
ODRP: On-Demand Remote Paging with
Programmable RDMA

Zixuan Wang, Xingda Wei, Jinyu Gu, Hongrui Xie,
Rong Chen, Haibo Chen

上海交通⼤学并⾏与分布式系统研究所（IPADS@SJTU） 1

Institute of Parallel and Distributed Systems (IPADS)
Shanghai Jiao Tong University

Low Memory Utilization in Datacenters
• Over-provisioning Memory

– The memory demand of memory-intensive applications varies over time.
– Datacenters allocate memory based on their peak usage to meet their

SLOs.

2

Low average memory
utilization!

Disaggregated Memory
• Disaggregated Memory Architecture

– Physically separate CPU and memory resources into network-attached
pools, namely compute nodes (CNs) and memory nodes (MNs).

3
many CPU cores,
small local DRAM

large DRAM,
wimpy (or no) CPU

CNs MNs
RDMA

Network

Alloc/Free

Mem. R/W

Disaggregated Memory Management
• Memory Management in DM relies on Memory Region (MR).

– Requirement #1: Allocate/Free memory chunks to CNs.
– Requirement #2: Ensure Memory Isolation between CNs.

4

Disaggregated Memory Management
• Memory Management in DM relies on Memory Region (MR).

– Requirement #1: Allocate/Free memory chunks to CNs.
– Requirement #2: Ensure Memory Isolation between CNs.

5

MNCN

RDMA NIC

Remote DRAM

RDMA NIC

#1.2 Return (addr, rkey) to
the CN

#2.1 Access memory with
(addr, rkey) #2.2 The RNIC checks if

addr and rkey match

#1.1 Register an MR to
RNIC

Existing Memory Management Approaches

• #1 Fine-grained memory management with MR
– MNs register small MRs (e.g., 1 MB) and allocate them to CNs dynamically.

6

Existing Memory Management Approaches

• #1 Fine-grained memory management with MR
– MNs register small MRs (e.g., 1 MB) and allocate them to CNs dynamically.

7

MN

CN #1 CN #2

Remote DRAM

CN #3 CN #4

Pro: High memory utilization due to
fine allocation granularity.

Limitation: Poor Performance
- frequent allocation requests
- time-consuming MR registration
- wimpy MN CPU

Existing Memory Management Approaches

• #2 Static memory management with MR
– MNs register large MRs (≥ 1 GB) and allocate them to CNs statically.

8

Existing Memory Management Approaches

• #2 Static memory management with MR
– MNs register large MRs (≥ 1 GB) and allocate them to CNs statically.

9

MN

CN #1 CN #2

Remote DRAM

CN #3 CN #4

Pro: High performance due to few (or
no) allocation requests during runtime

Limitation: Poor memory utilization
due to severe internal

fragmentation.

Existing Memory Management Approaches

• Existing approaches cannot achieve high-performance, high
memory utilization, and no MN CPU usage at the same time.

10

Goals

11

#1 Fine-grained memory management
for high memory utilization

#2 Fast data-path
memory allocation for

high performance

#3 No MN CPU
usage to realize

full disaggregation

Opportunity – RNIC Offloading
• Feature #1: Event-based work request triggering.

12

Opportunity – RNIC Offloading
• Feature #1: Event-based work request triggering.

– Commodity RNICs support a special verb called WAIT.

13

RDMA NIC

MN

Work Queue (WQ)

Work Queue (WQ)
.
.
.

RECV

WAIT WR Chain

Request

SQ

RQ

Control flow

Opportunity – RNIC Offloading
• Feature #1: Event-based work request triggering.

– Commodity RNICs support a special verb called WAIT.

14

RDMA NIC

MN

Work Queue (WQ)

Work Queue (WQ)
.
.
.

