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Distributed DNN Training
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Collective Communication widely adopted



What’s Collective Communication

AllIReduce:Tree-, Ring-, ...

Sync with all processes

SM

Tensor Core [ty
2load [ 3 4Store
Global Memory
GPU

D

| .Receive g 2 5.Send NIC

Receive-Load-Reduce-Store-Send on each process
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Infrastructure for DNIN Communication

O PyTorch 1F TensorFlow -

Share the Collective Communication APIls

NCCLI!] HCCL
NVIDIA GPU HUAWEI NPU

* Foundational library: almost every distributed DNN job
* Active community: 3.7k star, 2015 - now
* Highly optimized: 57 releases, 900 forks

RCCLEI

AMD GPU

[I] NVIDIA Collective Communication Library, https://github.com/nvidia/nccl

[2] Huawei Collective Communication Library, https://gitee.com/ascend/cann-hccl
[3] ROCm Collectives Communication Library, https://github.com/ROCm/rccl
[4] NCCL community data as of Apr.23,2025



https://github.com/nvidia/nccl
https://github.com/ROCm/rccl
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Collective Communication is still Expensive

Communication is the bottleneck: up to 42% of time cost [1,2]

SOTA Models Training Cost (USD)

GPT3 |.13 million
OPT-175B |.65 million
Megatron-Turing NLG 530B 3.04 million

Cost of training DNN models[3]

[I]Wang S, et al. Overlap communication with dependent computation via decomposition in large deep learning models ASPLOS22
[2] Wang G, et al. Domino: Eliminating Communication in LLM Training via Generic Tensor Slicing and Overlapping arXiv, 2024
[3] https://epoch.ai/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems



https://epoch.ai/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

Huge Tuning Opportunities
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Huge Improvement after tuning NCCL



Goal

tuning collective communication

transparently and efficiently
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Tuning is Not Easy

Bandwidth of various tasks with Bandwidth of AllGather(80MB)
different configs on 8 XA40-PCle under various interference on
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No One-Config-Fits-All Computational tension
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Questions Before Tuning

(dWhat low-level parameters are most performance-sensitive?
(AWhat rules could guide the effective tuning?

(dHow to mitigate the dynamic tension of computation?

(dHow to support workloads transparently with minimal overhead?

What is the tuning space?




Ql: Build Tuning Space

Original Parameters Abstracted Parameters
# of # of key Categories # of Choices
parameters parameters
| for Algorithm (A) 2
3 for Protocol (P) 3
3 for Transport (T) 2
158 28
| for Nchannel (NC) 128
3 for Nthread (NT) 20
7/ for Chunk size (C) 8192

2X3X2X128X20X8192 > | millions

How to find the optimal ?
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Q2: Rulel - Divided into model-able subspaces

Parameter Choices
Algorithm (A) Tree, Ring
Protocol (P) LL, LLI28, Simple Implementation-related parameters
* hard to model but small space
Transport (T) P2P, SHM

Nchannel (NC)
Nthread (NT)
Chunk size (C)

/[ Protocol = LL, LLI28 or Simple ?

L
|
|

{ |
Algorithm = Ring

Transport = P2P or Shared Memory ?

"
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Q2: Rulel - Divided into model-able subspaces

Parameter Choices
Algorithm (A) Tree, Ring
Protocol (P) LL, LL128, Simple
Transport (T) P2P, SHM
Nchannel (NC) 1<n<128n € N
Nthread (NT) n=32Xi,i €{1,2,..,20} Resource allocation parameters

* huge space but model-able
Chunk size (C) n = 256Xi, i €{1,2,3..,8K}

SM

 Tensor Core
<

Global Memory
P

Parallelized by NC SMs
3.Reduce ‘5[-\ Y

2.Load

4 Store J Parallelized by NT threads
—\

GPU
J Transferring data of size C
| .Receive g 2 5.Send N

NIC
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Q2: Rulel - Divided into model-able subspaces

Parameter Choices
Algorithm (A) Tree, Ring
Protocol (P) LL, LLI28, Simple Implementation-related parameters
* hard to model but small space
Transport (T) P2P, SHM
Nchannel (NC) 1<n<128n € N
Nthread (NT) n=32Xi,i €{1,2,..,20} Resource allocation parameters

* huge space but model-able
Chunk size (C) n = 256Xi, i €{1,2,3..,8K}

Each subspace contains large various
ill ill ill combinations of resource-allocation parameters

\ J
Y

A small number of subspaces composed
of implementation-related parameters
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Q2: Rule2 - Coordinate Descent Search in subspaces

The trends of AllGather(80MB) with config <A, BT, * * *> on 8 XA40-NVLink
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Unimodal functions in every resource-parameter

How to mitigate tension?




