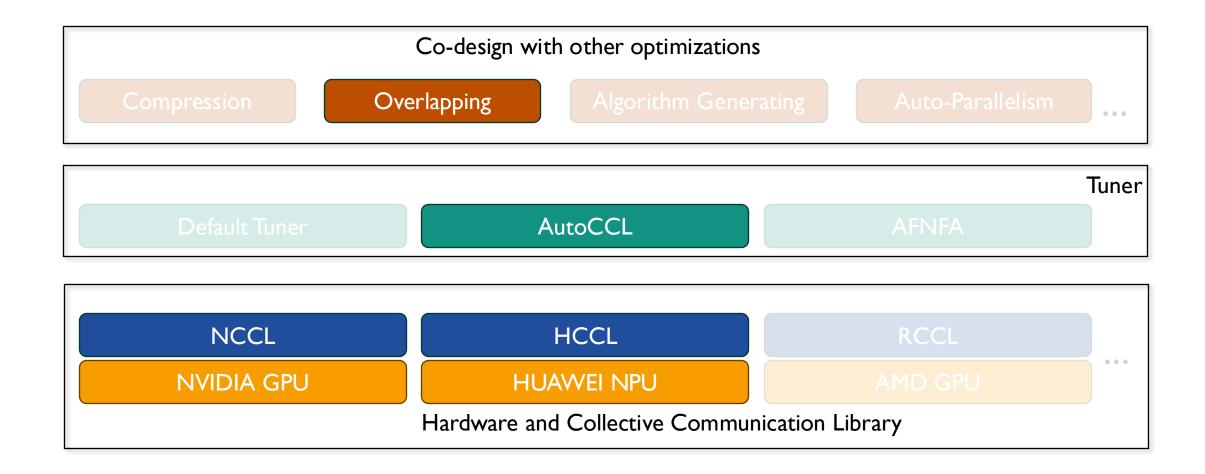
Note: data parallism (DP), tensor parallelism (TP), pipeline parallelism(PP)

End-to-End Training (Lower is Better)

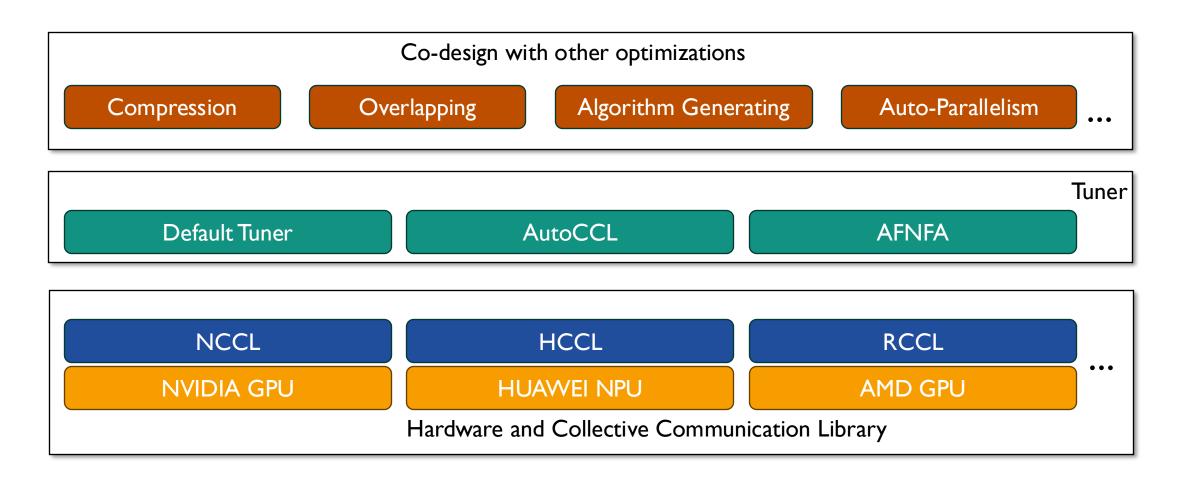


Up to 1.32× throughput within 2 DNN training iterations

Current Supported Works



Landscape of Extension



AutoCCL + X: a foundation for future optimizations

AutoCCL: Automated Collective Communication Tuning for Accelerating Distributed and Parallel DNN Training

Open source: https://github.com/gbxu/autoccl

Contact with me

Join ADSL Lab