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 Limited semantics of one-sided verbsMultiple RTTs
 Need code refactoring to make data be accessed by one-sided RDMA 

Case 1: unknown address

RTTs from index traversal and pointer chasing   
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 Limited semantics of one-sided verbsMultiple RTTs
 Need code refactoring to make data be accessed by one-sided RDMA 

Case 1: unknown address

RTTs from index traversal and pointer chasing   

1st RTT

2nd RTT

3rd RTT

4th RTT

Case 2: concurrent access

RTTs from synchronization 
(e.g., lock acquire/release/retry)

1st RTT: acquire the lock

2nd RTT:  write data

3rd RTT: unlock
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Wire-latency: a single round trip & server CPU bypass

Like RPC Like one-sided RDMA
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Wire-latency: a single round trip & server CPU bypass

Like RPC Like one-sided RDMA

Can we achieve wire-latency for general storage requests ?



Basic Idea: Asynchronous execution for nilext requests
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Nil-externalizing (or nilext) requests [SOSP’19[1], Ganesan et al.]
 Does not externalize its effects or state immediately
 Example: set in Memcached, Put in RocksDB
 So we can execute them asynchronously, which makes wire-latency possible

[1] Aishwarya Ganesan, et al. Exploiting Nil-Externality for Fast Replicated Storage, SOSP’21
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How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Data



Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

set<k,v1> 

write

Data



Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

set<k,v1> 
set<k,v2> 

write write

Data



Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

set<k,v1> 
set<k,v2> 

get<k> 

write write write

Data

?



Challenge: Linearizability (1)

8

How to maintain linearizability in the presence of multiple clients ?
 The execution of nilext requests is asynchronous
 The responses of nilext requests are generated by NICs

Storage Server

physical time

Client A
set<k,v1>

Client B
set<k,v2>

Client C
get<k>

set<k,v1> 
set<k,v2> 

get<k> 

write write write

Data

set<k,v1> set<k,v2> get<k> 
Correct linearizable order:

?



Challenge: Linearizability (1)

8
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Challenge: Linearizability (2)
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RDMA write lacks the ability of inter-client coordination
 Clients specify the destination address
 Server CPU does not have enough information to obtain the linearizable order
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 RDMA write:  when polling the completion signal of an RDMA write, the client can        

guarantee that the data will reliably reach the server memory
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What we talk about when we talk about remote CPU bypass?
 RDMA write:  when polling the completion signal of an RDMA write, the client can        

guarantee that the data will reliably reach the server memory

How does the client obtain the guarantee in a remote-CPU-bypass manner?

Upon receiving an ACK (via polling CQ),  
the client can obtain the guarantee

When offloading reliability,  server NIC generates 
hardware ACKs to confirm safe delivery

Client Server

one/two-sided req

hardware ACK
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 Leveraging receive queue (RQ) to produce the linearizable order
 Linearizable order == positions of receive buffers in the RQ

receive queuenilext req non-nilext

receive queueClient
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Ordered Queue (OQ) Abstraction: enabling wire-latency nilext requests
 Leveraging receive queue (RQ) to produce the linearizable order
 Linearizable order == positions of receive buffers in the RQ

receive queuenilext req non-nilext

receive queue

NIC allocates receive buffers in order 
and returns hardware ACKs

NIC Rule
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Client

Commit Signal: 
HW ACKs for nilext reqs
SW reps for non-nilext reqs
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 Using commodity RDMA NICs (RNIC): two-sided send/recv on RC mode
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We build Juneberry, a communication framework that implements OQ
 Interface: Like RPC, but clients can mark a request as nilext and use the

hardware ACK as its commit signal (i.e., wire-latency)
 Using commodity RDMA NICs (RNIC): two-sided send/recv on RC mode

