ODRP: On-Demand Remote Paging with
Programmable RDMA

Zixuan Wang, Xingda Wei, Jinyu Gu, Hongrui Xie,
Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems (IPADS)
Shanghai Jiao Tong University

11

v I P/\DS

1 10 555cess

i l)@.ﬁ—?—%ﬁﬁ S5nHRREHRET (IPADS@SITU)

) Low Memory Utilization in Datacenters

* Over-provisioning Memory

— The memory demand of memory-intensive applications varies over time.

— Datacenters allocate memory based on their peak usage to meet their
SLOs.

100

(%)
|

Q
y
c

801 —Memory

5 8
3 9 60
40 ole .

b b utilization!
— —

:;j - 20

5 E

0 5 10 15 20 25 0 2 4 6 8 10 12
Time (day) Time (hour)

(a) Google Cluster (b) Alibaba Cluster

) Disaggregated Memory

* Disaggregated Memory Architecture

— Physically separate CPU and memory resources into network-attached

pools, namely compute nodes (CNs) and memory nodes (MNs).

I
- RDMA C

CNs Network MNs

:: B B Alloc/Free ——
1

il <l il LS —
|
|
|
|

many CPU cores, large DRAM,
small local DRAM wimpy (or no) CPU

) Disaggregated Memory Management

* Memory Management in DM relies on Memory Region (MR).

— Requirement # |: Allocate/Free memory chunks to CNs.

— Requirement #2: Ensure Memory Isolation between CNs.

) Disaggregated Memory Management

* Memory Management in DM relies on Memory Region (MR).

— Requirement # |: Allocate/Free memory chunks to CNs.

— Requirement #2: Ensure Memory Isolation between CNs.

CN MN
Remote DRAM
1.l Register an MR to
1.2 Return (addr, rkey) to RNIC
the CN

CROMANIC & FDrANC

#2.1 A ith
C(Zzsjrw;ir:yjry Wi #22 The RNIC checks if
’ addr and rkey match 5

} Existing Memory Management Approaches

* #I| Fine-grained memory management with MR

— MNs register small MRs (e.g,, | MB) and allocate them to CNs dynamically.

} Existing Memory Management Approaches

* #I| Fine-grained memory management with MR

— MNs register small MRs (e.g,, | MB) and allocate them to CNs dynamically.

MN
- l Remote DRAM

B oNn# [T eN#2

cN #3 [l CN #4

Pro: High memory utilization due to
fine allocation granularity.

Limitation: Poor Performance
frequent allocation requests
time-consuming MR registration

wimpy MN CPU

} Existing Memory Management Approaches

* #2 Static memory management with MR
— MNs register large MRs (2 | GB) and allocate them to CNs statically.

} Existing Memory Management Approaches

* #2 Static memory management with MR

— MNs register large MRs (2 | GB) and allocate them to CNs statically.

MN
- Remote DRAM

B oNn# [T eN#2

cN #3 [l CN #4

Pro: High performance due to few (or
no) allocation requests during runtime

Limitation: Poor memory utilization
due to severe internal
fragmentation.

} Existing Memory Management Approaches

* Existing approaches cannot achieve high-performance, high
memory utilization, and no MN CPU usage at the same time.

10

) Goals

| Fine-grained memory management
for high memory utilization

#2 Fast data-path #3 No MN CPU

memory allocation for usage o realiz.e
high performance full disaggregation

11

) Opportunity — RNIC Offloading

* Feature #l: Event-based work request triggering.

12

) Opportunity — RNIC Offloading

* Feature #l: Event-based work request triggering.

— Commodity RNICs support a special verb called WAIT.

MN

Work Queue (WQ)

Work Queue (WQ)

Request
—_—

[

WAIT

—>

WR Chain

RECV

—> Control flow

SQ
RQ

13

) Opportunity — RNIC Offloading

* Feature #l: Event-based work request triggering.

— Commodity RNICs support a special verb called WAIT.

MN

Work Queue (WQ)

Work Queue (WQ)

Request
—_—

WAIT

—>

WR Chain

[

RECV

RDMA WAIT:

- Suspend execution
- Wait for another work request (WR) to complete

- Trigger subsequent WRs when receiving a request
from CNs

—> Control flow

SQ
RQ

14

) Opportunity — RNIC Offloading

* Feature #2: Chain basic WRs to express complex logic.

— Previous WRs can modify the arguments of subsequent WREs.

15

) Opportunity — RNIC Offloading

* Feature #2: Chain basic WRs to express complex logic.

— Previous WRs can modify the arguments of subsequent WREs.

—__—-

WAIT

—>

WR Chain

[

RECV

f

Request

Pseudocode WR chain executed by the RNIC Control _
_o Input x,y ~ 4 flow

res =0 NOOP o Data flow —p»
Qifx == y) RECV CAS > | WRITE || conditional

| res = 1 WRIT)| Data flow - -

else h ~ 4

| noop v -
Q wR1zE (res) OP: CAS LOP: y | NOOP || OP: WRITE
OP: RECV lotd-ax | NOOP/| | data:#1— — — — | pdata: 0
dst0: &WR2.0ld || new: WRITE”
dstl: &WR3.0p_ || dst: &WR3.op | | dst: &WR4.data||dst: Client

sv

16

) Opportunity — RNIC Offloading

* Feature #2: Chain basic WRs to express complex logic.

