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Distributed DNN Training
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What’s Collective Communication

Receive-Load-Reduce-Store-Send on each process

AllReduce: Tree-, Ring-, …

…

Sync with all processes
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GPU

…
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SM
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Infrastructure for DNN Communication

…

Share the Collective Communication APIs

• Foundational library: almost every distributed DNN job

• Active community: 3.7k star, 2015 - now

• Highly optimized: 57 releases, 900 forks

[1] NVIDIA Collective Communication Library, https://github.com/nvidia/nccl

[2] Huawei Collective Communication Library, https://gitee.com/ascend/cann-hccl

[3] ROCm Collectives Communication Library, https://github.com/ROCm/rccl

…

[4] NCCL community data as of Apr. 23, 2025

HUAWEI NPU AMD GPU

HCCL[2] RCCL[3]

NVIDIA GPU

NCCL[1]

https://github.com/nvidia/nccl
https://github.com/ROCm/rccl
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Collective Communication is still Expensive

Communication is the bottleneck: up to 42% of time cost [1,2]

SOTA Models Training Cost (USD)

GPT3 1.13 million

OPT-175B 1.65 million

Megatron-Turing NLG 530B 3.04 million

[1] Wang S, et al. Overlap communication with dependent computation via decomposition in large deep learning models ASPLOS22

[2] Wang G, et al. Domino: Eliminating Communication in LLM Training via Generic Tensor Slicing and Overlapping arXiv, 2024

[3] https://epoch.ai/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

Cost of training DNN models[3]

https://epoch.ai/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
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Huge Tuning Opportunities
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Goal
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transparently and efficiently
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Tuning is Not Easy
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❑What low-level parameters are most performance-sensitive? 

❑What rules could guide the effective tuning?

❑How to mitigate the dynamic tension of computation?

❑How to support workloads transparently with minimal overhead?

Questions Before Tuning

What is the tuning space?
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Q1: Build Tuning Space

Original Parameters Abstracted Parameters

# of 

parameters

# of key 

parameters
Categories # of Choices

158 28

1 for Algorithm (A) 2

3 for Protocol (P) 3

3 for Transport (T) 2

11 for Nchannel (NC) 128

3 for Nthread (NT) 20

7 for Chunk size (C) 8192

2⨉3⨉2⨉128⨉20⨉8192 > 1 millions

How to find the optimal ?
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Q2: Rule1 - Divided into model-able subspaces

Parameter Choices

Algorithm (A) Tree, Ring

Protocol (P) LL, LL128, Simple

Transport (T) P2P, SHM

Nchannel (NC)

Nthread (NT)

Chunk size (C)

Algorithm = Ring

Transport = P2P or Shared Memory ?

Protocol = LL, LL128 or Simple ?

Implementation-related parameters

• hard to model but small space
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Q2: Rule1 - Divided into model-able subspaces

Parameter Choices

Algorithm (A) Tree, Ring

Protocol (P) LL, LL128, Simple

Transport (T) P2P, SHM

Nchannel (NC) 1 ≤ 𝑛 ≤ 128, 𝑛 ∈ ℕ

Nthread (NT) 𝑛 = 32⨉𝑖, 𝑖 ∈ {1,2, … , 20}

Chunk size (C) 𝑛 = 256⨉𝑖, 𝑖 ∈ {1,2,3… , 8𝐾}

Global Memory

2.Load 4.Store

GPU

…
3.Reduce

5.Send1.Receive
NIC

Tensor Core

SM Parallelized by NC SMs

Transferring data of size C

Parallelized by NT threads

Resource allocation parameters

• huge space but model-able
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Q2: Rule1 - Divided into model-able subspaces

Parameter Choices

Algorithm (A) Tree, Ring

Protocol (P) LL, LL128, Simple

Transport (T) P2P, SHM

Nchannel (NC) 1 ≤ 𝑛 ≤ 128, 𝑛 ∈ ℕ

Nthread (NT) 𝑛 = 32⨉𝑖, 𝑖 ∈ {1,2, … , 20}

Chunk size (C) 𝑛 = 256⨉𝑖, 𝑖 ∈ {1,2,3… , 8𝐾}

A small number of subspaces composed 

of implementation-related parameters

Each subspace contains large various 

combinations of resource-allocation parameters

Implementation-related parameters

• hard to model but small space

Resource allocation parameters

• huge space but model-able
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Q2: Rule2 - Coordinate Descent Search in subspaces
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15