Juneberry is centered on shared receive queue (SRQ)
 Different clients send requests to the same server-side SRQ

receive queue

SRQ

RNIC follows the 
NIC Rule for SRQ

CPU executes requests 
in order, to enforce 

the CPU Rule 



Implementation of OQ (2): 
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Scaling to multiple CPU cores by data partitioning
 Server: each worker thread creates an SRQ and managing an exclusive set of dataset
 Client: send requests to the correct SRQ according to partition scheme
 Limitation: do not support cross-partition operations

receive queue

SRQ 0

partition 0

Worker 0

SRQ 1

partition 1

Worker 1

SRQ 2

partition 2

Worker 2

SRQ 3

partition 3

Worker 3

Client

set<k,v1> 

Hash(k) % 4 = 1
Send to worker 1



Implementation of OQ (3): 
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How to support storage systems that contain persistent states ?
 Step 1: putting SRQs in persistent memory (PM)

 Requests in SRQs can survive power outages
 Step 2:  making the hardware ACKs have the persistent guarantee

 1-byte RDMA read followed by every RDMA send, to drain requests to PM
 Thus, upon receiving a hardware ACK, the associated nilext request is persisted in PM

 Step 3: embedding a checksum in every request
 During recovery, we can identify valid request and execute them 

receive queue

SRQ

persistent memory (PM)

req1CRCClient

RDMA send +
1B read



More Details: Check our paper
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Performance Optimizations
 Leveraging multi-packet (MP) features to improve the performance of SRQs
 Using client-side delegation to reduce to number of QP connections

Recovery Procedure 
 Handling non-idempotent requests
 ……



Experimental Setup
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Hardware Platform
 One server machine: Two 18-core Intel Xeon Gold 6240M CPU, 192GB DRAM

 1.5TB Optane PM
 Using one socket to avoid PM NUMA effect 

 Eight client machines: Two 12-core Intel Xeon E5-2650 CPUs and 128GB DRAM
 100Gbps Mellanox ConnectX-5 RNIC

Target comparisons
 eRPC [NSDI’19]:  a state-of-the-art RPC framework, which uses unreliable datagrams
 DeferredExec: the same codebase as Juneberry. Software solution: when processing 

a nilext request, the CPU first returns a software ACK to commit and then executes it



In-Memory Caching: Memcached
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 Using Memcached (version: 1.6.19) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 Running four traces from twitter workloads (https://github.com/twitter/cache-trace)

eRPC DeferredExec Juneberry
Cluster-12 (80% set) 24.3 10.3 3.4
Cluster-19 (25% set) 12.8 9.2 5.8
Cluster-27 (15% set) 9.2 6.8 5.9
Cluster-31 (94% set) 34.7 19.7 3.2

Median Latency (us) at Peak Throughput
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Cluster-31 (94% set) 34.7 19.7 3.2
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Juneberry reduces the P50 latency by up to 90.8% and 83.8% against eRPC and DeferredExec,
This is because: Juneberry eliminates any software delay in the critical path of set requests.
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 Using PMemKV (https://github.com/pmem/pmemkv) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 We set the object size to 91-byte (the average object size in Meta’s largest KV system ZippyDB)
 Workloads follow a Zipf 0.99 access distribution
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 Using PMemKV (https://github.com/pmem/pmemkv) as the back-end storage system
 Client threads generate requests at a given rate with Poisson arrivals
 We set the object size to 91-byte (the average object size in Meta’s largest KV system ZippyDB)
 Workloads follow a Zipf 0.99 access distribution
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Write-intensive workload (50% put)
Throughput (Mops/s)

P50 Lat. P99 Lat.

Read-intensive workload (5% put)

Juneberry reduces median latency by 40.83% / 36.71% 
against DeferredExec/eRPC under write-intensive workloads

Juneberry has higher latency under read-intensive 
workloads due to overhead of PM access



Conclusion
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Our Goal: 
 Achieving wire-latency (1RTT & remote CPU bypass) for storage requests

Our Idea: 
 Repurposing hardware ACKs of NICs as the commit signals of nilext requests

Our Design and Evaluation: 
 Ordered Queue (OQ),  an abstraction that ensures the linearizability
 Juneberry, a communication framework that implements OQ
 Juneberry can significantly lower request latency under write-intensive workloads

Takeaway: 
 Making storage software have visibility into network-level knowledge can bring

performance benefits
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