
Achieving Wire-Latency Storage Systems by
Exploiting Hardware ACKs

Qing Wang, Jiwu Shu, Jing Wang, Yuhao Zhang

Tsinghua University

Communication in networked storage systems

2

 Clients manipulate data in the storage server connected via network
 Post requests and obtain responses

Storage Server

Data

CPU
NIC

NetworkClient

Communication in networked storage systems

2

 Clients manipulate data in the storage server connected via network
 Post requests and obtain responses

Storage Server

Data

CPU
NIC

Network

We explore how to achieve extremely low latency for storage requests

Client

Common paradigm: RPC

3

 Client: sends a request 
 Server: CPU obtains the request, executes it, and returns a response

Storage Server

Data

 



Client

Common paradigm: RPC

3

 Client: sends a request 
 Server: CPU obtains the request, executes it, and returns a response

Storage Server

Data

 




Server CPU latency in the critical path: queuing and execution

Client

Eliminate server-side CPU latency via one-sided RDMA

4

Storage Server

Data

 Client: sends a request via RDMA write/read
 Server: NIC executes write/read, and returns a response






bypass CPU

Client

Eliminate server-side CPU latency via one-sided RDMA

4

Storage Server

Data

 Client: sends a request via RDMA write/read
 Server: NIC executes write/read, and returns a response






However, one-sided RDMA will induce multiple RTTs, offsetting
the latency benefits of bypassing remote CPUs

bypass CPU

Client

One-sided RDMA will induce multiple RTTs

5

 Limited semantics of one-sided verbsMultiple RTTs
 Need code refactoring to make data be accessed by one-sided RDMA

Case 1: unknown address

RTTs from index traversal and pointer chasing

1st RTT

2nd RTT

3rd RTT

4th RTT

One-sided RDMA will induce multiple RTTs

5

 Limited semantics of one-sided verbsMultiple RTTs
 Need code refactoring to make data be accessed by one-sided RDMA

Case 1: unknown address

RTTs from index traversal and pointer chasing

1st RTT

2nd RTT

3rd RTT

4th RTT

Case 2: concurrent access

RTTs from synchronization
(e.g., lock acquire/release/retry)

1st RTT: acquire the lock

2nd RTT: write data

3rd RTT: unlock

Our Goal: Wire-latency

6

Wire-latency: a single round trip & server CPU bypass

Like RPC Like one-sided RDMA

Our Goal: Wire-latency

6

Wire-latency: a single round trip & server CPU bypass

Like RPC Like one-sided RDMA

Can we achieve wire-latency for general storage requests ?

Basic Idea: Asynchronous execution for nilext requests

7

Nil-externalizing (or nilext) requests [SOSP’19[1], Ganesan et al.]
 Does not externalize its effects or state immediately
 Example: set in Memcached, Put in RocksDB
 So we can execute them asynchronously, which makes wire-latency possible

[1] Aishwarya Ganesan, et al. Exploiting Nil-Externality for Fast Replicated Storage, SOSP’21

Storage Server

Data

Basic Idea: Asynchronous execution for nilext requests

7

Nil-externalizing (or nilext) requests [SOSP’19[1], Ganesan et al.]
 Does not externalize its effects or state immediately
 Example: set in Memcached, Put in RocksDB
 So we can execute them asynchronously, which makes wire-latency possible

[1] Aishwarya Ganesan, et al. Exploiting Nil-Externality for Fast Replicated Storage, SOSP’21

 Client issues RDMA_write(set<k, v>)

Storage Server



Data

Client

Basic Idea: Asynchronous execution for nilext requests

7

Nil-externalizing (or nilext) requests [SOSP’19[1], Ganesan et al.]
 Does not externalize its effects or state immediately
 Example: set in Memcached, Put in RocksDB
 So we can execute them asynchronously, which makes wire-latency possible

[1] Aishwarya Ganesan, et al. Exploiting Nil-Externality for Fast Replicated Storage, SOSP’21

