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Low Memory Utilization in Datacenters
• Over-provisioning Memory

– The memory demand of memory-intensive applications varies over time.
– Datacenters allocate memory based on their peak usage to meet their 

SLOs.
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Low average memory 
utilization!



Disaggregated Memory
• Disaggregated Memory Architecture

– Physically separate CPU and memory resources into network-attached
pools, namely compute nodes (CNs) and memory nodes (MNs).
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Disaggregated Memory Management
• Memory Management in DM relies on Memory Region (MR).

– Requirement #1: Allocate/Free memory chunks to CNs.
– Requirement #2: Ensure Memory Isolation between CNs.
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Existing Memory Management Approaches

• #1 Fine-grained memory management with MR
– MNs register small MRs (e.g., 1 MB) and allocate them to CNs dynamically.
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Pro: High memory utilization due to 
fine allocation granularity.

Limitation: Poor Performance
- frequent allocation requests
- time-consuming MR registration
- wimpy MN CPU



Existing Memory Management Approaches

• #2 Static memory management with MR
– MNs register large MRs (≥ 1 GB) and allocate them to CNs statically.
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Existing Memory Management Approaches

• #2 Static memory management with MR
– MNs register large MRs (≥ 1 GB) and allocate them to CNs statically.
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Pro: High performance due to few (or 
no) allocation requests during runtime

Limitation: Poor memory utilization
due to severe internal 

fragmentation.



Existing Memory Management Approaches

• Existing approaches cannot achieve high-performance, high 
memory utilization, and no MN CPU usage at the same time.
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Goals
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#1 Fine-grained memory management 
for high memory utilization

#2 Fast data-path 
memory allocation for 

high performance

#3 No MN CPU 
usage to realize 

full disaggregation 



Opportunity – RNIC Offloading
• Feature #1: Event-based work request triggering.
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RDMA WAIT:
- Suspend execution
- Wait for another work request (WR) to complete
- Trigger subsequent WRs when receiving a request 

from CNs
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Opportunity – RNIC Offloading
• Feature #2: Chain basic WRs to express complex logic.

– Previous WRs can modify the arguments of subsequent WRs.
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Opportunity – RNIC Offloading
• Feature #2: Chain basic WRs to express complex logic.

– Previous WRs can modify the arguments of subsequent WRs.
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WR Chain:
- Chain basic WRs (e.g., READ/WRITE) together
- Enable one-sided operations with richer semantics



Opportunity – RNIC Offloading
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Offload memory management logic to MN’s RNIC.
CNs can efficiently allocate memory in the data 

path on demand!



Design – Overview
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ODRP:
- a swap-based system
- offload memory management logic to RNIC
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Design – Workflow
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#1 ODRP swap backend redirects 
CNs’ swap requests to the MN with RDMA SEND.
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Design – Workflow
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#2 The MN’s RNIC then fetches and executes a WR chain.
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Design – Workflow
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#3 The WR chain performs address translation.
     i.e. RDMA READ the translation table entry
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Design – Workflow
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#4 No mapped page? 
- allocate a page from Free Page Queue (i.e., RDMA FAA on Head)
- update the CN’s translation table (i.e., RDMA WRITE the table entry)
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Design – Workflow
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#5 The WR chain reads/writes the memory page and returns the result. 
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Efficiency Challenge
• C#1: Efficiency

– Complex logic requires longer WR chain → slower execution.
– How to minimize the number of WRs per chain?
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Technique: CN-Assisted Principle 
• Shift part of the computation to CNs

– Observation #1: the base address of a CN’s translation table can be shared with the 
CN securely.

– Compute nodes directly provide the translation table entry address.

– Observation #2: The CN knows whether a swap address is mapped.
– The CN triggers different WR chains based on whether the swap address is mapped.
– Avoid complex and time-consuming page fault detection in the WR chain.
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Functionality Challenge
• C#1: Efficiency

– Complex logic requires longer WR chain → slower execution.
– How to minimize the number of WRs per chain?

• C#2: Functionality

27



Functionality Challenge
• Lack of modulo support

– Ring buffer necessitate modulo operation (%). 
– RDMA WRs lack support for modulo operation (%).
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Functionality Challenge
• Lack of modulo support

– Ring buffer necessitate modulo operation (%). 
– RDMA WRs lack support for modulo operation (%).

• Mismatch in endianness
– FAA operates on little-endian values.
– READ assumes a big-endian src field.
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Technique: Meta WR
• Meta WR #1: Fetch and Add with modulo support

– Observation: RNICs support an advanced WR – Masked Fetch and Add.
– Mask the upper bits of the value to achieve ModuloFAA.
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Technique: Meta WR
• Meta WR #1: Fetch and Add with modulo support

– Observation: RNICs support an advanced WR – Masked Fetch and Add.
– Mask the upper bits of the value to achieve ModuloFAA.
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Technique: Meta WR
• Meta WR #2: EndianSwap

– Observation: RNICs support scatter-gather I/O.

– One RDMA READ to convert endianness.
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Experimental Setup
• Harward Setup

– CPU: 12-Core Intel Xeon E5-2650 CPU
– DRAM: 128 GB DDR4 RAM
– RNIC: 100 Gbps Mellanox ConnectX-5 RNIC
– Cluster: 8 CNs (12 GB swap space), 1 MN (only use one CPU core)

• Other baselines
– One-sided(Static): pre-registering MR with the size of the CN’s swap space
– One-sided(Dynamic): registering and allocating 1MB MR on demand
– Two-sided: using RPC in the data path

33



Application Benchmark
• Run real-world workloads on 8 CNs.

≤ 14.2% 
overhead 

up to X12 better 
memory util. 
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No MN CPU usage



Scalability
• Can ODRP scale as the number of CNs increases?
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2.92x better 

ODRP can prevent the weak MN CPU from becoming a bottleneck.
- less than 14.6% performance overhead compared to One-sided(Static)
- 2.92x better performance than one-sided(Dynamic)



Conclusion
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• Current DM systems cannot achieve high memory utilization, zero MN 
CPU usage, and high performance at the same time.

• We propose ODRP, the first system that leverages RNIC offloading to 
achieve
– ideal memory utilization

– zero MN CPU usage (i.e., true disaggregation)
– high performance

• We introduce two software techniques to address the efficiency and 
functionality challenges of RNIC offloading.  

• ODRP significantly improves memory utilization with less than 14.6%
performance overhead in real-world workloads.



Thanks!
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