— Previous WRs can modify the arguments of subsequent WREs.

———— Pseudocode WR chain executed by the RNIC Control _
WAIT = WR Chain @ Input x,y = A 0 flow
res = 0 NOOP Data flow —p»
/ \ e if (x == y) RECV CAS > |WRITE Conditional
\ | res = 1 WRITE)| Data flow - -
RECV 1 else - 4
\‘ | noop y ~
T \ Q WR1TE (res) OP: CAS LOP: y | NOOP ||OP: WRITE
Request \ | OP: RECV Lotd-ax | NOOP/| | data:f1- — — — [»pdata: 0
\ | dsto: &WR2.0ld || new: WRITE”
‘\‘ dstl: &WR3.0p_||dst: &WR3.0p||dst: &WR4.data||dst: Client
. N\—'_’/
WR Chain:

Chain basic WRs (e.g., READ/WRITE) together

Enable one-sided operations with richer semantics

17

) Opportunity — RNIC Offloading

Offload memory management logic to MN’s RNIC,
CNs can efficiently allocate memory in the data
path on demand!

18

) Design — Overview

CN

Linux kernel

ODRP
Swap Backend

L ROMANC

ODREP:

MN

Memory Pages

Meta Data

WR Chains

- a swap-based system

- offload memory management logic to RNIC

Meta Data

Per-CN
Translation Table

IIIIIH

Swap addr— Page addr

Heﬂ>

E Free Page

«— TJall

19

) Design — Workflow

CN

Linux kernel

ODRP

Swap Backend
RDMA NIC

MN

RDMA NIC

Memory Pages

Meta Data

WR Chains

| ODRP swap backend redirects
CNs' swap requests to the MN with RDMA SEND.

Meta Data

Per-CN
Translation Table

IIIIIH

Swap addr— Page addr

Heﬂ>

E Free Page

«— TJall

20

) Design — Workflow

CN

Swap Backend

Linux kernel

ODRP

RDMA NIC

MN

Memory Pages

Meta Data

WR Chains
RDMA NIC

Meta Data

Per-CN
Translation Table

IIIIIH

Swap addr— Page addr

Heﬂ>

E Free Page

«— TJall

#2 The MN's RNIC then fetches and executes a WR chain.

21

) Design — Workflow

CN

Swap Backend

Linux kernel

ODRP

RDMA NIC

MN

0

Memory Pages

Meta Data

WR Chains
RDMA NIC

rd

Meta Data

Per-CN
Translation Table

%am'ddr—> Page addr

Head
—_—

IIIIIH

E Free Page

«— TJall

#3 The WR chain performs address translation.

.e. RDMA READ the translation table entry

22

) Design — Workflow

CN

Swap Backend

Linux kernel

ODRP

RDMA NIC

MN

Memory Pages

Meta Data

WR Chains
RDMA NIC

d
N

Meta Data

Per-CN
Translation Table

%am'ddr—> Page addr

IIIIIH

Head
Free Page

#4 No mapped page!

—p A Free addr,
C’ o
“ Queue

(Y — T

- allocate a page from Free Page Queue (ie, RDMA FAA on Head)

- update the CN's translation table (i.e, RDMAWRITE the table entry)
2

3

) Design — Workflow

CN MN Meta Data
j D D L] Per-CN
Memory Pages || Translation Table
Linux kernel @]
Meta Data /
ODRP . A\ Swap addr— Page addr
Swap Backend WR Chains ond
- ea

RDMA NIC RDMA NIC (2] o = e P

@ Queue

+— Tall

#5 The WR chain reads/writes the memory page and returns the result.

24

) Efficiency Challenge

* C#I: Efficiency

— Complex logic requires longer WR chain — slower execution.

— How to minimize the number of WRs per chain?

25

) Technique: CN-Assisted Principle

* Shift part of the computation to CNs

— Observation #1:the base address of a CN's translation table can be shared with the

CN securely.

— Compute nodes directly provide the translation table entry address.
— Observation #2:The CN knows whether a swap address is mapped.

— The CN triggers different WR chains based on whether the swap address is mapped.

— Avoid complex and time-consuming page fault detection in the WR chain.

26

) Functionality Challenge

* C#I: Efficiency

— Complex logic requires longer WR chain — slower execution.

— How to minimize the number of WRs per chain?

* C#2: Functionality

27

) Functionality Challenge

* Lack of modulo support

— Ring buffer necessitate modulo operation (%).

— RDMA WRs lack support for modulo operation (%).

28

) Functionality Challenge

* Lack of modulo support

— Ring buffer necessitate modulo operation (%).