 Client issues RDMA_write(set<k, v>)
 Server NIC writes it to mem

Storage Server



Data

Client


set<k,v>

Basic Idea: Asynchronous execution for nilext requests

7

Nil-externalizing (or nilext) requests [SOSP’19[1], Ganesan et al.]
 Does not externalize its effects or state immediately
 Example: set in Memcached, Put in RocksDB
 So we can execute them asynchronously, which makes wire-latency possible

[1] Aishwarya Ganesan, et al. Exploiting Nil-Externality for Fast Replicated Storage, SOSP’21

 Client issues RDMA_write(set<k, v>)
 Server NIC writes it to mem
 Server NIC return an ack

Storage Server




Data

Client


set<k,v>

Basic Idea: Asynchronous execution for nilext requests

7

Nil-externalizing (or nilext) requests [SOSP’19[1], Ganesan et al.]
 Does not externalize its effects or state immediately
 Example: set in Memcached, Put in RocksDB
 So we can execute them asynchronously, which makes wire-latency possible

[1] Aishwarya Ganesan, et al. Exploiting Nil-Externality for Fast Replicated Storage, SOSP’21

 Client issues RDMA_write(set<k, v>)
 Server NIC writes it to mem
 Server NIC return an ack
 Server CPU executes it async

Storage Server




Data

Client


set<k,v>



Basic Idea: Asynchronous execution for nilext requests

7

Nil-externalizing (or nilext) requests [SOSP’19[1], Ganesan et al.]
 Does not externalize its effects or state immediately
 Example: set in Memcached, Put in RocksDB
 So we can execute them asynchronously, which makes wire-latency possible

[1] Aishwarya Ganesan, et al. Exploiting Nil-Externality for Fast Replicated Storage, SOSP’21

 Client issues RDMA_write(set<k, v>)
 Server NIC writes it to mem
 Server NIC return an ack
 Server CPU executes it async

Storage Server




Data

Client


set<k,v>



Critical path:Wire-latency

Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Data

Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

set<k,v1>

write

Data

Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

set<k,v1>
set<k,v2>

write write

Data

Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

set<k,v1>
set<k,v2>

get<k>

write write write

Data

?

Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

set<k,v1>
set<k,v2>

get<k>

write write write

Data

set<k,v1> set<k,v2> get<k>
Correct linearizable order:

?

Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

set<k,v1>
set<k,v2>

get<k>

write write write

Data

How does the server CPU
know this order and execute

accordingly?

set<k,v1> set<k,v2> get<k>
Correct linearizable order:

?

Challenge: Linearizability (2)

9

RDMA write lacks the ability of inter-client coordination
 Clients specify the destination address
 Server CPU does not have enough information to obtain the linearizable order

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

set<k,v1>
set<k,v2>

get<k>

write write write

Data

set<k,v1> set<k,v2> get<k>
Correct linearizable order:

?

Observation: The key of remote CPU bypass is hardware ACKs

10

What we talk about when we talk about remote CPU bypass?
 RDMA write: when polling the completion signal of an RDMA write, the client can

guarantee that the data will reliably reach the server memory

Observation: The key of remote CPU bypass is hardware ACKs

10

What we talk about when we talk about remote CPU bypass?
 RDMA write: when polling the completion signal of an RDMA write, the client can

guarantee that the data will reliably reach the server memory

How does the client obtain the guarantee in a remote-CPU-bypass manner?

Observation: The key of remote CPU bypass is hardware ACKs

10

What we talk about when we talk about remote CPU bypass?
 RDMA write: when polling the completion signal of an RDMA write, the client can

guarantee that the data will reliably reach the server memory

How does the client obtain the guarantee in a remote-CPU-bypass manner?

Client Server

one/two-sided req

hardware ACK

Observation: The key of remote CPU bypass is hardware ACKs

10

What we talk about when we talk about remote CPU bypass?
 RDMA write: when polling the completion signal of an RDMA write, the client can

guarantee that the data will reliably reach the server memory

How does the client obtain the guarantee in a remote-CPU-bypass manner?

When offloading reliability, server NIC generates
hardware ACKs to confirm safe delivery

Client Server

one/two-sided req

hardware ACK

Observation: The key of remote CPU bypass is hardware ACKs

10

What we talk about when we talk about remote CPU bypass?
 RDMA write: when polling the completion signal of an RDMA write, the client can

guarantee that the data will reliably reach the server memory

How does the client obtain the guarantee in a remote-CPU-bypass manner?