5
Q3:Tension-aware Tuning in Repetends

Model | TrainingTime ________

Megatron-355M;; 300 K iteraions
DeepSeek-V3,, 2 months
MegaScaleg;; 70 days
Profiling online _l — Profiling onling ==
. |
| v v |
\ )\ ) g
Y Y
Iteration O Iteration |

[1]: Shoeybi, Mohammad, et al. "Megatron-Im: Training multi-billion parameter language models using model parallelism." arXiv
preprint arXiv:1909.08053

[2]: Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437

[3]: Jiang Z, et al. MegaScale: Scaling large language model training to more than 10,000 GPUs. NSDI 24
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Q4: Embed Tuning into early DNN training
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Tuning #iteration = k (k << N) Beneficial #iteration = N - k

Hide overhead within early iterations




Q4: Embed Tuning into early DNN training
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v

Hide overhead within early iterations
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The architecture of NCCL

The architecture of AutoCCL
Share the same APlIs



Takeaways

Computation interference

Huge Space for each task

Parameter Classification
Unimodal function

Iterative task

Divide-Conquer
Coordinate Descent Search

Challenges Study Design
Tuner Method Dynamic | Tension-aware | Accuracy | Overhead
NCCL-tuner Empirical heuristics Yes No No Small
AFNFA[I] Offline Profiling + Fitting No No Depends Large
Ours Online Profiling + Search Yes Yes Yes Small

[1]Wang, Zibo, et al

."AFNFA: An Approach to Automate NCCL Configuration Exploration." APNet2023




Experimental Setup

dClusters:
2 nodes. Each one has 8XXA40-NVLink and 2X400Gbps IB;
4 nodes. Each one has 8XA40-PCle and 100 Gbps IB.

| Type | Size m-mm

w/o interference AllGather, ReduceScatter, IMB - IGB Phi-2-2B 8
AllReduce Llama-3.1-8B 8 | -4
w/ interference  AllGather, ReduceScatter, |IMB - |GB Yi-15-34B 8 4 |
AllReduce
VGG-19-0.14B I I 8-32
NCCL,AFNFA and AutoCCL

MegatronLM with NCCL,AFNFA and AutoCCL

Note: data parallism (DP), tensor parallelism (TP), pipeline parallelism(PP)



Iteration duration (ms)

End-to-End Training (Lower is Better)

Phi-2-2B with TP8+DP (1-4) Yi-1.5-34B with TP8 + PP4
175 1.00x B NCCL . 1750
. 14x B AFNFA é’ BNCCL ®mAFNFA ®Ours
% Ours = 1500 {.00x
125 g
1.00: g 1250 125
X 1.07x = :
75 c
.0
1.32x Q
e}
- - g
PCle4-8A40 PCle4-16A40 PCle4-32A40 NVLink-8A40 NVLink-16A40 PCle4-32A40

Up to 1.32x throughput within 2 DNN training iterations




Current Supported Works

Co-design with other optimizations

Overlapping

Tuner

AutoCCL

NCCL HCCL

NVIDIA GPU

HUAWEI NPU

Hardware and Collective Communication Library




Landscape of Extension

Co-design with other optimizations

Overlapping Algorithm Generating Auto-Parallelism ...

Tuner

Default Tuner AutoCCL AFNFA

NCCL HCCL RCCL
NVIDIA GPU HUAWEI NPU AMD GPU

Hardware and Collective Communication Library

AutoCCL + X: a foundation for future optimizations



AutoCCL: Automated Collective
Communication Tuning for Accelerating
Distributed and Parallel DNN Training

Open source: https://qgithub.com/gbxu/autoccl

Contact with me Join ADSL Lab
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