— RDMA WRs lack support for modulo operation (%).

e Mismatch in endianness
Head (little endian)

— FAA operates on little-endian values. Add(')Fetch Mismatch!
— READ assumes a big-endian src field. FAA —> READ
big-endian

src field

) Technique: Meta WR

* Meta WR #1: Fetch and Add with modulo support

— Observation: RNICs support an advanced WR — Masked Fetch and Add.
— Mask the upper bits of the value to achieve ModuloFAA.

.
-
-
-
—___—
-
-
-
-

Free Page Tail Y Y
Queue
Tall Head
-------------- Add()Fetch
Head MIS :;\I ©

30

) Technique: Meta WR

* Meta WR #1: Fetch and Add with modulo support

— Observation: RNICs support an advanced WR — Masked Fetch and Add.
— Mask the upper bits of the value to achieve ModuloFAA.

Free Page
Queue

Head

.
-
-
-
—___—
-
-
-
-

Tall

New Head

Wrap around!

A A

Tai Old Head

Add ()Fetch

Modulo
FAA

31

) Technique: Meta WR

* Meta WR #2: EndianSwap

— Observation: RNICs support scatter-gather I/O.

— One RDMA READ to convert endianness.

(@) §

*addrl: —£> | [————> *addr2:

0x12345678 |2 |0x7856341200000000

Ll

(b) | op: rREAD OP: READ
src: addrl src; addrl +1
size: 1 // 1B size: 1 // 1B
dst: addr2 +7 dst: addr2 +6

st0: addr2 + 7| (c)
OP. READ | | size: 1 // 1B
sr¢: addrl | 1—;
dst: &sge 8 sges
| ;
8 WRs OP: READ
src: addrl +7
= size: 1//1B
dst: addr2

Head (little endian)

Add()Fetch
FAA

EndianSwap

> READ

big-endian
src field

32

) Experimental Setup

Harward Setup

— CPU: | 2-Core Intel Xeon E5-2650 CPU

— DRAM: |28 GB DDR4 RAM

— RNIC: 00 Gbps Mellanox ConnectX-5 RNIC

— Cluster: 8 CNs (12 GB swap space), | MN (only use one CPU core)

Other baselines

— One-sided(Static): pre-registering MR with the size of the CN's swap space

— One-sided(Dynamic): registering and allocating IMB MR on demand
— Two-sided: using RPC in the data path

33

) Application Benchmark

Execution time (s

up to XI2 better
memory util.

Run real-world workloads on 8 CNis.

75%
Memory Working Set

Quicksort

K-means

50%
In-Memory Working

75%

50%
In-Memory Working Set
Memcached

75%

50%

In-Memory Working Set

Betweenness Centrality

Il One-sided (Static) One-sided (Dynamic) @ Two-sided B ODRP One-sided (Dynamic/4KB)
optimal S optimal S timal S timal timal
p _g 10 ptimal g 10 |— optimal _g 1.0 optimal optimal

© © ©

S N S

5 5

205 | (B >05 >05

o (o] []

£ £ £

(] (3] (]

=00 L= =00 200

75% % 75% 50%

~1.0 =10 1.0
S S

© upper ©

S limit N

505 So05 0.5

) o)

o o

o o

75%
In-Memory Working Set

50%

Page Rank

‘nds)

TPS (Thous

75%
In-Memory Working Set

VoltDB

50%

34

) Scalability

e Can ODRP scale as the number of CNs increases?

-0~ One-sided (Static) -4- Two-sided -#- One-sided (Dynamic)-sufficient-CPU
One-sided (Dynamic) @ ODRP -@- Two-sided-sufficient-CPU
1600 - 900
E\i \m/ 500
& 800 S 300
5 200
2 400 o
(@) x 100
L
0 0
1 2 3 6 7 8

4 5
CNodes

ODRP can prevent the weak MN CPU from becoming a bottleneck.

- less than 14.6% performance overhead compared to One-sided(Static)
- 2.92x better performance than one-sided(Dynamic)

35

) Conclusion

Current DM systems cannot achieve high memory utilization, zero MN
CPU usage, and high performance at the same time.

We propose ODREP, the first system that leverages RNIC offloading to
achieve

— ideal memory utilization

— zero MN CPU usage (i.e., true disaggregation)
— high performance

We introduce two software techniques to address the efficiency and
functionality challenges of RNIC offloading.

ODREP significantly improves memory utilization with less than 14.6%

performance overhead in real-world workloads.
36

) Thanks!

Q&A

	ODRP: On-Demand Remote Paging with Programmable RDMA
	Low Memory Utilization in Datacenters
	Disaggregated Memory
	Disaggregated Memory Management
	Disaggregated Memory Management
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Goals
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Design – Overview
	Design – Workflow
	Design – Workflow
	Design – Workflow
	Design – Workflow
	Design – Workflow
	Efficiency Challenge
	Technique: CN-Assisted Principle
	Functionality Challenge
	Functionality Challenge
	Functionality Challenge
	Technique: Meta WR
	Technique: Meta WR
	Technique: Meta WR
	Experimental Setup
	Application Benchmark
	Scalability
	Conclusion
	Thanks!