Upon receiving an ACK (via polling CQ),
the client can obtain the guarantee

When offloading reliability, server NIC generates
hardware ACKs to confirm safe delivery

Client Server

one/two-sided req

hardware ACK

Ordered Queue (OQ) Abstraction

11

Ordered Queue (OQ) Abstraction: enabling wire-latency nilext requests
 Leveraging receive queue (RQ) to produce the linearizable order
 Linearizable order == positions of receive buffers in the RQ

receive queuenilext req non-nilext

receive queueClient

Ordered Queue (OQ) Abstraction

11

Ordered Queue (OQ) Abstraction: enabling wire-latency nilext requests
 Leveraging receive queue (RQ) to produce the linearizable order
 Linearizable order == positions of receive buffers in the RQ

receive queuenilext req non-nilext

receive queue

NIC allocates receive buffers in order
and returns hardware ACKs

NIC Rule

Client

Ordered Queue (OQ) Abstraction

11

Ordered Queue (OQ) Abstraction: enabling wire-latency nilext requests
 Leveraging receive queue (RQ) to produce the linearizable order
 Linearizable order == positions of receive buffers in the RQ

receive queuenilext req non-nilext

receive queue

NIC allocates receive buffers in order
and returns hardware ACKs

NIC Rule
CPU executes requests in order and
returns response for non-nilext reqs

CPU Rule

Client

Ordered Queue (OQ) Abstraction

11

Ordered Queue (OQ) Abstraction: enabling wire-latency nilext requests
 Leveraging receive queue (RQ) to produce the linearizable order
 Linearizable order == positions of receive buffers in the RQ

receive queuenilext req non-nilext

receive queue

NIC allocates receive buffers in order
and returns hardware ACKs

NIC Rule
CPU executes requests in order and
returns response for non-nilext reqs

CPU Rule

Client

Commit Signal:
HW ACKs for nilext reqs
SW reps for non-nilext reqs

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

k, v0

receive queue

data

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

k, v0

receive queue

data

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

k, v0

set<k,v1>
receive queue

data

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

k, v0

set<k,v1>
receive queue

data

HW ACK

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

k, v0

set<k,v1>
receive queue

data

wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

k, v0

set<k,v2> set<k,v1>
receive queue

data

wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

k, v0

set<k,v2> set<k,v1>
receive queue

data

HW ACK

wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

k, v0

set<k,v2> set<k,v1>
receive queue

data

wire-latency wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

k, v0

set<k,v2> get<k> set<k,v1>
receive queue

data

wire-latency wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

k, v0

set<k,v2> get<k> set<k,v1>
receive queue

data

k, v1

wire-latency wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

k, v0

set<k,v2> get<k> set<k,v1>
receive queue

data

k, v1k, v2

wire-latency wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

k, v0

set<k,v2> get<k> set<k,v1>
receive queue

data

k, v1k, v2
is non-nilext

wire-latency wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

k, v0

set<k,v2> get<k> set<k,v1>
receive queue

data

k, v1k, v2

SW resp: v2

is non-nilext

wire-latency wire-latency

Example of Ordered Queue

12

Memcached, where set is nilext and get is non-nilext

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

k, v0

set<k,v2> get<k> set<k,v1>
receive queue

data

k, v1k, v2

SW resp: v2

is non-nilext

wire-latency wire-latency

Positions of buffers in RQ

set<k,v1> set<k,v2> get<k>
Correct linearizable order:

Implementation of OQ (1):

13

We build Juneberry, a communication framework that implements OQ
 Interface: Like RPC, but clients can mark a request as nilext and use the

hardware ACK as its commit signal (i.e., wire-latency)
 Using commodity RDMA NICs (RNIC): two-sided send/recv on RC mode

Implementation of OQ (1):

13

We build Juneberry, a communication framework that implements OQ
 Interface: Like RPC, but clients can mark a request as nilext and use the

hardware ACK as its commit signal (i.e., wire-latency)
 Using commodity RDMA NICs (RNIC): two-sided send/recv on RC mode