RECV

WAIT WR Chain

Request

RDMA WAIT:
- Suspend execution
- Wait for another work request (WR) to complete
- Trigger subsequent WRs when receiving a request

from CNs

SQ

RQ

Control flow

Opportunity – RNIC Offloading
• Feature #2: Chain basic WRs to express complex logic.

– Previous WRs can modify the arguments of subsequent WRs.

15

Opportunity – RNIC Offloading
• Feature #2: Chain basic WRs to express complex logic.

– Previous WRs can modify the arguments of subsequent WRs.

16

RECV

WAIT WR Chain

Request

Opportunity – RNIC Offloading
• Feature #2: Chain basic WRs to express complex logic.

– Previous WRs can modify the arguments of subsequent WRs.

17

RECV

WAIT WR Chain

Request

WR Chain:
- Chain basic WRs (e.g., READ/WRITE) together
- Enable one-sided operations with richer semantics

Opportunity – RNIC Offloading

18

Offload memory management logic to MN’s RNIC.
CNs can efficiently allocate memory in the data

path on demand!

Design – Overview

19

ODRP:
- a swap-based system
- offload memory management logic to RNIC

CN

RDMA NIC

Linux kernel

ODRP
Swap Backend

MN

RDMA NIC

WR Chains

Meta Data

…
Memory Pages

Meta Data

Free addr Free addr

Head

Tail

Swap addr Page addr

Per-CN
Translation Table

Free Page
Queue

Design – Workflow

20

#1 ODRP swap backend redirects
CNs’ swap requests to the MN with RDMA SEND.

CN

RDMA NIC

Linux kernel

ODRP
Swap Backend

MN

RDMA NIC

WR Chains

Meta Data

…
Memory Pages

Meta Data

Free addr Free addr

Head

Tail

Free Page
Queue

Per-CN
Translation Table

Swap addr Page addr

1

Design – Workflow

21

#2 The MN’s RNIC then fetches and executes a WR chain.

CN

RDMA NIC

Linux kernel

ODRP
Swap Backend

MN

RDMA NIC

WR Chains

Meta Data

…
Memory Pages

Meta Data

Free addr Free addr

Head

Tail

Free Page
Queue

Per-CN
Translation Table

Swap addr Page addr

1
2

Design – Workflow

22

#3 The WR chain performs address translation.
 i.e. RDMA READ the translation table entry

CN

RDMA NIC

Linux kernel

ODRP
Swap Backend

MN

RDMA NIC

WR Chains

Meta Data

…
Memory Pages

Meta Data

Free addr Free addr

Head

Tail

Free Page
Queue

Per-CN
Translation Table

Swap addr Page addr

1
2

3

Design – Workflow

23

#4 No mapped page?
- allocate a page from Free Page Queue (i.e., RDMA FAA on Head)
- update the CN’s translation table (i.e., RDMA WRITE the table entry)

CN

RDMA NIC

Linux kernel

ODRP
Swap Backend

MN

RDMA NIC

WR Chains

Meta Data

…
Memory Pages

Meta Data

Free addr Free addr

Head

Tail

Free Page
Queue

Per-CN
Translation Table

Swap addr Page addr

1
2

3

4

Design – Workflow

24

#5 The WR chain reads/writes the memory page and returns the result.

CN

RDMA NIC

Linux kernel

ODRP
Swap Backend

MN

RDMA NIC

WR Chains

Meta Data

…
Memory Pages

Meta Data

Free addr Free addr

Head

Tail

Free Page
Queue

Per-CN
Translation Table

Swap addr Page addr

1
2

3

4
5

Efficiency Challenge
• C#1: Efficiency

– Complex logic requires longer WR chain → slower execution.
– How to minimize the number of WRs per chain?

25

Technique: CN-Assisted Principle
• Shift part of the computation to CNs

– Observation #1: the base address of a CN’s translation table can be shared with the
CN securely.

– Compute nodes directly provide the translation table entry address.

– Observation #2: The CN knows whether a swap address is mapped.
– The CN triggers different WR chains based on whether the swap address is mapped.
– Avoid complex and time-consuming page fault detection in the WR chain.

