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DNNs are Everywhere
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Takes years to
train!!!

Distribute training over
multiple GPUs:
Distributed Deep
Learning (DDL)

1 Gerstmayr, Johannes et al. “Multibody Models Generated from Natural Language.” Multibody System Dynamics 24



Cloud for Distributed Training
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Machine Learning in the Cloud: What Are the
Benefits?
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“Shift Towards Cloud-Based Solutions”
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Cloud for Distributed Training

Cloud Al Market e e
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Distributed Data Parallel (DDP)
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Distributed Data Parallel (DDP)

Svynchronize and aggregate
model gradients:
AllReduce

Communication

S &

Dataset DNN Model
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Distributed Data Parallel (DDP)
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! Sapio, Amedeo, et al. "Scaling distributed machine learning with in-network aggregation.” NSDI'21



Distributed Data Parallel (DDP)

aoooooooooon

AllReduce Bottleneck:
As much as 65% of training time’

Node 3

9 A Bottleneck 9

! Sapio, Amedeo, et al. "Scaling distributed machine learning with in-network aggregation.” NSDI'21 10



Distributed Data Parallel (DDP)

Worsened in cloud and Node 2

aoooooooooon

shared environments!

AllReduce Bottleneck:
As much as 65% of training time’

! Sapio, Amedeo, et al. "Scaling distributed machine learning with in-network aggregation.” NSDI'21 "
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How to Mitigate this Tail?

Network
delays
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How to Mitigate this Tail?

Tail: Wait until the last packet arrives
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How to Mitigate this Tail?

ML Models are Resilient =,
Against Gradient Loss: Any late arriving data is
No need for 100% @. g considered lost and ignored
reliability @ 9 g &

Slow

Tail: Wait until the last packet arrives

nnnnn
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Unreliable Communication

- No retransmissions or
reliability guarantees
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Unreliable Communication

- No retransmissions or
reliability guarantees

- A strict time-bound on
the communication
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Unreliable Communication

- No retransmissions or
reliability guarantees

- A strict time-bound on
the communication
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Unreliable Communication

(= - No retransmissions or
Node 2 reliability guarantees

- A strict time-bound on
the communication

ML Models are Resilient Against Some
Gradient Loss!
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Unreliable Communication

Existing architectures = - No retransmissions or

exacerbate the loss! reliability guarantees

- Accuracy degradation @-

- A strict time-bound on
the communication

ML Models are Resilient Against Some
Gradient Loss!
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UDP for Unreliable Transport

Local
Gradient
Data




UDP for Unreliable Transport
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UDP for Unreliable Transport
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UDP for Unreliable Transport
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UDP for Unreliable Transport

Observation 1:

Local
Gradient Vanilla UDP fires away and
Data leads to undue losses!
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Timeouts to Mitigate Slow Workers

Local

How to set the timeout?

Gradient

Data

—.—.— Unreliable
Link

27



Timeouts to Mitigate Slow Workers

Local How to set the timeout?
Gradient .
Data 1. Large timeout value

—.—.— Unreliable
Link

Wasted time

Time-window /

Node4 QOOO® |

H || Time 28




Timeouts to Mitigate Slow Workers

Local How to set the timeout?
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Timeouts to Mitigate Slow Workers
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Local
Gradient
Data

Unreliable

Link

Observation 2:

Static timeouts can add
delays or increase loss!

1 Dynamic
i Conditions

L

............

= ._--’ o -

Node3‘

Excessive drops

/

Time-window
: ' X Dropped
@ e o o
Time 30




Existing Architectures: Ring AR

Local Node 2
Gradient . .
Data




Existing Architectures: Ring AR
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Existing Architectures: Ring AR

Local Node 2
Gradient . .
Data

X+y




Existing Architectures: Ring AR

Local Node 2
Gradient . .
Data
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Existing Architectures: Ring AR

Local
Gradient
Data

W+X+y+2Z

Aggregated Bammm ¥
Gradients Node 1
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Existing Architectures: Ring AR
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Existing Architectures: Ring AR
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Existing Architectures: Ring AR
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Existing Architectures: Ring AR

Local

Gradient

Data

—.—.— Unreliable
Link

39



—_——_— —

Existing Architectures: Ring AR

Local Node 2

Gradient

Data

Unreliable

Link

All the aggregated data lost, not just
Node 4's gradients!
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Existing Architectures: Ring AR

Observation 3:

Local

Gradient Ring AlIRreduce exacerbates

Data Rl

Sy the loss!
—.—.— Unreliable .
Link

All the aggregated data lost, not just
Node 4's gradients!
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OptiReduce Design

Observation 1: 1. Unreliable Bounded
Vanilla UDP fires away and | :> Transport
adds undue losses To capitalize & bound the loss
Observation 2: 2. Adaptive Timeouts
Static timeouts can add :> To handle dynamic delays
delays or increase loss

- Observation 3: \ 3. Transpose AllReduce
Ring AlIRreduce exacerbates :> To minimize loss

the loss
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OptiReduce Design

Observation 1:
Vanilla UDP fires away and
adds undue losses

Stat
delays or increase loss

Finish faster!