Juneberry is centered on shared receive queue (SRQ)
 Different clients send requests to the same server-side SRQ

receive queue

SRQ

Implementation of OQ (1):

13

We build Juneberry, a communication framework that implements OQ
 Interface: Like RPC, but clients can mark a request as nilext and use the

hardware ACK as its commit signal (i.e., wire-latency)
 Using commodity RDMA NICs (RNIC): two-sided send/recv on RC mode

Juneberry is centered on shared receive queue (SRQ)
 Different clients send requests to the same server-side SRQ

receive queue

SRQ

RNIC follows the
NIC Rule for SRQ

CPU executes requests
in order, to enforce

the CPU Rule

Implementation of OQ (2):

14

Scaling to multiple CPU cores by data partitioning
 Server: each worker thread creates an SRQ and managing an exclusive set of dataset
 Client: send requests to the correct SRQ according to partition scheme
 Limitation: do not support cross-partition operations

receive queue

SRQ 0

partition 0

Worker 0

SRQ 1

partition 1

Worker 1

SRQ 2

partition 2

Worker 2

SRQ 3

partition 3

Worker 3

Client

set<k,v1>

Hash(k) % 4 = 1
Send to worker 1

Implementation of OQ (3):

15

How to support storage systems that contain persistent states ?
 Step 1: putting SRQs in persistent memory (PM)

 Requests in SRQs can survive power outages
 Step 2: making the hardware ACKs have the persistent guarantee

 1-byte RDMA read followed by every RDMA send, to drain requests to PM
 Thus, upon receiving a hardware ACK, the associated nilext request is persisted in PM

 Step 3: embedding a checksum in every request
 During recovery, we can identify valid request and execute them

receive queue

SRQ

persistent memory (PM)

req1CRCClient

RDMA send +
1B read

More Details: Check our paper

16

Performance Optimizations
 Leveraging multi-packet (MP) features to improve the performance of SRQs
 Using client-side delegation to reduce to number of QP connections

Recovery Procedure
 Handling non-idempotent requests
 ……

Experimental Setup

17

Hardware Platform
 One server machine: Two 18-core Intel Xeon Gold 6240M CPU, 192GB DRAM

 1.5TB Optane PM
 Using one socket to avoid PM NUMA effect

 Eight client machines: Two 12-core Intel Xeon E5-2650 CPUs and 128GB DRAM
 100Gbps Mellanox ConnectX-5 RNIC

Target comparisons
 eRPC [NSDI’19]: a state-of-the-art RPC framework, which uses unreliable datagrams
 DeferredExec: the same codebase as Juneberry. Software solution: when processing

a nilext request, the CPU first returns a software ACK to commit and then executes it

In-Memory Caching: Memcached

18

 Using Memcached (version: 1.6.19) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 Running four traces from twitter workloads (https://github.com/twitter/cache-trace)

eRPC DeferredExec Juneberry
Cluster-12 (80% set) 24.3 10.3 3.4
Cluster-19 (25% set) 12.8 9.2 5.8
Cluster-27 (15% set) 9.2 6.8 5.9
Cluster-31 (94% set) 34.7 19.7 3.2

Median Latency (us) at Peak Throughput

In-Memory Caching: Memcached

18

 Using Memcached (version: 1.6.19) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 Running four traces from twitter workloads (https://github.com/twitter/cache-trace)

eRPC DeferredExec Juneberry
Cluster-12 (80% set) 24.3 10.3 3.4
Cluster-19 (25% set) 12.8 9.2 5.8
Cluster-27 (15% set) 9.2 6.8 5.9
Cluster-31 (94% set) 34.7 19.7 3.2

Median Latency (us) at Peak Throughput

Juneberry reduces the P50 latency by up to 90.8% and 83.8% against eRPC and DeferredExec,
This is because: Juneberry eliminates any software delay in the critical path of set requests.