26

Functionality Challenge
• C#1: Efficiency

– Complex logic requires longer WR chain → slower execution.
– How to minimize the number of WRs per chain?

• C#2: Functionality

27

Functionality Challenge
• Lack of modulo support

– Ring buffer necessitate modulo operation (%).
– RDMA WRs lack support for modulo operation (%).

28

Functionality Challenge
• Lack of modulo support

– Ring buffer necessitate modulo operation (%).
– RDMA WRs lack support for modulo operation (%).

• Mismatch in endianness
– FAA operates on little-endian values.
– READ assumes a big-endian src field.

29

Head (little endian)

FAA READ

FetchAdd Mismatch!

big-endian
src field

Technique: Meta WR
• Meta WR #1: Fetch and Add with modulo support

– Observation: RNICs support an advanced WR – Masked Fetch and Add.
– Mask the upper bits of the value to achieve ModuloFAA.

30

TailFree Page
Queue

Head

…

Tail

Modulo
FAA

FetchAdd
Head

Technique: Meta WR
• Meta WR #1: Fetch and Add with modulo support

– Observation: RNICs support an advanced WR – Masked Fetch and Add.
– Mask the upper bits of the value to achieve ModuloFAA.

31

TailFree Page
Queue

Head

…

Tail Old Head

Modulo
FAA

FetchAdd
New Head

Wrap around!

Technique: Meta WR
• Meta WR #2: EndianSwap

– Observation: RNICs support scatter-gather I/O.

– One RDMA READ to convert endianness.

32

Head (little endian)

FAA READ

FetchAdd

big-endian
src field

Experimental Setup
• Harward Setup

– CPU: 12-Core Intel Xeon E5-2650 CPU
– DRAM: 128 GB DDR4 RAM
– RNIC: 100 Gbps Mellanox ConnectX-5 RNIC
– Cluster: 8 CNs (12 GB swap space), 1 MN (only use one CPU core)

• Other baselines
– One-sided(Static): pre-registering MR with the size of the CN’s swap space
– One-sided(Dynamic): registering and allocating 1MB MR on demand
– Two-sided: using RPC in the data path

33

Application Benchmark
• Run real-world workloads on 8 CNs.

≤ 14.2%
overhead

up to X12 better
memory util.

34

No MN CPU usage

Scalability
• Can ODRP scale as the number of CNs increases?

35

2.92x better

ODRP can prevent the weak MN CPU from becoming a bottleneck.
- less than 14.6% performance overhead compared to One-sided(Static)
- 2.92x better performance than one-sided(Dynamic)

Conclusion

36

• Current DM systems cannot achieve high memory utilization, zero MN
CPU usage, and high performance at the same time.

• We propose ODRP, the first system that leverages RNIC offloading to
achieve
– ideal memory utilization

– zero MN CPU usage (i.e., true disaggregation)
– high performance

• We introduce two software techniques to address the efficiency and
functionality challenges of RNIC offloading.

• ODRP significantly improves memory utilization with less than 14.6%
performance overhead in real-world workloads.

Thanks!

37

Q&A

	ODRP: On-Demand Remote Paging with Programmable RDMA
	Low Memory Utilization in Datacenters
	Disaggregated Memory
	Disaggregated Memory Management
	Disaggregated Memory Management
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Existing Memory Management Approaches
	Goals
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Opportunity – RNIC Offloading
	Design – Overview
	Design – Workflow
	Design – Workflow
	Design – Workflow
	Design – Workflow
	Design – Workflow
	Efficiency Challenge
	Technique: CN-Assisted Principle
	Functionality Challenge
	Functionality Challenge
	Functionality Challenge
	Technique: Meta WR
	Technique: Meta WR
	Technique: Meta WR
	Experimental Setup
	Application Benchmark
	Scalability
	Conclusion
	Thanks!