Observation 3:
Ring AllIRreduce exacerbates
the loss

— >

1. Unreliable Bounded
Transport
papitalize & bound the loss

100% - _tiability

ays

3. Transpose AllReduce
To minimize loss
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OptiReduce Design

Observation 1:
Vanilla UDP fires away and
adds undue losses

—>

1. Unreliable Bounded

Transport
To capitalize & bound the loss
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Unreliable Bounded Transport

Reliability adds to the tail Firing away exacerbates loss
| | |
! | !
Features TCP UDP
- Retransmissions v X
- In-order delivery v X
- Congestion Control v X
- Flow Control v X
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Unreliable Bounded Transport

Reliability adds to the tail Firing away exacerbates loss
| | |
! | |
Features TCP UDP
- Retransmissions v X X
- In-order delivery v X X
- Congestion Control v X
- Flow Control v X

@Direct placement of packets, enabled by Offset field!
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Unreliable Bounded Transport

Reliability adds to the tail Firing away exacerbates loss
| | |
! | |
Features TCP UDP
- Retransmissions v X X
- In-order delivery v X X
- Congestion Control v v X
- Flow Control v v X

@)irect placement of packets, enabled by Offset field!
1 Timely-inspired rate-control to throttle the sending!
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Unreliable Bounded Transport

Effect of this approach:
Reliability adds to the tail Capitalizes and bounds
I : I the loss
Features TCP UDP

- Retransmissions v X X
- In-order delivery v X X
- Congestion Control v v X
- Flow Control v v X

@Direct placement of packets, enabled by Offset field!
1 Timely-inspired rate-control to throttle the sending!
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Unreliable Bounded Transport

Effect of this approach:
Reliability adds to the tail Capitalizes and bounds
I : I the loss
Features TCP UDP

- Retransmissions v X X
- In-order delivery v X X
- Congestion Control v v X
- Flow Control v v X

@Direct placement of packets, enabled by Offset field!

“2» Timely-inspired rate-control to throttle the sending!

«Z% Receiver-driven multicast, signaled using /ncast field!
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OptiReduce Design

Observation 2:
Static timeouts can add
delays or increase loss

—

2. Adaptive Timeouts

To handle dynamic delays
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Adaptive Timeouts

[Recvd_data, Time ] = Timeout Est I]
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Adaptive Timeouts

Use median of shared

timeouts:
Ignore stragglers, while

still reacting to network

Node 4

Time-window

Early timeout:

99th percentile arrived & no new
data - fraction of timeout

No waiting for dropped data

X Dropped

[Recvd_data, Time ] = Timeout Est I]

Time
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OptiReduce Design

Observation 3:
Ring AllIRreduce exacerbates
the loss

| 3. Transpose AllReduce
—> P

To minimize loss




Transpose AllReduce (TAR)

Local Node 2 P2P-inspired design:
CD;;atglent | All nodes directly talk to
each other!
i y
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Transpose AllReduce (TAR)

Local Node 2

Gradient e
Data
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Transpose AllReduce (TAR)

Local Node 2

Gradient e
Data

W+X
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Transpose AllReduce (TAR)

Local Node 2

Gradient e
Data

W+x+y
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Transpose AllReduce (TAR)

Local |
ot e Same number of rounds as
/ [ = \ Ring AllReduce
W+X+y+Z ,%A
Aggregated & |
Gradients Node 1

N
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Transpose AllReduce (TAR)

Local

Gradient

Data

—.—.— Unreliable
Link
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W+X
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Transpose AllReduce (TAR)

W+X+y
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Transpose AllReduce (TAR)

Local

Gradient

Data

—.—.— Unreliable

Link

Effect of this approach:
Ring’s MSE 7x larger than
N TAR’s!
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Optimizations for Sustaining Accuracy

 Safeguards against excessive
loss

« Randomized Hadamard
Transform (RHT)

« Encode data before sending
in the network

» Approximate lost gradients,
essentially recovering data

Send
Data
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“Hadamard transform applied to a vector
of length 8"
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Effect of RHT on Accuracy

— No Hadamard =— Hadamard
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(@) 5% Gradient Drop (b) 10% Gradient Drop

Model: VGG-19
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Effect of RHT on Accuracy

- No Hadamard — Hadamard
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(@) 5% Gradient Drop (b) 10% Gradient Drop

Model: VGG-19
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Evaluating OptiReduce

=== (Gloo Ring Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === (QptiReduce

Baselines Environments Metrics

« NCCL « Cloudlab « TTA
« Gloo « Local Setup y » Throughput

j

o
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Cloudlab: A Public Cloud Environment

Gloo Ring Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === QOptiReduce

A30 I 2 . il A30

A30 | -= -8 A30

A30 I = -l A30
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Cloudlab: A Public Cloud Environment

Gloo Ring Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === QOptiReduce
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V100§ ~=

V100

viooll = -

Our Local Setup

25G

< —

Background
Traffic

~= N V100

s M V100
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Our Local Setup

(a) Low Tail Env (b) High Tail Env
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Time-to-Accuracy (TTA)

Gloo Ring Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === QOptiReduce

2.1x faster!
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TTA: GPT-2
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Training Throughput (Speedup)

=== Gloo Ring Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === QOptiReduce

2.3x faster!
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Training Throughput: Llama-3.2
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More Evaluations in the Paper

» OptiReduce scalability results
* 24 nodes evaluation in local cluster
* 144 nodes in simulations

« Comparison with other schemes
- Parameter Server approach
- Quantization and Sparsification schemes
 In-network aggregation (INA) approaches

« More Models and Datasets
e More LLMs and vision models
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1 ndl .» .

EMWMMM

BERT RoBERTa BART GPT-2 GPT-2
—-large -large -large —large
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Conclusion

Of: %30

 AlIReduce bottleneck in cloud training

* OptiReduce - Time-bounded AR for Cloud
* More than 2x Speedup in high-tail

* Try OptiReduce - follow the link!

optireduce.github.io
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Home

OptiReduce - Optimizing Large-Scale ML Training

Getting Started

Why OptiReduce?
# Faster Training
? Key Features
*\, Technical Highlights

Choose your path with
OptiReduce

&~ Quick Start
= Learn More

Research

Installation

Usage Guide

Thank You!

Benchmark

Technical Details

Contributing  References

OPTIREDUCE

OPTIMIZNG LARGE-SCALE ML TRAINING
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