Persistent KV Store: PMemKV

19

 Using PMemKV (https://github.com/pmem/pmemkv) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 We set the object size to 91-byte (the average object size in Meta’s largest KV system ZippyDB)
 Workloads follow a Zipf 0.99 access distribution

Persistent KV Store: PMemKV

19

 Using PMemKV (https://github.com/pmem/pmemkv) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 We set the object size to 91-byte (the average object size in Meta’s largest KV system ZippyDB)
 Workloads follow a Zipf 0.99 access distribution

Throughput (Mops/s)

La
te

nc
y

(u
s) P50 Lat. P99 Lat.

Write-intensive workload (50% put)

Juneberry reduces median latency by 40.83% / 36.71%
against DeferredExec/eRPC under write-intensive workloads

Persistent KV Store: PMemKV

19

 Using PMemKV (https://github.com/pmem/pmemkv) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 We set the object size to 91-byte (the average object size in Meta’s largest KV system ZippyDB)
 Workloads follow a Zipf 0.99 access distribution

Throughput (Mops/s)

La
te

nc
y

(u
s) P50 Lat. P99 Lat.

Write-intensive workload (50% put)
Throughput (Mops/s)

P50 Lat. P99 Lat.

Read-intensive workload (5% put)

Juneberry reduces median latency by 40.83% / 36.71%
against DeferredExec/eRPC under write-intensive workloads

Juneberry has higher latency under read-intensive
workloads due to overhead of PM access

Conclusion

20

Our Goal:
 Achieving wire-latency (1RTT & remote CPU bypass) for storage requests

Our Idea:
 Repurposing hardware ACKs of NICs as the commit signals of nilext requests

Our Design and Evaluation:
 Ordered Queue (OQ), an abstraction that ensures the linearizability
 Juneberry, a communication framework that implements OQ
 Juneberry can significantly lower request latency under write-intensive workloads

Takeaway:
 Making storage software have visibility into network-level knowledge can bring

performance benefits

Thanks & QA

21Contact Information: wq1997@tsinghua.edu.cn & wq1997.com

Achieving Wire-Latency Storage Systems by
Exploiting Hardware ACKs

	Achieving Wire-Latency Storage Systems by Exploiting Hardware ACKs
	Communication in networked storage systems
	Communication in networked storage systems
	Common paradigm: RPC
	Common paradigm: RPC
	Eliminate server-side CPU latency via one-sided RDMA
	Eliminate server-side CPU latency via one-sided RDMA
	One-sided RDMA will induce multiple RTTs
	One-sided RDMA will induce multiple RTTs
	Our Goal: Wire-latency
	Our Goal: Wire-latency
	Basic Idea: Asynchronous execution for nilext requests
	Basic Idea: Asynchronous execution for nilext requests
	Basic Idea: Asynchronous execution for nilext requests
	Basic Idea: Asynchronous execution for nilext requests
	Basic Idea: Asynchronous execution for nilext requests
	Basic Idea: Asynchronous execution for nilext requests
	Challenge: Linearizability (1)
	Challenge: Linearizability (1)
	Challenge: Linearizability (1)
	Challenge: Linearizability (1)
	Challenge: Linearizability (1)
	Challenge: Linearizability (1)
	Challenge: Linearizability (2)
	Observation: The key of remote CPU bypass is hardware ACKs
	Observation: The key of remote CPU bypass is hardware ACKs
	Observation: The key of remote CPU bypass is hardware ACKs
	Observation: The key of remote CPU bypass is hardware ACKs
	Observation: The key of remote CPU bypass is hardware ACKs
	Ordered Queue (OQ) Abstraction
	Ordered Queue (OQ) Abstraction
	Ordered Queue (OQ) Abstraction
	Ordered Queue (OQ) Abstraction
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Example of Ordered Queue
	Implementation of OQ (1):
	Implementation of OQ (1):
	Implementation of OQ (1):
	Implementation of OQ (2):
	Implementation of OQ (3):
	More Details: Check our paper
	Experimental Setup
	In-Memory Caching: Memcached
	In-Memory Caching: Memcached
	Persistent KV Store: PMemKV
	Persistent KV Store: PMemKV
	Persistent KV Store: PMemKV
	Conclusion
	幻灯片编号 61