Q3: Tension-aware Tuning in Repetends

[1]: Shoeybi, Mohammad, et al. "Megatron-lm: Training multi-billion parameter language models using model parallelism." arXiv

preprint arXiv:1909.08053

[2]: Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437

[3]: Jiang Z, et al. MegaScale: Scaling large language model training to more than 10,000 GPUs. NSDI 24

Communication

...Computation

Iteration 0

Communication

...Computation

Iteration 1

Model Training Time

Megatron-355M[1] 300 K iteraions

DeepSeek-V3[2] 2 months

MegaScale[3] 70 days

Profiling online Profiling online
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Q4: Embed Tuning into early DNN training

Tuning #iteration = k (k << N) Beneficial #iteration = N - k

Hide overhead within early iterations

Communication

...Computation

Communication

...Computation
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The architecture of AutoCCL

Communication Group

Executor

Task (<type, size, group>)

communicate

Task Default Config Tuned Config
task1 xx xx
task2 xx xx

lookup

Executor
Task Default Config Tuned Config
task1 xx xx
task2 xx xx

lookup

1

1

2

Q4: Embed Tuning into early DNN training

Tuning #iteration = k (k << N) Beneficial #iteration = N - k

The architecture of NCCL

Communication Group

Peer

Peer

Executor

communicate

lookup

Executor
lookup

Task Default Config
task1 xx
task2 xx

Task Default Config
task1 xx
task2 xx

1

1

2

Task (<type, size, group>)

Hide overhead within early iterations

Share the same APIs

Communication

...Computation

Communication

...Computation

Optimizer Coordinator
update

get metrics

generate config Leader

Worker
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Takeaways

[1] Wang, Zibo, et al. "AFNFA: An Approach to Automate NCCL Configuration Exploration." APNet2023

Tuner Method Dynamic Tension-aware Accuracy Overhead

NCCL-tuner Empirical heuristics Yes No No Small

AFNFA[1] Offline Profiling + Fitting No No Depends Large

Ours Online Profiling + Search Yes Yes Yes Small

Huge Space for each task

Unimodal function

Computation interference

Iterative task

Challenges Study

Coordinate Descent Search

Design

Online Tuner

Parameter Classification Divide-Conquer
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❑Clusters: 

• 2 nodes. Each one has 8⨉A40-NVLink and 2⨉400Gbps IB;

• 4 nodes. Each one has 8⨉A40-PCIe and 100 Gbps IB.

Experimental Setup

Note: data parallism (DP), tensor parallelism (TP), pipeline parallelism(PP)

Type Size

w/o interference AllGather, ReduceScatter, 

AllReduce

1MB – 1GB

w/ interference AllGather, ReduceScatter, 

AllReduce

1MB – 1GB

Model TP PP DP

Phi-2-2B 8 1 1-4

Llama-3.1-8B 8 1 1-4

Yi-1.5-34B 8 4 1

VGG-19-0.14B 1 1 8-32

MegatronLM with NCCL, AFNFA and AutoCCLNCCL, AFNFA and AutoCCL



20

End-to-End Training (Lower is Better)
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AMD GPU

RCCL

Default Tuner AFNFA

Compression Algorithm Generating

…

Auto-Parallelism …

Current Supported Works

NVIDIA GPU HUAWEI NPU

NCCL HCCL

Tuner

AutoCCL

Co-design with other optimizations

Overlapping

Hardware and Collective Communication Library
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Landscape of  Extension

NVIDIA GPU HUAWEI NPU AMD GPU

NCCL HCCL RCCL

Tuner

Default Tuner AutoCCL AFNFA

Co-design with other optimizations

Compression Overlapping Algorithm Generating

…

Auto-Parallelism …

Hardware and Collective Communication Library

AutoCCL + X:  a foundation for future optimizations



Open source: https://github.com/gbxu/autoccl

Join ADSL LabContact with me

AutoCCL: Automated Collective 
Communication Tuning for Accelerating 
Distributed and Parallel DNN Training
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